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The spreading of news, memes and other pieces of information occurring via online social platforms
has a strong and growing impact on our modern societies, with enormous consequences, that may be
beneficial but also catastrophic. In this work we consider a recently introduced model for information
diffusion in social media taking explicitly into account the competition of a large number of items of
diverse quality. We map the meme dynamics onto a one-dimensional diffusion process that we solve
analytically, deriving the lifetime and popularity distributions of individual memes. We also present
a mean-field type of approach that reproduces the average stationary properties of the dynamics.
In this way we understand and control the role of the different ingredients of the model, opening
the path for the inclusion of additional, more realistic, features.

I. INTRODUCTION

Understanding how information spreads in social me-
dia is a topic of uttermost interest, as it is fundamen-
tal for devising strategies aimed at fostering the diffu-
sion of beneficial information or contrasting the danger-
ous spread of fake news [1–3]. Activity in this area has
boomed in recent years [4–12]. From the point of view of
statistical physics, information spreading is a prominent
example of a collective macroscopic phenomenon emerg-
ing in a self-organized manner from the spontaneous ac-
tivity of a large number of individual elements [13, 14].
The investigation of information spreading is particularly
challenging both from an empirical point of view and
from a theoretical one. The existence of many differ-
ent social media platforms, each characterized by differ-
ent features often changing over time, provides a wealth
of data but leaves the issues of universality and repro-
ducibility wide open. From the modeling point of view,
the identification of a limited number of relevant mecha-
nisms and crucial observable quantities is highly nontriv-
ial.

The topology of the interaction pattern among users in
online social media, which is usually very heterogeneous,
is one of the ingredients usually taken into account. An-
other fundamental factor affecting the way news, memes
or rumors are diffused is information overload. When
online, individuals are hit by a steady and overwhelming
flow of messages; the finite attention and limited memory
strongly influence what information is propagated further
and how. This results in a competition among a large
number of items diffusing simultaneously, which is a key
ingredient of many models for information spreading [15–
18]. A third ingredient that plays a role in determining
the fate of messages in online media is the variability of
the “quality” of the item: some pieces of information may
be intrinsically more appealing and thus more likely to
be shared by online users. A very recent work by Qiu et
al. [19] considered together these three elements to study

the interplay of an heterogeneous quality distribution and
information overload in online social media (with partic-
ular reference to Twitter), with the goal of investigating
whether a good tradeoff between discriminative power
and quality diversity is possible.

Although highly stilized, the model for meme dynamics
introduced in Ref. [19] contains several relevant ingredi-
ents of the real phenomenon and in particular the origi-
nal element that the competition among different memes
favors those having a higher intrinsic quality. For this
reason we call it the quality-biased competition (QBC)
model. In this paper we study the QBC dynamics in
detail, by considering some carefully devised simplifica-
tions, which make possible an analytical treatment pro-
viding explicit formulas for the behavior of the main ob-
servables. In this way we achieve a full understanding of
the model phenomenology and of its dependence on the
value of the different parameters.

II. THE QBC MODEL

We consider the model for meme spreading introduced
in Ref. [19]. Nu agents (or users), each of them equipped
with a memory containing at most α memes, are the
nodes of a static network. Memories are ordered lists
from α to 1. At each time step an individual is selected
uniformly at random and transmits a meme to all her
neighbors. With probability 1−µ, the transmitted meme
is an existing one, taken from the agent memory; other-
wise, with probability µ, a new meme is created. In both
cases, the transmitted meme is put at the top (position α)
of the memory of the agents involved (both the transmit-
ter and the receivers) shifting all other memes downward.
Each meme is attributed randomly, upon its creation, a
fitness value fi between 0 and 1, a proxy of its quality.
When a user selects an old meme for transmission, the
probability to select meme i is proportional to fi. In
this way high fitness increases the chance of the meme
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to be spread. Apart from this bias, the dynamics can be
seen as the competition among many susceptible-infected
spreading processes in a metapopulation framework [20].

From the initial configuration with all empty memo-
ries, memes are introduced and copied until some of the
memories fill up. When all slots in a memory are occu-
pied and a new meme must enter, the item in the last po-
sition is removed and forgotten by the agent. Memories
thus work according to a ”first-in first-out” rule, mimick-
ing what happens on users feeds of some social networks,
such as Twitter. After an initial transient, a steady state
is reached where all Nuα memory slots in the system
are occupied. Memes are continuously created, diffuse
over the network and get eventually extinct. Quantities
characterizing the dynamics of a meme are its lifetime,
i.e., the time passed between the creation of a meme and
its extinction, and its popularity, defined as the total
number of times the meme is transmitted, throughout
its lifetime, from an agent to one of her neighbors.

