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Keren, Naomi, Noam Peled, and Alon Korngreen. Constraining
compartmental models using multiple voltage recordings and genetic
algorithms. J Neurophysiol 94: 3730–3742, 2005. First published
August 10, 2005; doi:10.1152/jn.00408.2005. Compartmental models
with many nonlinearly and nonhomogeneous distributions of voltage-
gated conductances are routinely used to investigate the physiology of
complex neurons. However, the number of loosely constrained pa-
rameters makes manually constructing the desired model a daunting if
not impossible task. Recently, progress has been made using auto-
mated parameter search methods, such as genetic algorithms (GAs).
However, these methods have been applied to somatically recorded
action potentials using relatively simple target functions. Using a
genetic minimization algorithm and a reduced compartmental model
based on a previously published model of layer 5 neocortical pyram-
idal neurons we compared the efficacy of five cost functions (based on
the waveform of the membrane potential, the interspike interval,
trajectory density, and their combinations) to constrain the model.
When the model was constrained using somatic recordings only, a
combined cost function was found to be the most effective. This
combined cost function was then applied to investigate the contribu-
tion of dendritic and axonal recordings to the ability of the GA to
constrain the model. The more recording locations from the dendrite
and the axon that were added to the data set the better was the genetic
minimization algorithm able to constrain the compartmental model.
Based on these simulations we propose an experimental scheme that,
in combination with a genetic minimization algorithm, may be used to
constrain compartmental models of neurons.

I N T R O D U C T I O N

The majority of synapses in the CNS connect to dendrites.
These dendrites transform information received from synapses
into a code that is then translated by the axon to action
potentials (APs) that are transmitted to other neurons. The
properties and functions of dendrites in the CNS have been
intensively studied especially over the past decade (for reviews
see Johnston 1999; Johnston et al. 2003; Migliore and Shep-
herd 2002; Stuart et al. 1999), mainly as a result of patch-clamp
recordings from visually identified dendrites in brain slices
(Stuart et al. 1993) and novel imaging techniques (Antic 2003;
Antic et al. 1999; Denk et al. 1994; Lasser-Ross et al. 1991;
Tsien 1989). Action potentials initiated at or near the soma
actively back-propagate into the dendritic tree (Bischofberger
and Jonas 1997; Chen et al. 1997, 2002; Häusser et al. 1995;
Spruston et al. 1995; Stuart and Sakmann 1994). Furthermore,
dendrites generate complex regenerative Ca2� and Na� spikes
(Amitai et al. 1993; Antic 2003; Ariav et al. 2003; Bischof-
berger and Jonas 1997; Johnston et al. 1996, 2003; Magee et al.

1996, 1998; Martina et al. 2000; Migliore and Shepherd 2002;
Schiller et al. 1997; Zhu 2000), modulate synaptic potentials
(Magee 1999; Magee and Johnston 1995), contain both elec-
trically and chemically defined compartments (Bekkers 2000b;
Hoffman et al. 1997; Korngreen and Sakmann 2000; Larkum et
al. 1999, 2001; Magee 1999; Schiller et al. 1997, 2000), and
influence the induction and expression of synaptic plasticity
(Golding et al. 2002; Magee and Johnston 1997; Markram et al.
1997). This exciting new information revived the discussion
about the computational properties of single neurons (Häusser
and Mel 2003; Mel 2002; Poirazi and Mel 2001; Polsky et al.
2004).

Clearly, understanding the computations carried out by com-
plex neurons requires functional models. These models must
take into account several types of voltage-gated conductances,
some of them nonhomogeneously distributed on the neuronal
membrane. For example, at least ten voltage-gated conduc-
tances were isolated from layer 5 (L5) pyramidal neurons
(Bekkers 2000a; Berger et al. 2001; Brown et al. 1993,
1994a,b; Colbert and Pan 2002; Fleidervish and Gutnick 1996;
Fleidervish et al. 1996; Foehring 1996; Foehring and Arm-
strong 1996; Foehring and Scroggs 1994; Foehring and Waters
1991; Foehring et al. 2000; Korngreen and Sakmann 2000;
Sayer et al. 1990, 1993). Some of these conductances were
observed to have nonhomogeneous density distributions along
the apical dendrite of the neurons (Bekkers 2000b; Berger et al.
2001; Korngreen and Sakmann 2000; Williams and Stuart
2000). Finally, as a result of profound experimental con-
straints, the density and properties of the voltage-gated con-
ductances are known only for the soma and apical dendrite.
Conductance densities along basal dendrites and the axon are
not known. Therefore many parameters in models of L5
pyramidal neurons were estimated by hand (Mainen et al.
1995; Rhodes and Llinás 2001; Schaefer et al. 2003). Because
of the large number of free parameters current models of L5
neurons are ill constrained (Mainen et al. 1995; Rhodes and
Llinás 2001; Schaefer et al. 2003). Similar problems have been
observed in other cell types.

Previous studies show that parameter search methods can be
effective in finding matches between single-neuron models and
a target data set (Eichler West 1996; Vanier and Bower 1999).
Not all parameter search methods perform equally well, and
the relative performance of the different methods depends on
the model being optimized. Stochastic algorithms such as
simulated annealing (Kirkpatrick et al. 1983) and genetic
algorithms (GAs) (Mitchell 1996) have been found to be the
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most successful in constraining single-neuron compartmental
models because such algorithms are less greedy and rarely fall
into local minima, unlike gradient-descent methods that easily
move into a local minimum in parameter space and stay there
(Vanier and Bower 1999). For a search with a large number of
parameters, the GA method, which can simultaneously search
many points in parameter space, may be the most effective.
The intrinsic parallelism of this method also makes it very well
suited for implementation on parallel computers (Eichler West
1996).

