
ar
X

iv
:1

71
0.

05
06

1v
2

 [
cs

.F
L

]
 1

7
O

ct
 2

01
7

A New Technique for Reachability of States in

Concatenation Automata

Sylvie Davies

University of Waterloo

Department of Pure Mathematics

sldavies@uwaterloo.ca

Abstract

We present a new technique for demonstrating the reachability of

states in deterministic finite automata representing the concatenation of

two languages. Such demonstrations are a necessary step in establishing

the state complexity of the concatenation of two languages, and thus in

establishing the state complexity of concatenation as an operation. Typ-

ically, ad-hoc induction arguments are used to show particular states are

reachable in concatenation automata. We prove some results that seem

to capture the essence of many of these induction arguments. Using these

results, reachability proofs in concatenation automata can often be done

more simply and without using induction directly.

1 Introduction

Formal definitions are postponed until Section 2.
The state complexity of a regular language L, denoted sc(L), is the least

number of states needed to recognize the language with a deterministic finite
automaton. The state complexity of an operation on regular languages is the
worst-case state complexity of the result of the operation, expressed as a function
of the maximal allowed state complexity of the input languages. For example,
suppose L is a language of state complexity at most m, and K is a language of
state complexity at most n. It is known that the intersection L ∩K has state
complexity at most mn, and that this upper bound can be attained. Thus, we
say that the state complexity of intersection is the function (m,n) 7→ mn.

To establish the state complexity of an operation, there are two steps. First,
one derives an upper bound. For example, in the case of intersection, if the
input languages L and K have state complexity at most m and at most n

respectively, then the standard direct product construction gives an automaton
for L ∩K with mn states, leading to the aforementioned upper bound of mn.
Next, one searches for witnesses to the upper bound, that is, languages which
attain the upper bound for each value of m and n. In the case of intersection,

1

http://arxiv.org/abs/1710.05061v2

this means for each pair (m,n), one must find a pair of languages (Lm,Kn) with
sc(Lm) ≤ m and sc(Kn) ≤ n such that sc(Lm ∩Kn) = mn.

One must not only find these witnesses but also prove that the desired state
complexity bound is reached. Such proofs are the subject of this paper. We
are interested in the case where the operation is concatenation of languages.
We assume that one is working within some subclass of the regular languages,
and has derived an upper bound f(m,n) for the worst-case state complexity
of concatenation within this subclasses. We also assume one has found (by
computer search or some other means) candidate witnesses for this upper bound,
in the form of two sequences of languages (Lm : m ≥ 1) and (Kn : n ≥ 1) such
that sc(Lm) ≤ m and sc(Kn) ≤ n. The goal is to prove that for each pair
(m,n), the concatenation LmKn has state complexity f(m,n). We may divide
such a proof into three steps:

1. Construct an automaton A for LmKn in the standard way.

2. Show that A contains at least f(m,n) reachable states.

3. Show exactly f(m,n) reachable states in A are pairwise distinguishable.

We present a new technique for dealing with step (2) of this process. The stan-
dard way to construct a deterministic finite automaton A for the concatenation
of two languages yields an automaton in which the states are sets ; to show a
particular set is reachable, one typically proceeds by induction on the size of the
set. We prove a result that seems to generalize many of these ad-hoc induction
arguments, and can be used to establish reachability of sets without directly
using induction. Additionally, we prove some helpful lemmas that make our
main result easier to apply.

We demonstrate our technique by applying it to a variety of concatenation
witnesses taken from the literature. The state complexity of concatenation has
been studied in the class of all regular languages, as well as many subclasses.
Table 1 lists some examples of subclasses that have been studied, and the state
complexity of concatenation in each subclass. See the cited papers for defi-
nitions of each subclass and derivations/proofs of each complexity. The com-
plexities listed are “restricted” complexities, that is, they are computed under
the assumption that both inputs to the concatenation operation share the same
alphabet. “Unrestricted” state complexity of concatenation (where the inputs
may be languages over different alphabets) has also been studied, and will be
discussed later, but is not included in the table.

If the state complexity of concatenation grows exponentially with n (indi-
cated in Table 1 by bold type), it is typical to use an induction argument to
prove the desired number of states is reachable. It is cases like this in which our
technique is most likely to be useful. We selected 16 concatenation witnesses, all
from subclasses in which the state complexity of concatenation is exponential
in n, and tried to apply our technique to these witnesses. In many cases we
were able to produce shorter and simpler proofs than the original authors, and
we only found two cases in which our technique did not work or was not useful.

2

Subclass Complexity Subclass Complexity

Regular [1, 9, 15, 19] (m − 1)2n + 2
n−1 Prefix-closed [6, 9] (m + 1)2n−2

Unary [16, 17, 19] ∼mn (asymptotically) Prefix-free [9, 13, 14] m + n − 2
Finite unary [10, 18] m + n − 2 Suffix-closed [6, 8] mn − n + 1

Finite binary [10] (m − n + 3)2n−2
− 1 Suffix-free [8, 12] (m − 1)2n−2 + 1

Star-free [7] (m − 1)2n + 2
n−1 Right ideal [4, 5, 9] m + 2

n−2

Non-returning [3, 11] (m − 1)2n−1 + 1 Left ideal [4, 5, 8] m + n − 1

Table 1: Subclasses of regular languages and the state complexity of the concate-
nation operation within each subclass. Bold type indicates that the complexity
grows exponentially in terms of n.

This suggests that our technique is widely applicable and should be considered
as an viable alternative to the traditional induction argument when attempting
reachability proofs in concatenation automata.

The rest of the paper is structured as follows. Section 2 contains background
material and definitions needed to understand the paper. Section 3 describes our
new technique and proves the relevant results. Section 4 contains examples of
our technique applied to numerous concatenation witnesses from the literature.
Section 5 concludes the paper.

2 Preliminaries

2.1 Relations and Functions

A binary relation ρ between X and Y is a subset of X × Y . If ρ ⊆ X × Y and
τ ⊆ Y × Z, the composition of ρ and τ is the relation

ρτ = {(x, z) ∈ X × Z : there exists y ∈ Y such that (x, y) ∈ ρ and (y, z) ∈ τ}.

For x ∈ X and ρ ⊆ X × Y , the image of x under ρ is the set xρ = {y ∈ Y :
(x, y) ∈ ρ}. For x 6∈ X we define xρ = ∅. The converse of a binary relation
ρ ⊆ X × Y is the relation ρ−1 = {(y, x) : (x, y) ∈ ρ} ⊆ Y × X . The set
yρ−1 = {x ∈ X : (x, y) ∈ ρ} is called the preimage of y under ρ. Elements of
this set are callled preimages of y; for example, if x ∈ yρ−1 we say that x is a
preimage of y.

If we write P(S) for the power set of a set S (that is, the set of all subsets
of S), then we can view ρ as a map ρ : X → P(Y). We may also extend ρ by

union to a map ρ : P(X) → P(Y) as follows: for S ⊆ X , we define

Sρ =
⋃

s∈S

sρ.

We thus have two ways to make sense of an expression like xρτ : it is the image
of x under the composite relation ρτ ⊆ X × Z, and it is also the image of the
set xρ ⊆ Y under the map τ : P(Y) → P(Z). Additionally, we have a way
to make sense of a composition ρτ : X → P(Z) of maps ρ : X → P(Y) and
τ : Y → P(Z): take the composition of the corresponding relations.

3

A function f : X → Y is a binary relation f ⊆ X × Y such that |xf | = 1
for all x ∈ X . Following our notation for binary relations, we write functions to
the right of their arguments. Composition of functions is defined by composing
the corresponding relations. Thus the order of composition is left-to-right ; in a
composition fg, first f is applied and then g.

A transformation of a set X is a function t : X → X , that is, a function from
X into itself. We say t is a permutation of X if Xt = X . We say t acts as a

permutation on S ⊆ X if St = S. If t acts as a permutation on S, then every
element of S has at least one preimage under t, that is, for all s ∈ S, the set
st−1 = {x ∈ X : xt = s} is non-empty.