III. ROBUSTNESS WITH RESPECT TO THE
TOPOLOGY

We first check how much the model phenomenology de-
pends on details of the interaction pattern, by perform-
ing numerical simulations on several types of network
(see Supplementary Material, SM). It turns out that the
distributions of the main observables are qualitatively ro-
bust with respect to changes of the underlying network
(see Fig. 1). Both distributions have broad power-law
tails, cutoff exponentially over a scale growing when µ,
the rate of creation of new items, goes to zero. The life-
time distribution also exhibits a peak for l of the order of
α, corresponding to the average time needed for a meme
that is not shared to disappear from the memory of the
agent that created it. The average values of the popular-
ity and of the lifetime strongly grow with the fitness when
µ is small. The effect of the parameter α is very weak
(see SM). The overall picture remains the same even if
the contact pattern is an annealed random regular graph
where each node has a single connection. This suggests
that a mean-field approach, which effectively considers a
regular annealed network as contact pattern, may pro-
vide an accurate description of the model dynamics.

IV. A MICROSCOPIC APPROACH

We focus now on the behavior of an individual meme
of fitness f . We define as 0 ≤ Nij(t) ≤ α the position of
meme i in the memory of agent j at time t: Nij = α cor-
responds to the top position (a newly created or trans-
mitted meme), while Nij = 1 means that the meme is
about to be forgotten. If meme i does not appear in the
memory of agent j, then Nij = 0. We neglect the case
in which an agent has more copies of the same meme in
his feed. The quantity Ni(t) =

∑
j Nij(t) cumulates the

positions of the meme in all users’ feeds, thus providing
information about its overall diffusion. For simplicity we
assume that each user is in contact with a single ran-
domly chosen other user and that, when with probability
µ a user produces a new meme, she simply puts it on
top of her memory, without immediately sharing it. For
the same reason we assume that, when an existing meme
is selected for transmission, it is left in the original po-
sition in the transmitter feed, without putting it at the
top ot the memory. We checked that both these assump-
tion have negligible effects. The quantity Ni(t) performs
over time a one dimensional random-walk in the interval
[0, αNu]. Ni = 0 is an absorbing boundary condition (af-
ter extinction a meme will never reappear) andNi = αNu
is a semireflecting boundary (because of our approxima-
tion, if the meme is in the first position of all feeds, Ni
cannot grow further). The initial condition is Ni = α.
At each time step the elementary events are:

Ni(t) =




n→ n+ α with prob. Rn
n→ n− 1 with prob. Ln
n→ n with prob. Sn = 1−Rn − Sn.

(1)
Apart from different expressions close to the bound-

aries (see SM for details), the probabilities are:

Rn = (1− µ)
Cn
Nu

(
1− Cn

Nu

)
f

α
, (2)

and

Ln =
Cn
Nu

. (3)

where f is the fitness of the considered meme and Cn is
the number of individuals possessing i in their memory.

Eq. (2) is derived based on the consideration that Ni
is increased by α if a transmission event takes place (it
happens with probability 1 − µ), if meme i is present
in the feed of the transmitting user (probability Cn/Nu)
and not present in the feed of the receiver (1− Cn/Nu)
and if meme i is selected for transmission among all
memes in the feed. This last event occurs with proba-
bility fi/

∑
j∈Mu

fj , which we approximate with f/α. Cn

is the number of individuals possessing i in their memory,
that we approximate as

Cn =

⌊
n+ α− 1

α

⌋
, (4)

where bxc represents the integer part (floor) of x.
With regard to Ln, the value of Ni(t) decreases be-

cause the insertion of a new meme in a user feed causes
the downward shift of all other memes. The insertion
occurs at each time step, irrespective of whether the in-
serted meme is new or transmitted. Hence Ln = Cn

Nu
, the

likelihood that meme i is present in the involved memory.
From the expressions of the probabilities it is immedi-
ately clear that nothing depends on f and µ separately,
but only through the combination β = (1− µ)f .
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Figure 1. a) Average popularity as a function of fitness in the QBC model on an annealed random regular graph with degree
distribution P (k) = δk,1 for different values of µ with fixed α = 10 and Nu = 103. Averages are performed over 105 memes. b)
Popularity probabilities for the same system. c) Average lifetime for the same system. d) Lifetime PDF for the same system.

We simulate numerically this random walk description
of meme dynamics. In the SM we show that the popular-
ity and lifetime distributions obtained match very closely
those found for the original QBC model.

In order to make the analytical treatment easier, we
further simplify the random-walk description. In partic-
ular, we remove the floor function from Eq. (4), we set
equal to 1 the term (1− Cn/Nu) in Eq. (2) and we in-
troduce a numerical constant γ = (α+1)αNu+α−1

α2Nu
in the

denominator of Eq. (4). See the SM for the justification
of these modifications. Again we numerically check the
distributions generated by this simplified random-walk
description and find (see SM) that they are essentially
equal to those of the original QBC dynamics.

At this point we can write down the master equation
for the modified random walk, which reads

Pn(t+ ∆t) = SnPn(t) + Ln+1Pn+1(t) +Rn−αPn−α(t)
(5a)

PαNu(t+ ∆t) = (1− µ)PαNu(t) +

j=α∑

j=0

RαNu−jPαNu−j(t)

(5b)
where Equation (5a) holds for n = 0, 1, ... αNu − 1 pro-

vided one considers Rn−α = 0 for n = 0, 1, ... α and
∆t = N−1u .

