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Complexity of 2D quasimodes at the transition
from weak scattering to Anderson localization

C. Vanneste1, ∗ and P. Sebbah1

1Laboratoire de Physique de la Matière Condensée/CNRS UMR 6622/Université de Nice - Sophia Antipolis,
Parc Valrose, 06108, Nice Cedex 02, France

(Dated: March 12, 2009)

Quasimodes of an open finite-size two-dimensional (2D) random system are computed and systematically
characterized in terms of their spatial extension, η, complexity factor, q2, and phase distribution for a random
collection of systems ranging from weakly scattering to localized. A rapid change is seen in η and q2 at the
transition from localized to diffusive which corresponds to the emergence of 2D extended multipeaked quasi-
modes analogous to the necklace states recently observed in 1D. These 2D quasimodes are interpreted in terms
of coupled localized states.

PACS numbers: 42.25.Dd, 42.55.Zz

Transport in random media is driven by the nature of the
underlying eigenmodes. Propagation is diffusive when the
modes extend spatially, while spectral level overlap occurs in
transmission spectra. As the degree of the overlap decreases,
transport is inhibited and modes become spatially localized
[1]. The theory of Anderson localization predicts a transi-
tion between localized and extended eigenstates for spatial
dimensions larger than two [2]. Renewed interest in the lo-
calization transition has been boosted by the active ongoing
search for localization of Bose-Einstein condensate in laser
speckle fields [3, 4], the recent observations of the slowing
down of diffusion in ultrasounds [5], microwave [6] and time-
resolved optical [7] experiments, and new theoretical pro-
gresses [8, 9] towards an analytical description of the metal
insulator transition (MIT). The question of the spatial extent
of the modes near the Anderson transition is also central in
random lasers [10, 11]. The threshold may vary by orders
of magnitude between localized systems where the modes are
spatially confined and diffusive systems where the modes are
extended. Besides their spatial extent, another property of the
modes in open random media is their complexity. As their
spatial extent is increased up to the sample dimensions and
their linewidth broadens with increasing leakage through the
boundaries, the decaying quasimodes or resonances, which
generalize the concept of mode to leaky systems [12], be-
come complex-valued, their standing wave component being
progressively replaced by a component traveling toward the
opened boundaries [13]. This is analogous to chaotic cavities
with an increasing degree of opening [14]. This is an impor-
tant aspect rarely addressed in the context of random media.

In this paper, we use numerical simulations to explore the
nature of the quasimodes of 2D open random media when
scattering strength is increased. The spatial extension of the
computed quasimodes, their complexity factor and their phase
distribution are calculated for a statistical ensemble of random
configurations for each value of the scattering strength. These
quantities reveal the change of regime and the transition from
diffusive to localized. A detailed analysis of the phase prob-
ability distribution for each mode shows multipeaked wave-
functions in the vicinity of the transition when the localiza-

tion length is comparable to the sample size. These extended
multipeaked quasimodes are interpreted in terms of coupling
of localized isolated states, which hybridize to form 2D neck-
lace states.

We consider a two-dimensional random collection of paral-
lel dielectric cylinders with infinite extension, radius r = 60
nm and refractive index n, embedded in a background ma-
trix of index 1. Volume fraction is φ = 40 % and system size
is L2 = 5x5 µm2. Maxwell equations for TM polarization
are modeled using the finite-difference time-domain method
[15]. Open boundary conditions are approximated by per-
fectly matched layer (PML) absorbing boundaries [16]. The
index of refraction n is varied from 1.05 to 2.0, in step of 0.05,
corresponding to scattering mean free path ranging from 50
µm to 0.1 µm. For most of this range, modes are short lived
with strong spectral overlap, preventing individual excitation
of a mode at its eigenfrequency by a monochromatic source.
To obtain the wavefunction of such short lived-modes, we use
recent results [17] which show that, when operating just above
threshold, the first lasing mode of an active random system
corresponds to a quasimode of the passive system, even in
weakly scattering systems where modal overlap dominates.
Introducing gain and adjusting the pumping rate just above
threshold is therefore an alternative to select a quasimode of
the passive cavity. To model the gain, we couple the popula-
tion equations of a four level atomic system to the Maxwell
equations via the polarization equation [18]. The gain natu-
rally selects the mode with the longest lifetime and the best
spectral overlap with the gain curve. All the parameters and
initial conditions used here have been already fully described
in [19].

