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Excess weight gain is the most significant, preventable cause of increased

blood pressure (BP) in patients with primary (essential) hypertension and

increases the risk for cardiovascular and renal diseases. In this review, we

discuss the role of the brain melanocortin system in causing increased sym-

pathetic activity in obesity and other forms of hypertension. In addition, we

highlight potential mechanisms by which the brain melanocortin system mod-

ulates metabolic and cardiovascular functions.
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Obesity is a major health problem worldwide, and
it is estimated that �36% of the U.S. adult popu-
lation is obese, with body mass index (BMI) of �30,
while more than two-thirds of the population is
overweight, accounting for more than $150 billion/
year in medical costs (11). Being overweight or
obese markedly increases the risk for developing
metabolic, cardiovascular, and renal diseases, in-
cluding diabetes, dyslipidemia, atherosclerosis,
coronary artery disease, hypertension, and chronic
kidney disease (20, 53). Risk estimates from popu-
lation studies suggest that excess weight gain con-
tributes to as much as 65–75% of the risk for
primary (essential) hypertension (53). Although
not all obese individuals are hypertensive when
assessed by standard clinical criteria, obesity is
associated with a shift in blood pressure (BP) dis-
tribution toward higher BP values. Obese individ-
uals not classified as hypertensive exhibit lower BP
when they lose weight, and there is an almost
linear relationship between BMI and BP (9, 20).
Weight loss also is effective in primary prevention
of hypertension (43), and multiple studies have
shown that weight loss is effective in reducing BP
in most hypertensive patients whether the weight
loss is achieved by restriction of energy intake and
increased physical activity or by bariatric surgery
(43). Although an early analysis of the Swedish
Obesity Study reported that patients who received
bariatric surgery had a lower incidence of diabetes
and dyslipidemia but similar incidence of hyper-
tension compared with control subjects (40), a re-
cent follow-up of these patients showed reduced
systolic and diastolic pressures in the patients who
underwent gastric bypass compared with obese
controls and patients who underwent gastric band-
ing and that the reduction in BP was proportional
to the amount of weight lost during the 10-year
follow-up (22). Thus most of the available evidence
suggests that excess weight gain is the single most

important risk factor for developing hypertension
and that weight loss, if it can be achieved and
sustained, is an important means of reducing BP in
most hypertensive patients.

Sympathetic Nervous System
Activation Contributes to Elevated
BP in Obesity

Previous studies have implicated several mecha-
nisms linking weight gain with elevations in BP.
For instance, in all forms of hypertension studied
thus far, including obesity hypertension, there is
impaired renal-pressure natriuresis that is charac-
terized by a rightward shift in the pressure-natri-
uresis curve toward hypertensive levels (18, 19).
Some of the most powerful mechanisms contrib-
uting to impaired renal-pressure natriuresis in
obesity hypertension are activation of the renin-
angiotensin-aldosterone system (RAAS), physical
compression of the kidneys by surrounding vis-
ceral fat and increased renal sinus fat, and sympa-
thetic nervous system (SNS) overactivity (9, 19, 20).
In this review, we focus on the role of increased
SNS activity in contributing to elevated BP in
obesity.

Obesity, especially when increased visceral adi-
posity is present, is accompanied by increased SNS
activation to several organs and tissues, and it can
occur as early as 1 wk after exposure to high-fat
diets in experimental animal models and may also
be observed after modest weight gain in nonobese
subjects (1, 10, 21). There is strong evidence that
excess weight gain is associated with selective in-
creases in SNS to certain organs and tissues, in-
cluding the kidneys and skeletal muscle, instead of
widespread whole-body SNS activation (10, 44). In
addition, the rise in SNS activity to the kidneys is
modest, albeit enough to promote sodium reten-
tion and to activate the RAAS, and is considered
the main mechanism by which SNS activation
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contributes to increased BP with weight gain
rather than peripheral vasoconstriction that would
occur during massive widespread SNS activation
(9, 20). Evidence for an important role of increased
SNS activity and renal sympathetic activation in
obesity hypertension derives from studies showing
that pharmacological blockade of adrenergic re-
ceptors elicits more pronounced BP reductions in
obese vs. lean hypertensive subjects (54), and bi-
lateral renal denervation markedly attenuates so-
dium retention and elevated BP in obese dogs fed
a high-fat diet (25).