By setting xn ≡ n/(γαNu) with xn ranging between 0
and 1/γ and taking the thermodynamic limit Nu → ∞,
from the master equation we obtain (see SM) the Fokker-
Planck (FP) equation for the probability ρ(x, t) that the
walker is in position x at time t:

∂

∂t
ρ(x, t) =

1− β
γα

∂

∂x
xρ(x, t) +

1 + βα

2γ2α2Nu

∂2

∂x2
xρ(x, t) .

(6)
For large Nu we have γ = (α+ 1)/α.
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A. Purely diffusive dynamics

In the limit β → 1 the drift term in Eq. (6) vanishes.
We are left with the FP equation of a purely diffusive
stochastic process:

∂

∂t
ρ(x, t) = D0

∂2

∂x2
xρ(x, t) , (7)

where

D0 =
1 + α

2γ2α2Nu
=

1

2(1 + α)Nu
, (8)

which differs from standard diffusion because of the
space-dependent diffusion coefficient. The limit µ → 0
changes also the boundary conditions: the boundary in
x = 1/γ is semireflecting because Ni(t) = Nuα can
decrease with probability µ or remain unchanged, with
probability 1 − µ. Thus in the case µ = 0 both the
boundary condition in x = 0 and in x = γ−1 are ab-
sorbing: ρ(0, t) = ρ(γ−1, t) = 0. The initial condition is
ρ(x, t = 0) = δ(x− xα) with xα = 1/(γNu).

It is possible to find the solution of this equation as an

eigenfunction expansion of the operator LFP = D0
∂2

∂x2x
(see SM for details), obtaining:

ρ(x, t) =
π2γ

2

√
xα
x

∞∑

n=1

nJ1(πn
√
γxα)J1(πn

√
γx)e−t/τn ,

(9)
where J1(z) is a Bessel function of the first kind. The
characteristic time scale of each eigenfunction is

τn =
8γα2Nu

(1 + α)j21,n
' 8αNu

π2n2
. (10)

where the j1,n, the zeros of J1(z), are approximated as
j1,n = πn. Using this expression, it is possible to com-
pute (see SM for details) the survival probability in the
limit µ→ 0, which turns out to be

S(t) '
{

1 t� α
αt−1e−t/τ t� α

(11)

where τ = 8αNu/π
2 is τ1 after the approximation j1,n →

πn is made. Based on this result the lifetime distribution
can be computerd (see SM). In the limit of large Nu, i.e.,
diverging τ , it reads

F (l)=− dS

dt

∣∣∣∣
t=l

'
{

0 l� α
αl−2 l� α

(12)

This expression of F (l) accounts for the most impor-
tant feature observed in simulations: for l � τ (notice
that τ diverges with Nu) the distribution decays as a
power-law with exponent ηl = 2. Simulations of the QBC
model with all memes having fitness f = 1 agree with this
analytical prediction (see Fig. 2). By means of the stan-
dard argument connecting the exponents of power-law
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Figure 2. Main: Lifetime PDF for fixed α = 10 and Nu =
103 obtained by simulating the QBC model on an annealed
regular network with degree 1 and fixed fitness f = 1. The
solid straight line is a power-law with exponent −2. Inset:
Symbols are the temporal scale τd over which the PDF decays,
estimated numerically by fitting the exponential tails in the
main. The straight line is a power-law fit to the numerical
values of τd, confirming that τd is inversely proportional to µ
for f = 1 [see Eq. (14)].

tails for scaling variables (see SM) it is possible to relate
ηl with the analogous exponent ηp for the popularity dis-
tribution: ηl = s(ηp − 1) + 1, where p ∼ ls. Simulations
yield a value close to s = 2, from which ηp = 3/2, in good
agreement with simulations (see SM).

B. Pure drift

The opposite limit for the FP equation (6) is the pure
drift case, which always holds in the large Nu limit, as
D0 ∝ N−1u , unless µ = 0 and f = 1:

∂

∂t
ρ(x, t) =

1

τd

∂

∂x
xρ(x, t) (13)

where

1

τd
=

1− β
γα

= [1− (1− µ)f ](α+ 1). (14)

This equation describes a deterministic motion

x(t) = xαe
−t/τd , (15)

i.e., the meme position drifts exponentially toward x = 0;
in other words the systematic drift attracts walkers to-
ward the absorbing boundary. This introduces an ad-
ditional exponential cutoff in the lifetime distribution,
which can be globally written as

F (l) ∝ αl−2e−l/τd (16)

in agreement with simulations (see Fig. 2, inset).
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C. Average over the fitness

In the original definition of the QBC model the fitness
is a random variable uniformly distributed between 0 and
1. Using Eq. (16) it is possible to compute the lifetime
distribution also in this case, by averaging over f (see
SM) and obtaining, in the limit µ→ 0:

F〈f〉(l) ≈ α(α+ 1)l−3
[
1− e−(α+1)l

]
. (17)

The exponent of the lifetime distribution is then ηl = 3,
in reasonable agreement with Fig. 1. A similar conclusion
can be drawn for the popularity distribution, predicted
to decay as p−2.

In summary, by means of a mapping of QBC dynam-
ics onto a random-walk description, we have derived ex-
pressions for for the lifetime and popularity distributions,
which account for the phenomenology observed in numer-
ical simulations.

