
Generalized Learning Graph Quantization

Brijnesh J. Jain and Klaus Obermayer

Berlin Institute of Technology, Germany
jbj@cs.tu-berlin.de

Abstract. This contribution extends generalized LVQ, generalized rel-
evance LVQ, and robust soft LVQ to the graph domain. The proposed
approaches are based on the basic learning graph quantization (lgq) al-
gorithm using the orbifold framework. Experiments on three data sets
show that the proposed approaches outperform lgq and lgq2.1.

1 Introduction

Learning vector quantization (LVQ) as introduced by Kohonen [11] is a super-
vised learning algorithm for pattern classification. To classify patterns, LVQ ap-
plies the nearest neighbor rule using a condensed set of prototypes. Prototypes
are learned by combining competitive learning with supervision. LVQ is easy
to implement, runs efficiently, allows to control the complexity of the resulting
classifier, naturally deals with multiclass problems, constructs an informative
rather than a black-box model, and in many cases provides state of the art
performance. Due to well-known shortcomings of LVQ and LVQ2.1 more sophis-
ticated and powerful learning vector quantizers such as generalized LVQ [16],
generalized relevance LVQ [4], and soft robust LVQ [17] have been devised.

LVQ and related methods have been originally devised for feature vectors
equipped with the Euclidean metric. Extensions have been proposed, for exam-
ple, for vectors with arbitrarily differentiable distance functions [5], for variable
length and warped feature sequences [18], for strings [12], and for graphs [8].

For graphs, LVQ and LVQ2.1 have been extended to the corresponding learn-
ing graph quantization algorithms lgq and lgq2.1 and comparable results to
state-of-the-art methods have been reported [8]. These findings give rise to the
question at issue, whether extensions of more powerful learning vector quantizers
to the graph domain yield improved learning graph quantizers.

In this contribution, we extend generalized LVQ, generalized relevance LVQ,
and robust soft LVQ to the domain of attributed graphs. The proposed ap-
proaches are based on the orbifold framework for graphs [6] and on lgq [8].
Experiments on three data sets of the IAM graph database [14] show that the
proposed algorithms outperform lgq and lgq2.1.

2 Graph Orbifolds

This section introduces attributed graphs and represent them as point of some
orbifold [1]. Most of this presentation including proofs of statements and claims
is based on the structure space formalism proposed by [6].

Representation of Graphs. Let E be a d-dimensional Euclidean space. An
attributed graph X = (V,E, α) consists of a set V of vertices, a set E ⊆ V × V
of edges, and an attribute function α : V ×V → E, such that α(i, j) 6= 0 for each
edge and α(i, j) = 0 for each non-edge. Attributes α(i, i) of vertices i may take
any value from E.

For simplifying the mathematical treatment, we assume that all graphs are of
order n, where n is chosen to be sufficiently large. Graphs of order less than n, say
m < n, can be extended to order n by including isolated vertices with attribute
zero. For practical issues, it is important to note that limiting the maximum order
to some arbitrarily large number n and extending smaller graphs to graphs of
order n are purely technical assumptions to simplify mathematics. For pattern
recognition problems, these limitations should have no practical impact, because
neither the bound n needs to be specified explicitly nor an extension of all graphs
to an identical order needs to be performed. When applying the theory, all we
actually require is that the graphs are finite.

A graph X is completely specified by its matrix representation X = (xij)
with elements xij = α(i, j) for all 1 ≤ i, j ≤ n. Let X = En×n be the Euclidean
space of all (n× n)-matrices with elements from E and let Πn be the set of all
(n× n)-permutation matrices. For each P ∈ Πn we define a mapping

γP : X → X , X 7→ P TXP .

Then G = {γP : P ∈ Πn} is a finite group acting on X . For X ∈ X , the orbit
of X is the set defined by [X] = {γ(X) : γ ∈ G}. The quotient set

XG = {[X] : X ∈ X}

consisting of all orbits is a graph orbifold. Its orbifold chart is the surjective
continuous mapping

π : X → XG , X 7→ [X]

that projects each matrix representation X to its orbit [X].
Suppose thatX is a matrix representation of some attributed graph X. Then

the orbit [X] consists of all possible matrices that represent X. By identifying
the attributed graphs X with the orbits [X], we can regard graphs from GA as
point of the graph orbifold XG . The orbifold chart π : X → XG projects matrices
X to the graphs X they represent.