Several factors have been suggested to contrib-
ute to increased SNS activity in obesity, including
increased angiotensin II levels, hyperleptinemia,
hyperinsulinemia, sleep apnea, hypoghrelinemia,
hypoadiponectemia, and impaired baroreflex sen-
sitivity, to name a few (6). However, one key factor
that appears to play a critical role linking increased
SNS activity and elevated BP in obesity is activation
of the brain pro-opiomelanocortin (POMC) neu-
rons and consequent stimulation of melanocor-
tin-4 receptors (MC4R) in brain regions involved in
cardiovascular regulation.

Activation of Central Nervous
System MC4Rs is Required for
Excess Weight Gain to Activate
the SNS and Increase BP

As shown in FIGURE 1, there are five melanocortin
receptor subtypes (namely melanocortin receptors
1–5, MC1R–MC5R) that are activated by prohormone
POMC cleavage peptides, including adrenocortico-
tropin hormone (ACTH), �-, �-, and �-melanocyte
stimulating hormone (�-MSH, �-MSH, �-MSH) (5,
49). However, some byproducts of POMC cleavage,
such as �-endorphins, for example, do not act primarily
on melanocortin receptors (49). POMC-containing
neurons are mainly located in the arcuate
nucleus of the hypothalamus and a few
nuclei in the brain stem [e.g., nucleus of
the tractus solitarius (NTS)] (49) and proj-
ect to several other brain regions involved
not only in cardiovascular regulation but
also appetite, energy balance, glucose ho-
meostasis, pituitary function, etc. (5, 49).
Among the five melanocortin receptor
subtypes, only MC3R and MC4R are abun-
dant in the central nervous system (CNS)
(49). Although MC3Rs have been shown to
contribute to body weight regulation and
to help prevent salt sensitivity of BP (23),
the MC4R, a G-protein-coupled 7 trans-
membrane receptor that is activated
mainly by �-MSH, is thought to be the
dominant efferent arm of the brain mela-
nocortin system’s actions on body weight

homeostasis, SNS activation, and BP regulation. Im-
paired MC4R activation caused by mutations of the
MC4R or the POMC gene, for example, is estimated
to account for as much as 5–6% of early onset mor-
bid obesity in humans (50), and, as discussed below,
MC4R activation appears to be an important link
between obesity, SNS activation, and hypertension.

Pharmacological blockers of MC4R have been
shown to cause hyperphagia, rapid weight gain,
and pronounced obesity in rodents (8, 26), whereas
activation of MC4R using synthetic agonists pro-
motes weight loss by reducing appetite and in-
creasing energy expenditure (26, 49). A remarkable
difference in the obesity observed in MC4R-defi-
cient mice and rats with that observed in rodents
fed high-calorie diets is that BP is not elevated in
MC4R deficiency. In fact, SNS activity and BP are
often reduced in MC4R-deficient rodents, even
though they exhibit many characteristics of the
metabolic syndrome, such as visceral adiposity,
hyperleptinemia, hyperinsulinemia, and insulin
resistance (42, 48). Conversely, chronic MC4R ac-
tivation causes sustained increases in BP despite
reducing food intake and promoting weight loss,
and the rise in BP can be prevented by adrenergic
receptor blockade (27). These observations high-
light the importance of MC4R in modulating SNS
activity and contributing to elevated BP in obesity.
The importance of MC4R to obesity hypertension
is also supported by observations in humans with
MC4R deficiency who, despite being markedly
obese, exhibit lower BP, reduced 24-h norepineph-
rine excretion, and reduced prevalence of hyper-
tension compared with obese subjects with normal
MC4R function (17, 31). Individuals with MC4R
mutations also exhibit reduced muscle SNS activity
and impaired SNS responses to a hypoxia stress
test (17). These observations indicate that a func-
tional MC4R is necessary for excess weight gain to

FIGURE 1. Schematic representation of POMC cleavage and proposed affinities of its
byproducts to melanocortin receptors (MC1R–MC5R)
ACTH, adrenocorticotropin hormone; �-endo, �-endorphin; MSH, melanocyte-stimulating hormone;
POMC, pro-opiomelanocortin.
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increase SNS activity and elevate BP, and that
MC4R also modulates sympathetic responses to
stress.