We study 150 random configurations, 10 on average per
value of refractive index, n. The amplitude and phase spatial
distributions of the mode are obtained by integrating the in
and out of phase oscillating fields over a period. Examples of
spatial distributions of the magnitude are shown in Fig. 1 for
decreasing values of the refractive index, n, illustrating differ-
ent degrees of spatial extension of the wavefunctions within
the system. The corresponding phase probability distributions
between 0 and 2π are shown in insets in Fig. 1. The phase dis-
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FIG. 1: Spatial distribution and wavelength of quasimodes corre-
sponding to decreasing values of the refractive index of the scatter-
ers, n=2.00 to n=1.05 (random configurations are not necessarily
identical). All modes are in a narrow spectral range around the max-
imum of the gain curve, λ=446.9 nm. Each frame shows in inset
the phase distribution between 0 and 2π of the corresponding quasi-
modes. Note the double peaked distribution for n=1.85.

tribution is peaked around 0 and π when the mode is localized
(n=2), while it is more uniformly distributed in the extended
case. Note that for values of the refractive index as low as
1.05, scattering is weak and the field is rather concentrated
at the edges of the system. In that case, residual reflection
either at the boundaries or from the PML layers may not be
negligible and may result in periodic patterns, similar to those
of a Fabry-Perrot cavity, as seen in the bottom-right frame of
Fig. 1. We checked that above n=1.10, this effect is insignifi-
cant and lasing is solely due to multiple scattering within the
system.

As the scattering strength is reduced, the spatial expansion
of the eigenfunctions increases, as well as the their imagi-
nary part resulting from leakage at the open boundaries. To
quantify these two characteristics, the quasimodes are de-
scribed in terms of their spreading factor, η, and their com-
plexity factor, q2. We define the spreading factor as η =
3/L4

∫ ∫
Ã(~r)Ã(~r′)|~r − ~r′|2d2~rd2~r′, where the field ampli-

FIG. 2: Color online. Complexity factor (dots), q2 and spread-
ing factor (circles), η, averaged over sample configuration versus
scattering mean free path, `. The fluctuations around the average,
±〈q2 − 〈q2〉〉1/2 are represented by the bars. Inset: Averaged com-
plexity factor, q2 (dots), localization length ξ versus index of re-
fraction, n, calculated from the averaged lasing threshold (crosses)
and from independent scattering theory (full line where relevant
(ξ ≤ L/2), dotted otherwise). The dashed line represents the mean
free path, `. The horizontal dotted line correspond to ξ = L/2

.

