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To realize human-like robot intelligence, a large-scale cognitive architecture is required for

robots to understand their environment through a variety of sensors with which they are

equipped. In this paper, we propose a novel framework named Serket that enables the

construction of a large-scale generative model and its inferences easily by connecting

sub-modules to allow the robots to acquire various capabilities through interaction with

their environment and others. We consider that large-scale cognitive models can be

constructed by connecting smaller fundamental models hierarchically while maintaining

their programmatic independence. Moreover, the connected modules are dependent

on each other and their parameters must be optimized as a whole. Conventionally, the

equations for parameter estimation have to be derived and implemented depending

on the models. However, it has become harder to derive and implement equations of

large-scale models. Thus, in this paper, we propose a parameter estimation method that

communicates the minimum parameters between various modules while maintaining

their programmatic independence. Therefore, Serket makes it easy to construct

large-scale models and estimate their parameters via the connection of modules.

Experimental results demonstrated that the model can be constructed by connecting

modules, the parameters can be optimized as a whole, and they are comparable with

the original models that we have proposed.

Keywords: cognitive models, probabilistic generative models, symbol emergence in robotics, concept formation,

unsupervised learning

1. INTRODUCTION

To realize human-like robot intelligence, a large-scale cognitive architecture is required for robots
to understand their environment through a variety of sensors with which they are equipped. In
this paper, we propose a novel framework that enables the construction of a large-scale generative
model and its inferences easily by connecting sub-modules in order for robots to acquire various
capabilities through interactions with their environment and others. We consider it important for
robots to understand the real world by learning from their environment and others, and have
proposed a method that enables robots to acquire concepts and language (Nakamura et al., 2014;
Attamimi et al., 2016; Nishihara et al., 2017; Taniguchi et al., 2017) based on the clustering of
multimodal information that they obtain. These proposed models are based on Bayesian models
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with complex structures, and we derived and implemented
the parameter estimation equations. If we realize a model
that enables robots to learn more complicated capabilities, we
have to construct a more complicated model, and derive and
implement equations for parameter estimation. However, it is
difficult to construct higher-level cognitive models by leveraging
this approach. Alternatively, these models can be interpreted as
a composition of more fundamental Bayesian models. In this
paper, we develop a large-scale cognitive model by connecting
the Bayesian models and propose an architecture named Serket
(Symbol Emergence in Robotics tool KIT1), which enables the
easier construction of such models.

In the field of cognitive science, cognitive architectures
(Laird, 2008; Anderson, 2009) have been proposed to implement
human cognitive mechanisms by describing human perception,
judgment, and decision-making. However, complex machine
learning algorithms have not yet been introduced, which makes
it difficult to implement our proposed models. Serket makes
it possible to implement more complex models by connecting
modules.

One approach to develop a large-scale cognitive model is the
use of probabilistic programming languages (PPLs), which make
it easy to construct Bayesian models (Patil et al., 2010; Goodman
et al., 2012; Wood et al., 2014; Carpenter et al., 2016; Tran
et al., 2016). PPLs can construct Bayesian models by defining the
dependencies between random variables, and the parameters are
automatically estimated without having to derive the equations
for them. By using PPLs, it is easy to construct relatively small-
scale models, such as a Gaussian mixture model and latent
Dirichlet allocation, but it is still difficult to model multimodal
sensory information, such as images and speech obtained by
the robots. Because of this, we implemented models for concept
and language acquisition, which are relatively large-scale models,
as standalone models without PPLs. However, we consider the
approach where an entire model is implemented by itself has
limitations if it is constructed as a large-scale model.

Large-scale cognitive models can be constructed by
connecting smaller fundamental models hierarchically; in
fact, our proposed models have such a structure. In the
proposed novel architecture Serket, large-scale models were
constructed by hierarchically connecting smaller-scale Bayesian
models (hereafter, each one is referred to as a module) while
maintaining their programmatic independence. The connected
modules are dependent on each other, and parameters must
be optimized as a whole. When models are constructed by
themselves, the parameter estimation equations have to be
derived and implemented depending on the models. However,
in this paper, we propose a method for parameter estimation
by communicating the minimum parameters between various
modules while maintaining their programmatic independence.
Therefore, Serket makes it easy to construct large-scale models
and estimate their parameters by connecting modules.

1Symbol emergence in robotics focuses on the real and noisy environment, and

the e in Serket represents a false recognition obtained through learning in such an

environment.

In this paper, we propose the Serket framework and
implement models that we proposed by leveraging this
framework. Experimental results demonstrated that the model
can be constructed by connecting modules, the parameters can
be optimized as a whole, and they are comparable with original
models that we have proposed.

2. BACKGROUND

2.1. Symbol Emergence in Robotics
Recently, it has been said that artificial intelligence is superior
to human intelligence in the area of supervised learning, as
typified by deep learning as far as certain specific tasks (He
et al., 2015; Silver et al., 2017). However, we believe that it is
difficult to realize human-like intelligence only via supervised
learning because all supervised labels cannot be obtained for all
the sensory information of robots. To this end, we believe that it
is also important for robots to understand the real environment
by structuring their own sensory information in an unsupervised
manner. We consider such a learning process as a symbol
emergence system (Taniguchi et al., 2016a).