Although the rise in BP during MC4R activation
with pharmacological agonists is modest (usually be-
tween 8 and 10 mmHg), the real impact of MC4R
activation on BP regulation may be clouded by fac-
tors that offset part of MC4R hypertensive effects,
such as the weight loss that often occurs when MC4R
agonists are administered. Also, in obese subjects,
there is often endothelial dysfunction, which may
amplify the BP effects of MC4R activation. We have
shown, for example, that chronic administration of
the nitric oxide synthase inhibitor L-NAME amplified
the hypertensive effects of MC4R activation in
Sprague-Dawley rats (12).

We and others have also demonstrated a critical
role for the POMC neuron-MC4R axis in mediating
the BP effects of other factors implicated in obesity
hypertension. Rahmouni et al. showed that the acute
effects of insulin to increase renal SNS activity were
attenuated and abolished in heterozygous and ho-
mozygous MC4R knockout mice, respectively (37). A
similar observation was found for the acute effects of
leptin on renal SNS activity (37).

Leptin, a peptide hormone produced by adi-
pocytes in proportion to the amount of body fat, is
also thought to be a key link between obesity, SNS
overactivity, and hypertension. Rodents with leptin
gene mutations (ob/ob mice) are morbidly obese

and have multiple metabolic abnormalities, in-
cluding severe insulin resistance, hyperinsulinemia,
and dyslipidemia, but have normal or reduced BP
(30). Similar results have also been reported in a
small number of humans, with leptin gene muta-
tions that generally are not hypertensive when BP
is measured at a young age, before development of
target organ injury (30, 35). Ozata and colleagues
studied four patients with leptin gene mutations
and found that three of them had BPs in the nor-
mal range despite morbid obesity and many fea-
tures of the metabolic syndrome (35). Only one
patient had elevated BP, and this individual (age 30
yr) also had very high levels of adrenocorticotrophic
hormone (ACTH), which could have contributed to
the hypertension. Despite severe obesity, all of these
patients exhibited features suggesting SNS hypofunc-
tion, including orthostatic hypotension and attenu-
ated RAAS response to upright posture as well as
attenuated BP responses to a cold pressor test (30,
35).

Chronic leptin infusion in lean rodents to mimic
leptin levels observed in severe obesity causes sus-
tained elevations in BP, which is dependent on
adrenergic receptor activation (4). These chronic
effects of hyperleptinemia on SNS activity and BP
regulation also require an intact POMC neuron-
MC4R axis since genetic disruption or pharmaco-
logical blockade of MC4R or deletion of leptin
receptors specifically in POMC neurons completely

abolished the chronic effects of leptin
to raise BP (8, 13, 46). Of note, MC4R-
deficient mice are also unresponsive to
the appetite-suppressing effects of lep-
tin (46), indicating that MC4R not only
plays a major role as a downstream
pathway by which many factors raise
SNS activity but is also crucial in medi-
ating the metabolic effects of other im-
portant factors that regulate body
weight.