A cyclic permutation of a set {x1, . . . , xk} ⊆ X is a permutation p such that
xip = xi+1 for 1 ≤ i < k, xkp = x1, and xp = x for all x ∈ X \ {x1, . . . , xk}.
We denote such a permutation as (x1, . . . , xk). A cyclic permutation of a two-
element set is called a transposition. The identity transformation is denoted
id.

The notation (S → x) for S ⊆ X and x ∈ X denotes a transformation that
sends every element of S to x and fixes every element of S \X . For example,
({i} → j) denotes a transformation that maps i to j and fixes everything else.
The transformation (X → x) is a constant transformation that maps every
element of X to x.

In the case where X = {1, 2, . . . , n}, the notation (jix → x + 1) denotes
a transformation such that for each x with i ≤ x ≤ j, the transformation
sends x to x + 1, and every other x is fixed. For example, the transformation
(n−1
2 x → x + 1) fixes 1, sends x to x + 1 for 2 ≤ x ≤ n − 1, and fixes n. The

notation (jix → x− 1) is defined similarly.

2.2 Automata

A finite automaton (FA) is a tuple A = (Q,Σ, T, I, F) where Q is a finite set of
states, Σ is a finite set of letters called an alphabet, T ⊆ Q × Σ ×Q is a set of
transitions, I ⊆ Q is a set of initial states, and F ⊆ Q is a set of final states.

We now define a binary relation Tw ⊆ Q × Q for each w ∈ Σ∗. Define
Tε = {(q, q) : q ∈ Q}; in terms of maps, this is the identity map on Q. For
a ∈ Σ, define Ta = {(p, q) ∈ Q × Q : (p, a, q) ∈ T }. For w = a1 · · · ak with
a1, . . . , ak ∈ Σ, define Tw = Ta1

· · ·Tak
. The relation Tw is called the relation

induced by w. The set {Tw : w ∈ Σ∗} is a monoid under composition, called the
transition monoid of A. For technical reasons, if w is a word but is not a word
over Σ, we define Tw to be the empty relation: qTw = ∅ for all q ∈ Q.

Observe that the set of transitions of an FA is determined by the relations
Ta. Furthermore, each relation Ta is determined by the set of images qTa, where
q ∈ Q. Hence we often define the transitions of an FA by specifying the images
qTa for each q ∈ Q and a ∈ Σ.

If A = (Q,Σ, T, I, F) is a finite automaton such that |I| = 1 and Ta is a
function for each a ∈ Σ, we say A is deterministic. We abbreviate “deterministic
finite automaton” to DFA.

4

Let A = (Q,Σ, T, I, F) be an FA. A word w ∈ Σ∗ is accepted by A if
we have ITw ∩ F 6= ∅. If A is a DFA with I = {i}, this condition becomes
iTw ∈ F . The language of A, denoted L(A), is the set of all words it ac-
cepts. Languages of FAs are called regular languages. A sequence of transitions
(q0, a1, q1), (q1, a2, q2) . . . , (qk−1, ak, qk) with w = a1 · · · ak is called a path from
q0 to qk with label w, and the path is accepting if q0 ∈ I and qk ∈ F . The FA
A accepts a word w if and only if there is an accepting path with label w. We
write p

w
−→ q to mean that there is a path from p to q with label w.

Given two regular languages L and K with DFAs A = (QA,ΣA, TA, iA, FA)
and B = (QB,ΣB, TB, iB, FB), we may construct an FA AB = (Q,Σ, T, I, F)
that accepts the concatenation LK as follows:

• Q = QA ∪QB. We assume without loss of generality that QA ∩QB = ∅.

• Σ = ΣA ∪ ΣB.

• T = TA ∪ TB ∪ {(q, a, iB) : qTA
a ∈ FA, a ∈ ΣA}.

• I = {iA} if iA 6∈ FA, and otherwise let I = {iA, iB}.

• F = FB.

Proposition 1. The FA AB accepts the concatenation LK.

Proof. Suppose w ∈ LK; we want to show that w is accepted by AB. We can
write w = uv with u ∈ L and v ∈ K. There are two cases: u can be empty or
non-empty. If u = ε then ε ∈ L, so iA ∈ FA. Thus I = {iA, iB}. It follows that
ITv ⊇ iBTv ∋ iBTB

v , which is final since v ∈ K. If u 6= ε we can write u = xa

for some word x and letter a. Then ITxa ⊇ iATA
xa, which contains an element

of FA since xa ∈ L. It follows that ITx ⊇ iATA
x contains some state q such

that qTA
a ∈ FA. Thus ITxa ⊇ qTa ∋ iB, and so ITxav = ITw ∋ iBTB

v , which is
final since v ∈ K.

Conversely, let w be accepted by AB. Choose an accepting path for w.
There are two cases: either this accepting path starts from iB, or it contains
exactly one transition leading from a state of QA to iB. In the first case we
must have I = {iA, iB}, and so iA ∈ FA. This means ε ∈ L. If an accepting
path starts from iB, all transitions on the path must belong to TB. Thus we
have iBTB

w ∈ FB. It follows that w ∈ K, and so w ∈ LK. In the second case,
where the path contains exactly one transition from QA to iB, note that this
transition must be of the form (q, a, iB) where qTA

a ∈ FA. Note also that every
transition before this one lies in TA, and every transition after lies in TB. Write
w = uav; then iATA

ua = qTA
a ∈ FA, so ua ∈ L. Also, iBTB

v must be final, or our
path would not be accepting. Thus v ∈ K, and uav = w ∈ LK.

We are interested in the deterministic state complexity of concatenation, so
we convert the FA AB = (Q,Σ, T, I, F) to a DFA recognizing the same language.
The DFA we use is C = (P(Q),Σ, T, I, F0), where S ⊆ Q is in F0 if S ∩ F 6= ∅.
Since each relation Ta can be viewed as a function from P(Q) to itself, and
there is a unique initial state I ∈ P(Q), this automaton is indeed deterministic.

5

Since ITw ∈ F0 if and only if ITw ∩ F 6= ∅, we see that C recognizes the same
language as AB. We call C the concatenation DFA for A and B.

We make some observations and introduce some conventions to make it easier
to work with the concatenation DFA.

• Since we are assuming A and B are DFAs, the only reachable states in
C have the form SA ∪ SB, where SA ⊆ QA, SB ⊆ QB, and |SA| ≤ 1.
Without loss of generality, we can assume the state set of C consists of
states of this form, rather than all of P(Q).

• We mark the states of A with primes so they can be distinguished from
the states of B. So a variable named p or q generally means a element of
QB, while p′ or q′ means an element of QA.

• We identify the set SA∪SB with the ordered pair (SA, SB). Hence we can
view the states of C as these ordered pairs. Reachable states are either of
the form (∅, S) or ({q′}, S) with q′ ∈ QA, S ⊆ QB.

• For convenience, we frequently make no distinction between singleton sets
and the elements they contain, and so write (q′, S) rather than ({q′}, S).

• Rather than Tw, TA
w and TB

w , we simply write w when it is clear from
context which relation is meant. For example, (q′, S)w means (q′, S)Tw

since (q′, S) is a state of C, and thus Tw is the natural relation to apply.
From our convention for marking the states of A and B with primes, one
can infer that q′w means q′TA

w and qw means qTB
w .

• Rather than iA and iB, let 1′ denote the initial state of A and let 1 denote
the initial state of B. We also assume without loss of generality that
QA = {1′, 2′, . . . ,m′} and QB = {1, 2, . . . , n} for some m and n.

Under these conventions, the transitions of C can be described as follows:

(q′, S)a =

(∅, Sa), if a ∈ ΣB \ ΣA;

(q′a, ∅), if a ∈ ΣA \ ΣB and q′a 6∈ FA;

(q′a, 1), if a ∈ ΣA \ ΣB and q′a ∈ FA;

(q′a, Sa), if a ∈ ΣA ∩ ΣB and q′a 6∈ FA;

(q′a, Sa ∪ 1), if a ∈ ΣA ∩ ΣB and q′a ∈ FA.

Recall that TA
w is the empty relation if w is not a word over ΣA, and similarly

for B. Thus the transitions admit a simpler description:

(q′, S)a =

{

(q′a, Sa ∪ 1), if a ∈ ΣA and q′a ∈ FA;

(q′a, Sa), otherwise.