tude A(~r) is normalized Ã(~r) = A(~r)/[
∫ ∫

A2(~r)d2~r]1/2.
The normalizing factor 3/L4 ensures that η is unity for uni-
form distribution of the field amplitude. It measures the de-
gree of spatial extension of the energy within the system
alike the participation ratio for instance. However, due to
the weighting factor |~r − ~r′|2, it also enables us to distin-
guish systems with spatial localization of energy inside the
system, as in Fig. 1 for n=2, from concentration of energy
at the boundaries of the system, as in Fig. 1 for n=1.05.
Indeed, it can be less than 1 for spatially localized modes,
or larger than 1 when energy is distributed near the system
edges. This is reminiscent of distributed feedback lasers [20]
where in the over-coupled regime (corresponding to η < 1),
energy is concentrated inside the laser as a result of strong
feedback from scatterers, while in the under-coupled regime
(η > 1), energy is concentrated at the edges since the las-
ing modes result from scattering at the boundaries in order
to maximize the gain volume [21]. The complexity factor,
q2 = 〈Im(Ψ)2〉/〈Re(Ψ)2〉 [22], or equivalently the phase
rigidity, ρ = (1 − q2)/(1 + q2) [23], were introduced in the
field of quantum chaos to quantify the degree of complexity
of the eigenmode, Ψ(~r) = A(~r)eiφ(~r), and the mutual influ-
ence of neighboring resonances [24]. The complexity factor
varies from 0 for real standing wavefunctions -corresponding
to a phase distribution peaked at 0 and π- to 1 for purely trav-
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FIG. 3: Binary plots showing in black where the phase is valued
between (a) 0.89 − 0.99π and (b) 1.01 − 1.11π, i.e. two narrow
phase ranges around the two peaks at 0.94π and 1.06π seen in phase
distribution in the inset of Fig. 1 for n = 1.85.

eling waves -corresponding to a flat phase distribution. To the
best of our knowledge, it has never been used as a probe to
characterize the transition from localized to extended states in
finite disordered systems.

The spreading factor and the complexity factor are com-
puted for each mode and averaged over sample configurations
for each value of n. They are shown in Fig. 2 as a func-
tion of the scattering mean free path, `, calculated using Mie
theory for infinite cylinders of refractive index n. The com-
plexity factor increases with the mean free path, which means
that the traveling wave component replaces progressively the
standing wave component of the mode. While the complex-
ity factor explores values between 0.06 and 0.78, it shows
clearly two different regimes, with a crossover around `=0.14
µm corresponding to n=1.8. A transition occurs around the
same value of ` for the spreading factor, which ranges be-
tween 0.16 and 1.23. This particular value of n certainly is
not universal and depends on the sample size but it should
correspond to a localization length, ξ, of the order of the
sample size. We confirm this hypothesis by calculating ξ di-
rectly from the value of the lasing threshold averaged over
sample realizations, 〈P 〉. Indeed, the spectral width of the
modes, Γ, resulting from leakage at the boundaries is given by
Γ = Γ0·exp(−L/ξ) [25]. It is also directly proportional to the
lasing threshold, P , since at threshold, losses are compensated
by gain. Therefore ξ = L/(ln〈P0〉 − ln〈P 〉),where 〈P 〉 des-
ignates the average over sample configurations for each value
of n and ln〈P0〉=20.15 is obtained by extrapolating 〈P 〉 at
n = 1. The dependence of ξ on refractive index, n, is shown
in the inset in Fig 2 and is compared to the theoretical expres-
sion in the limit of independent scattering, as given in [25] by
ξth = ` exp[πRe(keff )`/2], where ` is the mean free path and
keff is the effective wavenumber. ”Both curves (full lines in
inset of Fig 2) approach in the crossover region around n=1.8,
which corresponds to ξ ∼ L/2 =2.5 µm, where the two ex-
pressions for ξ and ξth start to be valid. [26]

Also shown in Fig 2 are the fluctuations of the complexity
factor, ±〈q2 − 〈q2〉〉1/2. A significant increase of these fluc-
tuations is seen at the crossover. We find that these large fluc-
tuations are correlated with the occurrence of peculiar phase

