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ABSTRACT
How can we reliably infer web users’ interest and evaluate
the content relevance when lacking active user interaction
such as click behavior? In this paper, we investigate the
relationship between mobile users’ implicit interest inferred
from attention metrics, such as eye gaze or viewport time,
and explicit interest expressed by users. We present the first
quantitative gaze tracking study using front-facing camera of
mobile devices instead of specialized, expensive eye-tracking
devices. We focus on multi-column digital media pages in
Google Play Store that display 30+ items per page belong-
ing to diverse categories. In such pages, we find significantly
different distribution of gaze metrics on items that users rate
as interesting vs. not. We leverage this insight by building
a prediction model that is able to infer a user’s interest rat-
ings from the the non-click actions of the user. Our model
is able to attain AUC of 90.32% in predicting user interest
at an individual item level. In addition, our experiments
on collection item re-ranking show how user gaze and view-
port signals can be used to personalize item ranking on the
collection page. Beyond understanding users’ attention be-
havior in novel contexts such as multi-column digital media
pages in Google Play Store, the findings in this study have
implications for the design of a novel personalization and rec-
ommendation mechanism by (1) prioritizing items that are
most likely of interest to users based on historical attention
signals, and (2) prioritizing positions receiving significant
portion of gaze attention.
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1. INTRODUCTION
For the past decade, web service providers have been rely-

ing mostly on explicit feedback, such as click signals, as in-
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dicators of content relevance to the users. The rapidly grow-
ing population of smartphone users has created the need for
better understanding and harnessing users’ behavior beyond
just clicks. A common challenge is to reliably identify users’
interest in scenarios when click data is sparse or unavail-
able. Several forms of implicit feedback including amount
of scrolling and exit behavior have been found helpful in
predicting explicit user feedback ratings [6]. However, these
sources offer limited information about a users’ focused at-
tention, and the predictions are far from precise. In recent
years, eye-tracking techniques have enabled researchers to
reveal more subtle and fine-grained visual attention cues,
and therefore address issues related to mobile users’ behavior
which cannot be otherwise addressed by using click signals.

We perform a controlled lab study to systematically in-
vestigate implicit gaze and viewport patterns captured from
mobile devices as a source to measure users’ attention and
interest. We adopt a proprietary specialized eye-tracker that
can estimate gaze position directly on a mobile phone, as
users are performing their browsing tasks. Our experiments
focus on Google Play Store, one of the largest digital dis-
tribution platforms containing rich contents of images and
texts. Such digital channels can widely include, for ex-
ample, app stores, recommendation sites (for restaurants,
movies, music), shopping sites etc. Understanding users’ at-
tention and interest on digital distribution platforms can be
crucial for improving user experience and satisfaction. An
important feature of Play Store is the design of collection
pages, which displays results grouped by pre-defined topics
(e.g., popular games, trending new music etc.), or based on
search queries specified by the user. The design and layout
of Google Play Store is representative of many other online
media and e-commerce and entertainment sites, thus making
our findings applicable to many other settings.

Our work differs from previous eye-tracking research in
two important ways. In terms of study design, unlike linear
search results page (SERP), the digital collection pages seen
on Play Store often display contents in multi-column layout.
The nonlinear layout may add extra complexity, resulting in
attention behavioral pattern that was previously not cap-
tured in conventional SERP. Second, in terms of methodol-
ogy, our interest inference model is purely attention driven
– without involving any contextual information of the dis-
play contents, nor explicit feedback such as clicks. In other
words, our work examines the extent to which attention sig-
nals alone can be potent in revealing users’ interest.

In this paper, we demonstrate how gaze metrics can be
useful for understanding mobile users’ browsing behavior on



a wide range of tasks, including inferring user interest, and
improving feed ranking and personalization in the context of
mobile browsing. Specifically, our paper makes the following
contributions:

• Presents the first quantitative gaze tracking study us-
ing front-facing camera of mobile phones instead of
specialized, expensive eye-tracking devices. We use a
proprietary gaze tracking system for end-to-end gaze
estimation.

• Demonstrates statistically strong gaze attention bias
towards left column on pages with double-column lay-
out (t(151) = 4.22, p < 0.001). Such position ef-
fects (along the horizontal dimension) cannot be oth-
erwise captured using previous viewport logging mea-
surement [16].