6

2.3 State Complexity

We say a DFA A is minimal if it has the least number of states among all DFAs
that recognize L(A). It is well known that each regular language has a unique
minimal DFA (up to renamings of the states). The state complexity of a regular
language L, denoted sc(L), is the number of states in its minimal DFA.

There is a subtlety in this definition, arising from the fact that there are two
common ways to define equality of functions. One way is to say that functions
are simply certain sets of ordered pairs, and are equal if they are equal as sets.
The other way is to say that functions are triples (f,D,C), where D is the
domain of the function and C is the codomain, and thus two functions are equal
if they are equal as sets and have the same domain and codomain. Since words
over alphabets are formally defined as functions, the first viewpoint implies
that two words over distinct alphabets can be equal, while the second viewpoint
implies two words over distinct alphabets are always distinct. We call the first
viewpoint the unrestricted viewpoint, and the second the restricted viewpoint,
since the second viewpoint has more restrictive conditions for function equality.

Now, consider how this affects the state complexity of the language L = {a}∗

over alphabet {a, b}. The smallest DFA with alphabet {a, b} that recognizes L

has two states; a second state is necessary to exclude the words that contain
b. Thus in the restricted viewpoint, the state complexity of L is two. But in
the unrestricted viewpoint, L is equal to the language {a}∗ over alphabet {a},
which is recognized by a one-state DFA; thus the state complexity of L is one.

The following characterization of minimality is useful. Let D = (Q,Σ, T, i, F)
be a DFA. A state q ∈ Q is reachable if iw = q. For p, q ∈ Q, we say q is reach-

able from p if pw = q. Two states p, q ∈ Q are indistinguishable if they are
equivalent under the following equivalence relation: p ∼ q if for all w ∈ Σ∗,
we have pw ∈ F ⇐⇒ qw ∈ F . Otherwise they are distinguishable by some
word w such that pw ∈ F ⇐⇒ qw 6∈ F . In the restricted viewpoint, a DFA is
minimal if and only if all of its states are reachable and pairwise distinguishable.
In the unrestricted viewpoint, we also require that the DFA has an alphabet of
minimal size.

Let ◦ be a binary operation on regular languages. The state complexity of

the operation ◦ is the following function, where m and n are positive integers:

(m,n) 7→ max{sc(L ◦K) : sc(L) ≤ m, sc(K) ≤ n}.

This is the worst-case state complexity of the result of the operation, expressed
as a function of the maximal allowed state complexities of the input languages.
As with state complexity of languages, this definition differs depending on
whether we adopt the restricted or unrestricted viewpoint, but the consequences
are farther-reaching.

In the restricted viewpoint, we must assume that the inputs to the binary
operation are languages over a common alphabet. The restricted viewpoint con-
siders words over different alphabets to be always distinct, so it generally does
not make sense to perform binary operations on languages over different alpha-
bets. For example, if we take the language L = {ab} over alphabet {a, b}, and

7

the language K = {ab} over alphabet {a, b, c}, the union L ∪ K contains two
distinct elements both representing the word ab. This set L ∪ K is arguably
not a language at all, since it cannot be written as a set of words over a sin-
gle alphabet. Thus when computing the restricted state complexity of binary
operations, we only consider inputs with the same alphabet.

In the unrestricted viewpoint, there is no issue in allowing the input lan-
guages to have different alphabets. Thus when computing the unrestricted state

complexity of binary operations, we consider all possible inputs to the opera-
tion, including pairs of languages with different alphabets. Allowing for dif-
ferent alphabets makes unrestricted state complexity slightly more complicated
to compute. In fact, for many years, papers on operational state complexity
only considered restricted state complexity. Unrestricted state complexity was
first studied by Brzozowski [2] in 2016, who pointed out that the restriction to
common alphabets is artificial and can be removed.

Let us derive an upper bound for the restricted and unrestricted state com-
plexities of the concatenation operation. We begin with two DFAs A and B
that have m and n states respectively. The number of reachable states in the
concatenation DFA C for A and B gives an upper bound for the state complex-
ity of L(A)L(B). Recall that reachable states have the form (SA, SB), where
SA ⊆ QA, SB ⊆ QB and |SA| ≤ 1. Since |QA| = m, there are m + 1 possible
values for SA (each of the singletons and the empty set). Since |QB| = n, there
are 2n possible values for SB. However, if SA = {f} for a final state f ∈ FA, the
transition structure of C tells us that we must have 1 ∈ SB. Thus if |FA| = k,
then there are at most (m+ 1− k)2n states with a non-final state or the empty
set in the first component, and k2n−1 states with a final state in the first com-
ponent. It follows there are at most (m + 1 − k)2n + k2n−1 reachable states in
C. This is maximized by taking k = 1, giving an upper bound of m2n + 2n−1

in the unrestricted case. For the restricted case, note that we cannot get the
empty set in the first component, since this requires using a letter in ΣB \ ΣA.
Thus we get an upper bound of (m− 1)2n + 2n−1 in the restricted case. We will
see later that both of these bounds are tight.

3 Results

Let A = (QA,ΣA, TA, 1′, FA) and B = (QB,ΣB, TB, 1, FB) be DFAs, with
QA = {1′, 2′, . . . ,m′} and QB = {1, 2, . . . , n} for positive integers m and n.
Let C = (Q,Σ, T, I, F) denote the concatenation DFA of A and B as defined in
Section 2.2.

Remark. Let p′, q′ ∈ QA, let X,Y, Z ⊆ QB, and let w ∈ Σ∗. Then:

In C, if (p′, X)w = (q′, Y), then (p′, X ∪ Z)w = (q′, Y ∪ Zw).

Indeed, recall that the pair (p′, X) stands for the set {p′}∪X . Thus ({p′}∪
X)w = {p′w} ∪Xw = {q′} ∪ Y . It follows that p′w = q′ and Xw = Y . Hence
({p′}∪X∪Z)w = {p′w}∪Xw∪Zw = {q′}∪Y ∪Zw, which in our pair notation
is (q′, Y ∪ Zw). We will readily use this basic fact in proofs.

8

Before stating our main result formally, we give some motivating exposition.
Fix a state s′ ∈ QA and a subset B of QB. The state s′ is called the focus state

or simply focus ; it is often taken to be the initial state 1′ but in general can
be any state. The subset B is called the base. Fix a set T with B ⊆ T ⊆ QB,
called the target. Our goal is to give sufficient conditions under which starting
from (s′, B), we can reach (s′, S) for all sets S with B ⊆ S ⊆ T . That is, we
can reach any state of the concatenation DFA C in which the first component
is the focus and the second component lies between the base and the target.

The idea is to first assume we can reach (s′, B), the state consisting of the
focus and the base. Now, for q ∈ Q, define a q-word to be a word w such that
(s′, B)w = (s′, B ∪ q). We can think of this as a word that “adds” the state q to
the base B. Our next assumption is that we have a q-word for each state q in
the target T . To reach a set S with B ⊆ S ⊆ T , we will repeatedly use q-words
to add each missing element of S to the base B.

There is a problem with this idea, which we illustrate with an example.
Suppose wp is a p-word and wq is a q-word, and we want to reach (s′, B∪{p, q}).
Starting from (s′, B) we may apply wp to reach (s′, B∪p). But now if we apply
wq, we reach (s′, B ∪ {pwq, q}). There is no guarantee that we have pwq = p,
and in many cases we will not. What we should really do is find a state r such
that rwq = p, use an r-word to reach (s′, B ∪ r), and then apply wq to reach
(s′, B ∪ {p, q}). But this idea only works if p has a preimage under wq, which
may not be the case.

We resolve this by making a technical assumption, which ensures that preim-
ages will always exist when we attempt constructions like the above. First, define
a construction set for the target T to be a set of words consisting of exactly one
q-word for each q ∈ T . If W is a construction set for T , we write W [q] for the
unique q-word in W .

We say a construction set is complete if there is a total order ≺ on the target
T such that for all p, q ∈ T with p ≺ q, the state q has at least one preimage
under the unique p-word W [p], and at least one of these preimages lies in T .
More formally, whenever p ≺ q, the set qW [p]−1 = {s ∈ QB : sW [p] = q}
intersects T non-trivially. Our final assumption is that we have a complete
construction set for T .