The symbol emergence system is based on the genetic
epistemology proposed by Piaget (Piaget and Duckworth, 1970).
In genetic epistemology, humans organize symbol systems in a
bottom-up manner through interaction with the environment.
Figure 1 presents an overview of the symbol emergence system.
The symbols are self-organized from sensory information
obtained through interactions with the environment. However,
it can be difficult for robots to communicate with others using
symbols learned only in a bottom-up manner, because the
sensory information cannot be shared directly with others and
the meaning of symbols differs depending on the individual.
To communicate with others, the meanings of symbols must
be transformed into common meanings among individuals
through their interactions. This is considered as a top-down
effect from symbols to individuals’ organization of them. Thus,
in the symbol emergence system, the symbols emerge through
loops of top-down and bottom-up effects. In the symbol
emergence in robotics, symbols include not only linguistic
symbols but also various types of knowledge self-organized
by robots. Therefore, symbol emergence in robotics covers
a wide range of research topics, such as concept formation
(Nakamura et al., 2007), language acquisition (Taniguchi et al.,
2016b, 2017; Nishihara et al., 2017), learning of interactions
(Taniguchi et al., 2010), learning of body schemes (Mimura
et al., 2017), and learning of motor skills and segmentation
of time-series data (Taniguchi et al., 2011; Nakamura et al.,
2016).

We have proposed models that enable robots to acquire
concepts and language by considering its learning process as
a symbol emergence system. The robots form concepts in a
bottom-up manner, and acquire word meanings by connecting
words and concepts. Simultaneously, words are shared with
others, and their meanings are changed through communication
with others. Therefore, such words affect concept formation in
a top-down manner, and concepts are changed. Thus, we have
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considered that robots can acquire concepts and word meanings
through loops of bottom-up and top-down effects.

2.2. Existing Cognitive Architecture
There have been many attempts to develop intelligent systems.
In the field of cognitive science, cognitive architectures
(Laird, 2008; Anderson, 2009) have been proposed to
implement humans cognitive mechanisms by describing
human perception, judgment, and decision-making. As
mentioned earlier, it is important to consider how to model
the multimodal sensory information obtained by robots.
However, this is still difficult to achieve with these cognitive
architectures. To construct more complex models, some
frameworks have been proposed in the field of machine
learning.

Frameworks of deep neural networks (DNNs) such as
TensorFlow (Abadi et al., 2016), Keras (Chollet , 2015), and
Chainer (Tokui et al., 2015) have been developed. These
frameworks make it possible to construct DNN models and
estimate their parameters easily. These frameworks are one
of the reasons why DNNs have been widely used for several
years.

Alternatively, PPLs that make it easy to construct Bayesian
models have also been proposed (Patil et al., 2010; Goodman
et al., 2012; Wood et al., 2014; Carpenter et al., 2016;
Tran et al., 2016). The advantages of PPLs are that they
can construct Bayesian models by defining the dependencies
between random variables, and the parameters are automatically
estimated without deriving equations for them. By using PPLs,
relatively small-scale models, such as the Gaussian mixture
model and latent Dirichlet allocation (LDA), can be constructed
easily. However, it is still difficult to model multimodal sensory
information, such as images and speech obtained by the
robots. We believe that a framework by which a large-scale

probabilistic generative model can be more easily constructed
is required to model the multimodal information of the
robot.

2.3. Cognitive Architecture Based on
Probabilistic Generative Model
We believe that cognitive models make it possible to predict
an output Y against an input X. For example, as shown in
Figure 2, an object label Y is predicted from a sensor input
X via object recognition. It is through the understanding of
word meanings that the semantic content Y are predicted from
speech signal X. In other words, the problem can be defined
as how to model P(Y|X), where the prediction is realized by

FIGURE 2 | Overview of cognitive model by (A) probabilistic generative model

and (B) end-to-end learning.

FIGURE 1 | Symbol emergence system.
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argmaxY P(Y|X). DNNs model relationships between an input X
and output Y directly by an end-to-end approach (Figure 2B).
Alternatively, we considered developing these cognitive models
by leveraging Bayesian models, where X and Y are treated
as random variables, and the relationships between them are
represented by a latent variable Z (Figure 2A). Therefore, in
Bayesian models, the prediction of output Y from input X is
computed as follows:

P(Y|X) ∝ P(Y ,X) (1)

=

∫
Z
P(Y|Z)P(X|Z)P(Z)dZ. (2)

This is multimodal latent Dirichlet allocation (MLDA) (Blei and
Jordan, 2003; Nakamura et al., 2009; Putthividhy et al., 2010), the
details of which are described in the Appendix. However, MLDA
is based on the important assumption that the observed variables
X and Y are conditionally independent against latent variable Z.
Here, we consider models where assumptions are made about
multiple observations without distinguishing between input and
output. Figure 3A displays the generalized model, where the
right side of Equation (1) corresponds to the following equation,
and a part of the observations can be predicted from other

observations.

P(o1, o2, · · · ) =

∫
z
P(z)5nP(on|z)dz. (3)

As mentioned earlier, it is assumed that all observations
o1, o2, · · · are conditionally independent against z. This
assumption is often used to deal with multimodal data (Blei
and Jordan, 2003; Wang et al., 2009; Putthividhy et al., 2010;
Françoise et al., 2013) because modeling all dependencies makes
parameter estimation difficult.