• Identifies how users’ attention pattern is affected by
the vertical position of displayed content. Observes
non-monotonic attention decay with rank position, with
slight rebound towards the bottom of the page.

• Deploys an inference model to effectively predict users’
interest on Play Store collection pages with accuracy
90.32% (AUC), using attention signals derived from
gaze and viewport logging.

• Deploys a ranking model to personalize and improve
feed relevance on Play Store collection pages, using
attention related features.

We begin by surveying related work in eye tracking for user
behavior on desktops and mobile devices in Section 2. We
then describe our experiment and user study in Section 3,
followed by the analysis of users’ attention and interest on
mobile phones in Section 4, Section 5 and Section 6. We
further explore personalization of feed ranking with gaze in
Section 7 and Section 8. We conclude with a discussion
reviewing the findings and limitations of this study, along
with suggestions for future work.

2. RELATED WORK
In recent years, scientists have been able to quantify and

model users’ attention behavior using eye-tracking techniques.
Studies have been performed on various domains of appli-
cation including web search [16, 13, 22], online news read-
ing [17], smartphone app usage [24], recommendation sys-
tems [28] and ads quality [4] etc. Yang et al. [27] use eye-
tracking in an experimental conjoint analysis to infer online
consumer preference. Eye-tracking has also been used for
understanding saliency of web pages [3, 26].

Our work focuses on studying user’s attention pattern in a
rather understudied realm – the mobile digital media sites.
We take Google Play Store as an representative example
of this type of platforms, and examine the gaze pattern on
multi-column layout pages. Studies in the past have mostly
focused on a linear page layout, e.g., search engine results
page (SERP). In work that aligns more closely to our focus
on nonlinear pages, Bota [2] studied the a novel interface of
search results, and found that nonlinear composite results
can positively impact search behavior in certain contexts.
Navalpakkam et al. [23] studied the alignment between desk-
top mouse cursor and gaze position in search contexts with

non-linear page layout. They show that the flow of user at-
tention on nonlinear page layouts is different from the com-
monly seen top-down linear examination order of search re-
sults. Aside from mouse cursor, Claypool et al. used the
amount of mouse scrolling time [6] as implicit feedback for
making personalized recommendations. While these sources
are readily available and useful on desktop, they offer lim-
ited information about a user’s focused attention, and the
predictions are far from precise.

Due to the expensiveness of commercial eye-tracking de-
vices, there has been another line of research focusing on
developing alternative measurement of mobile users’ atten-
tion. Viewport (visible portion of a web page) has been
demonstrated effective in approximating user attention. For
example, viewport was used as an implicit feedback informa-
tion to improve search result ranking for subsequent search
queries [5], to help eliminate position bias in search result
examination, detecting bad snippets and improving search
result ranking [15]. Viewport time was also successfully used
on mobile devices to infer user interest at the sub-document
level [8]. Recently, Lagun et al. [16] found strong correlations
between gaze duration and viewport duration on vertical
search result, and that the average user attention is focused
on the top half of the phone screen. [18] further employed
viewport data to develop user engagement metrics that can
measure user interaction during news reading and search re-
sults with ads. [18] studied how users’ eye gaze (measured
with viewport) and satisfaction are impacted by the pres-
ence of answer-like advertisements and their rich formats on
SERP.

Our work contributes to the research field by demonstrat-
ing the use of gaze signals for reliably inferring users’ inter-
est, apart from their attention, in a novel context such as
Google Play Store.

3. USER STUDY AND DATA COLLECTION

3.1 Participants
We recruited 36 participants with informed consent (20

male and 16 female), aged 18-60 (17 among them are > 30
years and 19 participants are <= 30 years), with various oc-
cupations and self-reported mobile search experience. Most
of the participants had normal or corrected vision (e.g. wear-
ing contact lenses) and were able to read from the mobile
phone without wearing glasses.

3.2 Eye tracker
Our eye-tracker uses built-in camera on mobile devices for

gaze estimation. This can be seen as a replacement for the
expensive, specialized eye-tracker that has been commonly
adopted for previous eye gaze user studies [7, 23, 16, 18].