Finding the best cost function to mach the data in the
parameter space is one of the most important conditions for
effective convergence of any optimization algorithm. It influ-
ences the speed of convergence, the performance and execu-
tion time of the process, and determines the overall behavior of
assigning the right parameters into the model while skipping
out of possible local minima. Thus two major questions were
addressed in this study: What may be a good cost function for
the estimation of the free parameters in a compartmental
model? Is it possible to constrain a model containing nonho-
mogeneous distributions of ion channels once multiple den-
dritic and axonal recordings are added to the data set? To
address these questions we used a single-neuron model with 19
free parameters and tested several cost functions using a
well-defined genetic algorithm. The optimizations were per-
formed on target data simulated with a known set of parame-
ters, thus allowing us to directly assess the deviations of the
best-fit parameter sets from the target parameter set under
different conditions. We show that a cost function combining
several modes of data analysis provides the best fit between the
simulated data set and the model. Moreover, we show that
increasing the data set by addition of dendritic and axonal
recording sites improved the fit even further.

M E T H O D S

Simulation environment

The compartmental model and the various cost functions were
programmed using NEURON 5.3 (Hines and Carnevale 1997),

whereas the genetic algorithm was written in the Perl computer
language. Simulations were run on a variety of computers running
Linux on Pentium I, II, and III computers or SunOS 5.8 on SPARC
workstations. We parallelized the process using a cluster of 15 to 32
machines sharing the same network file system (NFS), in which one
of the machines functioned as a master—submitting and managing the
jobs while the rest were used as slaves reading and writing their
information from a shared directory in the NFS. Ion channel models
were implemented using the NMODL extension of NEURON (Hines
and Carnevale 2000). Results were analyzed using IgorPro 4.01 and a
variety of Perl scripts.

Compartmental model

One model was used for all the simulations presented in this work.
The model was constructed based on a previously published model of
L5 neurons (Mainen et al. 1995) that was modified using recent
experimental findings applying several assumptions:

THE MORPHOLOGY OF THE NEURON IS KNOWN. This assumption
relies on the excellent advances in morphological analysis in recent
years allowing production of a good reconstruction of the neuron
under study. Thus we used a simplified morphology (Fig. 1) contain-
ing the functional compartments of soma, axon, and dendrite instead
of a full morphology. This model had 57 compartments consisting of
a soma (length 20 �m, diameter 20 �m), an apical dendrite (length
800 �m, diameter 5 �m), and an axon that was modeled based on a
previous axonal model suggested for L5 neurons (Mainen et al. 1995).

THE PASSIVE MEMBRANE PARAMETERS ARE HOMOGENEOUS. In
this study the passive parameters were set to Rm � 21,000 � � cm2,
Ra � 100 � � cm, and Cm � 1.5 �F/cm2 with a passive reversal
potential of Epassive � �65 mV. In the dendrite Cm was multiplied by
a factor of two and Rm was divided by the same factor to account for
dendritic spines (Stuart and Spruston 1998).

DENDRITIC CHANNEL GRADIENTS ARE A CONTINUOUS FUNCTION OF

THE DISTANCE FROM THE SOMA. In recent years many investiga-
tions have shown that the densities of dendritic conductances vary
along the dendrite (Bekkers 2000b; Bekkers and Delaney 2001;
Berger et al. 2001; Hoffman et al. 1997; Korngreen and Sakmann
2000; Magee 1999; Magee and Johnston 1995; Stuart and Häusser
1994; Williams and Stuart 2000). In all these cases the conductance
gradient has been described by a continuous function of the distance

FIG. 1. Schematic representation of the com-
partmental model and conductance density dis-
tributions. Shape of the compartmental model
containing soma, dendrite, and axon is not drawn
to scale. Soma (length 20 �m, diameter 20 �m,
3 segments), an apical dendrite (length 800 �m,
diameter 5 �m, 32 segments), and an axon that
was modeled based on a previous axonal model
suggested for L5 neurons (Mainen et al. 1995)
with a tapering axon hillock (length 20 �m,
initial diameter 2 �m, final diameter 1 �m, 5
segments), axon initial segment (length 15 �m,
diameter 1 �m, 5 segments), and 4 repeating
segments of myelin (length 100 �m, diameter
1 �m, 2 segments) interleaved with nodes of
Ranvier (length 1 �m, diameter 0.75 �m, 1
segment). Only 2 repeats are shown. Conduc-
tance densities of the 4 conductances inserted
into the model are shown in gray-level scaling
with low densities shown in light gray and high
densities in dark gray and black. Because Ih was
not inserted into the axon it is shown as white
and therefore invisible. Values are shown rela-
tive to the somatic conductance density but with-
out exact scaling because of the large differences
between the axonal and somatic values (Table 1).
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along the somatodendritic axis. Thus we defined the dendritic gradient
using three parameters: the somatic conductance density, the dendritic
conductance density, and a distance parameter. The conductance
changes linearly from the somatic value to the dendritic value over the
distance along the dendrite set by the distance parameter. Distal to this
distance from the soma the dendritic conductance is set to be constant
and equal to the dendritic conductance density. This approach could
be expanded to describe more complex channel gradients by defining
several segments.

THE KINETICS OF THE CHANNELS IS KNOWN. This assumption sub-
stantially reduces the number of free parameters, leaving mostly
conductance density values to be constrained. We used the kinetics of
conductances that have been experimentally characterized in suffi-
cient detail to provide a kinetic model that could be implemented
using the NMODL extension of the NEURON simulation language
(Hines and Carnevale 2000). The model contained four active con-
ductances: Kf, Ks, Ih, and Na. The two K� conductances were based
on recordings made from nucleated patches (Korngreen and Sakmann
2000). The voltage-gated Na� conductance was also based on record-
ings from nucleated patches from L5 neocortical pyramidal neurons
(A Korngreen and B Sakmann, unpublished results). The hyperpolar-
ization activated nonselective cation conductance (Ih) was modeled
based on cell-attached somatic and dendritic recordings (Berger et al.
2001; Williams and Stuart 2000). All the conductances were modeled
using Hodgkin–Huxley-type models (Hodgkin and Huxley 1952).