MC4R Plays a Role in
Regulation of SNS Activity
Beyond Its Role in Obesity
Hypertension

The MC4R also appears to exert a role
in modulating SNS activity in re-
sponse to stimuli other than excess
weight gain or hyperleptinemia. We
showed, for example, that MC4R block-
ade markedly reduced BP in spontane-
ous hypertensive rats (SHR), a widely
used model of hypertension that is as-
sociated with increased SNS activity in
the absence of obesity (7). Moreover,
the BP reduction achieved by MC4R
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FIGURE 2. Schematic representation of the modulation of POMC neurons and MC4R
containing neurons by peripheral signals involved in the regulation of energy balance,
glucose levels, and cardiovascular function
The figure also highlights the opposing actions of POMC neurons vs. AGRP/NPY neurons on MC4R
activation, and an auto-potentiation/auto-stimulation loop on POMC neurons mediated by the
MC4R. AGRP, agouti-related peptide; MC4R, melanocortin 4 receptors; NPY, neuropeptide Y.
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antagonism in this model was comparable to that
observed during adrenergic receptor blockade (7).
MC4R antagonism also caused greater BP reduc-
tion in obese vs. lean Zucker rats, supporting a role
for MC4R in regulating SNS activity and BP even in
models with impaired leptin actions (14). MC4R
antagonism also attenuates or abolishes the acute
pressor responses to some peptides such as nesfa-
tin-1 and neuronostatin that raise BP by SNS stim-
ulation (55, 57). Moreover, other peptides known
to reduce SNS activity are thought to exert their
actions, at least in part, by stimulating the release
of endogenous antagonists of MC4R [e.g., agouti-
related peptide (AGRP)] or by antagonizing the
actions of the POMC neuron-MC4R axis (e.g., neu-
ropeptide Y) (33) (FIGURE 2). Collectively, these
observations suggest that the MC4R may play a key
role in contributing to elevated BP in several forms
of hypertension that accompany SNS overactivity.

The MC4R is Located in Several
Brain Nuclei Involved in
Cardiovascular Regulation

Although MC4R mRNA expression has been ob-
served in widespread areas of the CNS, the regions
with the greatest abundance of MC4R are the para-
ventricular nucleus of the hypothalamus (PVN),
lateral hypothalamus (LH), the amygdala, the dor-
sal motor complex, which encompasses the NTS
and the dorsal motor nucleus of the vagus (DMV)
(2, 38, 49), and preganglionic sympathetic neurons
of the intermediolateral medulla (IML) (38), which
are all important sites for regulation of autonomic
function. Although the specific contribution of
MC4R in distinct CNS nuclei in mediating the ac-
tions of the brain melanocortin system on energy
balance, appetite, and glucose homeostasis have
been the subject of intense investigation, the par-
ticular regions of the brain where MC4R are most
important in regulation of SNS activity and BP are
still unclear. Most of what we know in this area
comes from acute studies where MC4R agonists
and antagonists are microinjected into discrete
CNS nuclei of anesthetized animals. For instance,
Li et al. showed that microinjection of an MC4R
agonist into the PVN increased renal SNS activity
and BP (28). Ward et al. also found that the effect of
hyperinsulinemia to acutely raise lumbar SNS ac-
tivity was completely prevented by pharmacologi-
cal blockade of MC4R in the PVN (52). Iwasa and
colleagues observed increased HR after �-MSH was
microinjected into the right IML (24). Previous
studies also indicate that the effects of acute ma-
nipulations of MC4R activity on SNS activity and
BP are not uniform for all CNS areas tested. Tai et
al. (45) and Pavia et al. (36) observed reduced
BP and bradycardia following microinjection of

�-MSH or a synthetic agonist, MTII, into the NTS
of anesthetized SHRs and normotensive Sprague-
Dawley rats.

The few studies that have examined the chronic
cardiovascular actions of MC4R in specific neuro-
nal populations in conscious animals suggest an
important role for MC4R located on cholinergic
preganglionic parasympathetic and sympathetic
neurons in contributing, at least in part, to obesity
hypertension (41), and that MC4R on POMC neu-
rons may play a role in modulating POMC activity
and autonomic function (15). We demonstrated,
for example, that rescue of MC4R function specif-
ically in POMC neurons of mice with whole-body
MC4R deficiency restored the BP response to acute
stress, suggesting that MC4R may act as an auto-
potentiation and/or auto-excitation mechanism
on POMC neuronal activity (15). The specific
groups of neurons and particular nuclei that mediate
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FIGURE 3. Compilation of data demonstrating the impact of
MC4R activation with the MC3/4 agonist MTII or the MC3/4
antagonist SHU-9119 on food intake
A: compilation of data demonstrating the impact of MC4R activation
with the MC3/4 agonist MTII or the MC3/4 antagonist SHU-9119 on
food intake in Sprague-Dawley (SD) rats. The average changes (�) in
mean arterial pressure (B) and heart rate (C) in normotensive and hyper-
tensive rats (SHR) during days 7 to 12 of treatment with MTII or SHU-
9119. Image modified from Refs. 7, 26, 27 and used with permission.
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the effects of MC4R to evoke sustained increases in
SNS activity to cardiovascular-relevant tissues and
to promote chronic increases in BP are still largely
unknown and remain an important area for future
investigation.