The eye-tracker estimates gaze positions on the screen
from eye-region images captured from the front-facing cam-
era. In fact our system is very similar to [14]. The training
data is obtained through a calibration procedure. Duration
the calibration each participant is asked to look at specific
positions on the phone screen, marked with red circles. We
use 13-point calibration system. A custom designed user
study app displays a sequence of red circles one at a time,
and at the same time records participants’ appearance from
the front facing camera. Each calibration session takes ap-
proximately 10 seconds. The image frames captured during
the calibration stage together with corresponding location of



(a) Task description (b) Collection page

Figure 1: User study app interface. (a): The interface
for task instruction. Participants are able to navigate
through tasks by pressing“forward”and“backward”but-
ton. (b): Example of Google Play Store collection pages.

the red circles are used as training data to improve accuracy
of the gaze estimation model.

For each participant, we fine tune gaze prediction model
using data collected from all calibration sessions.1 The fine
tuned gaze estimation system has accuracy of 2.0◦ degree of
visual angle.

3.3 Study Design
To better understand and validate the relationship be-

tween users’ implicit eye gaze patterns and explicit interest,
we design and conduct a lab study focused on Google Play
Store. Our choice of performing experiments on Play Store
is motivated by two main factors. First, a recent report [1]
shows that mobile digital media time in the US significantly
higher at 51% compared to desktop (42%). Play Store, as a
popular digital distribution platform, contains rich contents
of images and text. Second, the design and layout of Google
Play Store is representative of many other mobile media and
e-commerce sites. This makes our findings potentially ap-
plicable to many other settings.

Specifically, we simulate experiments on Play Store collec-
tion pages, which refer to pages displaying results grouped
by pre-defined topics (e.g., popular games, trending new mu-
sic etc.), or based on search queries specified by the user.
The layout of a digital collection page can be multi-column,
depending on the screen size and configuration of a phone.
Our Nexus 5 phone used in this study displays results in a
double-column layout, as illustrated in Figure 1 (b).

The study uses the following protocol. The experiments
begin by calibrating eye gaze of each participant. After
calibration, participants are presented with a task descrip-
tion page on the user study app. As shown in Figure 1,

1To ensure the accuracy of gaze estimation is sufficient, the
calibration process we performed calibration multiple times
during the user study. We require participants to perform
calibration when the head pose or position substantially
changed.

the description page instructs participants to freely browse
a collection page, and mentally pick up to 5 items that
they find interesting. Once finishing reading the descrip-
tion, participants can tap the red button to start the task
(this also triggers video recording in the background). Par-
ticipants will then be directed to a pre-defined collection
page containing the thumbnails of 32 different games on
Play Store. Each game collection page is generated by ran-
domly sampling 8 games from each of the following four
categories: word games, racing games, board games, kids
painting games. These four categories were selected to cap-
ture the diversity within the gaming category. The order of
games on each collection page is randomized to avoid poten-
tial effects of position bias.

Upon finishing browsing, participants can navigate back
to the study home page by using the “Back” button on the
phone. Participants are then asked to complete the post-
task by check marking the games that they found interesting
during the browsing session, thus revealing the users’ explicit
preferences or interest. This is a separate procedure, which
ensures that the selection action does not interfere with the
browsing process.

In addition to item-level interest, we collect users’ interest
information at the coarse categorical level. Each participant
is asked to rate their preference for each of the four pre-
defined game categories on a 10 point likert scale – 1 being
not interested at all and 10 being completely interested.

There are in total 5 pre-designed mocks of Play Store game
collection pages, each of which is generated using the same
procedure described above. Each participant is asked to re-
peat the same “calibration – browsing – selecting and rating”
process for all these 5 different pages2.

3.4 Logging and Post-processing
All the viewport events (on the phone screen end) are

buffered and subsequently sent with an HTTP request to a
user study server which stores data for post analysis. Such
instrumentation allows us to join stimuli data with gaze po-
sition time series and reconstruct what the user saw on the
screen at any point of time.

4. ATTENTION METRICS

4.1 Gaze
We derive gaze-based attention metrics using our special-

ized eye-tracker. We denote (y
(j)
h , y

(j)
v , t(j)) the estimated

horizontal and vertical phone screen coordinates at times-
tamp t(j). Given the bounding box B of any area of interest
(AOI) on a page, we compute gaze metrics as follows:

• Gaze Dwell Time: Amount of gaze time (in seconds)
a user spends viewing the AOI.

