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Abstract

Electroncrystallographydetermines thestructure of two-dimensional (2D)membraneproteincrystalsandother2Dcrystal systems.Cryo-
transmission electron microscopy records high-resolution electron micrographs, which require computer processing for three-dimensional
structure reconstruction. We present a new software system 2dx, which is designed as a user-friendly, platform-independent software package
for electron crystallography. 2dx assists in the management of an image-processing project, guides the user through the processing of 2D crys-
tal images, andprovides transparence for processing tasks and results. Algorithms are implemented in the form of script templates reminiscent
of c-shell scripts. These templates can be easily modified or replaced by the user and can also execute modular stand-alone programs from the
MRC software or from other image processing software packages. 2dx is available under the GNU General Public License at 2dx.org.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Structural biology of membrane proteins is of central
importance for health, disease, and the development of new
drugs. Membrane proteins represent the majority of today’s
drug targets in pharmaceutical research. Nevertheless, the
PDB database contains only a few hundred membrane pro-
tein structures, only a third of which can be considered
unique conformations. Compared with the wealth of knowl-
edge on the structure and function of soluble proteins, the
low number of determined membrane protein structures
stands in stark contrast to their biological importance.

Membrane protein structure determination faces several
technical hurdles. Difficulties in over-expression, non-de-
structive detergent solubilization and gentle purification
limit the amount of membrane protein sample available
for structural studies. Structure determination by X-ray
diffraction (XRD)1 of three-dimensional (3D) crystals,
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nuclear magnetic resonance (NMR), and cryo-electron
microscopy (cryo-EM) of two-dimensional (2D) crystals
has revealed an amazing array of structural concepts and
mechanisms that nature employs to solve the challenging
tasks that membrane proteins perform. Recent highlights
include the 1.35 Å structure by XRD of the ammonium
channel AmtB (Khademi et al., 2004), the structure of
the waterchannel Aqp0 from cryo-EM at 1.9 Å and XRD
at 2.2 Å resolution (Gonen et al., 2005; Harries et al.,
2004), and the structure of Mistic (Roosild et al., 2005)
by NMR (Wüthrich, 1998), to name a few.

Electron crystallography uses cryo-electron microscopy
to study the structure of membrane proteins that are recon-
stituted into phospholipid bilayers and laterally crystallized
into 2D membrane protein crystals. Atomic models for
seven membrane proteins and tubulin have been deter-
mined by electron crystallography: BR (Henderson et al.,
1990) LHCII (Kühlbrandt et al., 1994), AQP1 (Murata
et al., 2000; Ren et al., 2001), nAChR (Miyazawa et al.,
2003), AQP0 (Gonen et al., 2004; Gonen et al.,
2005), AQP4 (Hiroaki et al., 2006), and MGST1 (Holm
et al., 2006), and Tubulin (Nogales et al., 1998). In
addition, several low-resolution structures of transporters,
ion pumps, receptors and membrane bound enzymes, that
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Fig. 1. The five programs of the 2dx package. 2dx_manager coordinates
the project, and launches the 2dx_image and 2dx_diffraction programs for
the processing of images and diffraction patterns. Data will be merged by
2dx_merger. 2dx_logbrowser assists in the evaluation of the log-files.
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reveal secondary structural motifs such as transmembrane
helices are likely to produce atomic models in the near
future (e.g., Hirai et al., 2002; Schenk et al., 2005; Kukulski
et al., 2005; Tate et al., 2003; Vinothkumar et al., 2005;
Aller and Unger, 2006).

The crystallization of membrane proteins in a 2D array
within the lipid bilayer represents a valuable alternative
route for structure determination. Electron Crystallogra-
phy has matured into a methodology that allows the deter-
mination of membrane protein structures at a resolution of
3 Å or better (e.g., Grigorieff et al., 1996; Mitsuoka et al.,
1999; Gonen et al., 2005). 2D membrane crystals offer the
possibility of assessing membrane-inserted protein confor-
mations. Existing 2D crystals can be incubated with ligands
or other protein binding partners, or they can be exposed
to different buffer conditions, and the structure of the com-
plex or altered conformation can then be studied by elec-
tron diffraction. However, electron crystallography
remains a labor-intensive method: beam-induced charging
and/or drumhead-type movement of tilted samples in the
electron microscope still affect the success rate for record-
ing high-resolution images—despite recent advances
though the use of the SpotScanning method (Downing,
1991) and/or the sandwich sample preparation method
(Gyobu et al., 2004). During the screening of crystallization
conditions, high-resolution data collection or computer
image processing, the lack of automation also requires
time-intensive operator interaction.