V. A MACROSCOPIC APPROACH

The microscopic approach allows to determine the de-
pendence of the average lifetime on the fitness and hence
estimate the average number Nf of memes with given f
in the steady state. However, the same quantities can
be derived much more easily by a simple approach of
mean-field type, focused directly on the temporal evo-
lution of the Nf . For simplicity we assume that fitness
values are discretized in F classes and, again, that the
degree of each agent is 1. We define Nf (t) as the average
number of memes with fitness f present in the system
at time t. This quantity changes over time because of
two possible gain and two possible loss processes. The
creation of a new meme, occurring at rate µ, increases
Nf by 1 with a probability 1/F (if the created meme has
exactly fitness f), but it may also reduce Nf by 1 if the
agent creating the new meme forgets a meme of fitness
f . This last event occurs with probability Nf/(Nuα).
The transmission of an existing meme, occurring at rate
1−µ, increases Nf if the transmitting agent has a meme
with fitness f in her feed (probability proportional to
Nf ) and the meme is selected (probability proportional
to f). Overall the normalized probability of the event
is fNf/[

∑
f ′ f ′Nf ′ ]. Finally also the transmission event

may lead to an agent forgetting a meme with fitness f
with probability Nf/(Nuα). The temporal evolution of
the Nf is then given by the set of coupled equations

Ṅf (t)=µ

[
1

F
− Nf (t)

N

]
+(1−µ)

[
fNf (t)∑
f ′ f ′Nf ′(t)

− Nf (t)

N

]
.

(18)
which conserves the total number

∑
f ′ Nf ′ . Straightfor-

ward numerical integration of Eq. (18) allows to deter-
mine the stationary values of the Nf and hence of the
densities nf = Nf/(Nuα/F ), where Nuα/F is the aver-
age number of memes with fitness f if all F classes were
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Figure 3. Comparison between the average density of memes
in the QBC model (symbols) and the stationary solutions of
Eq. (18) (lines) for different values of µ. Nu = 103, α = 10,
F = 40. Averages are computed over 105 memes.

populated uniformly. The comparison with the outcome
of numerical simulations (see Fig. 3) confirms a satisfac-
tory agreement.

VI. CONCLUSIONS

In this paper we have studied the model for informa-
tion diffusion recently introduced in Ref. [19]. We have
been able to derive analytically the lifetime distribution
and other properties for a simplified version of the dy-
namics, which reproduces the phenomenology of the orig-
inal model.

Our treatment of the QBC model allows to understand
how broad tails in the lifetime and popularity distribu-
tions, observed empirically, arise. A power-law distri-
bution with an exponent ηp ≈ 2 is in agreement with
the observations of Ref. [19], where hashtags are used to
identify Twitter memes. On the other hand, other stud-
ies using hashtags give quite different results from the
QBC model predictions. In Ref. [16] a power-law decay
for meme lifetime has been observed, with an exponent
ηl ≈ 2.5. This value is not far but distinct from the value
ηl predicted by the QBC model in the case of uniformly
distributed fitness. Moreover, the strong correlation be-
tween meme lifetime and popularity (see SM) is not ob-
served in Twitter data [8, 18], even if proxies different
from hashtags are used to identify memes [6]. A strin-
gent empirical validation of models of online information
spreading is itself a difficult task because of the apparent
lack of universality. Referring to Twitter data, the iden-
tification of memes as URLs leads to a lognormal distri-
bution of popularity [5], the analysis of retweet cascades
leads to a size distribution with exponent ηs ≈ 2.3 [12]
with possibly an exponential cutoff [3] and reply trees



give ηs ≈ 4 [10]. Looking at other data sources, the
landscape is even more varied: the popularity distribu-
tion, estimated from Facebook data, exhibits a power-
law deacy with exponent ηp ≈ 2.1 [9], while popularity-
lifetime correlations are shown to be different between
Digg and Youtube data [21]. One could easily change,
within the QBC model, the fitness distribution to achieve
a better agreement with these observations. In any case it
is clear that the QBC model is a gross oversimplification
of the real meme diffusion process in online social media.
To make the QBC dynamics less unrealistic several hy-
potheses underlying the present version of model could
be lifted. Some of them, such as a nonuniform fitness
distribution or a nonlinear dependence on f of the prob-
ability of selecting a meme, can be easily treated within
the present analytical approach. Other fundamental gen-
eralizations, such as agent-dependent values of α and µ
or heterogeneous rates of individual activation, can be
investigated by means of straightforward numerical sim-

ulations. One of the ingredients adding realism to the
QBC dynamics is the consideration of agents that do not
accept in their feeds (and thus do not spread further)
memes they have already seen in the past. The effect
of this long-term memory is briefly discussed in the SM,
but the main result is the change of the popularity and
lifetime distributions, that lose their power-law tail. At
a more general level, one of the weak points of the QBC
model is its insensitivity with respect to changes of the
contact pattern topology. While this feature allows our
mean-field approach to be successful, empirical data con-
tradict this result: one of the main pieces of evidence is
the existence of influential spreaders, i.e. users which,
because of their position in the social network have a dis-
proportionate effect on meme dynamics [7, 8, 22]. The
investigation of increasingly sophisticated models for in-
formation spreading and the comparison with the ever
larger body of empirical data available remains a chal-
lenging avenue for future research.
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I. ROBUSTNESS OF THE QBC
PHENOMENOLOGY

In order to understand the role played by the under-
lying network structure, we perform numerical simula-
tions of the QBC dynamics on several types of network.
A quenched scale-free network with degree distribution
P (k) ∝ k−2.5 and a quenched regular random network
with P (k) = δk,20, both undirected and built according
to the configuration model, are employed. The dynam-
ics are investigated also on an annealed random regular
network with P (k) = δk,1. Figure 1 shows that the dis-
tributions are virtually independent from the topology of
the substrate. The only small variation concerns width
of the peak of the lifetime distribution.