Tgaze(B) =
∑

(y
(j)
h

,y
(j)
v )∈B

t(j+1) − t(j)

• Gaze Dwell Fraction: The percentage of gaze time

2The design choice of presenting 5 collection pages is made
so that we can have adequate within-subject browsing data,
without overwhelming the participant.



a user spends viewing the AOI.

%Tgaze(B) =

∑
(y

(j)
h

,y
(j)
v )∈B t

(j+1) − t(j)

Time on Page

• Gaze Time to First Visit: The first timestamp at
which a gaze comes into the AOI.

Tgaze tfv(B) = min
(y

(j)
h

,y
(j)
v )∈B

t(j)

4.2 Viewport
In addition to gaze, we also adopt viewport metrics pro-

posed in previous studies [16, 17] for attention estimation.
Viewport logging works by recording the portion of the web
page visible on the screen at any given time, as well as
bounding boxes of all displayed contents shown on the page.
Compared to gaze, viewport is a less fine-grained attention
metric since it estimates gaze by assigning viewing time pro-
portional to the size of given AOI. We denote V(j) the bound-
ing box of phone screen viewport at timestamp t(j). Given
the bounding box B of any area of interest (AOI) on page,
we compute viewport metrics as follow:

• Viewport Time: The visible time of an AOI at a
given viewport position on the phone screen.

Tviewport(B) =
∑
j

V(j) ∩B
V(j)

· (t(j+1) − t(j))

• Viewport Dwell Fraction: The percentage of time
a user spends viewing an AOI at a given viewport po-
sition.

%Tviewport(B) =
Tviewport(B)

Time on Page

• Viewport Time to First Visit:

Tviewport tfv(B) = min
{V(j)∩B}6=∅

t(j)

5. GAZE REVEALS POSITION EFFECT
The position effect on user attention has been extensively

studied in the context of search, both on desktops [7] and
mobile phones [16]. Different from conventional, vertical
search results page (SERP), the grid layout on digital media
platforms adds further complexity – causing position bias
both in the horizontal and vertical direction. In this section,
we examine how user attention is affected by position on grid
layout pages.

5.1 Horizontal Position
To study the horizontal position effect, we divide the en-

tire collection page into two AOIs: left column vs. right
column, and derive attention metrics correspondingly. The
left panel in Figure 2 shows box-plot of gaze fraction (%) on
the left column and right column, respectively. Participants
spend on average 52.91 ± 1.50% of fractional time on the
left column, as opposed to 43.92± 1.50% of fractional time
on the right column. The kernel density estimation of data
distribution is visualized in the right panel of Figure 2. A
two-sample t-test shows significant gaze time (%) bias to-
wards the left column on collection pages (t(151) = 4.22,
***p < 0.001).
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Figure 2: Gaze dwell fraction between left and right
columns on Play Store collection pages are statistically
significantly different with highly non-overlapping 95%
confidence intervals.

Figure 3: Example heatmap of gaze on PlayStore game
collection page. Note that the gaze hotspots are focused
on items that a user reported later as interesting (the red
highlights are for visualization purposes only, and were
not part of the display to the user).

It is worth noting that such position bias cannot be cap-
tured using previous viewport logging measurement. When
measured with viewport metrics, the distribution of dwell
fraction (%) between left and right columns are indistin-
guishable. This is due to that viewport metric has the
shortcoming of coarsely assigning equal viewing likelihood
on both sides, without being able to differentiate in between.
Unlike viewport metrics, we see a clear difference in gaze
patterns between the left and right columns.

5.2 Vertical Position
We also study the position effect in the vertical direction.

The top panels in Figure 4 show the mean and variance
measured by different gaze metrics (dwell time, dwell frac-
tion and time to first visit) on AOIs of game thumbnails
as a function of vertical position (#row). The statistics at
any given position is based on data points from all 36 par-
ticipants × 5 collection pages. The x-axis varies from 1 to
16 since there are 32 games on each collection page, with
2 displayed side by side per row. We plot in blue the met-
rics for AOIs on the left column, and green for the AOIs on
the right column, respectively. The curves are fitted using
polynomial regression with confidence interval of 95%.