Computer image processing of electron crystallography
data in almost all the aforementioned cases has, to date,
been performed by the ‘‘MRC programs’’ for image pro-
cessing (Crowther et al., 1996). These ‘‘MRC programs’’
are a compilation of individual programs, most written in
Fortran-77, that were designed to process images of two-di-
mensional crystals as well as electron diffraction patterns
(Unwin and Henderson, 1975; Henderson et al., 1990;
Kühlbrandt et al., 1994; Murata et al., 2000). While this
software collection offers a vast repertoire of tools for the
processing of 2D crystal images, learning how to employ
these programs is time-intensive, and the their usage
involves a high amount of direct user interaction.

The MRC programs and bsoft programs (Heymann,
2001) are a collection of stand-alone programs written in
Fortran-77 or C/C++. These programs need to be execut-
ed either manually, one-by-one in a terminal window, or
from a shell script. The later has the advantage of facilitat-
ed usage, along with high flexibility and adaptability, but
maintaining such scripts can be labor intensive. The execu-
tion speeds of computational tasks in scripts are slow, and
readability of the scripts and interpretation of results in the
form of log-files can be difficult.

A number of other software packages exist for the pro-
cessing of 2D crystal images. SPECTRA from the ICE package
facilitates the usage of the MRC software (Schmid et al.,
1993; Hardt et al., 1996). Wilko Keegstra at the University
of Groningen, The Netherlands, is currently developing the
Groningen Image Processing Package (GRIP) that can also
interface with the MRC software (unpublished). The Image
Processing Library and Toolkit (IPLT) is a new ground-up
image processing development for electron crystallography
(Philippsen et al., 2003).

We present a new software system, 2dx that is designed
for the electron crystallography community. The purpose
of this software system is to facilitate and streamline the
processing of electron crystallography data, by providing
a user-friendly interface, user-guidance throughout data
processing, and a high degree of automation. In the current
implementation, 2dx utilizes programs from the MRC soft-
ware, as well as additional stand-alone programs written
specifically for interaction with the 2dx environment as well
as providing additional functions and features. 2dx is high-
ly dynamic and can easily be used in conjunction with other
image processing packages, including IPLT (Philippsen
et al., 2003), bsoft (Heymann, 2001), and/or Spider (Frank
et al., 1996). 2dx is developed under the Gnu Public License
(GPL), and is freely available as open source. 2dx is avail-
able at http://2dx.org and runs natively on Mac OSX and
Linux/X11 (Linux, IRIX and other Unix variants).

2. Software design

2dx is a collection of five programs, 2dx_manager,

2dx_image, 2dx_diffraction, 2dx_merger and 2dx_logbrow-

ser (Fig. 1). 2dx_manager assists in the management of
an image-processing project, which typically amounts to
3D structure determination of one membrane protein.
2dx_manager maintains control over the existing data
(images or diffraction pattern), their parameters (e.g., reso-
lution, sample tilt geometry) and results. 2dx_manager also
launches other programs such as 2dx_image and 2dx_dif-

fraction as interactive instances, or submits them to a dis-
tributed computing cluster. 2dx_merger manages 2D and
3D merging of the data. The 2dx_diffraction program will
perform the computer evaluation of electron diffraction
patterns where 2dx_image performs the processing of one
image of a 2D crystal. 2dx_logbrowser assists in analyzing
the log-files that result from processing. The 2dx_merger
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and 2dx_diffraction programs are currently under develop-
ment, while 2dx_manager at present assists only in the ini-
tialization of a project directory structure (Fig. 2). Here we
introduce the programs 2dx_image and 2dx_logbrowser.