In the QBC model, as defined in Ref. [1], at each time
step the transmitted meme is put at the top of the mem-
ory of the agents involved (both the transmitter and the
receivers). For simplicity, in the theoretical analysis we
change this rule of the model, putting the meme at the
top of the memory of the receiving agents only. It turns
out that the distributions of the main observables are
qualitatively robust with respect to this modification of
meme dynamics.

The other parameter of the dynamics is the number α
of memes that can be stored in the memory of each user.
The effect of variations of α is very simple (Fig. 2): the
popularity distribution has practically no dependence on
α; the peak of the lifetime distribution is instead shifted
toward the right, the broad tail for long lifetimes remain-
ing unchanged. These results are easily interpreted. The
intrinsic temporal scale of the life of a meme is the time
passing from creation until extinction of a meme that is
never shared. This scale, clearly proportional to α, de-
termines the position of the peak and of the rest of the
distribution. The popularity of a meme depends on how
many times it is shared, hence it is not influenced by the
size of user memories.

II. PROBABILITIES FOR THE RANDOM
WALK ELEMENTARY EVENTS

We recall that Ni(t) =
∑
j Nij(t), where Nij(t) is the

position of meme i in the memory of agent j at time t.
Given this variable the elementary events of the random

walk description of the dynamics are

Ni(t) =





n→ n+ α with prob. Rn
n→ n− 1 with prob. Ln
n→ n with prob. Sn = 1−Rn − Ln.

(1)
The probabilities for the event increasing n are

Rn =





0 if n = αNu
0 if n = 0

(1− µ)Cn

Nu
(1− Cn

Nu
) fα if 0 < n < αNu.

(2)

The justification of Eq. (2) for the case 0 < n < αNu
is already presented in the main text. When n = 0,
Rn = 0 because when a meme becomes extinct it cannot
eventually reappear. When n = αNu instead, Rn = 0
because we have assumed that no meme can appear twice
in the feed of an agent.

Ln =





µ if n = αNu
0 if n = 0
Cn

Nu
if 0 < n < αNu,

(3)

where

Cn =

⌊
n+ α− 1

α

⌋
(4)

is an approximation of the number of individuals possess-
ing i in their memory. Also the motivation for Eq. (3) for
0 < n < αNu is presented in the main text. The bound-
ary condition in n = 0 is trivial. For n = αNu, Ln = µ
because if a new meme is created it necessarily occupies
the top position of the memory of a user, thus shifting
downwards the previous meme in the same position.

III. COMPARISON BETWEEN THE QBC
MODEL THE RANDOM WALK DESCRIPTION

In the context of the random walk description, the pop-
ularity of a meme is defined as the number of steps in the
positive direction during its entire lifetime. In Figure 3(a-
d) we show that the popularity and the lifetime distribu-
tions obtained within the random walk model match very
closely those found for the QBC model when the latter is
simulated with all memes having the same fitness f = 1.
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FIG. 1: (a) Popularity probabilities in the QBC model on a scale-free network with degree distribution P (k) ∝ k−2.5 for
different values of µ with fixed α = 10 and Nu = 103. Averages over 105 memes. (b) Lifetime PDF for the same system.
(c) Popularity probabilities in the QBC model on a regular random graph with degree distribution P (k) = δk,20 for different
values of µ with fixed α = 10 and Nu = 103. Averages over 105 memes. (d)Lifetime PDF for the same system. (e) Popularity
probabilities in the QBC model on an annealed regular random graph with degree distribution P (k) = δk,1 for different values
of µ with fixed α = 10 and Nu = 103. Averages over 105 memes. (f)Lifetime PDF for the same system.

IV. SIMPLIFYING ASSUMPTIONS FOR THE
RANDOM WALK DESCRIPTION

The first simplyfing assumption we make in the ran-
dom walk description is that at most one copy of a meme

can be in the feed of a single agent. As a consequence Nij
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FIG. 2: (a) Average popularity as a function of fitness in the QBC model on an annealed regular network with degree distribution
P (k) = δk,1 for different values of α with fixed µ = 0.1 and Nu = 103. Averages are performed over 105 memes. b) Popularity
probabilities for the same system. c) Average lifetime for the same system. d) Lifetime PDF for the same system.

can be at most equal to α and thus the maximum value
of Ni =

∑
ij Nij is αNu. Apart from its convenience for

calculations, this choice is realistic for online social me-
dia, that do not present more than once the same meme
in the feed of an individual.