A first salient observation from the top-left and top-middle
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Figure 4: The effect of vertical position on gaze metrics: dwell fraction % (left), dwell time in seconds (middle) and time
to first in seconds visit (right). The blue and green lines show the metrics for the left and right column, respectively.

panels in Figure 4, is that blue curves always stay above
their green counterparts. This indicates that attention bias
towards the left column is consistent, irrespective of the ver-
tical position of content. In contrast, the left-column bias is
no longer revealed when using viewport metrics – the blue
and green curves overlap as seen in the bottom panels of
Figure 4. The top-right panel in Figure 4 corresponds with
the fact that most users first look at contents in the order
from left to right, yielding blue curve below the green one.

We also observe the non-monotonic “boat-shape” curves
in top-left and top-middle panels in Figure 4 – the gaze
time and fraction first decrease w.r.t increasing position, and
then slightly rebound towards reaching the bottom of the
page. Similar trend can also be observed using viewport
metrics (bottom panels of Figure 4), albeit suffering from
a sharper growth towards the end. The most surprising
observation is the bump at position 2, which corresponds to
highest gaze time in seconds and in % amongst all positions.
And such bump is consistent for both the left and right
columns. One possible explanation for the bump at position
2 is the presence of short scrolls on mobile phones. Unlike
desktop where the page up down keys allow users to move
from one page fold to another non-overlapping page fold, in
mobile phones, users often tend to perform short scrolls that
may render the second or third result visible across multiple
viewports and for longer time than the first result.

Furthermore, while the bump at position 2 is commonly
observed using both gaze and viewport metrics, we find that
the presence of bump at position 3 is unique to viewport
(see bottom of Figure 4). We infer that this is again due to
the drawback of viewport assigning equal likelihood for each

position visible on screen, which does not reflect the actual
biased attention distribution on the screen – on average al-
most 70% of the users’ attention is focused on the top half
of the phone screen, as previously reported in [16]. In other
words, when both the second and third rows are visible on
the phone screen, users’ actual attention suffers from a de-
cay (as reflected by the gaze metrics), instead of even split
between the two rows (as reflected by the viewport metrics).

The findings of non-monotonic attention decay with rank
position, as well as attention bias towards left column, may
have implications for design of a novel personalization feed
by prioritizing positions receiving significant portion of gaze
attention.

6. GAZE REVEALS USER INTEREST
The rapidly growing population of smartphone users has

created the need for better understanding and harnessing
users’ behavior beyond just clicks. A common challenge is
to reliably identify users’ interest in scenarios when click-
stream data is sparse or unavailable. In this section, we
attempt to validate the relationship between mobile users’
implicit interest inferred from their eye gaze and explicit
interest.

To start with, Figure 3 shows an example of heatmap gen-
erated based on a user’s gaze, where the red rectangle over-
lay indicates the items that user selected after browsing3.
It is quite intriguing to see the alignment between gaze and
ground truth interest. To get statistically meaningful re-

3Note that the red overlay is for visualization purpose only.
Participants did not see the red rectangle during the study.
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Figure 5: Gaze metrics of dwell fraction (top) and dwell
time (bottom) between unrated and interested items on
Play Store game collection pages are statistically signif-
icantly different (p < 10e−7 in a two sided two-sample
t-test) with highly non-overlapping 95% confidence in-
tervals.

sults, we further examine whether users tend to spend more
attention on interested items, as opposed to unrated ones.

We split AOIs (across all collection pages and all par-
ticipants) into two groups: the ones that a user exhibits
interest in installing, and the remaining unrated ones. We
perform a two-sample t-test on attention metrics between
unrated AOIs and user interested AOIs. Figure 5 shows the
estimated distribution of gaze metrics (dwell fraction and
dwell time) between the unrated items (in green) and those
items user indicates explicit interest (in purple). Partici-
pants spend on average 4.78 ± 0.13% gaze on items they
are interested, as opposed to 2.76±0.03% on unrated items.
We observe substantial difference between gaze on interested
and unrated items, as revealed by a t-test; t(604, 4228) =

15.54, ***p < 0.001.
Table 1 summarizes the results for all gaze and viewport

metrics. For each metric, we report the mean and standard
errors. The last two columns of the table shows the p-value
and statistics using two sample t-test, allowing us to es-
tablish statistical differences in measured quantities among
the metrics. All of the t-tests show significant differences
(p < 0.001). It is also worth noting that the t-statistic de-
rived from gaze signals is always higher than that of view-
port metrics, suggesting gaze signals are more fine-grained
in distinguishing interested vs. unrated items.