2dx_image and 2dx_logbrowser are written in C++, and
are based on the Qt Open Source Edition for cross-plat-
form software development (Trolltech, http://www.troll-
tech.com), and FFTW (Frigo and Johnson, 2005; http://
www.fftw.org). 2dx as well as FFTW are available under
the GNU GPL, and Qt is available open source, free of
charge for non-commercial software.

The central philosophies guiding the development of the
2dx software have been ease of use and independence from
particular algorithmic implementations and/or platforms.
To this end we have developed the software to be intuitive
and automatic. That is, users do not need advanced knowl-
edge about the technical details of the image processing in
order to process a 2D crystal image in a straightforward
way. Ideally, once a few essential parameters, such as the
image file name and other parameters concerning the pro-
tein, are known and submitted, the software is capable of
processing an image from start to finish with no further
need for user interaction. Unfortunately, such automated
designs easily lead to a trade-off between ease-of-use and
processing precision. 2dx is therefore designed with a high
degree of flexibility and customizability, rooted in ground-
up platform independence.

Excellent image processing packages, such as MRC,

IPLT, and bsoft contain numerous efficient, rigorous rou-
tines, each with their own benefits. We have kept the 2dx
front-end GUI implementation independent from the soft-
ware backend, relying on low-level algorithmic templates
(reminiscent of c-shell style scripts), which organize pro-
cessing procedures around modular programs. A process-
ing routine is then subject only to the confines of the
modules on which it depends, each of which can be easily
Fig. 2. 2dx_manager in its current state assists in the generation of a default di
should reside in their own dedicated directory (e.g., Prot0012345678), which are
and 30-deg tilted in ‘‘Prot-30’’). Merging directories for the 2D merging of th
provided.
replaced as needed. Further, since procedural level changes
amount only to modification of template files, large struc-
tural changes in workflow become little more than script
editing.

The defining features of a template file include a vari-
ables section, describing parameters necessary for the exe-
cution of the script; a script section, describing the actual
program flow; and a series of simple semaphore, which
allow communication with the GUI front end (Fig. 3).

Parameters found in the variables section of a template
are drawn from a configuration file containing all variables
necessary to execute the script. Variables appearing in this
configuration file are distinguished by unique identifiers
and defined by a human readable data structure, which
describes every aspect of the variable’s appearance in the
GUI. This structure allows control over how the user will
interact with the variable through the front end, in addition
to providing basic information about the variable itself.
The variable’s ‘LEGEND’ value, for instance, contains a
brief line of text describing the meaning of the parameter,
whereas the ‘HELP’ value contains an html link, which
points to a more detailed discussion of the variable on
the 2dx.org web server. Each help description page on the
2dx.org server features a discussion thread in the form of
an online blog, so that users can discuss their experiences
or questions regarding the 2dx.org documentation (Rena-
ult et al., 2006).

Since the content of the configuration file defines the
appearance of the 2dx_image GUI (and is designed with
readability in mind) adding, deleting and reorganizing
processing parameters and their layout can be easily
achieved. Even large structural changes in the layout
and appearance of the GUI can be done by editing this
configuration file.