Note that the definition of a q-word depends not only on q, but also on
s′ and B. Since a construction set for T is a set of q-words, the definition
of construction set also depends on s′ and B. For simplicity, we omit this
dependence on s′ and B from the notation for q-words and construction sets.

We summarize the definitions that have just been introduced:

• Fix a state s′ ∈ QA, called the focus, and a set B ⊆ QB called the base.

• For q ∈ QB, a q-word is a word w such that (s′, B)w = (s′, B ∪ q).

• Given a target set T with B ⊆ T ⊆ QB, a construction set for T is a set
of words that contains exactly one q-word for each q ∈ T .

• The unique q-word in a construction set W is denoted by W [q].

9

• A construction set for T is complete if there exists a total order ≺ on T

such that for all p, q ∈ T with p ≺ q, we have

qW [p]−1 ∩ T = {s ∈ QB : sW [p] = q} ∩ T 6= ∅.

Now, we state our main theorem, which gives the formal version of the
construction described above.

Theorem 1. Fix a state s′ ∈ QA and sets B ⊆ T ⊆ QB. If there is a complete

construction set for T , then all states of the form (s′, S) with B ⊆ S ⊆ T are

reachable from (s′, B) in C. In particular, if (s′, B) itself is reachable, then all

states (s′, S) with B ⊆ S ⊆ T are reachable.

Proof. Note that if B ⊆ S ⊆ T , we can write S = R ∪ B with R ∩ B = ∅ and
R ⊆ T . Thus it suffices to show that all states of the form (s′, R ∪ B) with
R ∩B = ∅ and R ⊆ T are reachable from (s′, B). We proceed by induction on
|R|. When |R| = 0, the only state of this form is (s′, B) itself.

Now suppose every state (s′, R∪B) with R∩B = ∅, R ⊆ T and 0 ≤ |R| < k

is reachable from (s′, B). We want to show this also holds for |R| = k. Let
W be a complete construction set for T and let ≺ be the corresponding total
order on T . Let p be the minimal element of R under ≺. Let w be W [p], the
unique p-word in W . For all q ∈ R \ p, we have p ≺ q and thus qw−1 contains
an element of T (since W is complete).

Construct sets X and Y as follows: starting with X = ∅, for each q ∈ R \ p,
choose an element of qw−1 ∩ T and add it to X . Then set Y = X \B. Observe
that X is a subset of T of size |R \ p| = k − 1. Hence Y is a subset of T of
size at most k − 1 such that Y ∩B = ∅. It follows by the induction hypothesis
that (s′, Y ∪ B) is reachable from (s′, B). But Y ∪ B = X ∪ B, so (s′, X ∪ B)
is reachable from (s′, B). By the definition of X , we have Xw = R \ p. Since w

is a p-word, we have (s′, B)w = (s′, B ∪ p), and thus

(s′, X ∪B)w = (s′, Xw ∪B ∪ p) = (s′, (R \ p) ∪B ∪ p) = (s′, R ∪B).

Hence (s′, R ∪B) is reachable from (s′, B), as required.

The definition of completeness is somewhat complicated, which makes it
difficult to use Theorem 1. Thus, we next prove some results giving useful
sufficient conditions for a construction set to be complete. Before stating our
first such result, we introduce some notation.

Define Σ0 = ΣA ∩ ΣB. We call Σ0 the shared alphabet of A and B. The
following remark shows that when ΣA 6= ΣB, it is important to work exclu-
sively with the shared alphabet when looking for complete construction sets.
Of course, if ΣA = ΣB then the shared alphabet is just the common alphabet
of both automata, and there is nothing to worry about.

Remark. A construction set for a non-empty target cannot be complete unless
it is a subset of Σ∗

0. To see this, suppose W is a construction set and let w ∈ W .
If w contains a letter from ΣA \ΣB, then w is not a word over ΣB. Recall that if

10

w is not a word over ΣB, then TB
w is defined to be the empty relation. Thus the

converse relation (TB
w)−1 is also empty, which means qw−1 is empty for all q. It

follows W cannot be complete. On the other hand, suppose w contains a letter
from ΣB \ΣA. Then (s′, B)w = (∅, Bw). Hence w is not a q-word for any q, and
so w cannot be an element of a construction set, which is a contradiction. It
follows that all words in a complete construction set are words over the shared
alphabet Σ0.

Lemma 1. Fix s′ ∈ QA and sets B ⊆ T ⊆ QB. Let x1, . . . , xj be words over Σ0

that act as permutations on T , and let y be an arbitrary word over Σ0. Choose

x0 ∈ {ε, x1, . . . , xj}. Define

W = {x1, x2, . . . , xj} ∪ {x0y, x0y
2, . . . , x0y

k}.

If W is a construction set for T , then it is complete.

Proof. For 1 ≤ i ≤ j, let wi = xi. For 1 ≤ i ≤ k, let wj+i = x0y
i. Let

ℓ = j + k. Then we have W = {w1, . . . , wℓ}. Let qi be the state in T such that
(s′, B)wi = (s′, B ∪ qi). Define an order ≺ on T so that q1 ≺ q2 ≺ · · · ≺ qℓ. We
claim this order makes W complete. Notice that wr = W [qr], the unique qr-word
in W . Thus we must show that whenever qr ≺ qs, we have qsw

−1
r ∩ T 6= ∅.

Suppose r < s and r ≤ j. Then wr = xr acts as a permutation on T . Thus
qsw

−1
r ∩ T is non-empty, since qs ∈ T .
Suppose r < s and r > j. Since s − r > 0, we can write ws = x0y

s−j =
x0y

s−ryr−j = wj+s−ry
r−j. Thus (s′, B)ws = (s′, B∪qj+s−r)yr−j = (s′, B∪qs).

There are two possibilities: qj+s−ry
r−j = qs, or qyr−j = qs for some q ∈ B.

In either case, qs(y
r−j)−1 ∩ T is non-empty. That is, there exists q ∈ T

such that qyr−j = qs. Since x0 acts as a permutation on T , there exists p ∈ T

such that px0 = q. Thus px0y
r−j = pwr = qs. It follows that qsw

−1
r ∩ T is

non-empty, as required.

Usually, we will use one of the following corollaries instead of Lemma 1 itself.

Corollary 1. Fix s′ ∈ QA and sets B ⊆ T ⊆ QB. Let x and y be words over

Σ0 such that x acts as a permutation on T . Suppose W is one of the following

sets:

1. {y, y2, . . . , yk}.

2. {ε, y, y2, . . . , yk}.

3. {x, xy, xy2, . . . , xyk}.

4. {ε, x, xy, xy2, . . . , xyk}.

If W is a construction set for T , then it is complete.

Proof. All statements follow easily from Lemma 1:

1. Set j = 0.

11

2. Set j = 1 and x0 = x1 = ε.

3. Set j = 1 and x0 = x1 = x.

4. Set j = 2, x1 = ε and x0 = x2 = x.

Corollary 2. Fix s′ ∈ QA and sets B ⊆ T ⊆ QB. Let W ⊆ Σ∗
0 be a construction

set for T .

1. If every word in W acts as a permutation on T , then W is complete.

2. If there is a word w ∈ W such that every word in W \w acts as a permu-

tation on T , then W is complete.

Proof. Both statements follow easily from Lemma 1:

1. Set k = 0 in Lemma 1.

2. Set k = 1, x0 = ε and y = w in Lemma 1.

In the special case where W contains ε, Corollary 2 admits the following
generalization, which we found occasionally useful.

Lemma 2. Fix s′ ∈ QA and sets B ⊆ T ⊆ QB. Let W = {ε, w1, . . . , wk} be a

construction set for T , where w1, . . . , wk are non-empty words over Σ0. Suppose

that for every word w ∈ W , there exists a set S with T \ B ⊆ S ⊆ T such that

w acts as a permutation on S. Then W is complete.