Voltage-gated Na� conductance

gNa � g�Nam
3h

m� � 1/�1 � exp� � �Vm � 38	/10
 �

�m � 0.058 � 0.114 exp� � ��Vm � 36	/28
 2�

h� � 1/�1 � exp��Vm � 66	/6
 �

�h � 0.28 � 16.7 exp � � ��Vm � 60
/25�2 	

where the symbols have their usual meaning in the Hodgkin–Huxley
formalism. Four parameters describing the spatial distribution of this
conductance were defined as target parameters for the genetic algo-
rithm: the somatic conductance density (GNa,soma), the nodal conduc-
tance density (GNa,node), the dendritic conductance density (GNa,dend),
and the distance along the dendrite over which the conductance
density changes from its somatic value to the dendritic value (Nadist).
The relative distribution of this conductance is shown in Fig. 1. It was
reported that the activation and inactivation curves of the voltage-
gated Na� conductance were shifted in the axon (Colbert and Pan
2002). Therefore two additional parameters were used as target
parameters for the genetic algorithm: the shift in the voltage of half
activation (Nashift,act) and the shift in the voltage of half inactivation
(Nashift,inact).

Fast inactivating K� conductance (Kf)

gKf � g� Kfa
4 b

a� � 1/�1 � exp� � �Vm � 47	/29
�

�a � 0.34 � 0.92 exp� � ��Vm � 71	/59
2�

b� � 1/�1 � exp��Vm � 66	/10
�

�b � 8 � 49 exp� � ��Vm � 73	/23
2�

Four parameters describing the distribution of this conductance were
defined as target parameters for the genetic algorithm: the somatic
conductance density (GKf,soma), the nodal conductance density
(GKf,node), the dendritic conductance density (GKf,dend), and the dis-
tance along the dendrite over which the conductance density changes
from its somatic value to the dendritic value (Kf,dist). The relative
distribution of this conductance is shown in Fig. 1.

Slow inactivating K� conductance (Ks)

gKs � g� Ksr
2�0.5s1 � 0.5s2	

�r � 0.0052�Vm � 11.1	/�1 � exp� � �Vm � 11.1	/13.1
�

�r � 0.02 exp� � �Vm � 1.27	/71
 � 0.005

r� � �r/��r � �r	

�r � 1/��r � �r	

s1,� � s2,� � 1/�1 � exp��Vm � 58	/11
�

�s1 � 360 � �1010 � 23.7�Vm � 54	
 exp� � ��Vm � 75	/48
2�

�s2 � 2,350 � 1,380 exp� � 0.011Vm	 � 210 exp� � 0.03Vm	

Four parameters describing the distribution of this conductance were
defined as target parameters for the genetic algorithm: the somatic
conductance density (GKs,soma), the nodal conductance density
(GKs,node), the dendritic conductance density (GKs,dend) and the dis-
tance along the dendrite over which the conductance density changes
from its somatic value to the dendritic value (Ks,dist). The relative
distribution of this conductance is shown in Fig. 1.

Hyperpolarization activated cation conductance (Ih)

gIh � g� Iho

o� � 1/�1 � exp��Vm � 91	/6
�

�o � 1/�0.0004 exp� � 0.025Vm	 � 0.088 exp�0.062Vm	


This conductance was inserted only in the somatic and dendritic
compartments, as shown in Fig. 1, assuming a homogeneous distri-
bution. Thus only one parameter was used to represent it in the genetic
minimization scheme—the conductance density (GIh).

The original set of parameters used in the model is listed in Table
1 along with the parameter ranges used by the genetic algorithm. The
reversal potentials of the voltage-gated conductances were set to be
60, �80, and �30 mV for Na�, K�, and Ih, respectively. The same
artificial data set was used for all the simulations consisting of six
traces of membrane potential recordings induced by six different
current injections (starting at �0.35 nA and increasing in steps of
0.15 nA).

TABLE 1. Free parameters used in the model

Parameter
Target

Set
Lower

Boundary
Upper

Boundary

Ra � � cm 100 90 250
Rm � � cm2 21,000 10,000 60,000
Cm �F/cm2 1.5 0.5 1.5
Glh pS/�m2 12 0 50
Epassive mV �65 �70 0
GNa,dend pS/�m2 10 0 100
GNa,node pS/�m2 31,000 0 40,000
GNa,soma pS/�m2 50 0 100
Nashift,act mV �7 �10 10
Nashift,inact mV �8 �10 10
GKf,soma pS/�m2 65 0 100
GKf,dend pS/�m2 70 0 100
GKf,node pS/�m2 7,800 0 40,000
GKs,soma pS/�m2 15 0 100
GKs,dend pS/�m2 90 0 100
GKs,node pS/�m2 1,500 0 40,000
Nadist �m 1,000 0 1000
Ksdist �m 900 0 1000
Kfdist �m 500 0 1000

Values are of the target data set and the ranges over which the GA searched
for each parameter.
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Genetic algorithm

A genetic algorithm is an optimization algorithm based on the
mechanisms of Darwinian evolution, which uses random mutation,
crossover, and selection operators to breed better models or solutions
(individuals) from an originally random starting population (Mitchell
1996). In this study we started each minimization with a random
population of 100 vectors, each describing a parameter set, and the
model was evaluated for each one of them. The order of the param-
eters in the vectors was defined according to the role of the parameters
in the model. Parameters that relate to the same neuronal function and
can strongly influence each other, such as those that define a specific
channel or passive ones, were placed close to each other. The
population was sorted according to the fit score and a new generation
was created. The creation of the new generation was done by point
mutations applied to some of the values of the parameters sets (a point
mutation will be issued with specific, defined probability and change
a current value with a random one), and by a crossover operation in
which two individuals were chosen randomly and exchange some of
their values in the parameters vector. The best individual in the
population was transferred to the next generation with no change,
whereas the others were subjected to crossover (mixing parameters
between sets) and mutation (randomly changing parameters inside a
set) with a probability of 0.1 for both mutation and crossover. Those
iterations continued until the termination criterion was met. Ideally,
the termination criterion should be that the cost function reaches a
value of zero. In practice this is not possible because the run time of
the process is limited and reaching this score can take a substantial
amount of time. In addition, the cost function will not reach a value of
zero once noisy target data set will be used. In this work the process
was terminated after 2,000 generations for all simulations. On aver-
age, a typical run of the genetic algorithm took about 1 wk to complete
on our Linux cluster. Therefore only two runs were performed for
each tested cost function or target data combination.