The executable portion of any template generally corre-
sponds to a c-shell script in flow and syntax. Since neither a
rectory structure for a protein project, which here is called ‘‘Prot’’. Images
grouped according to their nominal tilt angles (here: non-tilted in ‘‘Prot-00’’,
e non-tilted images, and for the 3D merging of the entire project are also
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Fig. 3. An example for the script template used by 2dx_image. This c-shell template contains code words that control the widget generation in the
graphical user interface (GUI) of 2dx_image. ‘‘# Title:’’ and ‘‘# SORTORDER:’’ allow the definition of the title and order under which the script will
appear in the GUI. ‘‘# SECTION:’’ signals the beginning of a new parameter section in the central panel of the GUI. The following 6 lines define one
parameter entry for that pane: LABEL is the title of the parameter, LEGEND is the short explanation in the pop-up window associated with that
parameter. EXAMPLE allows suggesting the syntax for a correct entry. HELP defines the web page, where online help can be found. TYPE instructs the
GUI to construct the widget for this parameter in a specific way (here as Drop_Down_Menu). Finally, ‘‘set test_spacegroups_val =’’ defines the default
value for that parameter. The following section with the code words ‘‘# GLOBAL:’’ requests other globally known parameters that should appear in the
GUI (here only RESMAX). This section is terminated with the flag ‘‘#$end_local_vars’’. The following section requests parameters, which the GUI will
enter when translating this script template into the actual executable script. In this example, ‘‘realang’’ and ‘‘realcell’’ will not be editable in the GUI for
this script, because they are not declared as ‘‘# GLOBAL:’’. However, these values will available for this script. This section terminates with ‘‘#$end_vars’’.
The remainder of the script template is a normal c-shell script. The output of the command echo ‘‘>@progress: 10�’’ will cause the GUI to advance the
progress bar, setting it here to 10% of the execution progress. Logfile output starting with ‘‘::’’ will be displayed by the GUI also under only the lowest
verbosity settings. ‘‘:’’ defines moderate verbosity output, and lines without leading colons appear only under highest verbosity settings. Output into the file
2dx_allspace.results (<filename>.results) in the form of, for example, ‘‘echo ‘‘set SYM = ${SPCGRP}’’� 2dx_allspace.results’’ would return a new value
for the parameter SYM to the GUI, which would store it in the 2dx_image.cfg database. The results file can also be used to flag image files that should
appear in the list of images for inspection. ‘‘echo ‘‘# IMAGE: outputimage.mrc’’� 2dx_allspace.results’’ in this example instructs the GUI to include this
image file in the list of viewable images. The final command ‘‘echo ‘‘>@progress: 100�’’ advances the progress bar to 100%.
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parameter section nor use of semaphore is required for any
template, the user is free to incorporate any existing c-shell
script they wish into 2dx with a minimum of alteration.

3. Graphical user interface and work flow

In its current state, the 2dx_manager assists in the gener-
ation of a directory structure for a 2D crystal project
(Fig. 2). A four-letter project code and the image number
of the first non-tilted image are requested, together with a
selection of sample tilt ranges that the user intends to use
for data collection. The 2dx_manager then initializes the
directory structure as reproduced in Fig. 2, to be used in
the following conventions: Each 2D crystal image should
be processed in its own directory, where the image file, its
parameter files and output files are stored. Image directo-
ries are grouped according to their nominal tilt angle, start-
ing with one directory for all images of non-tilted samples.
Residing in the image directories of non-tilted samples is a
merge-directory that can be used to generate a 2D merge
dataset. Other tilt-angle sessions are organized in their
respective directory structures, and the entire project is
merged into a 3D dataset in the highest-level merge
directory.

The purpose of 2dx_image is the processing of one 2D
crystal image, which resides in its own dedicated directory.
2dx_image maintains a simple image database in the form
Fig. 4. The 2dx_image graphical user interface. For a description see text. The b
example, or the image thumbnail preview.
of a structured text file (2dx_image.cfg), where all parame-
ters relevant to the processing of that image are stored.
Certain project-wide ‘‘global’’ parameters in this text file,
such as the crystal symmetry or the real-space unit cell
dimensions of the protein crystal, are synchronized at run
time of the 2dx_image program with a project-wide default
configuration file.

The 2dx_image main graphical user interface is repro-
duced in Fig. 4. The top section houses buttons to ‘‘Save’’
the image parameter file, and to ‘‘Execute’’ one or several
selected script(s). This section also displays the currently
running script, and its execution status. The central pane,
entitled ‘‘Processing Data’’, displays the image and pro-
cessing parameters—all of which can be edited, saved,
and optionally locked to protect against accidental changes
by the user or from changes made by executed programs.
Two user-levels can be chosen, to allow access to only
the most significant parameters (‘‘simple’’), or to the full-
parameter set (‘‘advanced’’). The top left pane entitled
‘‘Standard Scripts’’ lists a set of scripts that are usually
sequentially executed when one image is to be processed.
This can be done by selecting one script at a time
(mouse-click on the script), and executing it via the
‘‘Execute’’ button. Alternatively, any subset of these scripts
can be selected and automatically executed sequentially.
Upon execution, 2dx_image loads the template, comple-
ments it with the template-requested data from the
ottom left pane displays either the image file header information, as in this