Considering the modeling of various sensor data as
observations o1, o2, · · · , it is not always true for all the
observations to satisfy the conditionally independent
assumption. In general, the information surrounding us
has a hierarchical structure. Hence, a hierarchical model can be
used to avoid this difficulty (Attamimi et al., 2016). Furthermore,
latent variables, such as concepts, are generally related to each
other, and such relationships can be represented by hierarchical
models. Figure 3B represents a hierarchical version of Figure 3A
and can be thought of as generalization of the cognitive
architecture based on a probabilistic generative model. It should
be noted that the structure can be designed manually (Attamimi
et al., 2016) and/or found autonomously by using a structure
learning method (Margaritis, 2003), which is beyond the scope

FIGURE 3 | Generalized hierarchical cognitive model: (A) single-layer model, (B) multilayered model by hierarchicalization of single-layer models, and (C) generalized

form of a module in Serket.
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of this paper. In this hierarchized model, o∗,∗ are observations
and z∗,∗ are latent variables, and the right side of Equation (1)
corresponds to the following equation:

P(O|zM,1, zM,2, · · · ) =

M∏
m

N̄m∏
n

∫
zm,n

P(zm,n)

Nm∏
i

P(om,n,i|zm,n)

N̄m−1∏
n′

P(zm−1,n′ |zm,n)dzm,n, (4)

where O is the set of all observations, M is the number
of the hierarchy, and Nm and N̄m denote the number
of observations and latent variables in the m-th hierarchy,
respectively. In this model, it is not difficult to analytically
derive equations to estimate the parameters if the number
of the hierarchy is not large. However, it is more difficult
to derive them if the number of the hierarchy increases.
To estimate the parameters of the hierarchical model, we
propose Serket, which is an architecture that renders it
possible to estimate the parameters by dividing them into even
hierarchies.

From the viewpoint of hierarchical models, many studies have
proposed models that capture the hierarchical nature of the data
(Li and McCallum, 2006; Blei et al., 2010; Ghahramani et al.,
2010; Ando et al., 2013; Nguyen et al., 2014). On the other hand,
Serket models the hierarchical structure of modalities. For such
hierarchical models, methods based on LDA (Li et al., 2011; Yang
et al., 2014) have been proposed, and we have also proposed
multilayered MLDA (Attamimi et al., 2016). These models are
the simplest examples constructed by Serket. In this paper, we
construct these models by dividing them into smaller modules.

2.4. Cognitive Models
In the past, studies on how the relationships between multimodal
information are modeled have been conducted (Roy and
Pentland, 2002; Wermter et al., 2004; Ridge et al., 2010;
Ogata et al., 2010; Lallee and Dominey, 2013; Zhang et al.,
2017). Neural networks were used in these studies, which
made inferences based on observed information possible
by learning multimodal information, such as words, visual
information, and a robot’s motions. As mentioned earlier,
these are some examples of the cognitive models that we
defined.

There are also studies in which manifold learning was
used for modeling a robot’s multimodal information (Mangin
and Oudeyer, 2013; Yuruten et al., 2013; Mangin et al.,
2015; Chen and Filliat, 2015). These studies used manifold
learning such as non-negative matrix factorization, in which
multimodal information is represented by low-dimensional
hidden parameters. We consider this as another approach to
constructing cognitive models, in which the information is
inferred through hidden parameters.

Recently, DNNs have made notable advances in many
areas such as object recognition (He et al., 2015), object
detection (Redmon et al., 2016), speech recognition (Amodei

et al., 2016), sentence generation (Vinyals et al., 2015),
machine translation (Sutskever et al., 2014), and visual
question answering (Wu et al., 2016). In these studies, end-
to-end learning was used, which made it possible to infer
information from other information. Therefore, these are also
considered part of the cognitive model defined in this paper.
However, as mentioned in section 2.1, we believe that it is
important for robots to understand the real environment by
structuring their own sensory information in an unsupervised
manner.

To develop a cognitive model where robots learn
autonomously, our group proposed several models for concept
formation (Nakamura et al., 2007), language acquisition
(Taniguchi et al., 2016b, 2017; Nishihara et al., 2017), learning of
interactions (Taniguchi et al., 2010), learning of body schemes
(Mimura et al., 2017), learning motor skills, and segmentation
of time series data (Taniguchi et al., 2011; Nakamura et al.,
2016). Although all of these are targets of Serket, we focused
on concept formation in this paper. We define concepts as
categories into which the sensory information is classified, and
propose various concept models. These are implementations
of the aforementioned hierarchical model. Figure 4A displays
one of our proposed models. This is the simplest form of
the hierarchical model, where zO and zM denote an object
and a motion concept, respectively, and their relationship is
represented by z (Attamimi et al., 2016). Therefore, in this
model, z represents objects and possible motions against them,
which are considered as their usage, and observations become
conditionally independent by introducing the latent variables zO

and zM .
In these Bayesian models, the latent variables shown

as the white nodes z, zO, and zM in Figure 4A can be
learned from the observations shown as gray nodes in an
unsupervised manner. Moreover, these latent variables are
not determined independently but optimized as a whole
by depending on each other. Although it seems that this
model has a complex structure and that it is difficult to
estimate the parameters and determine the latent variables,
this model can be divided into smaller components, each
of which is an MLDA model. The models shown in
Figures 4B,C can also be divided into smaller components
despite their complex structure. Similar to these models, it
is possible to develop larger models by combining smaller
models as modules. In this paper, we propose a novel
architecture Serket to develop larger models by combining
modules.