An additional simplification to make the analytical
treatment easier is the elimination of the nonlinearity in-
troduced by the floor function in Eq. (4). Since already
Eq. (4) is a rather crude approximation of the real value
of Cn and nevertheless it does not introduce major inac-
curacies (see Fig. 3), we expect this further simplification
not to affect significantly the results.

The other, more important, simplification is the re-
moval of the factor (1 − Cn/Nu) in Eq. (2) for 0 < n <
αNu. This is equivalent to assume that the number of
individuals having a given meme in their memories is al-
ways much smaller than the total number of agents Nu.
The reason for this choice is that it strongly simplifies the
mathematical treatment. However, it can be a posteri-

ori justified (see below). Unfortunately, this approxima-
tion has a drawback, as it may lead to negative values of
Sn = 1−Rn−Ln for large n. For this reason a numerical
constant γ is introduced in the denominator of Cn. This
factor ensures that Sn ≥ 0 for any n, provided that γ
is equal to (α+ 1)αNu+α−1

α2Nu
, which in the large Nu limit

becomes γ = (α+ 1)/α.

The distributions generated by this simplified random-
walk description, shown in Figure 3(e-f), are essentially
those of the original random-walk model and of the QBC
dynamics.
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FIG. 3: (a) Popularity probabilities in the QBC model on an annealed regular network with degree distribution P (k) = δk,1
for different values of µ with fixed α = 10 and Nu = 103 and fitness f = 1. Averages over 105 memes. (b) Lifetime PDF for
the same system. (c) Popularity probabilities in the random-walk model for different values of µ with fixed α = 10, Nu = 103

and f = 1. Averages over 5 · 106 walkers. (d) Lifetime PDF for the same system. (e) Popularity probabilities in the simplified
random-walk model for different values of µ with fixed α = 10, Nu = 103 and f = 1. Averages over 5 ·106 walkers. (f) Lifetime
PDF for the same system.

V. THE FOKKER-PLANCK EQUATION

Given the elementary events, the master equation of
the random-walk is

Pn(t+ ∆t) = SnPn(t) + Ln+1Pn+1(t) +Rn−αPn−α(t)
(5a)

PαNu
(t+ ∆t) = (1−µ)PαNu(t) +

j=α∑

j=0

RαNu−jPαNu−j(t).

(5b)
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By noting that Rn = βLn/α and recalling that Sn =
1−Rn − Ln, Eq (5a) can be rewritten as

Pn(t+ ∆t)− Pn(t) =Ln+1Pn+1(t) + βLn−αPn−α(t)/α+

−(1 + β/α)LnPn(t).

(6)

Defining xn ≡ (n/γαNu) and taking the thermodynamic
limit Nu → ∞ we obtain Ln = xn + α−1

γαNu
→ L(x) = x.

Recalling that ∆t = N−1
u , the left hand side of Eq. (6) is

Pn(t+∆t)−Pn(t)→ ρ(x, t+∆t)−ρ(x, t) ' ∆t
∂

∂t
ρ(x, t),

while the right hand side can be rewritten as

f

(
x+

1

γαNu

)
+
β

α
f

(
x− 1

γNu

)
−
(

1 +
β

α

)
f(x)

where f(x) = L(x)ρ(x, t). Expanding the function f(x)
to second order with respect to x in the first and second
term we obtain the Fokker-Plank (FP) equation for the
probability ρ(x, t) that the walker is in position x at time
t:

∂

∂t
ρ(x, t) =

1− β
γα

∂

∂x
xρ(x, t) +

1 + βα

2γ2α2Nu

∂2

∂x2
xρ(x, t) .

(7)

VI. PURELY DIFFUSIVE DYNAMICS

In the limit β → 1 Eq. 7 becomes

∂

∂t
ρ(x, t) = D0

∂2

∂x2
xρ(x, t) , (8)

where

D0 =
1 + α

2γ2α2Nu
=

1

2(α+ 1)Nu
. (9)

Because of the expressions (2) and (3) for Rn and Ln,
the boundary in x = γ−1 becomes absorbing for µ → 0.
Thus we search for a solution of Eq. (8) with boundary
conditions ρ(x = 0, t) = ρ(x = γ−1, t) = 0 ∀ t and with
initial condition ρ(x, t = 0) = δ(x − xα) where xα =
1/γNu.

We look for a solution in the form of an eigenfunction
expansion [2]

ρ(x, t) =
∑

λ

Aλρλ(x)e−λt, (10)

with

Aλ = D0xαρλ(xα) . (11)

Inserting this expression into Eq. (8) we obtain the equa-
tion for the eigenfunctions ρ(x, t)

d2

dx2
xρλ(x) +

λ

D0
ρλ(x) = 0 . (12)

Redefining the eigenvalues as Λ2

4 ≡ λ
D0

and defining

QΛ(x) ≡ xρλ(x) we obtain an equation for QΛ whose
general (real) solution is [3] (pag 362, 9.1.50)

QΛ(x) = b1
√
xJ1(Λ

√
x) + b2

√
xY1(Λ

√
x), (13)

where J1(z) and Y1(z) are Bessel functions of the first
and the second kind, respectively, and b1 and b2 real co-
efficients. The boundary conditions QΛ(x = 0) = 0 and
QΛ(x = γ−1) = 0 imply that b2 = 0 and that the eigen-
values Λ are discretized Λ = γ1/2j1,n (where the j1,n are
the zeros of J1(z)), so that

Qn(x) = xρn(x) = b1,n
√
xJ1(j1,n

√
γx), n = 1, 2, ... .