Fig. 5. The 2dx_image workflow. 2dx_image maintains a local database (2dx_image.cfg), with which script templates are translated into local executable
scripts. These scripts can be launched, with their output and processing results then channeled back into 2dx_image.
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database, creates an executable c-shell command file in the
local directory, and launches that command file as an
independent child process (Fig. 5). The progress of the exe-
cuting job is monitored and graphically displayed in the
top-banner of the 2dx_image program, which also allows
the user to halt the running task. Output of the running
job is displayed in the lower central pane of the 2dx_image

GUI, entitled ‘‘Logfile’’. Display of the job output has one
of three verbosity levels, with the user being able to switch
between levels by selecting one of three buttons on the top
banner of that pane. Double-clicking this top banner
launches the 2dx_logbrowser, which allows the user to
browse all available logfiles, each with the choice of three
verbosity levels.

Running jobs can signal to the 2dx_image GUI the
names of important image-files, by including the label ‘‘#
IMAGE:’’ in the log-output. Image files on the hard-drive
that are flagged in this way are listed in the panel on the
center right of the 2dx_image GUI, entitled ‘‘Images’’.
For example, the log-file entry ‘‘# IMAGE: SCRATCH/
corBR2000.mrc’’ would add that MRC-format file to the
list of image files in that pane. Currently, both MRC-for-
mat and PostScript format files are viewable. Their format
is recognized by the ending of the file name. Selecting one
of these image files in the 2dx_image GUI launches the cre-
ation of a thumbnail preview of that image, which is dis-
played in the lower left pane of the GUI. Alternatively,
the user can switch from the thumbnail view to a header-
view, by selecting the button at the lower left end of the
GUI, entitled ‘‘i’’. Double-clicking an image name or the
thumbnail preview launches a full-screen image browser
for that image (Fig. 6). This browser displays images and
Fourier transformations, and also allows the user to man-
ually adjust or edit, and save the reciprocal lattice in a Fou-
rier transform, the Fourier spotlist, and the defocus.

During the execution of jobs, determined or refined
parameters can be returned to the 2dx_image database,
by writing them into a results file. A script ‘‘2dx_all-
space.com’’ for example can output a determined space
group and phase origins by creating a file named ‘‘2dx_all-
space.results’’, which should contain entries of the form
‘‘set SYM = p3’’ (Fig. 3). 2dx_image will then interpret
the results file and update the database accordingly. Selec-
tion of the ‘‘lock’’ icon located next to the entered values in
the central pane will prevent a running script from updat-
ing specific parameters in the database. This would, for
example, be useful if a user spent time and energy to man-
ually determine the reciprocal lattice of a difficult Fourier
transformation, and did not want the automatic lattice
determination routine to overwrite the manually fine-tuned
lattice vectors.

The bottom right pane of the 2dx_image GUI displays
the processing ‘‘Status’’ for the current image. This pane
summarizes the most important parameters of the current
image-processing job, which are maintained in a file named
‘‘2dx_image.status’’. These parameters include the quality
value of the entire processing (QVal, see below), the refined
theoretical magnification (for comparison with the nominal
magnification, to indicate possible errors in pixel size, mag-
nification or lattice vector dimensions), the statistic of IQ-
values as defined by R. Henderson et al. (Henderson and
Unwin, 1975; Henderson et al., 1990), as well as the five
parameters describing the tilt geometry of the sample and
the crystal, as determined by four different methods. The
data in this ‘‘Status’’ pane informs the user about the status
of the processing of this image, and indicates possible
errors in the processing. Discrepancies in the tilt geometry
between values determined from defocus variations across
the image, distortions of the reciprocal lattice, spot-split-
ting due to the tilted transfer function (Henderson et al.,
1990) and those refined during merging can be identified
here.