For notational convenience, we identify X with EN , where N =n2 and con-
sider vector- rather than matrix representations of graphs. We obtain a vector
representation x of graph X by concatenating the columns of a matrix X rep-
resenting X. We write x ∈ X if x ∈ X projects to X ∈ XG via the orbifold chart
π(x) = X.

Intrinsic Metric. The intrinsic metric of a graph orbifold XG is of the form

d(X,X ′) = min
{
‖x− x′‖2 : x ∈ X,x′ ∈ X ′

}
,

where ‖·‖ is the Euclidean distance on X . We call a pair (x,x′) ∈ X ×X ′ with
‖x− x′‖2 = d(X,X ′) an optimal alignment of X and X ′. By A(X,Y) we denote
the set of all optimal alignments of X and Y .

Suppose that x ∈ X is an arbitrary vector representation. Since G is a group,
we have

dx(Y) = min
{
‖x− y‖2 : y ∈ Y

}
= d(X,Y).

By symmetry, we have dy(X) = d(Y,X). Hence, the graph distance d(X,Y)
can be determined by fixing an arbitrary vector representation x ∈ X and then
finding a vector representation y∗ from Y that minimizes ‖x− y‖2 over all vector
representations Y ∈ Y and vice versa.

Note that the intrinsic metric is not a artificial construction for analytical
purposes but rather is based on a generalized concept of maximum common sub-
graph and therefore appears in different guises as a common choice of proximity
measure for graphs [2, 3, 19].

Orbifold Functions. Suppose that XG is a graph orbifold with orbifold chart
π : X → XG . An orbifold function is a mapping of the form f : XG → R. The lift
of f is a function f̃ : X → R satisfying f̃ = f ◦ π. The lift f̃ is invariant under
group actions of G, that is f̃(x) = f̃ (γ(x)) for all γ ∈ G.

An example of an orbifold function is the parametrized metric dx with x ∈ X.
In what follows, we investigate local analytical properties of dx. The lift d̃x of
the function dx is defined by

d̃x : X → R, y 7→ min
{
‖x− y′‖2 : y′ ∈ Y

}
.

Certainly, the lift satisfies d̃x = dx ◦ π and is invariant under group actions of
G, that is d̃x(y) = d̃x (γ(y)) for all γ ∈ G.

By lifting the distance function dx to the Euclidean space X , we are in the
position to transfer analytical concepts such as differentiability and gradients
to functions on graph orbifolds. We say, the function dx is continuous (locally
Lipschitz, differentiable, generalized differentiable) at point Y ∈ XG if its lift d̃x
is continuous (locally Lipschitz, differentiable, generalized differentiable in the
sense of Norkin [13]) at some vector representation y ∈ Y . This definition is
independent of the choice of the vector representation that projects to Y .

As a minimizer of a set of continuously differentiable distance functions, the
function dx is generalized differentiable at any point Y . Though dx is not differ-
entiable, it is locally Lipschitz and therefore differentiable almost everywhere.

Gradients. Suppose that dx is differentiable at Y . Then the lift d̃x is differen-
tiable at any vector representation that projects to Y . The gradient ∇d̃x(y) of
d̃x at y is of the form

∇d̃x(y) = −2(x− y∗)
where (x,y∗) ∈ A(X,Y) is an optimal alignment. Since dx is differentiable at
Y , the optimal alignment (x,y∗) is unique. From

∇dx(γ(y)) = γ
(
∇d̃x(y)

)

for all γ ∈ G follows that the gradients of d̃x at y and γ(y) are vector repre-
sentations of the same graph. Hence, at differentiable points Y , the gradient of
dx(Y) at Y is defined by the projection

∇dx(Y) = π
(
∇d̃x(y)

)
of the gradient ∇d̃x(y) at vector representation y ∈ Y . Thus, the gradient of dx
at Y is a well-defined graph pointing to the direction of steepest ascent.