7. USER INTEREST INFERENCE MODEL
We have shown in previous section that gaze can be in-

dicative signal of user self-reported interest in the context
of digital media platform. The strong dichotomy of gaze
signals between interested and unrated items leads us to a
natural modeling and prediction question – can we reliably
predict users’ interest at AOI-level by employing multitude
level of attention-based engagement metrics? In this section,

we build upon previous insights and address this issue.

7.1 Methods
For digital collection pages such as in Google Play Store,

users’ interest in an individual item can be effected by mul-
tiple confounding factors: the position of the item, interest-
ingness of the content itself, and users’ intrinsic preference
etc. In the past decade, web service providers have been
using approaches such as collaborative filtering [25] to in-
fer user interest by leveraging users’ click log information or
other types of engagement activities. However, mobile users
nowadays spend significant portion of time purely browsing
without clicking often – making prediction of users’ interest
in click-sparse scenario still a challenging problem. In con-
trast with widely adopted click based approaches, we adapt
insights from previous sections and develop a probabilistic
model that accounts for users’ attention data including gaze
and viewport. Specifically, we formulate this as a binary pre-

diction problem: given the AOI of any item I(p,r)k indexed
by r on a collection page p, a classifier predicts whether a
user Uk is interested (positive) or not (negative). In our ex-
periment, each AOI corresponds to a single game thumbnail.
We consider the following comprehensive set of features that
can be derived from our attention behavioral data.

• Position: The row-wise position of the item (a discrete
variable varying from 1 to 16), and left vs. right col-
umn.

• Gaze: The gaze attention metrics introduced in Sec-
tion 4.1, including TimeOnAOI (in seconds),
%TimeOnAOI and TimeToFirstVisit.

• Viewport: The viewport-based attention metrics intro-
duced in Section 4.2, including TimeOnAOI (in sec-
onds), %TimeOnAOI and TimeToFirstVisit.

• Categorical preference: Users’ rating of C(I(p,r)k ), where
C(·) denotes the category of the item. In our cases,
C(·) belongs to one of the following categories: word
search, racing games, board games, kids painting. Such
prior knowledge of users’ high-level interest can be
used as additional information for the interest infer-
ence model.

Our initial training data consists of 604 positive examples
and 4228 negative examples, aggregated across all partici-
pants and all 5 collection pages in use. The unbalanced size
between positive and negative examples is due to that partic-
ipant only marks up to 5 items as interested on each collec-
tion page with 32 items. We further conduct up-sampling
and enlarge the positive example by 7 times, in order for
matching the sample size of negative examples. We train
binary classifiers using three methods: SVM with RBF ker-
nel [11], Random Forest [19] as well as Decision Tree (with
maximum depth 8). For each method, we perform 10-fold
cross validation, and measure the accuracy by AUC (area
under the ROC curve). Thus, we repeatedly train ten mod-
els and use them to obtain the predictions for each of the
held-out set among the ten folds. We report the AUC com-
puted from the ten test folds combined.

7.2 Experimental Results
Table 2 summarizes the AUC score of various inference

models based on different set of features.



Metrics
Unrated Interested

p-value T-test(mean ± std) (mean ± std)

Gaze
TimeOnAOI (seconds) 1.21± 0.02 2.05± 0.06 ***p < 0.001 12.93

%TimeOnAOI 2.76± 0.03 4.78± 0.13 ***p < 0.001 15.554

TimeToFirstVisit (seconds) 13.75± 0.17 12.24± 0.40 ***p < 0.001 −3.498

Viewport
TimeOnAOI (seconds) 1.30± 0.01 1.55± 0.04 ***p < 0.001 6.39

%TimeOnAOI 3.00± 0.02 3.48± 0.04 ***p < 0.001 10.30

TimeToFirstVisit (seconds) 12.11± 0.14 10.70± 0.37 ***p < 0.001 −3.55

Table 1: Gaze and viewport metrics summarized for AOIs that users explicitly indicate interest vs. unrated (M±SE).