Most of the fields, labels and names in the 2dx_image

GUI have a context-sensitive right-mouse-click activated



Fig. 6. The 2dx_image full-screen browser, here displaying a Fourier transformation of an image. A pull-down menu allows activating various panels. The
Coordinate Info panel displays the current mouse coordinates, the corresponding resolution, and the Miller indices of the closest lattice spot. The
Contrast/Brightness panel allows adjusting the display parameters. The Parameters panel allows defining the dimensions of the different symbols. The
spots in the current spotlist are displayed when the ‘‘Peaks’’ option is selected. The current Lattice and Second Lattice can be displayed, as well as the Thon
rings of the contrast transfer function (CTF), which is defined by the given defocus and astigmatism values. A Spot Selection mode and a Lattice
Refinement mode allow manually editing or refining the spotlist and lattice vectors. The entire display can be zoomed up or down. Following the excellent
development in the MRC program Ximdisp.exe, a mouse-activated local zoom window can be produced with the mouse. Determined values for the
spotlist, the lattice vectors or the defocus values are automatically transferred back into the 2dx_image GUI.
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help function. Right-mouse-clicking a variable name in the
parameter pane, for example, produces a window with a
short explanation of that variable, its purpose and the units
for the value, as well as an Internet link to the documenta-
tion in the corresponding web page on the 2dx.org server.

4. Scripting conventions

The entire 2dx_image construction is kept as user-ad-
justable and flexible as possible. The 2dx_image database
named ‘‘2dx_image.cfg’’, for example, is kept in a self-ex-
planatory, editable text format. A user can easily add or
delete variables, define their format (e.g., float, integer,
pull-down menu, Boolean switch, etc.), and define the cor-
responding help information and web-page link. The stan-
dard and custom scripts can be modified, extended or
replaced by other scripts that might launch other user-de-
fined software. The format for reporting data to the
2dx_image database (*.results) and for updating the status
window is self-explanatory and easy to implement into
existing software/scripts (see also Fig. 3).

5. Implemented algorithms

In the current state of 2dx_image we have provided a
collection of standard scripts for the processing of 2D crys-
tal images, as we use them in our laboratory—most of
which are based on the MRC programs. We also added
functions for automatic lattice determination (Zeng et al.,
2006), spot-list determination, and crystal masking, as well
as for the determination of the tilt geometry (using ctffind2;
Grigorieff, 1998). The need for the determination of the
optimal reference patch location is eliminated by choosing
a one pixel diameter Fourier mask in the first unbending
round (unbend1): The resulting reference map is of low
quality, but shows no deviation over the entire map. The
reference patch can therefore be chosen in the center of that
map. Further unbending rounds (unbend2) with wider Fou-
rier masks will then retrieve the structure’s underlying sig-
nal, while keeping the reference location in the center of the
image.

Additional scripts are available in the lower left pane in
the 2dx_image GUI, entitled ‘‘Specific Scripts’’. For exam-
ple, the script ‘‘Determine Spacegroup’’ allows the determi-
nation of the symmetry space group and/or phase origin
for a given symmetry (using allspace; Valpuesta et al.,
1994).

6. The quality value QVal

The scripts calculate a single, one-dimensional, value
QVal that attempts to describe the quality of the entire
image processing. While the IQ-values that were intro-
duced by R. Henderson (Henderson and Unwin, 1975)
are defined as a function of the intensity ratio between a
specific reciprocal spot and its local background, the QVal

addresses the entire image processing phase. QVal is calcu-
lated by an empirical formula that combines different per-
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formance measures and indicators into a single number.
The library function qval(nIQ,rscamax) resides centrally
in the file . . ./2dx/mrc/lib/2dx_func.for, and allows user
fine-tuning of the formula used in calculating the QVAL,
when a different function is desired. We currently employ
the formula

QVAL ¼ R � fIQ1 � 17:5þ IQ2 � 12þ IQ3 � 8þ IQ4

� 5:2þ IQ5 � 3:3þ IQ6 � 2þ IQ7g=500:0

where IQ1 to IQ7 denotes the number of IQ-values of the
categories 1 to 7, and R denotes the height of the central
pixel of the averaged Fourier peak profiles, as calculated,
for example, by the MRC program mmbox. Division by
the calibration factor 500.0 is done to allow easier display.
This empirically derived formula corresponds to a more-
than-linear weighting of the calculated diffraction power.