In the proposed architecture, the parameters of each module
are not learned independently but learned based on their
dependence on each other. To implement such learning,
it is important to share latent variables between modules.
For example, zO and zM are shared between two MLDAs
in the model, respectively, as shown in Figure 4A. The
shared latent variables were not determined independently but
determined depending on each other. Serket makes it possible
for each module to maintain its independence as a program
as well as be learned as a whole through the shared latent
variables.
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FIGURE 4 | Graphical models for concept formation: (A) model for hierarchical concept (Attamimi et al., 2016) constructed with multimodal latent Dirichlet allocations

(MLDAs), (B) model for object concept and language acquisition (Nakamura et al., 2014; Nishihara et al., 2017) constructed with MLDAs and speech recognition, and

(C) model for location concept and language acquisition (Taniguchi et al., 2017) constructed with simultaneous localization and mapping (SLAM), Gaussian mixture

model (GMM), MLDA, and speech recognition.

3. SERKET

3.1. Composing Cognitive Sub-modules
Figure 3C displays the generalized form of the module assumed
in Serket. In this figure, we omit the detailed parameters for
generalization because we assume that any type of models can be
the modules of Serket. Each module has multiple shared latent
variables zm−1,∗ and observations om,n,∗, which are assumed to
be generated from latent variable zm,n of a higher level. Modules
with no shared latent variable or observations are also included
in the generalized model. Moreover, the modules can have any
internal structure as long as they have shared latent, observation,
and higher-level latent variables. Based on this module, a larger
model can be constructed by connecting the latent variables
of module(m − 1, 1), module(m − 1, 2), · · · recursively. In
the Serket architecture, each module must satisfy the following
requirements:

1. In each module with shared latent variables, the probability
that latent variables are generated can be computed as

P(zm−1,i|zm,n, om,n,1, om,n,2, · · · , zm−1). (5)

2. The module can send the following probability by leveraging
one of the methods explained in the next section:

P(zm−1,i|zm,n, om,n,1, om,n,2, · · · , zm−1). (6)

3. The module can determine zm,n by using the following
probability sent frommodule (m+ 1, j) by one of the methods

explained in the next section:

P(zm,n|zm+1,j, om+1,j,1, om+1,j,2, · · ·, zm). (7)

4. Terminal modules have no shared latent variables and only
have observations.

In Serket, the modules affecting each other and the shared latent
variables are determined by their communication with each
other. Methods to determine the latent variables are classified
into two types depending on their nature. One is the case that
they are discrete and finite, and another is the case that they are
continuous or infinite.

3.2. Inference of Composed Models
In this section, we explain the parameter inference methods used
for the composed models. We focus on the batch algorithm
for parameter inference, which makes it easy to implement
each module. Therefore, real-time application is beyond the
scope of this paper although we would like to realize it in
the future. One of the inference methods used to estimate the
parameters of complex models is based on variational Bayesian
(VB) approximation (Minka and Lafferty, 2002; Blei et al.,
2003; Kim et al., 2013). However, a VB-based approach requires
derivation against latent variables, and it is difficult to implement
derivation in independent modules. To this end, we employed a
sampling-based method because of its simpler implementation.

In this section, we utilize three approaches according to the
nature of the latent variables.

Frontiers in Neurorobotics | www.frontiersin.org 6 June 2018 | Volume 12 | Article 25

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Nakamura et al. Serket

3.2.1. Message Passing Approach
First, we consider the case when the latent variables are
discrete and finite. For example, in the model shown in
Figure 4A, the shared latent variable zO was generated from
a multinomial distribution, which is represented by finite
dimensional parameters. Here, we consider the estimation of
the latent variables according to the simplified model shown
in Figure 5A. In module 2, the shared latent variable z1 was
generated from z2; and in module 1, the observation o was
generated from z1. The latent variable z1 is shared in modules
1 and 2, and determined by the effect on these two modules as
follows:

z1 ∼ P(z1|o, z2) (8)

∝ P(z1|o)P(z1|z2). (9)

In this equation, P(o|z1) and and P(z1|z2) can be computed
in modules 1 and 2, respectively. We assumed that the latent
variable is discrete and finite, and P(z1|z2) is a multinomial

distribution that can be represented by a finite-dimensional
parameter whose dimension ranges from the number of elements
of z1. Therefore, P(z1|z2) can be sent frommodule 2 to module 1.
Moreover, P(z1|z2) can be learned in module 2 by using P(z1|o)
sent frommodule 1, which is also amultinomial distribution. The
parameters of these distributions can be easily sent and received,
and the shared latent variable can be determined by the following
procedure:

1. In module 1, P(z1|o) is computed.
2. P(z1|o) is sent to module 2.
3. In module 2, the probability distribution P(z1|z2), which

represents the relationships between z1 and z2, is estimated
using P(z1|o).

4. P(z1|z2) is sent to module 1.
5. In module 1, the latent variable z1 is estimated using Equation

(9), and the parameters of P(o|z1) are updated.

Thus, in the case when the latent variable is infinite and discrete,
the modules are learned by sending and receiving the parameters

FIGURE 5 | Connecting two modules by (A) MP approach and (B) SIR approach.
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of a multinomial distribution of z1. We call this the message
passing (MP) approach because the model parameters can be
optimized by communicating the message.