Two sample t-test significance is annotated using the following coding: *p < 0.05, **p < 0.01, ***p < 0.001.

Category Position
Viewport Gaze Viewport & Gaze

All Features
w/o w/ w/o w/ w/o w/

Position Position Position Position Position Position

SVM
(RBF kernel) 66.36 54.57 60.50 66.38 69.02 75.56 75.54 82.90 90.32

Random
Forest 65.76 57.82 69.90 75.44 77.26 78.60 79.40 80.62 84.83

Decision
Tree 66.36 57.71 64.85 66.49 72.13 72.57 74.05 73.62 80.62

Table 2: AUC (area under the ROC curve, %) of user interest inference model with various set of features. Note that
a random guessing baseline would yield 50% accuracy on average.

There are several interesting observations can be drawn
from the results. First, when using features from attention
signals only, both gaze metrics and viewport metrics can
perform better than random guessing (69.90% and 77.26%
respectively when using Random Forest classifier). In par-
ticular, using gaze attention signals alone can yield almost
8% higher AUC compared to using viewport signals. This
suggests that fine-grained gaze signals can be more reliable
in gauging user engagement and predicting AOI-level inter-
est, compared to viewport.

Furthermore, we find that although positional feature by
itself is not indicative enough to predict users’ AOI-level
interest (57.82%), it helps improve performance in general
when combining with attention metrics. Interestingly, we
notice that the relative improvement brought by adding po-
sitional feature is more significant for viewport than gaze.
For example, when using Random Forest classifier, adding
position feature to viewport features improves AUC by 5.5%,
whereas adding it to gaze features improves AUC only by
1.34%. Relating to previous discovery in Section 5.1, we in-
fer this is due to the fact that viewport cannot differentiate
between left and right column attention bias, thus adding
positional feature can be beneficial in compensating for such
limitation.

Besides using engagement related features (attention and
position), we also find that having privileged information of
users’ categorical-level interest can be indicative signal of
AOI-level interest. Using categorical rating itself can yield
performance better than using viewport metrics (66.36% vs.
60.50% when using SVM classifier). When integrating all
the features including categorical rating, our best classifier
(SVM) gives AUC score as high as 90.32%. The result is
very encouraging, given that it is based on purely attention
signals without any click information.

8. FEED RANKING AND PERSONALIZA-
TION WITH GAZE

Given the strong predictability of users’ interest at AOI-
level, we take one step further and investigate if we can
personalize the ranking order of items and improve the feed
relevance for a specific collection page, using attention re-
lated features.

8.1 Method
We model this as a bipartite ranking problem. To start

with, we briefly review the basic SVM-ranking model [12].
Specifically, each training example corresponds to a page

session S = (S+, S−), where S+ = {x(1)+ , ..., x
(m)
+ } ∈ Xm

are the positive examples corresponding to items a user is

interested, and S− = {x(1)− , ..., x
(n)
− } ∈ Xn are the remaining

items as negative examples. The goal is to learn a function
f ∈ F which minimizes the following empirical loss

f∗ = min
f∈F

(∑
S

(
1

mn

m∑
i=1

n∑
j=1

Lhinge(f, x
(i)
+ , x

(j)
− )) + λ||f ||2

)
,

where

Lhinge = max
(

1−
(
f(x

(i)
+ )− f(x

(j)
− )
)
, 0
)
.

Intuitively, an effective ranking algorithm would assign
high ranking (relevance) score to those positive examples
and low score to those negative ones, and push the difference
between these two as far as possible. The ranking score can
be used for re-ordering items and optimizing feed for a given
page.

For each game thumbnail AOI x(i), we extract attention
features the same way as used for the user interest inference
model. After removing non-usable data, our data collection
consists of 144 page browsing sessions in total, aggregated
all participants and all 5 collection pages each. We randomly



Position
Viewport Gaze Viewport & Gaze

All Features
w/o w/ w/o w/ w/o w/

Position Position Position Position Position Position

NDCG@3 0.176 0.257 0.322 0.413 0.444 0.465 0.452 0.594
NDCG@5 0.184 0.232 0.281 0.405 0.410 0.410 0.406 0.513
NDCG@10 0.322 0.414 0.434 0.538 0.576 0.567 0.577 0.695

Table 3: Ranking performance using multitude attention based features.

hold out 36 pages for testing, and train the ranking model on
the remaining 108 page sessions containing in total 14,261

pairwise ranking preference (x
(i)
+ , x

(j)
− ).