As mentioned earlier, simulations were carried out using two
programming languages, Perl and NEURON. To narrow the param-
eter space, we bounded each parameter with a reasonable physiolog-
ical value (Table 1). For purely technical reasons the Perl algorithm
used variables bounded between 0 and 1 to represent each parameter
as routinely performed when applying genetic algorithms to problems
containing continuous parameters (Haupt and Haupt 1998). These
values were linearly transformed to the real parameters of the com-
partmental model (bounded by the values given in Table 1) for each
evaluation of the model. The analysis of the results was carried out
using the real parameters and not those used internally by the Perl
script.

Cost functions

Several functions were used to compare between the neuron’s
response to somatic current injection when the compartmental model
was supplied with parameters varied by the genetic algorithm (test
data set) and its response to current injection when the compartmental
model was supplied with the fixed set of parameters shown in Table
1 (target data set).

INTERSPIKE INTERVAL (ISI). This cost function computed the differ-
ence in the AP peak times for each trace of the simulation. A mean
square calculation was made for each AP time

ISI2 �
1

MZ�
i

M �
j

Z

�Ti,j � ti,j	
2 (1)

where T represents the target data set and t the spiking times in each
membrane potential trace of the test data set. Z is the total number of
APs in each trace and M the number of membrane potential sweeps
simulated in the model.

WAVEFORM. This cost function calculated the difference between
the target and the test membrane potential traces and summed its mean
squares yielding a cost function value that expresses the distance of
the test from the target data set

�2 �
1

MN�
i

M �
j

N

�Ti,j � ti,j	
2 (2)

where T represents the target data set and t the membrane potential
changes in the test data set. N is the total number of points in each
membrane potential trace and M the number of membrane potential
sweeps simulated in the model.

ISI � WAVEFORM. This cost function was the simple sum of the
above two functions (�2 � ISI2).

TRAJECTORY-DENSITY. This cost function excluded the time do-
main by plotting the membrane potential V(t) versus its first time
derivative V̇(t), in which the periodicity of the signal was reflected by
a closed loop that could be geometrically analyzed (LeMasson and
Maex 2001). The phase plane was divided into small squares and the
total number of points of the trajectory falling into each square was
calculated. The cost is calculated by subtraction of two phase plane
density matrices, one calculated from the test data (t) and one
calculated from the target data set (T)

	2 �
1

MXY�
i

M �
V̇

�
V

�Ti�V,V̇	 � ti�V,V̇	
2 (3)

where X and Y are the number of elements in the phase plane matrix
and M is the total number of membrane potential sweeps simulated in
the model.

COMBINED. This cost function combined the Waveform analysis
with the Trajectory-density and ISI. For the passive currents we used
the Waveform calculations alone, whereas for the AP trains we also
added those of the Trajectory-density and ISI; this sum was further
penalized on the peak amplitude of the APs

�2 � �2 � ISI2 � 	2 � O1 (4)

where O1 is the penalty value given for the difference between the
target and test AP amplitude to encourage the algorithm to favor
parameter sets that produce APs with large amplitudes.

We used the normalized mean geometric distance of the test
parameters from the target parameters to quantify the deviation of the
parameter set obtained by the genetic algorithm

S �
1

N�
i�1

N �PS�i	 � PD�i	

PD�i	
� (5)

where S represents the total deviation score from the target parame-
ters, N is the number of free parameters in the simulation, Ps(i) is the
best-fit value of the ith parameter, and PD(i) is the target value.

R E S U L T S

Cost function comparison

The ability of genetic algorithms to converge to a global
minimum is strongly influenced by the type of problem under
investigation and the cost function used to quantify the distance
between the target set of data and the data set generated by the
genetic algorithm (Haupt and Haupt 1998; Mitchell 1996).
Thus the first simulated experiment was designed to compare
the performance of the genetic algorithm using five different
cost functions (defined in METHODS). The target data set for
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these simulations was produced by somatic current injections
and included six membrane potential traces recorded at the
soma after different levels of current injection (Figs. 2 and 3,
top). Previous optimizations of compartmental models using
genetic algorithms have applied the ISI cost function (Eq. 1) to
evaluate the quality of the fit (Eichler West 1996; Vanier and
Bower 1999). Nevertheless, the test data set used in this study,
simulated using the best parameter set obtained by the genetic
algorithm using the ISI cost function, did not fit the target data
set well (Fig. 2Ai) because, although the spiking pattern was
faithfully reproduced, the test APs did not reach the full
amplitude of the target APs and the passive traces, which are
essentially meaningless in the ISI cost function’s definition,
thus missing the target data set curves (Fig. 2Ai).

The value of the best individual in each generation calcu-
lated by the ISI cost function converged, in agreement with
previously published investigations (Eichler West 1996;
Vanier and Bower 1999), within a small number of genera-
tions, leveling off at an almost constant score for the rest of the
algorithm’s runtime (Fig. 2Aii). Furthermore, in both runs of
the genetic algorithm the ISI cost function caused an overes-
timation of the values of GKs,node, GKs,soma, and GKf,node (Fig.
2Aiii). This overestimation was probably responsible for the
small amplitude of the APs produced by the best parameter set
(Fig. 2Ai). Additionally, the value of the axial resistance (Ra)
had the largest error of the passive parameters, indicating a
smaller passive space constant and thus considerable changes
in the propagation of the AP into the axon and dendrite.