Proof. Write B = {q1, . . . , qj}. Note that ε is a qi-word for 1 ≤ i ≤ j. Thus
by the definition of a construction set, ε is the unique qi-word in W for each
qi ∈ B, that is, W [qi] = ε for 1 ≤ i ≤ j. In particular, each non-empty word
in W is a q-word for some q ∈ T \ B. For 1 ≤ i ≤ k, let qj+i be the state such
that (s′, B)wi = (s′, B ∪ qj+i). Then T = {q1, . . . , qj+k}. Note that W [qi] = ε

if 1 ≤ i ≤ j, and W [qi] = wi−j if j + 1 ≤ i ≤ j + k.
Define an order ≺ on T by q1 ≺ q2 ≺ · · · ≺ qj+k. We claim this order

makes W complete. Choose qr, qs ∈ T with qr ≺ qs; we want to show that
qsW [qr]−1 ∩ T 6= ∅. Suppose qr ∈ B. Then W [qr] = ε, and we have qsε

−1 ∩ T

non-empty as required. Now if qr 6∈ B, then since qr ≺ qs we also have qs 6∈ B.
In this case, W [qr] = wr−j , which acts as a permutation on some superset S

of T \ B. Since qs ∈ T \ B, it follows that qs has a preimage under wr−j , and
furthermore this preimage lies in T , since S is a subset of T . Thus qsw

−1
r−j∩T 6= ∅

as required. This proves that W is complete.

Note that all words referred to in the above lemmas and corollaries are
words over Σ0, the shared alphabet of A and B. When working with automata
that have different alphabets, it is important to only use words over the shared
alphabet when trying to find a complete construction set.

The following “master theorem” summarizes all the results of this section.
We have attempted to state this theorem in a form such that it can be cited
without having to first define all the notions introduced in this section, such as
q-words and construction sets and completeness.

12

Theorem 2. Let A = (QA,ΣA, TA, iA, FA) and B = (QB,ΣB, TB, iB, FB) be

DFAs. Let C = (Q,Σ, T, I, F) denote the concatenation DFA of A and B, as
defined in Section 2.2. Let Σ0 = ΣA ∩ ΣB.

Fix a state s′ ∈ QA and sets B ⊆ T ⊆ QB. Suppose that for each q ∈ T ,

there exists a word wq ∈ Σ∗
0 such that (s′, B)

wq

−→ (s′, B ∪ q) in C. Let W =
{wq : q ∈ T }. Suppose that one of the following conditions holds:

1. There exist words x, y ∈ Σ∗
0, where x acts as a permutation on T , such

that W can be written in one of the following forms:

• W = {y, y2, . . . , yk}.

• W = {ε, y, y2, . . . , yk}.

• W = {x, xy, xy2, . . . , xyk}.

• W = {ε, x, xy, xy2, . . . , xyk}.

2. Every word in W acts as a permutation on T .

3. There exists w ∈ W such that every word in W \w acts as a permutation

on T .

4. W contains ε, and for every non-empty word w ∈ W , there exists a set S

such that T \B ⊆ S ⊆ T and w acts as a permutation on S.

5. There exists a total order ≺ on T such that for all p, q ∈ T with p ≺ q,

the set qw−1
p = {s ∈ QB : s

wp

−→ q} contains an element of T .

If one of the above conditions holds, then every state of the form (s′, X) with

B ⊆ X ⊆ T is reachable from (s′, B) in C.

4 Examples

We now demonstrate our technique by applying it to various concatenation
witnesses from the literature.

Theorem 3 (Regular Language Witness. Brzozowski and Sinnamon, 2017 [9]).
Let t : QA → QA be a transformation such that j′t = 1′. Define A and B as

follows:
a b Final States

A : (1′, . . . ,m′) t {m′}
B : (1, . . . , n) (2 → 1) {n}

If gcd(j−1, n) = 1, then C has (m−1)2n +2n−1 reachable states. In particular,

transformations t with 2′t = 1′ work for all m and n.

The authors of [9] proved this result with t = (1′, 2′), but we prove a slightly
more general statement.

13

Proof. The initial state of C is (1′, ∅). Set x = am and y = aj−1b. We have

(1′, ∅)
x

−→ (1′, 2)
yk

−→ (1′, 2 + k(j − 1)).

(Addition in the second component is performed modulo n.) Since j−1 and n are
coprime, it follows from elementary number theory that W = {x, xy, . . . , xyn−1}
is a construction set for QB (with s′ = 1′ and B = ∅). By Corollary 1, it is
complete. Hence (1′, S) is reachable for all S ⊆ QB. To reach (q′, S) for q′

non-final, first reach (1′, Sa−(q−1)) and then apply aq−1. To reach (m′, S ∪ 1)
for S ⊆ QB \ 1, first reach ((m− 1)′, Sa−1) and then apply a.

Note that the above theorem only gives conditions for (m − 1)2n + 2n−1

states to be reachable; it is not necessarily true that all the reachable states
are pairwise distinguishable. For example, if t is the constant transformation
(QA → 1′) then (p′, QB) and (q′, QB) are indistinguishable. However, in [9] the
authors take t to be the transposition (1′, 2′) and find that all reachable states
are pairwise distinguishable.

In the remainder of our examples, all of the states we show are reachable will
also be pairwise distinguishable. Since the focus of this paper is reachability, we
refer to the original authors for distinguishability proofs in most cases. In cases
where the original authors did not provide a distinguishability proof, we give a
brief argument for completeness.

The next example involves two DFAs with different alphabets: we have
ΣA = {a, b, c} and ΣB = {a, b, d}. Our construction set will consist of words
over the shared alphabet Σ0 = ΣA ∩ ΣB = {a, b}.

Theorem 4 (Regular Language Witness. Brzozowski, 2016 [2]). Define A and

B as follows:

a b c d Final States

A : (1′, . . . ,m′) (1′, 2′) (m′ → 1′) {m′}
B : (1, 2) (1, . . . , n) id {n}

Then C has m2n + 2n−1 reachable and pairwise distinguishable states.

Proof. The initial state is (1′, ∅). If n is odd, we have

(1′, ∅)
am

−→ (1′, 2)
bb
−→ (1′, 4)

bb
−→ · · ·

bb
−→ (1′, n− 1),

(1′, n− 1)
bb
−→ (1′, 1)

bb
−→ (1′, 3)

bb
−→ · · ·

bb
−→ (1′, n).

Thus {am, ambb, am(bb)2, . . . , am(bb)n−1} is a construction set for QB (with s′ =
1′ and B = ∅). By Corollary 1, it is complete (taking x = am and y = bb).

If n is even, we have

(1′, ∅)
am

−→ (1′, 2)
bb
−→ (1′, 4)

bb
−→ · · ·

bb
−→ (1′, n),

(1′, n)
ab
−→ (1′, 1)

bb
−→ (1′, 3)

bb
−→ · · ·

bb
−→ (1′, n− 1).

14

The words used to reach each state (1′, q) form a construction set for QB (with
s′ = 1 and B = ∅). We cannot use Corollary 1 to show it is complete (since
the appearance of ab breaks the pattern), but notice that all the words in the
construction set are words over {a, b}, and a and b both act as permutations on
QB. Thus all words in the construction set are permutations of QB, and so by
Corollary 2 it is complete.

In either case, we have a complete construction set for QB and so (1′, S) is
reachable for all S ⊆ QB. We can reach (q′, S) for q′ 6= m′ and (m′, S ∪ 1) by
words in a∗, as in Theorem 3. This gives (m − 1)2n + 2n−1 reachable states.
Additionally, from (q′, S) we can reach (∅, S) by d, for an extra 2n states.

For distinguishability of the reached states, see [2].

The main differences in reachability proofs between the different-alphabet
case (unrestricted state complexity) and the same-alphabet case (restricted state
complexity) are as follows:

• When looking for a complete construction set, we are restricted to using
words over the shared alphabet Σ0 = ΣA ∩ ΣB.

• Usually some additional states can be reached using letters in ΣA \ΣB or
ΣB \ ΣA, e.g., the states of the form (∅, S) in the previous example.

As these differences are not too significant, we will stick to the same-alphabet
case for the remainder of our examples.

Theorem 5 (Regular Language Witness. Brzozowski, 2013 [1]). Define A and

B as follows:

a b c Final States

A : (1′, . . . ,m′) (1′, 2′) (m′ → 1′) {m′}
B : (1, . . . , n) (1, 2) (n → 1) {n}

Then C has (m− 1)2n + 2n−1 reachable and pairwise distinguishable states.