Intrinsic MC4R Activity Plays a
Major Role in Tonic Regulation
of Appetite, Energy Balance, and
Cardiovascular Function

Although it is clear that direct activation of MC4R
using pharmacological agents or indirectly via
stimulation of POMC neurons leading to release of
the endogenous MC4R agonist �-MSH reduces ap-
petite, promotes weight loss, and raises SNS activ-
ity and BP in humans and rodents, the magnitude
of some of these effects is less pronounced than
what is observed when endogenous MC4R is
blocked. For example, although exogenous long-
term stimulation of MC4R causes transient reduc-
tions in food intake lasting for a few days and
weight loss of �10 –15% (26, 27), chronic MC4R
antagonism using synthetic agents or by infusing the
endogenous MC4R inverse agonist, AGRP, in lean
animals leads to profound hyperphagia (sometimes
more than doubling food consumption) accompa-

nied by rapid weight gain at a rate of up to 25% in
7–10 days in adult rats (7, 26, 47) (FIGURE 3). In
addition, contrary to the effects of long-term ex-
ogenous stimulation of MC4R where appetite is
only transiently reduced and returns to normal
levels within 5–7 days, the hyperphagia observed
with MC4R blockade lasts as long as the antago-
nists are infused (7, 47). One teleological expla-
nation for these observations is that there has
not been evolutionary pressure for animals to
develop safeguards against overeating and
weight gain; thus impairment of a powerful in-
hibitor of food intake (such as the brain melano-
cortin system) would not suffer opposing actions
of various compensatory mechanisms to prevent
the overfeeding and excess weight gain. How-
ever, for most of human history, there has been
pressure to avoid starvation; compensatory sys-
tems are therefore likely activated during chronic
exogenous MC4R stimulation to increase food
intake back to normal and avoid continuous
weight loss.

A powerful tonic action of MC4R is also found
on SNS activity in some instances. As mentioned
previously, blockade of endogenous MC4R activ-
ity markedly reduced the hypertension in SHRs
by �25–30 mmHg and caused greater BP reduc-
tion in obese Zucker rats or obese rats fed high-
fat diets compared with lean controls (7, 14, 16).
It is also important to highlight that, even in lean
normotensive animals, chronic MC4R antagonism
causes sustained bradycardia and reduces BP (albeit
only a few mmHg), and these effects occur despite
hyperphagia and rapid weight gain, which nor-
mally would evoke tachycardia and elevated BP (7,
14, 16, 26) (FIGURE 3). Taken together, these find-
ings demonstrate a major role of MC4R in control-
ling energy balance and SNS activity and as a
potential target for drugs aimed at modulating ap-
petite, energy expenditure, SNS activation, and BP.