3.2.2. Sampling Importance Resampling Approach
In the previous section, the latent variable was determined by
communicating the parameters of the multinomial distributions
if the latent variables are discrete and finite. Otherwise, it can
be difficult to communicate the parameters. For example, the
number of parameters becomes infinite if the possible values of
the latent variables are infinite patterns. In the case of a complex
probability distribution, it is difficult to represent it by a small
number of parameters. In such cases, the model parameters
are learned by approximation using sampling importance
resampling (SIR). We also consider parameter estimation using
the simplified model shown in Figure 5B. Here, the latent
variable z1 is shared, and its possible value is either an infinite
pattern or continuous. Similar to the previous section, the latent
variable is determined if the following equation can be computed:

z1 ∼ P(z1|o, z2) (10)

∝ P(z1|o)P(z1|z2). (11)

However, when the value of z1 is infinite or continuous, module
2 cannot send P(z1|z2) to module 1. Therefore, P(z1|o) is first
approximated by L samples {z(l) : l = 1, · · · , L}:

z
(l)
1 ∼ P(z1|o). (12)

This approximation is equivalent to approximating P(z1|o) by the
following P̃(z1|o):

P(z1|o) ≈ P̃(z1|o) =
1

L

L∑
l

δ(z1, z
(l)
1 ), (13)

where δ(a, b) represents a delta function, which is 1 if a = b, and
0 otherwise. The generated samples are sent from module 1 to
module 2, and a latent variable is selected among them based on
P(z1|z2):

z1 ∼ P(z1 ∈ {z
(1)
1 , · · · , z

(L)
1 }|z2). (14)

This procedure is equivalent to sampling from the following
distribution, which is an approximation of Equation (11):

z1 ∼ P(z1|z2)P̃(z1|o). (15)

Thus, the parameters of each module can be updated by the
determined latent variables.

3.2.3. Other Approaches
We have presented two methods but these are not the only ones
available for parameter estimation. There are other applicable
methods to estimate parameters. For example, one of the
applicable methods is the Metropolis-Hastings (MH) approach.
In the MH approach, samples are generated from a proposal
distribution Q(z|z∗), where z∗ and z represent the current value

and generated value of latent variables, respectively. Then, they
are accepted according to the acceptance probability A(z, z∗):

A(z, z∗) = min (1,α) (16)

α =
P(z∗)Q(z|z∗)

P(z)Q(z∗|z)
, (17)

where P(z) represents the target distribution from which the
samples are generated.

The model parameters in Figure 5 can be estimated
by considering P(z1|o) and P(z1|z2, o) as the proposal
distribution and target distribution, respectively. P(z1|z2, o)
can be transformed into

P(z1|z2, o) ∝ P(z1|o)P(z1|z2)P(z2). (18)

Therefore, α in Equation (16) becomes

α =
P(z∗)Q(z|z∗)

P(z)Q(z∗|z)
=

P(z∗1 |z2, o)

P(z1|z2, o)
·
P(z1|o)

P(z∗1 |o)
(19)

=
P(z∗1 |o)P(z

∗
1 |z2)P(z2)

P(z1|o)P(z1|z2)P(z2)
·
P(z1|o)

P(z∗1 |o)
=

P(z∗1 |z2)

P(z1|z2)
, (20)

Hence, the proposal distribution P(z1|o) can be computed in
module 1, and the acceptance distribution can be computed
in module 2. By using this approach, the parameters can be
estimated while maintaining programmatic independence. The
proposed value is sent to module 2, and module 2 determines
whether it is accepted or not. Then, the parameters are updated
according to the accepted values.

Thus, various approaches can be utilized for parameter
estimation, and it should be discussed which methods are most
suitable. However, we will leave this for a future discussion
because of limited space.

4. EXAMPLE 1: MULTILAYERED MLDA

First, we show that a more complex model, mMLDA, can be
constructed by combining the simpler models based on Serket.
By using the mMLDA, the object categories, motion categories,
and integrated categories representing the relationships between
them were formed from the visual, auditory, haptic, and motion
information obtained by the robot. The information obtained
by the robot is detailed in Appendix 2. We compared it with
the original mMLDA and an independent model, where the
object and motion categories were learned independently. The
original mMLDA has an upper-bound performance because
any approximation is not used in it. Therefore, the purpose of
this experiment is to show that Serket implementation has a
comparable performance with the original mMLDA.

4.1. Implementation Based on Serket
The mMLDA shown in Figure 4A can be constructed using
the MP approach. This model can be divided into to three
MLDAs. In the lower-level MLDAs, object categories zO can be
formed from multimodal information w

v, wa, and w
h obtained

from the objects, and motion categories zM can be formed from
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joint angles obtained by observing a human’s motion. Details
of the information are explained in the Appendix. Moreover, in
the higher-level MLDA, integrated categories z that represent
the relationships between objects and motions can be formed
by considering zO and zM as observations. In this model,
latent variables zO and zM are shared; therefore, the whole
model parameters are optimized in a mutually affecting manner.
Figure 6 shows the mMLDA represented by three MLDAs.

First, in the two MLDAs shown in Figures 6A,B, the
probabilities P(zOj |w

v
j ,w

a
j ,w

h
j ) and P(zMj |w

p
j ) that the object and

motion category of the multimodal information in the j-th data
become zOj and zMj , respectively, can be computed using Gibbs

sampling. These probabilities are represented by finite and
discrete parameters, which can be sent to the integrated concept
model shown in Figure 6C, where ẑOj and ẑMj can be treated as

observed variables using these probabilities.

ẑOjn ∼ P(zOj |w
v
j ,w

a
j ,w

h
j ), (21)

ẑMjn ∼ P(zMj |w
p
j ). (22)

where w
v
j ,w

a
j ,w

h
j , and w

p
j represent the visual information,

auditory information, haptic information, and joint angles of the
human’s motion, respectively, which are included in the j-th data.