Proof. The initial state of C is (1′, ∅). For 0 ≤ k ≤ n− 2 we have

(1′, ∅)
am

−→ (1′, 2)
(ab)k

−→ (1′, 2 + k).

Also, (1′, n)
c

−→ (1′, 1). Thus {am, amab, am(ab)2, . . . , am(ab)n−2, am(ab)n−2c}
is a construction set for QB (with s′ = 1′ and B = ∅).

This construction set does not quite have the right form to apply Corollary
1, due to the last word am(ab)n−2c. However, notice that all words in W except
for am(ab)n−2c are in fact permutations of QB, so Corollary 2 shows that W is
complete. Hence all states (1′, S) with S ⊆ QB are reachable. We can reach
(q′, S) for q′ 6= m′ and (m′, S ∪ 1) by words in a∗, as in Theorem 3.

For distinguishability of the reached states, see [1].

15

Theorem 6 (Regular Language Witness. Yu, Zhuang and Salomaa, 1994 [19]).
Define A and B as follows:

a b c Final States

A : (1′, . . . ,m′) (QA → 1′) id {m′}
B : id (1, . . . , n) (QB → 2) {n}

Then C has (m− 1)2n + 2n−1 reachable and pairwise distinguishable states.

Proof. The initial state of C is (1′, ∅). For k ≤ n−2 we have (1′, ∅)
am

−→ (1′, 2)
bk

−→

(1′, 2 + k), and (1′, n)
b

−→ (1′, 1). It follows that {am, amb, . . . , abn−1} is a
construction set for QB (with s′ = 1′ and B = ∅). By Corollary 1, it is complete
(taking x = am and y = b). Hence all states (1′, S) with S ⊆ QB are reachable.
We can reach (q′, S) for q′ 6= m′ and (m′, S ∪ 1) by words in a∗.

Let (p′, S) and (q′, T) be distinct states of C. If S 6= T , let r be a state in the
symmetric difference of S and T . Then bn−r distinguishes the states. If S = T

and p′ < q′, then cam−qbn−2 distinguishes the states.

Theorem 7 (Regular Language Witness. Maslov, 1970 [15]). Define A and B
as follows:

a b Final States

A : (1′, . . . ,m′) id {m′}
B : (n− 1, n) (n−1

1 q → q + 1) {n}

Then C has (m− 1)2n + 2n−1 reachable and pairwise distinguishable states.

Proof. The initial state is (1′, ∅). We have

(1′, ∅)
am

−→ (1′, 1)
bk

−→ (1′, 1 + k).

Thus {am, amb, amb2, . . . , ambn−1} is a construction set for QB (with s′ = 1′

and B = ∅). By Corollary 1, it is complete. Hence (1′, S) is reachable for all
S ⊆ QB. We can reach (q′, S) for q′ 6= m′ and (m′, S ∪ 1) by words in a∗, as in
Theorem 3.

Let (p′, S) and (q′, T) be distinct states of C. If S 6= T , let r be a state in
the symmetric difference of S and T . Then bn−r distinguishes the states. If
S = T and p′ < q′, by bn we reach (p′, n) and (q′, n). Then by am−q we reach
((p + m − q)′, nam−q) and (m′, nam−q ∪ 1). These states differ in their second
component, so they are distinguishable.

Theorem 8 (Star-Free Witness. Brzozowski and Liu, 2012 [7]). Define A and

B as follows:

a b c d

A : (m−1
1 q′ → (q + 1)′) (m2 q′ → (q − 1)′) id (QA → m′)

B : (n−1
2 q → q + 1) id (n−1

1 q → q + 1) (n2 q → q − 1)

and let FA = {m′} and FB = {n− 1}. Then C has (m− 1)2n + 2n−1 reachable

and pairwise distinguishable states.

16

Proof. The initial state is (1′, ∅). We have

(1′, ∅)
am

−→ (m′, 1)
ck

−→ (m′, {1, 1 + k}).

Hence {ε, c, c2, . . . , cn−1} is a construction set for QB (with s′ = m′ and B =
{1}). By Corollary 1, it is complete. Thus (m′, S∪1) is reachable for all S ⊆ QB.

To reach (q′, S) for non-final q′ ∈ QA and S ⊆ QB, proceed as follows. If
1 ∈ S, first reach (m′, S ∪ 1) then apply bm−q. If 1 6∈ S, let i be the smallest
element of S. Set T = {q − (i − 1) : q ∈ S \ i} and reach (m′, T ∪ 1). Then

(m′, T ∪ 1)
bm−q

−→ (q′, T ∪ 1)
ci−1

−→ (q′, (S \ i) ∪ i) = (q′, S).
For distinguishability of the reached states, see [7].

Theorem 9 (Non-Returning Witness. Brzozowski and Davies, 2017 [3]). Define

A and B as follows:

a b Final States

A : (2′, . . . ,m′)(1′ → 2′) (2′, 3′)(1′ → 3′) {m′}
B : (2, . . . , n)(1 → 2) (3, . . . , n)(2 → 3)(1 → 2) {n}

Then C has (m− 1)2n−1 + 1 reachable and pairwise distinguishable states.

Proof. The initial state is (1′, ∅). Let x = am−1 and y = ab. If n is even,

(1′, ∅)
a

−→ (2′, ∅)
x

−→ (2′, 2)
y

−→ (2′, 4)
y

−→ (2′, 6)
y

−→ · · ·
y

−→ (2′, n),

(2′, n)
y

−→ (2′, 3)
y

−→ (2′, 5)
y

−→ · · ·
y

−→ (2′, n− 1).

If n is odd,

(1′, ∅)
a

−→ (2′, ∅)
x

−→ (2′, 2)
y

−→ (2′, 4)
y

−→ (2′, 6)
y

−→ · · ·
y

−→ (2′, n− 1),

(2′, n− 1)
y

−→ (2′, 3)
y

−→ (2′, 5)
y

−→ · · ·
y

−→ (2′, n).

In both cases, Corollary 1 implies that {x, xy, . . . , xyn−2} is a complete con-
struction set for QB \ 1 (with s′ = 2′ and B = ∅). It follows that (2′, S) is
reachable for all S ⊆ QB \ 1. This gives 2n−1 reachable states.

To reach (q′, S) for non-final q′ ∈ QA \ 1 and S ⊆ QB \ 1, note that a acts as
a permutation on QB \ 1, and so there exists T ⊆ QB \ 1 such that Taq−2 = S.
Thus we can first reach (2′, T) and then apply aq−2. To reach (m′, S ∪ 1) for
S ⊆ QB \ 1, reach ((m− 1)′, T) where Ta = S and apply a. Counting the initial
state (1, ∅), we get (m− 1)2n−1 + 1 reachable states.

For distinguishability of the reached states, see [3].

Theorem 10 (Non-Returning Witness. Eom, Han and Jirásková, 2016 [11]).
Define A and B as follows:

a b c

A : (2′, . . . ,m′)(1′ → 2′) (1′ → 2′) (1′ → 2′)
B : (1 → 2) (2, . . . , n)(1 → 2) (n−1

3 q → q + 1)(1 → 2)(n → 2)

and let FA = {m′} and FB = {n}. Then C has (m− 1)2n−1 + 1 reachable and

pairwise distinguishable states.

17

Proof. The initial state is (1′, ∅). We have

(1′, ∅)
a

−→ (2′, ∅)
am−1

−→ (2′, 2)
bk

−→ (2′, 2 + k).

Hence by Corollary 1, {am−1, am−1b, . . . , am−1bn−2} is a complete construction
set for QB \ 1 (with s′ = 2′ and B = ∅). It follows that (2′, S) is reachable for
all S ⊆ QB \ 1. To reach (q′, S) for q′ non-final, reach (2′, S) and apply aq−2.
For (m′, S ∪ 1), reach ((m− 1)′, S) and apply a.

For distinguishability of the reached states, see [11].

Theorem 11 (Prefix-Closed Witness. Brzozowski, Jirásková and Zou, 2014 [6]).
Define A and B as follows:

a b c Final States

A : id id (m−1
1 q′ → (q + 1)′) {1′, . . . , (m− 1)′}

B : (1, . . . , n− 1) (n−1
2 q → q + 1) id {1, . . . , n− 1}

Then C has (m + 1)2n−2 reachable and pairwise distinguishable states.