8.2 Experimental Results
We adopt NDCG (Normalized Discounted Cumulative Gain)

metric [10] for evaluating the ranking models. For a page
browsing session, we evaluate the reranking of game collec-
tion page based on users’ explicit interest feedback. NDCG
metric varies from 0 to 1, with 1 representing the ideal rank-
ing of the items. This metric is commonly used in informa-
tion retrieval literature for evaluating the performance of in-
formation retrieval systems [20]. To compute the NDCG@k
we use logarithmic position discount:

NDCG@k =
1

IDCG

k∑
i=1

2reli − 1

log2(i+ 1)
,

where k denotes the number of entities that can be recom-
mended, and reli being the ranking relevance score of item
at position i produced by the algorithm.

The ranking performance of NDCG@k for k = {3, 5, 10}
is reported in Table 3. We find that using gaze metrics can
be substantially more advantageous than viewport metrics.
In the cases when k is small (e.g, k = 3, 5), ranking with
gaze outperforms viewport by a large margin > 0.15. This
reassures that gaze-based attention metrics can be more ef-
fective not only in task for AOI-level interest inference, but
also in page-level retrieval tasks.

Similar to what we observed in previous section, here we
also note that the relative improvement gained by adding po-
sitional feature is more considerable for viewport than gaze.
For example, adding position information on viewport fea-
tures can boost NDCG@3 from 0.257 to 0.322; whereas for
gaze features, the gain is comparably small (0.031). Again,
we believe this might be the inadequacy of viewport discern-
ing the position bias in multi-column layout pages seen in
digital media sites.

When combining all the features in hand, our attention-
based ranking model attains NDCG@10 of 0.695, which
means the collection page has been personalized in a way
that effectively pushes items attracting to the user on top.

To the best of our knowledge, this is the first study demon-
strating the efficacy of employing attention engagement met-
rics for ranking task in the context of digital media platform.
We envision that incorporating attention signals can be com-
plementary to many other click-based ranking algorithms.
And we plan to investigate this as part of future work.

9. DISCUSSION
Our preliminary findings raise many important open ques-

tions that would be interesting to take into account in fu-
ture research. First, it would be interesting to run online
experiments, optimizing the collection feed ranking in real

time, and evaluate the efficacy of tuning the order of dis-
played items iteratively with attention features. Second,
our user interest inference model can be extended to com-
bine with contextual information such as image saliency of
the thumbnails [9]. Saliency-based model has been recently
applied to analyze and predict user examination pattern on
SERP [21]. We plan to investigate how such saliency based
features can be incorporated into current model, and fur-
ther improve the prediction accuracy. Third, currently the
interest inference model is purely based on generic attention
features, and might be potentially transferable to domains
such as movie and music collection pages etc. Future work
involves conducting transferability test on other domains.

Admittedly, our experiments are simulated in a rather
simplified laboratory environment, which might not entirely
reflect the realistic browsing situations. In order to make the
setup more applicable, future lab study can be designed to
allow multi-session browsing, where participants can search
and click on the icons freely (which will direct users to the
app detail page). This can lead to further insights on how
can we integrate click signals with attention signals in order
for better predicting and modeling users browsing behavior
on mobile platforms.

10. CONCLUSION
In this paper, we have presented the first quantitative eye-

tracking study analyzing the relationship between mobile
user’s implicit eye gaze and explicit interest in novel con-
texts such as digital collection pages on Google Play Store.
We find significantly different distribution of gaze metrics on
items that a user rate as interesting vs. not (e.g., longer gaze
time on interesting items vs. unrated ones). Built upon this
insight, our purely attention based interest inference model
is able to attain AUC score as high as 90.32% in predict-
ing user’s interest in individual items, in digital collections
pages consisting of 30+ items. In addition, we also show the
promise of improving feed relevance and personalizing the
order of displayed items on collection page, using various
attention related features. These findings have implications
for the design of a novel personalization and recommenda-
tion mechanism by (1) prioritizing items that are most likely
of interest to the user based on historical attention behavior,
and (2) prioritizing positions receiving significant portion of
gaze attention.
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