Thus, in the integrated concept model, category z can be
formed in an unsupervised manner. Next, the values of the
shared latent variables are inferred stochastically using a learned
integrated concept model:

P(zO|ẑMj , ẑOj ) =
∑
z

P(zO|z)P(z|ẑmj , ẑ
o
j ), (23)

P(zM|ẑMj , ẑOj ) =
∑
z

P(zM|z)P(z|ẑmj , ẑ
o
j ). (24)

These probabilities are also represented by finite and discrete
parameters, which can be communicated using theMP approach.

These parameters are sent to an object conceptmodel andmotion
concept model, respectively, where the latent variables assigned
to the modality information m ∈ {v, a, h, p} of concept C ∈

{O,M} are determined using Gibbs sampling.

zCjmn ∼ P(zC|Wm,Z−jmn)P(z
C|ẑMj , ẑOj ), (25)

where W
m represents all the information of modality m, and

Z−jmn represents a set of latent variables, except for the latent
variable assigned to the information of modality m of the
j-th observation. Whereas the latent variables were sampled
from P(zC|Wm,Z−jmn) in the normal MLDA, they were also

sampled using P(zC|ẑMj , ẑOj ). Therefore, all the latent variables
were learned in a complementary manner. From the sampled
variables, the parameters of P(zoj |w

v
j ,w

a
j ,w

h
j ) and P(zmj |w

m
j )

were updated, and Equations (21–25) were iterated until they
converged.

Figure 7 shows the pseudocode of mMLDA and the
corresponding graphical model. The model on the left
in Figure 7 can be constructed by connecting the latent
variables based on Serket. Although the part framed by
the red rectangle was implemented in the experiment,
it can be easily extended to the model shown in this
figure.

4.2. Experimental Results
Figure 8A shows a confusion matrix of classification by
the model, where the object and motion categories were
learned independently, and the vertical and horizontal axes
represent the correct category index and the category index to
which each object was classified, respectively. The accuracies
were 98 and 72%. One can see that the motion categories
can be formed by the independent model almost correctly.
However, the object categories could not be formed correctly
compared to the motion categories. On the other hand,
Figure 8B shows the results of using mMLDA implemented
based on Serket, and the categories were learned in a

FIGURE 6 | Implementation of mMLDA by connecting three MLDAs. The dashed arrows denote the conditional dependencies represented by Serket. (A) Object

concept, (B) motion concept, and (C) integrated concept.
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FIGURE 7 | Pseudo code of mMLDA.

complementary manner. The classification accuracies were
100% and 94%. The motion that could not be classified
correctly by the independent model was classified correctly.
Moreover, the object classification accuracy improved by 22%

owing to the effects of motion categories. In the independent
model, category five (shampoos) objects were classified as
category seven because of their visual similarity. On the
other hand, in the mMLDA based on Serket, they were
misclassified as category three (dressings) because the same
motion (pouring) was performed with these objects. Also,

the rattles (category 10) were misclassified because the rattles

(category 10) and soft toys (category nine) had a similar
appearance and the same motion (throwing) was performed

with them. However, other objects were classified correctly,
and this fact indicates that mutual learning was realized by
Serket.

Furthermore, we conducted an experiment to investigate
the efficiency of the original mMLDA which was not
divided into modules. The results in Figure 8C show that

the accuracies of the classification of objects and motions
were 100 and 94%, respectively, although misclassified

objects differed from that of the Serket implementation of
mMLDA because of sampling. One can see that mMLDA
implementation based on Serket is comparable with the original
mMLDA.

Table 1 shows the computation time of mMLDA
implemented by each method. The Independent model
was fastest because the parameters of two MLDAs were
independently learned. Serket implementation was slower
than the independent model but faster than the original
mMLDA. In the original MLDA, all the observations were
used for parameter estimation of the integrated concept
model. On the other hand, in the Serket implementation,

this was approximated and only the parameters sent from
lower-level MLDA in Equations (21, 22) were used for
parameter estimation of the integrated concept models.
Thus, the Serket implementation is faster than the original
mMLDA.

4.3. Deeper Model
In the original mMLDA, the structure of the model was
fixed, and we derived the equations to estimate its parameters
and then implemented them. However, by using Serket,
we can flexibly change the structure of the model without
deriving the equations for the parameter estimation. As
one example, we changed the structure of mMLDA and
constructed a deeper model as shown in Figure 9. To confirm
that the parameters can be learned by using Serket, we
generated training data by using the following generative
process:

z5,1 ∼ P(z|θ5) (26)

o5 ∼ P(o|φz5,1 ) (27)

for m = 4 to 1:

zm,1 ∼ P(z|zm+1,1, θm) (28)

om ∼ P(o|φzm,1
) (29)

where m denote the index of hierarchies, and the number
of categories of all modules was 10. θm and φz were
randomly generated, and we used uniform distribution
as P(z|θ5). This generative process was repeated 50 times,
and 250 observations were made. The parameters were
estimated by classifying these 250 observations through a
Serket implementation and independent model. Table 2

shows the classification accuracies in each hierarchy. We
can see that the Serket implementation outperformed the
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FIGURE 8 | Classification results of motion and object by (A) independent model, (B) Serket implementation, and (C) original model. The classification accuracies for

motions and objects were (A) 98 and 72%, (B) 100 and 94%, and (C) 100 and 94%, respectively.

TABLE 1 | Computational time of mMLDA.