Proof. The initial state is (1′, 1). For k ≤ n−2 we have (1′, 1)
ak

−→ (1′, {1, 1+k}).
Thus by Corollary 1 the set {ε, a, a2, . . . , an−2} is a complete construction set
for QB \ n, with s′ = 1′ and B = {1}. Hence (1′, S ∪ 1) is reachable for each
S ⊆ QB \n. From (1′, S∪1) with S ⊆ QB \n, we reach (q′, S ∪1) for 2 ≤ q ≤ m

by cq−1. This gives m2n−2 reachable states.
To reach (m′, S) with S ⊆ QB \ n, set S non-empty, and 1 6∈ S, let p be the

smallest element of S. Let T = Sa−(p−1); then 1 ∈ T since 1ap−1 = p. Reach
(m′, T) and apply ap−1 to reach (m′, S). There are 2n−2−1 non-empty sets that
exclude 1 and n, and we can reach an additional state (m′, n) from (m′, n− 1)
by b. This gives another 2n−2 reachable states, for a total of (m+1)2n−2 states.

For distinguishability of the reached states, see [6].

Theorem 12 (Suffix-Free Witness. Brzozowski and Sinnamon, 2017 [8]). De-

fine A and B as follows:

a b c

A : (1′ → m′)(2′, . . . , (m− 1)′) (1′ → m′)(2′, 3′) (2′,m′)(1′ → 2′)
B : (1 → n)(2, 3) (2, n)(1 → 2) (1 → n)(2, . . . , n− 1)

and let FA = {(m − 1)′} and FB = {n − 1}. Then C has (m − 1)2n−2 + 1
reachable and pairwise distinguishable states.

Proof. The initial state is (1′, ∅). We have

(1′, ∅)
c

−→ (2′, ∅)
am−3

−→ ((m− 1)′, 1)
c

−→ ((m− 1)′, {1, n}).

Then for k ≤ n− 3 we have

((m− 1)′, {1, n})
bb
−→ ((m− 1)′, {1, 2, n})

ck

−→ ((m− 1)′, {1, 2 + k, n}).

18

Thus W = {ε, bb, bbc, bbc2, . . . , bbcn−3} is a construction set for QB, with s′ =
(m− 1)′ and B = {1, n}. In fact, W is complete by Lemma 2 since b and c act
as permutations on QB \ 1.

It follows that ((m − 1)′, S ∪ {1, n}) is reachable for all S ⊆ QB. To reach
(q′, S ∪ n) for 2 ≤ q ≤ m − 2 and 1 6∈ S, note that a acts as a permutation on
QB \ 1. Thus we first reach ((m − 1)′, Sa−(q−1) ∪ {1, n}) then apply aq−1. To
reach (m′, S ∪n) with 1 6∈ S, first reach (2′, Sc−1 ∪n) then apply c. Since there
are 2n−2 subsets of QB \ {1, n}, this gives (m− 1)2n−2 reachable states. Adding
one for the initial state (1′, ∅) gives (m− 1)2n−2 + 1.

For distinguishability of the reached states, see [8]. Note that the authors
of [8] use a different concatenation DFA from our C: they first delete the sink
states m′ from A and n from B, and then form the concatenation of these
modified DFAs. However, the same words used for distinguishing states in [8]
can be used to distinguish states of C.

Theorem 13 (Suffix-Free Witness. Han and Salomaa, 2009 [12]). Define A
and B as follows:

A : B :
a (2′, . . . , (m− 1)′)(1′ → m′) (1 → n)
b (1′ → m′) (2, . . . , n− 1)(1 → n)
c ((QA \ 1′) → m′)(1′ → 2′) (1 → n)
d ((QA \ 2′) → m′) (1 → 2)

and let FA = {2′} and FB = {2}. Then C has (m − 1)2n−2 + 1 reachable and

pairwise distinguishable states.

Proof. The initial state is (1′, ∅). For k ≤ n− 3 we have

(1′, ∅)
cb
−→ (2′, {1, n})

d
−→ (2′, {1, 2, n})

bk

−→ (2′, {1, 2 + k, n}).

Thus W = {ε, d, db, . . . , dbn−3} is a construction set for QB, with s′ = 2′ and
B = {1, n}. By Lemma 2, W is complete, since d and b act as permutations on
QB \ {1, n}.

There are 2n−2 states of the form (2′, S∪{1, n}) with S ⊆ QB and S∩{1, n} =
∅. For each of these states, we reach (q′, S ∪ n) for 3 ≤ q ≤ m− 1 by aq−2, and
(m′, S∪n) by c. Adding in the initial state (1′, ∅) gives a total of (m−1)2n−2+1
reachable states.

For distinguishability of the reached states, see [12]. Note that the authors
of [12] work with a reduced concatenation DFA obtained by identifying, for each
q′ and S, the indistiguishable states (q′, S) and (q′, S ∪ n). Thus, for example,
they write that (q′, ∅) is reachable for 3 ≤ q ≤ m − 1; these states are not
reachable in our DFA C, but states (q′, n) for 3 ≤ q ≤ m− 1 are reachable.

Theorem 14 (Right Ideal Witness. Brzozowski and Sinnamon, 2017 [9]). De-

fine A and B as follows:

a b c Final States

A : (1′, . . . , (m− 1)′) (2′ → 1′) (m−1
1 q′ → (q + 1)′) {m′}

B : (1, . . . , n− 1) (2 → 1) (n−1
1 q → q + 1) {n}

19

Then C has m + 2n−2 reachable and pairwise distinguishable states.

Proof. The initial state is (1′, ∅). Note that (1′, ∅)
aq−1

−→ (q′, ∅) for 1 ≤ q ≤ m− 1,
so these m− 1 states are reachable. For 0 ≤ k ≤ n− 3 we have

((m− 1)′, ∅)
c

−→ (m′, 1)
a

−→ (m′, {1, 2})
(ab)k

−→ (m′, {1, 2 + k}).

Hence {ε, a, aab, a(ab)2, . . . , a(ab)n−3} is a construction set for QB \ n, with
s′ = m′ and B = {1}. By Corollary 1, it is complete. Hence (m′, S ∪ 1) is
reachable for all S ⊆ QB \ n.

We have reached (m − 1) + 2n−2 states so far. Additionally, we have

(m′, {1, n− 1})
cb
−→ (m′, {1, n}), giving m + 2n−2.

For distinguishability of the reached states, see [9].

Theorem 15 (Right Ideal Witness. Brzozowski, Davies and Liu, 2016 [4]).
Define A and B as follows:

a b c Final States

A : (1′, . . . , (m− 1)′) (2′, . . . , (m− 1)′) ((m− 1)′ → m′) {m′}
B : (1, . . . , n− 1) (2, . . . , n− 1) (n− 1 → n) {n}

Then C has m + 2n−2 reachable and pairwise distinguishable states.

Proof. The initial state is (1′, ∅). Note that (1′, ∅)
aq−1

−→ (q′, ∅) for 1 ≤ q ≤ m− 1,
so these m− 1 states are reachable. For 0 ≤ k ≤ n− 3 we have

((m− 1)′, ∅)
c

−→ (m′, 1)
a

−→ (m′, {1, 2})
bk

−→ (m′, {1, 2 + k}).

Hence {ε, a, ab, ab2, . . . , abn−3} is a construction set for QB \ n, with s′ = m′

and B = {1}. By Corollary 1, it is complete. Hence (m′, S ∪ 1) is reachable for
all S ⊆ QB \ n.

We have reached (m − 1) + 2n−2 states so far. Additionally, we have

(m′, {1, n− 1})
c

−→ (m′, {1, n}), giving m + 2n−2.
For distinguishability of the reached states, see [4].

Theorem 16 (Right Ideal Witness. Brzozowski, Jirásková and Li, 2013 [5]).
Define A and B as follows:

a b Final States

A : (m−1
1 q′ → (q + 1)′) (m−1

1 q′ → (q + 1)′) {m′}
B : (1, . . . , n− 1) (n−1

2 q → q + 1) {n}

Then C has m + 2n−2 reachable and distinguishable states.