Generalized Gradients. Now suppose that dx is generalized differentiable at Y .
Then the lift d̃x is generalized differentiable at any vector representation that
projects to Y . The subdifferential ∂d̃x(y) of d̃x at y is a convex set containing

−2(x− y∗) ∈ ∂d̃x(y)

as generalized gradient, where (x,y∗) ∈ A(X,Y) is an optimal alignment. From

∂dx(γ(y)) = γ
(
∂d̃x(y)

)
for all γ ∈ G follows that the subderivatives of d̃x at y and γ(y) project to
the same subset of graphs. Hence, at generalized differentiable points Y , the
subderivative of dx(Y) at Y is defined by the projection

∂dx(Y) = π
(
∂d̃x(y)

)
of the subderivative ∇d̃x(y) at an arbitrary vector representation y ∈ Y . Thus,
the subderivative of dx at Y is well-defined and coincides with the gradient at
differentiable points, that is ∂dx(Y) = {∇dx(Y)}.

3 Learning Graph Quantization

Learning graph quantization (lgq) aims at constructing a classifier c : XG → C
that maps graphs from XG to class labels from a finite set C. The classifiers
are parameterized by a set of k prototypes Y1, . . . , Yk ∈ XG with class labels
c1, . . . , ck ∈ C. We predict the class label c(X) of a new graph X ∈ XG by
assigning it to the class label of the closest prototype according to the nearest
neighbor rule. The goal of learning is to find a set of k prototypes that best
predicts the class labels of graphs from XG .

In the following, we first review lgq and lgq2.1 as proposed in [8]. Then we
extend GLVQ, GRLVQ, and RSLVQ to the domain of graph orbifolds.

3.1 LGQ

Suppose that S = {(Xi, yi)} ni=1 ⊆ XG × C is a training set consisting of n
input graphs Xi ∈ XG together with class labels yi ∈ C. The algorithm first

chooses k prototypes Y = {(Yj , cj)} kj=1 such that each class is represented by at
least one prototype. Next, during adaption, the algorithm randomly choses an
example (X, y) ∈ S from the training set and modifies the closest prototype YX
in accordance with the current example. The input graph X attracts its closest
prototype YX if the class labels y of X and cX of YX agree. Otherwise, if the
class labels differ, the input X repels the closest prototype YX . To determine
the closest prototype, lgq applies the nearest neighbor rule

YX = arg min
Y ∈Y
{d(X,Y)} .

To update the closest prototype YX , the algorithm first selects an optimal align-
ment (x,yx) ∈ A(X,Y). Then it applies the standard LVQ update rule

yx ←
{
yx + η(x− yx) : y = cx
yx − η(x− yx) : y 6= cx

,

where η is a monotonically decreasing learning rate following the guidelines of
stochastic optimization. The updated vector representation projects to the up-
dated graph prototype. This process continues until the procedure satisfies a
termination criterion.

3.2 LGQ2.1

In contrast to lgq, the lgq2.1 procedure updates the two closest prototypes Y 1
X

and Y 2
X in accordance to the current training example (X, y) ∈ S. The algorithm

adapts the prototypes Y 1
X and Y 2

X if the following conditions hold:

1. Exactly one of both prototypes Y 1
X and Y 2

X has the same class label as X
2. The input graph X falls in a window around the decision border defined by

d
(
X,Y 2

X

)
d (X,Y 1

X)
>

1− w
1 + w

,

where w is the relative width of the window.

For each prototype lgq2.1 uses the same update rule as lgq.

3.3 Generalized LGQ

We use the following notations: Suppose that (X, y) is an arbitrary training
example from S. Let Y + be the closest prototype hat belongs to the same class
as the current input X, and likewise let Y − be the closest prototype that belongs
to a different class from X. By c+ and c− we refer to the class labels of Y + and
Y −, respectively. As before, YX denotes the closest prototype of X and cX
denotes the class of YX .