Methods Time (seconds)

Independent model 1.77

Serket implementation 21.4

Original model 64.1

independent model because the parameters were optimized
as a whole by using an MP approach. Usually, the equations
for parameter estimation must be derived for each model
individually; deriving them for a more complicated model
is difficult. However, Serket makes it possible to construct a
complicated model flexibly and to estimate the parameters
easily.

5. EXAMPLE 2: MUTUAL LEARNING OF
CONCEPT MODEL AND LANGUAGE
MODEL

In Nakamura et al. (2014) and Nishihara et al. (2017), we
proposed a model for the mutual learning of concepts and
the language model shown in Figure 4B; its parameters were
estimated by dividing the models into smaller parts. In this
section, we show that this model can be constructed by Serket.
To learn the model, the visual, auditory, and haptic information
obtained by the robot and teaching utterances given by a human
user were used. The details are explained in Appendix 2. As in
the previous experiment, the original model has upper-bound
performance. Therefore, the purpose of this experiment is also to
show that Serket implementation has comparable performance
with the original model.
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FIGURE 9 | mMLDA that has five hierarchies.

TABLE 2 | Classification accuracies of mMLDA having five hierarchies.

Methods z1,1 (%) z2,1(%) z3,1(%) z4,1(%) z5,1(%) Average

Independent model 70.0 66.0 74.0 76.0 66.0 70.4

Serket implementation 100 90.0 100 100 100 98.0

5.1. Implementation Based on Serket
Here, we reconsider the mutual learning model based on
Serket. The model shown in Figure 4B is a one where the
speech recognition part and the MLDA that represents the
object concepts are connected, and can be divided as shown in
Figure 10. TheMLDAmakes it possible to form object categories
by classifying the visual, auditory, and haptic information
obtained, as shown in the Appendix 2. In addition, the words
in the recognized strings of a user’s utterances to teach object
features are also classified in the model shown in Figure 10.
Through this categorization of multimodal information and
teaching utterance, the words and multimodal information are
connected stochastically, which enables the robot to infer the
sensory information represented by the words. However, the
robot cannot obtain the recognized strings directly; it can only
obtain continuous speech. Therefore, in the model shown in
Figure 10, the words s which are in the recognized strings are
treated as latent variables and connected to the model for speech
recognition. The parameter L of the language model is also
a latent variable, and is learned from the recognized strings
of continuous speech o using the nested Pitman–Yor language
model (NPYLM) (Mochihashi et al., 2009). Furthermore, it is
an important point of this model that the MLDA and speech
recognition model are connected through the words s, which
makes it possible to learn them in a complementarymanner. That
is, the speech is not only recognized based on the similarity of o
but is accurately recognized by utilizing the inferred words s from
the multimodal information perceived by the robot.

FIGURE 10 | Mutual learning model of concepts and language model.

First, as the initial parameter ofL, we used the languagemodel
where all phonemes were generated with equal probabilities.
The MP approach can be used if all teaching utterances O are
recognized by using a language model whose parameter is L

and the probability P(S|O,A, L) that the word sequences S are
generated can be computed. However, it is actually difficult to
compute the probabilities for all possible word segmentation
patterns of all possible recognized strings. Therefore, we
approximated this probability distribution using the SIR
approach. The L-best speech recognition results were utilized
as samples because it is difficult to compute the probabilities

for all possible recognized strings. s
(l)
j represents the l-th

recognized string of a teaching utterance given the j-th object.
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By applying the NPYLM and segmenting them into words, the

word sequences S = {s
(l)
j |1 ≤ l ≤ L, 1 ≤ j ≤ J} can be

obtained.

S ∼ P(S|S′,L). (30)

These generated samples are sent to the MLDA module, and
the samples that are likely to represent multimodal information
are sampled based on the MLDA whose current parameter is
2:

ŝj ∼ P(s
(l)
j |wv

j ,w
a
j ,w

t
j ,2). (31)

The selected samples ŝj are considered as words
that can represent multimodal information. Then,
the MLDA parameters are updated using a set of
these words Ŝ = {ŝj|1 ≤ j ≤ J} and a set of
multimodal information W

v,Wa,Wt by utilizing Gibbs
sampling.

2 = argmaxP(Ŝ,Wv,Wa,Wt|2). (32)

Moreover, Ŝ is sent to the speech recognition model,
and the parameter L of the language model is
updated.

L = argmaxP(Ŝ|Ŝ
′
,L), (33)

where Ŝ
′
denotes strings obtained by connecting words in

Ŝ. The parameters of the whole model can be optimized by
iteration through the following process: the sampling words
using Equation (30), the resampling words using Equation
(31), and the updating parameters using Equations (32,
33).

Figure 11 displays the pseudocode and the corresponding
graphical model. In this model, one of modules is MLDA with
three observations and one shared latent variable connected
to the speech recognition module. o1, o2, and o3 represent
multimodal information obtained by the sensors on the robot,
and o4, which is an observation of the speech recognition model,
represents the utterances given by the human user. Although
the parameter estimation of the original model proposed in
Nakamura et al. (2014) and Nishihara et al. (2017) is very
complicated, it can be briefly described by connecting the
modules based on Serket.

5.2. Experimental Results
We conducted an experiment where the concepts were formed
using the aforementioned model to demonstrate the validity of
Serket. We compared the following three methods.