Proof. The initial state is (1′, ∅). Note that (1′, ∅)
aq−1

−→ (q′, ∅) for 1 ≤ q ≤ m− 1,
so these m− 1 states are reachable. For 0 ≤ k ≤ n− 3 we have

((m− 1)′, ∅)
a

−→ (m′, 1)
a

−→ (m′, {1, 2})
bk

−→ (m′, {1, 2 + k}).

20

Hence {ε, a, ab, ab2, . . . , abn−3} is a construction set for QB \ n, with s′ = m′

and B = {1}. By Corollary 1, it is complete. Hence (m′, S ∪ 1) is reachable for
all S ⊆ QB \ n.

We have reached (m − 1) + 2n−2 states so far. Additionally, we have

(m′, {1, n− 1})
b

−→ (m′, {1, n}), giving m + 2n−2.
For distinguishability of the reached states, see [5]. Note that the authors

of [5] use a different concatenation DFA, constructed by removing state m′

from A and then forming the concatenation in the usual way. However, the
same words used in [5] can be used to distinguish states in C.

We now give two examples where our method of proof does not seem ap-
plicable or helpful. When attempting concatenation state complexity proofs, it
seems best to consider both traditional techniques and the technique we present
in this paper, switching between the two options if one does not yield an easy
argument.

Example 1 (Prefix-Closed Witness. Brzozowski and Sinnamon, 2017 [9]). Our
technique does not seem to work well with the following witness languages.
Define A and B as follows:

A : B :
a (1′, . . . , (m− 1)′) (1, . . . , n− 1)
b (1′, 2′) (2 → 1)
c (2′ → 1′) (n−1

1 q → q − 1)
d (m−1

1 q′ → (q − 1)′) (1, 2)

and let FA = {1′, . . . , (m− 1)′} and FB = {1, . . . , n− 1}.
The inductive proof given by the authors of [9] has a different structure

from the type of argument captured by Theorem 1. To reach a state (q′, S), in
Theorem 1 we start from some state (q′, B) and apply a word that fixes the first
component q′. In [9] the authors instead start from a state (p′, B) and apply
a word w such that p′w = q′. The proof in [9] is short and clean, whereas a
proof in the style of Theorem 1 seems to require complicated arguments. It is
possible that Theorem 1 could be generalized to cover arguments of the form
used in [9], but we have not found such a generalization.

Example 2 (Finite Binary Witness. Câmpeanu, Culik, Salomaa and Yu,
2001 [10]). Our technique does not apply to the following witness languages.
Define A and B as follows:

a b Final States
A : (m−1

1 q′ → (q + 1)′) (m−1
1 q′ → (q + 1)′) {1′, . . . , (m− 1)′}

B : (n−1
2 q → q + 1)(1 → n) (n−1

1 q → q + 1) {n− 1}

Additionally, assume that m + 1 ≥ n > 2. Then C has (m − n + 3)2n−2 − 1
reachable and pairwise distinguishable states. This is the maximum for finite
languages over a binary alphabet when m + 1 ≥ n > 2.

21

Let us consider why Theorem 1 cannot be used here. The point of Theorem
1 is to build up states (s′, S) by starting from (s′, B) and using words that fix
the focus state s′. But in this witness, no state of A is fixed by any word except
for the non-final sink state m′. So to use Theorem 1, the focus state must be
m′. But from a state of the form (m′, S), we can only reach sets (m′, T) with
|T | ≤ |S|, since m′ is a non-final sink state. So there is no way to start from some
base state (m′, B) and build up larger sets, which is the strategy of Theorem 1.

5 Conclusions

We have introduced a new technique for demonstrating the reachability of states
in DFAs for the concatenation of two regular languages, and provided evidence
that this technique is useful in a wide variety of cases. However, we found
two cases (Examples 1 and 2) where our technique does not seem applicable.
Example 1 in particular suggests that Theorem 1 may admit a generalization
that covers more types of inductive proofs. We leave this as an open problem.

Acknowledgements

I thank Jason Bell and Janusz Brzozowski for proofreading and helpful com-
ments. This work was supported by the Natural Sciences and Engineering Re-
search Council of Canada under grant No. OGP0000871.

References

[1] J. A. Brzozowski. In search of most complex regular languages. Int. J.

Found. Comput. Sc., 24(06):691–708, 2013.

[2] J. A. Brzozowski. Unrestricted state complexity of binary operations on
regular languages. In C. Câmpeanu, F. Manea, and J. Shallit, editors,
DCFS 2016, volume 9777 of LNCS, pages 60–72. Springer, 2016.

[3] J. A. Brzozowski and S. Davies. Most complex non-returning regular lan-
guages. In G. Pighizzini and C. Câmpeanu, editors, DCFS 2017, volume
10316 of LNCS, pages 89–101. Springer, 2017.

[4] J. A. Brzozowski, S. Davies, and B. Y. V. Liu. Most complex regular ideal
languages. Discrete Math. Theoret. Comput. Sc., 18(3), 2016. Paper #15.

[5] J. A. Brzozowski, G. Jirásková, and B. Li. Quotient complexity of ideal
languages. Theoret. Comput. Sci., 470:36–52, 2013.

[6] J. A. Brzozowski, G. Jirásková, and C. Zou. Quotient complexity of closed
languages. Theory Comput. Syst., 54:277–292, 2014.

[7] J. A. Brzozowski and B. Liu. Quotient complexity of star-free languages.
Int. J. Found. Comput. Sc., 23(06):1261–1276, 2012.

22

[8] J. A. Brzozowski and C. Sinnamon. Complexity of left-ideal, suffix-closed
and suffix-free regular languages. In F. Drewes, C. Mart́ın-Vide, and
B. Truthe, editors, LATA 2017, volume 10168 of LNCS, pages 171–182.
Springer, 2017.

[9] J. A. Brzozowski and C. Sinnamon. Complexity of right-ideal, prefix-closed,
and prefix-free regular languages. Acta Cybernetica, 23(1):9–41, 2017.

[10] C. Câmpeanu, K. Culik, K. Salomaa, and S. Yu. State complexity of basic
operations on finite languages. In O. Boldt and H. Jürgensen, editors, WIA

1999, volume 2214 of LNCS, pages 60–70. Springer, 2001.

[11] H.-S. Eom, Y.-S. Han, and G. Jirásková. State complexity of basic op-
erations on non-returning regular languages. Fund. Inform., 144:161–182,
2016.

[12] Y.-S. Han and K. Salomaa. State complexity of basic operations on suffix-
free regular languages. Theoret. Comput. Sci., 410(27-29):2537–2548, 2009.

[13] Y.-S. Han, K. Salomaa, and D. Wood. Operational state complexity of
prefix-free regular languages. In Z. Ésik and Z. Fülöp, editors, AFL 2009,
pages 99–115. Institute of Informatics, University of Szeged, Hungary, 2009.

[14] G. Jirásková and M. Krausová. Complexity in prefix-free regular languages.
In I. McQuillan, G. Pighizzini, and B. Trost, editors, DCFS 2010, pages
236–244. University of Saskatchewan, 2010.

[15] A. N. Maslov. Estimates of the number of states of finite automata. Dokl.

Akad. Nauk SSSR, 194:1266–1268 (Russian), 1970. English translation:
Soviet Math. Dokl. 11(1970) 1373–1375.

[16] C. Nicaud. Average state complexity of operations on unary automata.
In M. Kuty lowski, L. Pacholski, and T. Wierzbicki, editors, MFCS 1999,
pages 231–240. Springer, 1999.

[17] G. Pighizzini and J. Shallit. Unary language operations, state complexity
and Jacobsthal’s function. International Journal of Foundations of Com-

puter Science, 13(01):145–159, 2002.

[18] S. Yu. State complexity of regular languages. J. Autom. Lang. Comb.,
6:221–234, 2001.

[19] S. Yu, Q. Zhuang, and K. Salomaa. The state complexities of some basic
operations on regular languages. Theor. Comput. Sci., 125(2):315–328,
1994.

23

	1 Introduction
	2 Preliminaries
	2.1 Relations and Functions
	2.2 Automata
	2.3 State Complexity

	3 Results
	4 Examples
	5 Conclusions