FIG. 2. Convergence and deviation results of the ISI (interspike interval), Waveform, and ISI � Waveform cost functions. Ai: 4 membrane potential traces
recorded after somatic current injections (1 negative, 3 positives) are displayed. Target data set is represented by the dashed lines and the best-fit test data set
produced by the genetic algorithm using the ISI cost function by the solid lines. Aii: convergence performance of 2 different executions of the genetic algorithm
(GA) using the ISI cost function running on the model with one recording location on the soma. Graph shows the best individual score in each generation as
a function of simulation number. Aiii: deviation of the final data set resulting from the ISI function. Two best data sets found by different executions using the
ISI cost function are plotted. Error bars represent the distance from the target value of each parameter. One error bar of GKs,node appears as though it is missing
a cap; this is because the error was 600% (1,200% for that run of the algorithm). Therefore the error bar was truncated to allow visualization of the deviations
of the other parameters. B: similar representation as in A for the results obtained using the Waveform cost function. C: similar representation as in A for the results
obtained using the ISI � Waveform cost function.
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It has been predicted that the Waveform cost function (Eq. 2)
may not be considered an appropriate cost function for algo-
rithms attempting to constrain compartmental models (LeMas-
son and Maex 2001). Indeed, large deviations of both the
passive responses and AP trains from the target traces (Fig.
2Bi) were observed when the Waveform cost function was used
by the genetic algorithm to evaluate the quality of the fit. The
most striking deviation was the convergence of the algorithm
to a parameter set producing a test data set with a single AP,
whereas the target data set expressed a train of five APs for the
same current injection (Fig. 2Bi). The convergence of the best
solution obtained by the genetic algorithm using the Waveform
cost function also displayed a pattern of convergence different
from that of the simulations using the ISI cost function (Fig.
2Bii); the two runs of the genetic algorithm produced a rela-
tively small reduction in the fit value of the best individual as
a function of the number of generations. Additionally, GNa,dend
was overestimated. However, the minimizations using the

Waveform cost function showed similar behavior to the runs
using the ISI cost function in the overestimation of GKs,node,
GKs,soma, GKf,node, and Ra (Fig. 2Biii).

To investigate whether it was possible to merge the different
properties of the ISI and Waveform into one cost function, two
runs of the genetic algorithm were performed using a simple
sum of these two functions as one cost function (ISI �
Waveform). As expected, using the ISI � Waveform cost
function resulted in a different behavior. Similarly to the ISI
cost function, the locations of the APs were faithfully con-
strained, whereas the passive traces were ill fitted (Fig. 2Ci).
Additionally, the convergence of the best solution obtained by
the genetic algorithm (Fig. 2Cii) displayed what appeared to be
a combination of the convergence of the ISI (Fig. 2Aii) and
Waveform functions (Fig. 2Bii); that is, the value of the best
individual diminished considerably during the first 20 genera-
tions and then continued to decay at a slower rate until it
leveled off after approximately 500 generations. Unlike the

FIG. 3. Convergence and deviation results of the
Trajectory-density and Combined cost functions. Ai:
4 membrane potential traces recorded after somatic
current injections (1 negative, 3 positives) are dis-
played. Target data set is represented by the dashed
lines and the best-fit test data set produced by the GA
using the Trajectory-density cost function by the
solid lines. Aii: convergence performance of 2 dif-
ferent executions of the GA using the Trajectory-
density cost function running on the model with one
recording location on the soma. Graph shows the best
individual score in each generation as a function of
simulation number. Aiii: deviation of the final data
set resulting from the Trajectory-density cost func-
tion. Two best data sets found by different executions
using the Trajectory-density cost function are plot-
ted. Error bars represent the distance from the target
value of each parameter. B: similar representation as
in A for the results obtained using the Combined cost
function.
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parameter sets obtained by separately using the ISI (Fig. 2Aiii)
and Waveform (Fig. 2Biii) cost functions, the parameter set
obtained using the ISI � Waveform did not display large
deviations in parameters related to the AP axonal initiation
zone (GKs,node and GKf,node, Fig. 2Ciii). However, the two runs
of the genetic algorithm produced parameter sets displaying
different degrees of variation of the same parameters. Thus
although the final score of the genetic algorithm was similar in
both runs of the genetic algorithm, the parameter vectors
indicated that the two runs converged to two different subre-
gions of parameter space.

To increase the weight of the APs in the target data set we
used the Trajectory-density (Eq. 3) cost function (LeMasson
and Maex 2001). Using this cost function the genetic algorithm
constrained APs that had larger amplitudes than those observed
with the previously tested cost functions (Fig. 3Ai). However,
the APs were shifted relative to the APs in the target data set.
Moreover, the convergence of the best solution obtained by the
genetic algorithm using the Trajectory-density cost function
was slower than that observed for the ISI and ISI � Waveform
cost functions (Fig. 3Aii). Additionally, like the runs using the
ISI and Waveform cost functions the value of GKs,node, was
overestimated (Fig. 3Aiii); and, in one of the runs, the value of
GNa,dend was overestimated as well. Another similarity to the
minimizations using the ISI cost function is the overestimation
of the value of Ra (Fig. 3Aiii). Finally, the ISI, Waveform, and
Trajectory-density cost functions were assembled together to
form the Combined cost function (Eq. 4). Using this new cost
function, the genetic algorithm produced the best visual fit
between the somatically recorded test and target data sets (Fig.
3Bi). This was manifested by the best solution obtained by the
genetic algorithm, using the Combined cost function, converg-
ing slower than the previously tested cost functions (Fig. 3Bii).
Furthermore, although the parameter set obtained by the two
runs displayed large deviations in some of the parameters,
these deviations were significantly smaller than those obtained
with the other cost functions (Fig. 3Biii).