(a) A method where speech recognition results S′0 of teaching
utterances with maximum likelihoods are segmented into
words by the applied NPYLM, and the words obtained are
used for concept formation.
(b) A method where the concepts and language model are
learned by a mutual learning model implemented based on
Serket. (Proposed method)

(c) A method where the concepts and language model are
learned by a mutual learning model implemented without
Serket proposed in (Nakamura et al., 2014). (Original method)

In method (a), the following equation was used instead of
Equation (30), and the parameter L of the language model was
not updated:

S0 ∼ P(S|S′0,L). (34)

Alternatively, method (b) was implemented by Serket, and the
concepts and language model were learned mutually through the
shared latent variable s.

Table 3i shows the speech recognition accuracies of each
method. In method (a), the language model was not updated;
therefore, the accuracy is equal to phoneme recognition. In
contrast, in method (b), the accuracy is higher than that of
method (a) by updating the language model from the words
sampled by MLDA.

Table 3ii shows the accuracies of word segmentation.
Segmentation points were evaluated, as shown in Table 4,
by applying dynamic-programming matching to find the
correspondence between the correct and estimated segmentation.
This table shows a case where the correct segmentation of
a correctly recognized string “ABCD” is “A/BC/D,” and the
recognized string “AACD” is segmented into “A/A/CD.” (“/”
represents the cut points between each word.) The points that
were correctly estimated (Table 4b), as cut points were evaluated
as true positive (TP), and those that were incorrectly estimated
(Table 4d) were evaluated as false positive (FP). Similarly,
the points that were erroneously estimated as not cut points
(Table 4f) were evaluated as false negative (FN). From the
evaluation of the cut points, the precision, recall, and F-measure
are computed as follows.

P =
NTP

NTP + NFP
, (35)

R =
NTP

NTP + NFN
, (36)

F =
2RP

R+ P
, (37)

where NTP,NFP, and NFN denote the number of points evaluated
as TP, FP, and FN, respectively. Comparing the precision of
methods (a) and (b) in Table 3ii, one can see that it increases
according to Serket. This is because more correct words can be
selected among the samples generated by the speech recognition
module. Alternatively, the recall of method (b) decreases because
some functional words (e.g., “is” and “of”) are connected
with other words such as “bottleof.” However, the precision
of method (b) is higher, and its F-measure is greater than
0.11. Therefore, method (b), which was implemented based on
Serket, outperformed method (a). Table 3iii displays the object
classification accuracy. One can observe that the accuracy of
method (b) is higher because the speech can be recognized more
correctly. Moreover, the Serket implementation [method (b)] was
comparable to the original implementation [method (c)]. Thus,
the learning of the object concepts and language model presented
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FIGURE 11 | Pseudocode of mutual learning of concept model and language model.

TABLE 3 | Accuracies of speech recognition, segmentation, and object

classification.

(i) Speech

recognition

(ii) Segmentation (iii) Object

classification

Methods Precision Rcall F-measure

(a) w/o mutual

learning

0.64 0.50 0.68 0.58 0.80

(b) Serket

implementation

0.74 0.91 0.59 0.72 0.94

(c) Original

model

0.77 0.95 0.59 0.73 0.94

TABLE 4 | Evaluation of segmentation.

(a) (b) (c) (d) (e) (f) (g)

Correct segmentation: A / B C / D

Estimated segmentation: A / A / C D

Evaluation: TN TP TN FP TN FN TN

TABLE 5 | Computation time of mutual learning model.

Methods Time (seconds)

w/o mutual learning 135

Serket implementation 2,640

Original model 2,637

in Nakamura et al. (2014); Nishihara et al. (2017) was realized by
Serket.

Table 5 shows the computation time of mutual learning
models. From this figure, the model without mutual learning
is fastest because the parameters of one MLDA and language
model are independently learned once. On the other hand, Serket

implementation is slower and comparable with the original
model. This is because the parameters of theMLDA and language
model in the Serket implementation were updated iteratively
by communicating the parameters with the MP approach, and
the computational cost was not much different from that of the
original model.

6. CONCLUSION

In this paper, we proposed a novel architecture where the
cognitive model can be constructed by connecting modules,
each of which maintains programmatic independence. Two
approaches were used to connect these modules. One is the
MP approach, where the parameters of the distribution are of a
finite dimension and communicated between the modules. If the
parameters of the distribution are of an infinite dimension or a
complex structure, the SIR approach was utilized to approximate
them. In the experiment, we demonstrated two implementations
based on Serket and their efficiency. The experimental results
demonstrated that the implementations are comparable with the
original model.

However, there is an issue with regard to the convergence of
the parameters. If a large number of samples can be obtained,
each latent variable can be locally converged into global optima
because the MP, SIR, and MH approaches are based on the
existing Markov chain Monte Carlo method. But when various
types of models are connected, it is not clear whether all latent
parameters can be converged into global optima as a whole.
It was confirmed that the parameters were converged in the
models used in the experiments. Nonetheless, this remains a
difficult and important issue which will be examined in future
work.

We believe thatmodels that can be connected by Serket are not
limited to generative probabilistic models, although we focused
on the connected generative probabilistic models in this paper.
Neural networks or other methods can be one of the modules of
Serket, and we are planning to connect them. Furthermore, we
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believe that large-scale cognitive models can be constructed by
connecting various types of modules, each of which represent a
particular brain function. In so doing, we will realize our goal
of artificial general intelligence. Serket can also contribute to
developmental robotics (Asada et al., 2009; Cangelosi et al., 2015),
where the human developmental mechanism is understood
via a constructive approach. We believe that robots can learn
capabilities ranging from motor skills to language, and these can
be developed using Serket, as it makes it possible to understand
humans.
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