Following [16], generalized learning graph quantization (glgq) aims at mini-
mizing the cost function

E =
n∑
i=1

f(µ(Xi)),

where f : R→ R is a monotonically increasing function and µ(X) is a function,
which is positive if the class labels of X and YX agree and negative otherwise.
We assume that L = f ◦ µ is generalized differentiable. Then we can minimize
E using the incremental generalized gradient method

Y + ← Y + − ηG+ (1)

Y − ← Y − + ηG−, (2)

where G± ∈ ∂L is a generalized gradient of L at Y ±. As for feature vectors [16],
we can show that lgq and lgq2.1 are special cases of glgq.

Motivated by the robust and powerful performance of GLVQ for feature
vectors, we choose

f(µ) =
1

1 + exp(−µ)
and

µ(X) =
d+ − d−

d+ + d−
,

where d+ = d(X,Y +) and d− = d(X,Y −). Then for any optimal alignment
(x,y±) ∈ A(X,Y ±) the vector representations

g+ =
f ′(µ(X)) · d−

(d+ + d−)2
(
x− y+

)
(3)

g− = −f
′(µ(X)) · d+

(d+ + d−)2
(
x− y−

)
(4)

project to generalized gradients G± ∈ ∂L (Y ±) of L at Y ±.

3.4 Generalized Relevance LGQ

Generalized relevance learning graph quantization (grlgq) extends an idea pro-
posed by [4] to graph orbifolds. Following [4], we replace the distance metric
d(X,Y) by a prototype-dependent scaled version

dΛ(X,Y) = min
{
‖x− y‖2λ : x ∈ X

}
,

where Λ ∈ XG is an attributed graph, y ∈ Y as well as λ ∈ Λ are arbitrary but
fixed vector representation, and

‖x− y‖2λ =
N∑
i=1

λi (xi − yi) 2

is the scaled version of the squared Euclidean distance. Then updating amounts
in updating the prototypes according to eqns. (1) and (2) accompanied by up-
dating the relevance graph according to the rule

Λ+ ← Λ+ − η1H+

Λ− ← Λ− − η1H−,

where Λ± is the relevance graph of Y ± and H± ∈ ∂L(Λ±) is a generalized
gradient of L at Λ±. Let

a ◦ b = (a1b1, . . . , anbn)

denote the Schur product of vectors a, b ∈ Rn. Suppose that (x,y±) ∈ A(X,Y ±)
is an optimal alignment. Then vector representations of the form

g+ =
f ′(µ(X)) · d−

(d+ + d−)2
· λ ◦

(
x− y+

)
(5)

g− = −f
′(µ(X)) · d+

(d+ + d−)2
· λ ◦

(
x− y−

)
(6)

project to generalized gradients G± ∈ ∂L (Y ±) of L at Y ±. Furthermore, any
vector representation

h+ = f ′(µ)
d−

(d+ + d−)2
(
x− y+

)
2

h− = f ′(µ)
d+

(d+ + d−)2
(
x− y−

)
2,

projects to a generalized gradient H± ∈ ∂L(Λ±). Observe that the update rule
(5) and (6) of grlgq differs from the update rule (3) and (4) of glgq by including
the relevance factors.

3.5 Robust Soft LGQ

Robust soft learning graph quantization (rslgq) is motivated by RSLVQ [17],
which in difference to the other lgq aims at describing the distribution of the
data by a Gaussian mixture model. The approach is to maximize the ratio Lr of
the probability, that an example (X, y) ∈ S is generated by components of the
model corresponding to those prototypes with a class label equal to y, and the
probability, that the whole model generates X.

To extend RSLVQ to graph orbifolds, we assume that (xj ,yj) ∈ A(X,Yj)
are optimal alignments of a given input graph X and the prototypes Yj for
j ∈ {1, ..., k}. The update rule for Yj is then of the form

Yj ← Yj +
η

σ2
Gj ,

where

gj =
{

(Py(yj |xj)− P (yj |xj))(xj − yj), : y = cj
−P (yj |xj))(xj − yj), : y 6= cj

projects to a generalized gradient Gj ∈ ∂ log(Lr(Yj)) and

Py(yj |xj) =
exp

(
− (xj − yj)2

2σ2

)
∑

i:ci=y

exp
(
− (xi − yi)2

2σ2

) ,

and

P (yj |xj) =
exp

(
− (xj − yj)2

2σ2

)
k∑
i=1

exp
(
− (xi − yi)2

2σ2

) .
It is important to note that the probabilistic interpretation of RSLVQ is no
longer valid for its counterpart in graph orbifolds. A first step to remove this
shortcoming is presented in [10].