For further comparison of the performance of the different
cost functions we calculated the mean geometric distance (Eq.
5) between the parameters obtained by the genetic algorithm
and the target parameters (Fig. 4). The highest average devia-
tion by best test parameters from the target parameters was
observed when using the ISI cost function (129%) followed by
the Waveform cost function (108%) and, finally, the ISI �
Waveform cost function (90%). The best test parameter sets
produced by the genetic algorithm using the Trajectory-density
and Combined cost functions had similar mean deviations from
the target parameters (75 and 73% respectively). To further
investigate the different performance of the various cost func-
tions, we tested the sensitivity of the three major cost functions
(ISI, Waveform, and Trajectory-density) to variations in the
parameter set. Using the target parameter set (Table 1) we
generated 5,000 new parameter sets by randomly modifying all
parameters within �30% of their target value. The value of
each cost function was calculated using these parameter vec-
tors and the distribution of the results was displayed as loga-
rithmic histograms (Fig. 5). We surmised that the shape of the
results’ histogram should manifest the sensitivity of a cost
function to parameter variation because a sensitive cost func-
tion should generate a larger spectrum of results than a non-
sensitive one. We found that the histogram of the results

obtained using the ISI cost function displayed the smallest
sensitivity to the variability of the parameter sets (Fig. 5A). We
also found that the distribution of the results obtained using the
same parameter vectors with the Waveform cost function (Fig.
5B) was broader than that obtained with the ISI function.
However, the Waveform cost function displayed a sharp cutoff
toward the low range of the score scale. Furthermore, the
Trajectory-density cost function displayed a similar distribu-
tion of score results to that of the Waveform function, also
producing results in the low range of the score scale (Fig. 5C).
Thus similar to the ranking of the cost function using the mean
geometric deviation (Fig. 4), the Trajectory-density function
provided a greater sensitivity to changes in the parameter
vector, in all probability allowing the genetic algorithm to
better constrain the target parameter set.

Recordings from several dendritic and axonal locations

Visual evaluations (Fig. 3) and numerical analyses of the
obtained parameters (Figs. 4 and 5) suggested that the genetic
algorithm using the Combined cost function was able to con-
strain the model better than the other cost functions tested in
this study. We thus turned to investigate the second question
raised in this study: Is it possible to constrain a model contain-
ing nonhomogeneous distributions of ion channels once mul-
tiple dendritic and axonal recordings are added to the data set?
The results of the minimization performed using the Combined
cost function and somatically recorded membrane potential
traces (Fig. 3B) are shown again in Fig. 6A (to reduce the
complexity of the figure only the membrane potential traces
generated by 0.4- and �0.35-nA current injections are dis-
played). The membrane potential traces recorded in the initial
segment of the axon (20 �m away from the soma) and at 400
�m along the dendrite, which were not used as part of the
target data set, are shown in addition to the membrane potential

FIG. 4. Average deviation from the target parameters. Average deviation
from the target parameter set of the best set for each of the 5 cost functions was
calculated using Eq. 5. ISI method shows the highest deviation (129% error);
the Waveform cost function reached a better score, whereas the Trajectory-
density and the Combined cost functions show an improvement of the devia-
tion of parameters.
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recorded at the soma (Fig. 6A). Although the somatic test data
set substantially fitted the target traces there were clear devi-
ations of the traces at both the dendritic and axonal recording
sites. However, an apparent visual improvement to the fit could
be observed (Fig. 6B) when the target data set was increased by
including the membrane potential traces recorded at 400 �m
along the dendrite in addition to the somatic membrane poten-

tial traces. Although the fit of the dendritic and somatic data
sets improved by this doubling of the target data set, the
membrane potential traces at the axonal recording location still
displayed visual deviations (Fig. 6B). Nevertheless, the addi-
tion of the dendritic recordings to the data set changed the
deviations of the obtained parameter set from the target pa-
rameter set (Fig. 7A). Also, the error in some of the parameters
decreased in comparison to the parameter set obtained when
the target data set consisted of only somatic membrane poten-
tial traces. Surprisingly, the error in GNa,dend, a parameter
predicted to be better constrained by the addition of dendritic
data, increased. Notwithstanding, the mean geometric distance
of the best test parameters obtained by the genetic algorithm
from the target parameters for this simulation was slightly
shorter than that obtained when the target data set contained
only somatically recorded membrane potential traces (68 and
73% respectively, Fig. 7B).

When another dendritic recording of the membrane potential
at 200 �m along the dendrite was added to the target data set
(i.e., soma and two recording locations on the apical dendrite at
400 and 200 �m), an improvement in the result was not
observed (data not shown in Fig. 6 but see analysis in Fig. 7).
Still, visual improvement in the fits at the soma, dendrite, and
axon could be observed (Fig. 6C) when a recording of the
membrane potential from the axon’s initial segment, 20 �m
away from the soma, was added to the target data set (four
recording locations in total). This addition of data from the
axonal recording site reduced the error in most of the param-
eters and especially in the overestimated GKs,soma, GKf,node, and
GNa,dend (Fig. 7A). The mean geometric distance of the param-
eters obtained by the genetic algorithm from the target param-
eters for this simulation was shorter than that obtained when
the target data set contained only somatically recorded mem-
brane potential traces (51 and 73% respectively, Fig. 7B).
Similar results were obtained when the target data set con-
tained recordings from the soma, axon, and one dendritic
location 400 �m away from the soma (data not shown).
Nonetheless, increasing the target data set further by an addi-
tional measurement from 600 �m along the dendrite did not
change the quality of the fit compared with the four locations
(data not shown in Fig. 6 but see analysis in Fig. 7).