distributions around n=1.8, such as the one shown in the inset
of Fig. 1 for n=1.85. Two narrow peaks are distinctly seen in
the phase distribution at 0.94π and 1.06π. The spatial distri-
butions of the phase for values comprised in a π/10 window
around each of these two peaks are shown in Fig. 3a and b.
These two distributions delimitate two distinct spatial regions
associated with standing components of the mode, which os-
cillate at the eigenfrequency of the mode but with a phase lag,
δφ = 0.12π. This phase lag suggests that this mode results
from the coupling between two distinct modes localized on
each of the regions of Fig. 3. This would be the analog of
the symmetric or anti-symmetric solutions to the coupled os-
cillators problem in the presence of leakage which introduces
a phase lag different from 0 or π between the components
of the hybridized mode. To identify each of the two com-
ponents of the double-peaked mode of Fig. 1 (n=1.85), we
remove a scatterer in a spot where the field is high in one
of the two regions displayed in Fig. 3 to selectively sepa-
rate the two contributions. Each perturbed system is excited
at the resonant frequency of the original unperturbed mode.
The corresponding field distributions are shown in Fig. 4a
and b. They reproduce the local features of each peak of the
mode of Fig. 1, but extend far beyond. The corresponding
phase distributions are now single-peaked. Note that layers
of randomly distributed scatterers (not shown) were added at
the boundaries of the perturbed system in order to increase
the lifetime of the mode of Fig. 4a, which would be im-
possible to excite otherwise due to its strong leakage. The
resemblance between the normalized original mode, Ψ, and
the normalized complex linear combination of the two modes
of Fig. 4, Ψt = αΨa + eiφΨb, is measured by the spatial
cross-correlation,

∫∫ |Ψ||Ψt|d2~r, which is equal to 91% for
α = 0.78 and φ = 0.66π. The two quasimodes composing the
double-peaked state have also been identified by introducing
gain in the perturbed systems. The wavelengths of the cor-
responding lasing modes are λa=447.9nm and λb=446.8nm,
to be compared with λ=447.1nm (Fig. 1) for the original
state. The linewidth of the passive modes are respectively
δλa=1.0nm, δλb=0.6nm, and δλ=0.8nm. The correspond-
ing spreading factors are ηa = 0.36, ηb = 0.29, η = 0.45.
This supports the picture of two coupled quasimodes with dis-
tinct wavelengths, overlapping both spectrally and spatially, to
form an hybridized double-peaked state. All other identified
multipeaked quasimodes [27] (about 50% of the modes) arise
around n=1.85, in the vicinity of the transition.

These multipeaked states are analogous to necklace states
recently observed in nominally localized optical [28] and mi-
crowave [29] one-dimensional layered systems. Modes over-
lapping both in space and frequency may couple and form
multipeaked extended states even in the localized regime [30].
Although scarce, they are predicted to play an outsized role in
transport [31] in contrast to isolated localized states [32]. This
is to be compared with the filament-like fractal picture of the
modes at the transition suggested by Aoki [33]. Pendry ar-
gued that the picture of 1D necklace states should generalize
to 2D and 3D localized random media [31]. However, besides
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FIG. 4: Color online. Spatial distribution of the magnitude of the
quasimodes together with their phase distribution (lower insets) for
two different local perturbations of the original random system of
Fig. 1 for n=1.85. The locations of the removed scatterers are shown
by the circles. Upper inset: spectral lines of modes a (dots), b
(circles) and mode n=1.85 in Fig. 1 (full line). Wavelengths and
linewidths of the modes are given in the text.

earlier calculations in a percolation model, no observations of
necklace states for classical waves in dimensions larger than
one were reported [34, 35]. Our results point out to the exis-
tence of necklace states in 2D and show that they should occur
preferentially at the transition.

In conclusion, our numerical simulations provide with a de-
tailed description of the quasimodes of open 2D random sys-
tems ranging from weakly scattering to strongly localized in
terms of their spatial extension but also for the first time in
this context in terms of their complexity factor. We find mul-
tipeaked quasimodes in the vicinity of a well-marked transi-
tion between localized and extended states. Two mechanisms,
which may coexist, were proposed to describe the transition
[36]. The first one is a gradual spatial expansion of the mode
as scattering strength is diminished, with a progressive in-
crease of the localization length. Our results suggest a sec-
ond mechanism, analogous to a percolation process, where
the coupling of localized states lead to extended structures that
form necklace states [37–39].
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tre National de la Recherche Scientifique (PICS #2531 and
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