4 Experiments

We conducted first experiments to compare the performance of the different lgq
algorithms.

4.1 Data.

We selected the following data sets from the IAM graph database repository:
letter, grec, and fingerprint. Each data set is divided into a training, validation,
and a test set. Table 1 provides a summary of the main characteristics of the
data sets. For further details we refer to [14].

4.2 Experimental Setup

Setting of lgq algorithms. Given a data set, each lgq algorithm was first ini-
tialized with a single prototype for each class. To initialize the prototypes we
computed a Frechet sample mean of all class members from the training set by us-
ing the incremental sample mean algorithm proposed in [7]. Next, we performed
a parameter selection for the lgq algorithms. For each parameter configuration,
we learned the prototypes using the training set and tested the learned model
on both, the training and validation set. We selected the parameters that gave
the best classification accuracy on the training and validation set. Finally, we
assessed the generalization performance by applying the learned model on the
test set. For all lgq algorithms we tuned the learning rate η. For lgq2.1, grlgq,
and rslgq, we additionally calibrated the window width w, the learning rate ηλ
of the relevance factors, and the width σ of the Gaussian. respectively.
Graph Distance Calculations and Optimal Alignment. For graph distance calcu-
lations and finding optimal alignments, we applied the extended Bron Kerbosch
algorithm [9] with clique selection and 10 |VZ | as the maximum number of re-
cursive calls, where VZ denotes the vertex set of the association graph under
consideration.
Protocol. All lgq algorithms have been applied to the training set of each data
set 3 times. To assess the generalization performance on the test sets, we have
chosen the model that best predicts the class labels on the training and validation

data set #(classes) avg(nodes) max(nodes) avg(edges) max(edges)

letter (750, 750, 750) 15 4.7 8 3.1 6
grec (286, 286, 528) 22 11.5 24 11.9 29
fingerprint (500, 300, 2000) 4 8.3 26 14.1 48

Table 1. Summary of main characteristics of the data sets. The tiny numbers in
parentheses show the size of the training, validation, and test set, respectively.

set. We compared the lgq algorithms with the similarity kernel in conjunction
with the SVM (sk+svm) and the family of Lipschitz embeddings in conjunction
with SVM (ls+svm) proposed by [15]. As a reference, we used the knn method
based on the intrinsic metric, where the parameter k has been learned using the
training and validation set.

4.3 Results

Table 2 summarizes the results. Since sk+svm and le+svm refer to a family of
related methods rather than a single method, Table 2 presents the best result on
the test set over all methods of the sk+svm and le+svm family for each data set.
In doing so, the comparison is optimistically biased towards sk+svm and le+svm.

The first observation to be made is that the novel extensions, glgq, grlgq,
and rslgq outperform lgq and lgq2.1. These finding are in line with results
of LVQ algorithms for feature vectors. A fair comparison of glgq, grlgq, and
rslgq, however, is difficult since the performance of any of the lgq variants crit-
ically depends on the proper choice of the parameters. An extensive parameter
selection is only manageable for lgq (η), glgq (η) and to a certain extent also
for lgq2.1 (η, w). For grlgq (η, ηλ) and rslgq (η, σ), however, exploring the
parameter space is comparatively too time consuming for two reasons: (i) for a
given learning rate, grlgq and rslgq require more iterations during learning un-
til convergence than the other three algorithms, and (ii) both, grlgq and rslgq,
critically depend on two rather than one parameter as this is the case for lgq
and glgq.