Because of its potent effects on body weight
regulation, the MC4R has been a target for de-
velopment of anti-obesity drugs. One apparent
challenge, however, is that anti-obesity drugs
that target activation of MC4R to reduce appetite
and promote weight loss often evoke undesirable
increases in SNS activity and BP. A novel ap-
proach to increase MC4R activity that has been
recently developed is to prevent degradation of
�-MSH using prolylcarboxypeptidade inhibitors.
Although the few studies using this approach
have reported reduced appetite and weight loss
(39, 51), the cardiovascular impact of these com-
pounds and whether their effects are mediated
by activation of MC4R or by some off-target ef-
fects are still unknown.
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FIGURE 4. Schematic representation of the impact of obesity factors
Schematic representation of the impact of obesity factors (e.g., leptin, insulin, and
other stimuli) on pro-opiomelanocortin (POMC) neuron activity and melanocortin
4 receptor (MC4R) activation in forebrain and brain stem nuclei as well as in the
spinal cord IML leading to elevated sympathetic nervous system (SNS) activity,
blood pressure (BP), heart rate (HR), and BP response to stress. �-MSH, �-mela-
noctyte stimulating hormone; ARC, arcuate nucleus of the hypothalamus; DMV,
dorsal motor nucleus of the vagus; IML, intermediolateral medulla; NTS, nucleus
of the tractus solitarius; PVN, paraventricular nucleus of the hypothalamus.
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What are the Downstream
Mediators of MC4R Action on
Energy Balance and
Cardiovascular Function?

The MC4R is a G-protein-coupled 7 transmem-
brane receptor that increases cAMP phosphoryla-
tion and activates protein kinase A (PKA), and
blockade of each of these intracellular pathways
attenuates or abolishes MC4R actions (28, 45, 49).
Although alternative cAMP-independent second-
messenger mediators of MC4R have been proposed
(34), their physiological importance is unknown. Also
unclear are potential downstream mechanisms by
which MC4R regulates metabolic and cardiovascu-
lar function. Most previous studies examining po-
tential downstream mediators of MC4R function
are acute (effects examined for only minutes to a
few hours). For example, Bariohay et al. showed
that pharmacological activation or inhibition of
MC4R, respectively, increased and reduced brain-
derived neurotrophic factor (BDNF) protein con-
tent in the dorsal motor complex of adult rats and
that the acute orexigenic effect of a selective MC4R
antagonist injected into the fourth ventricle was
blocked by co-administration of BDNF (3). A sim-
ilar finding was reported by Nicholson and col-
leagues, who found that the reduction in 24-h food
intake caused by a MC4R agonist, MK1, was atten-
uated by prior central injection of an anti-BDNF
antibody (32). They also found that the acute hy-
pertensive effect of MK1 was markedly attenuated
by the anti-BDNF antibody. Other candidates such
as oxytocin, corticotrophin-releasing hormone (CRH),
and melanin-concentrating hormone (MCH), which
are modulated by MC4R activity, have also been
proposed to contribute to MC4R’s actions on ap-
petite (49, 56). However, it is still unclear whether
oxytocin also participates in the cardiovascular ef-
fects of MC4R activation.

Thus, despite the major role of the CNS MC4R in
regulating several physiological functions includ-
ing appetite, energy expenditure, autonomic ner-
vous system activity, and cardiovascular responses
to stress, among many other important functions,
the brain regions and neuronal connections as well
as the peripheral and central stimuli that activate/
inhibit the POMC-MC4R axis and the downstream
pathways that mediate MC4R actions are only be-
ginning to be elucidated.

In conclusion, obesity is a major cause of hyper-
tension as well as cardiovascular and renal dis-
eases worldwide. As summarized in FIGURE 4 the
brain melanocortin system, mainly via activation
of the POMC neuron-MC4R axis, is a key link be-
tween excess weight gain and SNS activation lead-
ing to impaired renal-pressure natriuresis and

elevated BP. Considerable evidence suggests that
the importance of the brain MC4R in controlling
SNS activity goes beyond its role in obesity hyper-
tension. MC4R also appears to play a role in mod-
ulating SNS activity in response to various other
stimuli and other forms of hypertension that are
accompanied with sympathetic overactivity. Al-
though the MC4R has long been recognized as an
important target for anti-obesity drugs given its
powerful actions on appetite and energy balance,
the effects of most MC4R agonists to increase SNS
activity and BP currently preclude their use in
treating obesity. A better understanding of the
mechanisms by which MC4R exerts its actions on
energy balance and cardiovascular function may
offer new approaches to treatment of obesity and
cardiovascular disease. �
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