(14)
In this way we find

ρ(x, t) =
∑

n=1

An
J1(j1,n

√
γx)√

x
e−t/τn , (15)

where the coefficients b1,n for each of the ρn(x) are still
to be determined by the initial condition and where we
have defined

τn =
1

λn
=

4

D0Λ2
n

=
8γα2Nu

(1 + α)j2
1,n

. (16)

Given the coefficients in Eq. (11), the solution for t = 0
has the form

ρ(x, 0) = D0

√
xα
x

∑

n=1

b21,nJ1(j1,n
√
γxα)J1(j1,n

√
γx) =

D0

√
xα
x

∑

n=0

b21,nJ1(j1,n
√
γxα)J1(j1,n

√
γx)→

→ D0

√
xα
x

∫ ∞

0

b21,nJ1(j1,n
√
γxα)J1(j1,n

√
γx) dn .

(17)

We note that the zeros of J1(z) are very well approxi-
mated by the expression j1,n = πn (see Fig. 4), in par-
ticular for the large values of n we are interested in.
Replacing the expression j1,n = πn in Eq. (17) we ob-
tain

ρ(x, 0) = D0

√
xα
x

∫ ∞

0

b21,nJ1(πn
√
γxα)J1(πn

√
γx) dn .

(18)
Exploiting the representation of the Dirac delta function
in terms of Bessel functions

δ(a− b) = a

∫ ∞

0

tJν(at)Jν(bt) dt . (19)

it is not difficult to see that ρ(x, 0) = δ(x−xα), provided

b21,n = π2γ
2D0

n.
In summary, we have found the solution of the FP

Equation (8) satisfying the imposed boundary and initial
conditions is

ρ(x, t) =
π2γ

2

√
xα
x

∑

n=1

nJ1(πn
√
γxα)J1(πn

√
γx)e−t/τn ,

(20)
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FIG. 4: First 104 zeros j1,n of the Bessel function J1(z) as
a function of n (symbols). The line depicts the approximate
expression πn.
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FIG. 5: Plot of the density of walkers ρ(x, t) [from Eq. (20),
the sum is truncated after the first 103 terms] for a time t =
100 such that the lifetime distribution is in the power-law
regime. Other parameters are µ = 0, f = 1, Nu = 103, α = 2.

with the characteristic time scale of each eigenfunction

τn =
8γα2Nu

(1 + α)π2n2
. (21)

This result allows us to justify a posteriori the removal
of the factor (1 − Cn/Nu) from Eq. (2). Indeed, even
in the case of pure drift (µ = 0, f = 1), which is the
most favorable for reaching high values of x, the density
of walkers over temporal scales of interest is practically
vanishing for values of x well below the boundary γ−1

(see Fig. 5).
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FIG. 6: First 103 values of J0(πn).

VII. THE SURVIVAL PROBABILITY AND THE
LIFETIME DISTRIBUTION

Given the density [Eq. 20], the survival probability

S(t) =

∫ γ−1

0

ρ(x, t) dx (22)

has the form
∑∞
n=1 Sne

−t/τn with

Sn =
π2γ
√
xα

2
nJ1(πn

√
γxα)

∫ 1/γ

0

J1(πn
√
γx)√

x
dx .

(23)
The integral can be performed analytically to find

Sn = π
√
γxαJ1(πn

√
γxα)

[
1− J0(πn)

]
. (24)

To simplify this expression we note that xα ∝ N−1
u so the

factor
√
γxαJ1(πn

√
γxα) can be estimated as its limit for

small argument, yielding

Sn =
π2γxα

2
n
[
1− J0(πn)

]
. (25)

We note that J0(πn) is a succession of values that oscil-
late around zero with monotonically decreasing absolute
value (Fig. 6). Given this shape we can neglect the con-
tribution of the term J0(πn) compared to 1 in Eq. (25)

Sn =
π2γxα

2
n. (26)

From Eq. (21), the ratio t/τn can be rewritten as

t

τn
=

(1 + α)π2t

8γα2Nu
n2 ≡ θn2. (27)

The full expression of S(t) is then

S(t) =

∞∑

n=1

Sne
−t/τn → π2γxα

2

∫ ∞

1

ne−θn
2

dn =

=
π2γxα

2

e−θ

2θ
= αt−1e−t/τ ,

(28)
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where τ ≡ τ1 = 8γα2Nu

(1+α)π2 = 8αNu

π2 , and the expression for

γ in the limit of large Nu has been used.
We note that this expression diverges for t→ 0, while

obviously S(t = 0) = 1. This is a consequence of the
fact that we have assumed the initial condition xα ∝
N−1
u infinitely close to zero. The expression (28) of S(t)

is actually valid only after a certain temporal scale tm,
that is the time needed by a walker starting in xα to
reach the boundary in zero: before that time, S(t) = 1.
This time can be estimated by imposing, in Eq. (28),
S(tm) = 1, yielding tm = α. The full expression of the
survival probability is thus given by