The QVal can also be reduced in the form of ‘‘penalty’’
points, if for example discrepancies between tilt geometries
determined by different methods are encountered, or when
other image processing parameters or results appear
‘‘suspicious’’.

The QVal can then be used by the user or by the
2dx_manager program to judge the reliability or usability
of an image for inclusion in the merging process. The
QVal can also be used by the 2dx_image program to
automatically refine the image-processing task. The ‘‘Spe-
cific Scripts’’ ‘‘Refine Parameters Unbend I’’ and ‘‘Refine

Parameters Unbend II’’ optimize the QVal during a sys-
tematic variation of parameters, and automatically deter-
mine the parameter combination that results in the
highest QVal. Sensitive parameters like the Fourier mask
radius (e.g., maska) or the diameter of the reference
patch for cross-correlation in the unbending procedure
(e.g., boxa1) can be systematically tested, and the opti-
mized parameter setting can then automatically be saved
Fig. 7. The QVal-based parameter refinement. A search for the best
parameter for maskb1 resulted, in this example, in an optimal QVal value
with maskb1 = 10.
and used in future processing. The parameter refinement
scripts are computationally intensive, and can be applied
to one representative image. The identified optimal
parameters can then be saved as future default parame-
ters for the processing of other images in the same tilt-
angle group. Fig. 7 displays the result of a refinement
of maskb1, for which the QVal was calculated for values
between 1 and 30. Attention should be paid to exclude
unrealistically small reference sizes, which can produce
high QVals due to noise correlation. This ‘‘overfitting’’
of the unbending procedure would produce good IQ sta-
tistics and a high QVal, but does not improve the reso-
lution of the image processing (see also Grigorieff, 2000).
The single QVal-based refinement strategy can easily be
adapted by the user to refine parameters for other scripts
and/or programs, such as those that use bsoft, SPIDER,
IPLT or other MRC programs (Heymann, 2001; Frank
et al., 1996; Philippsen et al., 2003; Crowther et al.,
1970).

7. Conclusions

2dx is a user-friendly software system for electron crys-
tallography. In its current state the components 2dx_image

and 2dx_logbrowser allow the processing of 2D crystal
images. Future development for electron diffraction pattern
evaluation and 3D merging is under way. 2dx is currently
employed to run the ‘‘MRC programs’’ (Crowther et al.,
1970), but can be used in conjunction with other systems.
While the focus of 2dx lies on user-friendliness, user-guid-
ance, transparency, processing efficiency, and automation,
we have implemented routines for the automatic determi-
nation of the crystal lattice, determination of the tilt geom-
etry, spot-list creation, and crystal masking. Most of these
implementations are based on the excellent developments
of others (Henderson and Unwin, 1975; Henderson et al.,
1990; Grigorieff, 1999; Philippsen et al., 2003; Heymann,
2001) and our aim has been to merge these into a user-
friendly and efficient software system. Contributions in
the form of additional user scripts or suggestions for addi-
tional functions are most welcome.
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1033–1046.

Grigorieff, N., Ceska, T.A., Downing, K.H., Baldwin, J.M., Henderson,
R., 1996. Electron-crystallographic refinement of the structure of
bacteriorhodopsin. J. Mol. Biol. 259, 393–421.

Gyobu, N., Tani, K., Hiroaki, Y., Kamegawa, A., Mitsuoka, K.,
Fujiyoshi, Y., 2004. Improved specimen preparation for cryo-electron
microscopy using a symmetric carbon sandwich technique. J. Struct.
Biol. 146, 325–333.

Hardt, S., Wang, B., Schmid, M.F., 1996. A brief description of I.C.E.: the
integrated crystallographic environment. J. Struct. Biol. 116, 68–70.

Harries, W.E., Akhavan, D., Miercke, L.J., Khademi, S., Stroud, R.M.,
2004. The channel architecture of aquaporin 0 at a 2.2 Å resolution.
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