The second observation to be made is that all novel extensions of lgq are
comparable to state-of-the-art solutions. All lgq variants, however, are com-
putationally faster than knn, sk+svm and le+svm. The largest portion of the
computational effort to classify an unseen graph X is attributable to calculating
(or approximating) graph distances between X and a set of prototypes specified
by the respective classifier. While the prototype set for knn consists of the whole
training set, sk+svm and le+svm use about 40% − 60% of the training set as
prototypes. In contrast, the number of prototypes of the lgq algorithms in this
setting corresponds to the number of classes (15 letters, 22 grec, 4 fingerprint).

5 Conclusion

Extensions of GLVQ, GRLVQ, and RSLVQ to the domain of graphs outperform
lgq and lgq2.1, provide state-of-the-art solution even if using a single prototype

knn sk+svm le+svm lgq lgq2.1 glgq grlgq rslgq

letter 82.0 79.1 92.5 81.5 85.7 88.4 86.5 87.3
grec 96.8 94.9 96.8 86.2 92.6 97.5 97.0 97.4
fingerprint 80.0 41.0 82.8 79.9 81.5 84.8 84.0 84.1

Table 2. Classification accuracy (in %) of the lgq algorithms.

for each class, and are superior than knn, sk+svm, and le+svm with respect to
run time during classification. In a practical setting, we recommend to use glgq
because of its simplicity and excellent performance. Future work aims at applying
the lgq algorithms to other data sets and exploring their performance with more
than one prototype per class.

References

1. J.E. Borzellino, ”Riemannian geometry of orbifolds”, PhD thesis, University of Cal-
ifornia, Los Angelos, 1992.

2. T. Cour, P. Srinivasan, J. Shi, ”Balanced graph matching”, NIPS, 2006.
3. S. Gold, A. Rangarajan, ”Graduated Assignment Algorithm for Graph Matching”,

IEEE Transactions on PAMI, 18:377–388, 1996.
4. B. Hammer, T. Villmann, ”Generalized relevance learning vector quantization”,

Neural Network 15:1059–1068, 2002.
5. B. Hammer, M. Strickert, T. Villmann, ”Supervised neural gas with general simi-

larity measure”, Neural Processing Letters 21(1):21–44, 2005.
6. B. Jain, K. Obermayer, ”Structure Spaces”, Journal of Machine Learning Research,

10:2667–2714, 2009.
7. B. Jain, K. Obermayer. ”Algorithms for the Sample Mean of Graphs”, CAIP, 2009.
8. B. Jain, S.D. Srinivasan, A. Tissen, K. Obermayer. ”Learning Graph Quantization”,

S+SSPR, 2010.
9. B. Jain, K. Obermayer. ”Extending Bron Kerbosch for Solving the Maximum

Weight Clique Problem”, arXiv:1101.1266v1, 2011.
10. B. Jain, K. Obermayer. ”Maximum Likelihood for Gaussians on Graphs”, GbR,

2011.
11. T. Kohonen, Self-organizing maps, Springer, 1997.
12. T. Kohonen, P. Somervuo, ”Self-organizing maps of symbol strings”, Neurocom-

puting, 21(1-3):19–30, 1998.
13. V.I. Norkin. Stochastic generalized-differentiable functions in the problem of non-

convex nonsmooth stochastic optimization, Cybernetics, 22(6), 804-809, 1986.
14. K. Riesen, H. Bunke, ”IAM Graph Database Repository for Graph Based Pattern

Recognition and Machine Learning”, SSPR, 2008.
15. K. Riesen, H. Bunke, ”Graph Classification by Means of Lipschitz Embedding”,

IEEE Transactions on Systems, Man, and Cybernetics, 39(6):1472–1483, 2009.
16. A. Sato, K. Yamada, ”Generalized learning vector quantization”, NIPS, 1996.
17. S. Seo, K. Obermayer, ”Soft learning vector quantization”, Neural computation,

15(7):1589–1604, 2003.
18. P. Sumervuo, T. Kohonen, ”Self-organizing maps and learning vector quantization

for feature sequences”, Neural Processing Letters, 10(2):151–159,1999.
19. S. Umeyama, ”An eigendecomposition approach to weighted graph matching prob-

lems”, IEEE Transactions on PAMI, 10(5):695–703, 1988.