S(t) '
{

1 t� α
αt−1e−t/τ t� α

(29)

Given the expression for the survival probability, com-
puting the lifetime distribution is straightforward:

F (l)=− dS

dt

∣∣∣∣
t=l

'
{

0 l� α
αl−2

[
1 + l

τ

]
e−l/τ l� α

(30)

VIII. THE POPULARITY DISTRIBUTION

The popularity of a meme and its lifetime are con-
nected by a scaling relation (see Fig. 7): p ∼ ls, with
s ≈ 2. Both quantities are power-law distributed with

FIG. 7: Relation between popularity and lifetime in the QBC
model on an annealed regular network with degree distribu-
tion P (k) = δk,1 with fixed α = 10, µ = 0.01, Nu = 104 and
fitness f = 1. Averages over 105 memes.

the popolarity distribution decaying as p−ηp and the life-
time distribution decaying as l−ηl . Conservation of prob-
ability implies that the exponents are related by

ηl = s(ηp − 1) + 1. (31)

The value of the exponent ηl = 2 for the lifetime allows
us to predict for the popularity distribution a decay with
an exponent

ηp = 3/2. (32)

This value is in good agreement with the simulations of
the model, shown in Figure 3(a).

IX. AVERAGE OVER THE FITNESS

From the most general expression for the lifetime dis-
tribution in the case the fitness is fixed

F (l) = αl−2e−l/τd , (33)

where 1/τd = [1− (1−µ)f ](α+1), it is possible to calcu-
late the distribution for the case of heterogeneously dis-
tributed fitnesses. In the original definition of the QBC
the fitness is a random variable uniformly distributed be-
tween 0 and 1. Hence by averaging over f , we get

F〈f〉(l) =

∫ 1

0

F (l) df = αl−2

∫ 1

0

el/τd df =

=
α(α+ 1)

1− µ l−3
[
e−lµ(α+1) − e−l(α+1)

]
.

(34)

In the limit µ→ 0,

F〈f〉(l) = α(α+ 1)l−3
[
1− e−l(α+1)

]
. (35)

The exponent of the lifetime distribution is then ηl = 3,
in reasonable agreement with simulations of the original
QBC model, shown in Figure 1(f).

The scaling exponent s in the relation p ∼ ls is found
to be s = 2 also in the QBC model with uniform ran-
dom fitness: popularity as a function of lifetime results
in a plot (not shown) which is very similar to Figure 7.
Using the scaling relation Eq. (31) and the value ηl = 3,
the popularity distribution is predicted to decay with an
exponent ηp = 2.

X. LONG TERM MEMORY

One of the possible ingredients adding realism to the
QBC dynamics is the consideration of agents that do not
accept in their feeds (and thus do not spread further)
memes they have already seen in the past. This mod-
ification of the dynamics considerably changes the phe-
nomenology observed for small values of µ: the broad
tails of the lifetime and popularity distribution do not
appear any more. In particular the lifetime distribution
shows a second peak and the popularity distribution is
characterized by a plateau of constant value. Both the
distributions decay exponentially after a certain value.
These results are illustrated in Fig. 8. It is important
to note that the cutoffs are not due to the finite size of
the system. This different behaviour with respect to the
original QBC model can be interpreted in term of the
new role the fitness plays. Its role in the QBC model
is well explained by our analytical approach, that shows
how a fitness f < 1 is analogous to µ 6= 0: memes with
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a generic fitness f can have any value of the popular-
ity and of the lifetime until the cutoff introduced by the
drift term in Eq. (7) is reached. This ceases to be true
with the long-term memory addition: the new ingredient
introduces a strong correlation between fitness and pop-

ularity, shown in Fig 9. In Ref. [1] a classification of real
data in high and low quality doesn’t show this kind of
correlation and, on the contrary, it shows that low and
high quality memes have similar chances of going viral.

[1] Qiu, X., F.M. Oliveira D., Sahami Shirazi A., Flammini A.
and Menczer F., Nature Human Behavior, 1, 0132 (2017).

[2] H. Risken, “The Fokker-Planck Equation. Methods of So-
lution and Applications” Springer series in synergetics, 18
(1989).

[3] M. Abramowitz I. Stegun, “Handbook of mathematical

functions: with formulas, graphs, and mathematical ta-
bles”, Courier Corporation, 55, (1964).

[4] Digital Library of Mathematical Functions, Integral and
Series Representations of the Dirac Delta http://dlmf.

nist.gov/1.17
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FIG. 8: (a) Popularity probabilities in the modified QBC model with long-term memory effect on a scale free network with
degree distribution P (k) = k−2.5 for different values of µ with fixed α = 10 and Nu = 104. Averages over 2 · 105 memes. (b)
Lifetime PDF for the same system.
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FIG. 9: Popularity probabilities in the modified QBC model
with long-term memory effect on a scale free network with
degree distribution P (k) = k−2.5 with fixed µ = 0.01, α = 10
and Nu = 104. Here data are categorized according to the
fitness. Averages over 2 · 105 memes.
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