D I S C U S S I O N

Every optimization of a model using numerical data relies on
three basic conditions: the cost function, the quality of the
target data set, and the minimization algorithm. In this study
we selected the genetic algorithm as the minimization algo-
rithm and tested several cost functions and data combinations
in an attempt to determine the answer to two questions: What
may be a good cost function for the estimation of the free
parameters in a compartmental model? Is it possible to con-
strain a model containing nonhomogeneous distributions of ion
channels once multiple dendritic and axonal recordings are
added to the data set? We show that a cost function combining
analyses of many facets of passive and active responses of the
model enables the genetic algorithm to produce the best set of
parameters (Figs. 2 and 3). Furthermore, addition of membrane
potential recordings from the dendrite and axon allows the
genetic algorithm to progressively find a better parameter set
(Figs. 6 and 7). Our results thus suggest that combining

FIG. 5. Estimation of cost function sensitivity to variations in model pa-
rameters. A: logarithmic histogram displaying the distribution of values ob-
tained by the ISI cost function after 5,000 evaluations of the model using
parameter vectors that were randomly selected based on the target parameter
vector (Table 1). B: same as in A with the exception that the score of the same
5,000 model evaluations was calculated using the Waveform cost function. C:
same as in A with the exception that the score of the same 5,000 model
evaluations was calculated using the Trajectory-density cost function.
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multiple membrane potential recordings with genetic minimi-
zation algorithms may be used to constrain functional models
for multicompartment neurons containing nonhomogeneous
distributions of ion channels.

Cost function comparison

The genetic algorithm is an optimization method based on
the principles of genetics and natural selection guiding the
evolution of a population composed of many individuals to a
state that maximizes the “fitness” of the population. Several
criteria govern the selection of the cost function that estimates
the fitness of the population found by the genetic algorithm. To
begin with, the cost function should, as much as possible, be
sensitive to changes in the parameters of the model; it is clear
that a cost function that is insensitive to changes in one of the
model’s parameters will not enable a genetic algorithm, or any
other optimization algorithm, to find an optimal value for this
parameter. Subsequently, especially in minimization problems
with interdependent parameters, the entire parameter set might
miss the global minimum. Thus a rapid convergence or greed-
iness of the best solution as the generations progress may be a
hallmark of a poorly designed genetic algorithm or of a cost
function that is not sensitive to the model’s parameters (Haupt
and Haupt 1998).

Of the five cost functions tested in this study the ISI cost
function displayed the smallest degree of sensitivity to varia-
tions in the parameter set in the vicinity of the target parameter
set (Fig. 5A). Indeed, the convergence of the genetic algorithm
using the ISI cost function was rapid (Fig. 2Aii) and produced
the largest mean deviation from the target parameter set (Fig.
4). Moreover, previous investigations using the ISI cost func-
tion in combination with a genetic minimization algorithm
have reported similar convergence patterns (Eichler West
1996; Vanier and Bower 1999) and considerable deviations
from the target parameters (Vanier and Bower 1999). Thus the
ISI cost function can be considered an inappropriate cost
function for the optimization of compartmental models. How-
ever, because the ISI analysis reduces the data from a large
number of membrane potential points to a few timing points—
forcing vital information to be lost—our findings are not
surprising. It is also possible to predict that other ad hoc
reductions of AP trains will not serve as good cost functions.

The Waveform cost function, the most widely used cost
function for fitting a model to a set of data (Press et al. 1992),
was found to be ill adapted for fitting AP trains (Fig. 2B). This
is probably explained by the low applicability of the Waveform
cost function to highly periodic signals (LeMasson and Maex
2001). Merging the ISI and Waveform functions did not com-

FIG. 6. Outputs of the best individual parameter set compared with the target data set using several recording locations. A: membrane potential traces recorded
at the soma, at 400 �m along the dendrite and at 20 �m away from the soma in the initial segment of the axon. Graphs show the membrane potential changes
in response to �0.35- and 0.4-nA current steps injected by the somatic electrode. Smooth lines represent the best data set obtained by the GA using the Combined
cost function and the dashed lines the target data set. Target data set used for the minimization consisted only of the somatically recorded membrane potential
traces. B: same as in A with the exception that the target data set used for the minimization consisted of membrane potential traces recorded at the soma and
at 400 �m along the dendrite. C: same as in A with the exception that the target data set used for the minimization consisted of membrane potential traces recorded
at the soma, at 400 �m along the dendrite, and at 20 �m away from the soma in the initial segment of the axon.
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bine the good qualities of the two functions either (Fig. 2C); it
appears that the greediness of the ISI cost function guided the
genetic algorithm into a subregion of parameter space by
phase-locking the AP trains to the target data set, from which
the tuning of the AP shape by the Waveform cost function was
not powerful enough to enable the genetic algorithm to escape
in the direction of the target parameter set.

By using the Trajectory-density cost function the genetic
algorithm outperformed its combination with the ISI and Wave-
form cost functions (Fig. 3Ai). However, the APs simulated
using the best test parameter set were shifted relative to the

APs in the target data set. This temporal shift of the APs
obtained by the genetic algorithm was probably a result of the
missing time domain in the Trajectory-density cost function
(Eq. 3). Moreover, the Trajectory-density cost function does
not give significant weight to the passive traces arising from
the relatively small changes in their first temporal derivative. It
was thus clear that the Trajectory-density cost function over-
weighed the contribution of the APs in the target data set.
Eventually, the combination of this property with the phase-
locking ability of the ISI cost function and the Waveform cost
function’s ability to increase the weight of the passive re-

FIG. 7. Effect of multiple recording sites on the final
parameter set. A: deviation of the parameter vectors obtained
when the GA using the Combined cost function attempted to
constrain the model using membrane potential recordings
from several locations along the model neuron. Number and
locations of the recordings are indicated below the graph in
B. Error bars represent the distance from the target value of
each parameter (in %). B: average deviation of the parameter
set displayed in A.
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sponses provided the best visual fit (Fig. 3B) between the test
and target data sets.

Several conclusions could be drawn from this part of the
study. First of all, more research into the design of cost
function for the minimization of compartmental models is
called for; we were surprised to see how much influence the
cost functions used for constraining compartmental models
have over the behavior of the genetic minimization algorithm.
Furthermore, all the functions tested in this study were off-the-
shelf functions that had been used in similar studies (Eichler
West 1996; LeMasson and Maex 2001; Vanier and Bower
1999) or were generally used to compare models with a data set
(i.e., the Waveform cost function); that is, none of these
functions was tailor made to fit the problem at hand. Compart-
mental models consist of a large set of coupled differential
equations. This set of equations is being numerically integrated
to obtain the spatial and temporal changes in the neuron’s
membrane potential. The integration process masks the dynam-
ics of many parameters because it reduces the space defined by
a large set of differential equations to a smaller set of values
representing the membrane potential. This masking is probably
the most intrinsic problem facing researchers attempting to
constrain free parameters of a compartmental model. Conse-
quently, further understanding of the loss of information be-
tween parameter spaces to the membrane potential is required
to develop more efficient cost functions for compartmental
models.

Second, the estimate of the robustness of a compartmental
model relies heavily on the analysis method. In theory the best
way to investigate the robustness of a compartmental model is
to test all possible parameter combinations (Goldman et al.
2001). This technique rapidly becomes inapplicable—as a
result of both computational reasons and the limitation of the
human mind to grasp such a complex hypercube—as the
number of free parameters increases. Alternatively, some in-
formation about the robustness can be gained by varying single
or pairs of parameters (Bhalla and Bower 1993) or by ran-
domly drawing parameter sets from one parent set (Golowasch
et al. 2002) as we have performed here. For example, it can be
argued that the analysis of the robustness of the model used
here with the ISI cost function shows the model to be quite
robust (Fig. 5A). However, an analysis using the Trajectory-
density function alone may lead one to decide that the model is
not robust (Fig. 5B).

Third, using only somatic recordings of the membrane
potential is not a sufficient condition for constraining compart-
mental models containing nonhomogeneous distributions of
ion channels. Many of the minimizations carried out using only
somatic target data set (Figs. 2 and 3) show considerable
deviations in the values of parameters related to the axonal
initiation zone in some cases and to the dendrite in others.
Additionally, even under the best optimization, obtained using
the Combined cost function, although a fit in substantial agree-
ment with the somatic data was found, large deviations from
the dendritic and axonal membrane potential traces, not in-
cluded in the target data set, could be observed (Fig. 6A). To
reiterate this point, our simulations strongly indicate that rely-
ing on visual comparison between the target and test data sets
may lead the naı̈ve investigator to select a parameter set that
may not be related to the parameter set describing the activity
of the neuron.

Target data set selection

In this study we used a fixed data set of six somatic current
injections to investigate the effect of various cost functions on
the convergence of the model. It is clear that data sets contain-
ing more somatic current injections will provide the genetic
algorithm with more information about the activity of the ion
channels in the model. However, the improvement to the fit
will probably be sublinear to the number of additional somatic
sweeps. In addition, it is possible to extend the data set further
by using less-conventional current injection protocols, such as
current ramps or other protocols, thus sampling a larger portion
of the activation range of the voltage-gated channels in the
neuron. Moreover, although initially one full run of the genetic
algorithm lasted approximately 1 wk, the duration required for
the algorithm to converge appeared to increase linearly with
the number of recorded sweeps and recording locations.

Addition of dendritic membrane potential traces to the target
data improved the visual fit (Fig. 6B) and the fit of many of the
free parameters (Fig. 7A). However, this spoiled the previous
good fit of the dendritic conductance density of the voltage-
gated Na� conductance (GNa,dend). This was probably caused
by the fact that, much like attempting to cover two people with
one blanket, where pulling on one end to cover one person
leaves a smaller piece of the blanket to the other person, adding
a dendritic recording reduces the weight of the somatic data
traces, forcing the membrane potential at the dendritic record-
ing site to fit the target set of data. It was also most likely that
because of the underestimation of the AP amplitude at the
soma (as a result of the overestimation of GKs,soma and GKf,node)
that the back-propagating AP required additional boosting
from voltage-gated Na� conductances. It was only the addition
of membrane potential recordings from the axon (Fig. 6C) that
reduced the overestimation of the axonal conductance densi-
ties, ultimately leading to a reduction in the error in the
dendritic sodium conductance density. Furthermore, it is im-
portant to note that, because visual inspections of the somatic
fit do not reveal major differences between the fit obtained only
with a somatic data set and those carried out also with dendritic
and axonal membrane potential traces, a naı̈ve researcher
fitting only somatic data may obtain a poor estimation of
dendritic and/or axonal parameters. Finally, we conclude that,
at least in the case of the model presented in this work,
constraining compartmental models containing nonhomoge-
neous distributions of ion channels requires a target data set
containing membrane potential recordings from several loca-
tions along the neuron.

Experimental and practical consequences

Based on the model and simulations presented in this work
it is possible to suggest an experimental scheme. By blocking
voltage-gated calcium channels it is possible to appreciably
reduce the number of active channels in the membrane of most
neurons. Such an experiment will eliminate from the parameter
space the conductance densities of voltage-gated calcium chan-
nels and that of the calcium-activated potassium channels. The
remaining channels are the voltage-gated sodium and potas-
sium channels and the hyperpolarization activated cationic
conductance Ih. Our simulations indicate that under these
conditions it may be possible to constrain a model for such
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neurons, providing that the membrane potential will be mea-
sured at several locations along the dendritic and axonal trees.
Dendritic and axonal measurements of the back-propagating
AP have been performed for over a decade (Stuart et al. 1999).
However, simultaneous recordings of the membrane potential
from five locations, including axonal recordings, using patch
electrodes have yet to be performed. Alternatively, recording
the membrane potential from many locations may be per-
formed using voltage-sensitive dyes (Antic 2003; Antic et al.
1999). It is also possible to envision even more complex
experimental scenarios in which, after the recording of the
membrane potential, some of the channel blockers will be
omitted from the bathing medium and new recordings of the
APs will be made. This snapshot of neuronal activity could
then be used to constrain a more complex compartmental
model using the model constrained for fewer channels with
fixed parameters. Thus it may be possible to progressively
constrain more complex models, eventually reaching the de-
sired target of a full model of the investigated neuron.
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