
Automated Extraction of Vulnerability
Information for Home Computer Security?

Sachini Weerawardhana, Subhojeet Mukherjee, Indrajit Ray, and Adele Howe

Computer Science Department, Colorado State University,
Fort Collins, CO 80523, USA

{sachini,mukherje,indrajit,howe}@cs.colostate.edu

Abstract. Online vulnerability databases provide a wealth of informa-
tion pertaining to vulnerabilities that are present in computer application
software, operating systems, and firmware. Extracting useful information
from these databases that can subsequently be utilized by applications
such as vulnerability scanners and security monitoring tools can be a
challenging task. This paper presents two approaches to information ex-
traction from online vulnerability databases: a machine learning based
solution and a solution that exploits linguistic patterns elucidated by
part-of-speech tagging. These two systems are evaluated to compare ac-
curacy in recognizing security concepts in previously unseen vulnerability
description texts. We discuss design considerations that should be taken
into account in implementing information retrieval systems for security
domain.

Keywords: security, vulnerability, information extraction, named en-
tity recognition

1 Introduction

Hardening a home computer against malicious attacks requires identifying the
different ways in which the system can be attacked, and then enacting secu-
rity controls to prevent these attacks. This, in turn, requires deeper analysis
to understand the contribution of different vulnerabilities towards an attack on
the system, the role of a specific system configuration, the actions that an at-
tacker must take to exploit the vulnerabilities, and, perhaps most importantly,
the advertant / inadvertent contributions that home-user activities make in a
successful exploit.

Researchers, including our group, have been investigating ways to capture
these relationships and merge them into models of system security risk. On-
line vulnerability databases, such as the National Vulnerability Database (NVD
- http://nvd.nist.gov), contain a wealth of information that is needed for
creating these system risk models. Unfortunately, these vulnerability databases

? This material is based upon work supported by the National Science Foundation
under Grant No. 0905232.

2 S. Weerawardhana, S. Mukherjee, I. Ray and A. Howe

(VDs) have been created by humans primarily for the use of humans. A ma-
jor problem is that VDs store vulnerability descriptions as natural language
plaintexts. Important information, such as attacker actions and user actions, are
seldom explicitly stated but rather remain implicit. A human expert is able to
infer this from the description but this is challenging for an automated tool. Au-
tomating the extraction is further complicated by the fact that these descriptions
vary significantly in how they describe the different pieces of information.

Roschke et al. [12] investigate the problem of extracting vulnerability infor-
mation from semi-structured plaintexts with a goal of comparing and merging
vulnerability information from multiple sources. However, this scheme requires
developing customized extraction rule-sets for each individual databases, and is
limited in its ability to extract information buried in natural language phrases.
Urbanska et al. [15] also describe a similar approach for extracting information
from VDs, based on designing customized extraction filters. Although this ap-
proach is able to extract crucial information such as attacker actions, it performs
very poorly in extracting user action information. Moreover, the accuracy of the
approach is heavily dependent on the quality of filters developed, which is a
manual process.

A Named Entity Recognition (NER) system, employing a large corpus of
hand annotated data extracted from different sources (vulnerability databases,
blogs and news articles) is described in [5, 11]. A Conditional Random Fields
(CRF) classifier [17] is trained on the corpus to identify portions of the text
describing the concepts. Each portion is then processed to build associations
between the concepts using an IDS Ontology specifically created for the security
domain. A problem with this approach is that it is not able to extract information
such as user or attacker actions. A bootstrapping algorithm called PACE is used
for NER in computer security [10]. Its learning algorithm is pre-trained on a
small set of known entity names (Exploit Effect, Software Name, Vulnerability
Potential Effects, Vulnerability Category) and known patterns. A limitation of
this approach is that the model needs to be trained on a large corpus (usually
in the millions).

In this paper, we describe our efforts to design a tool to automatically extract
severity information from natural language descriptions. Our work is designed to
populate a model that we had proposed earlier [16], called the Personalized At-
tack Graph (PAG). Our approach is based on designing a NER that identifies key
PAG parameters embedded in the text of a vulnerability description : software
name, version, impact, attacker action, and user action. We experiment with two
different NER approaches, one using machine-learning (ML) techniques, and the
other exploiting lexical patterns in a parts-of-speech (POS) tagged text. The two
approaches are then evaluated to compare their accuracy in recognizing security
concepts embedded within newly encountered vulnerability descriptions.

Two labeled corpora are available for security vulnerability descriptions [1,
5]. We use Joshi et al.’s corpus [5] to validate the performance of one of our
approaches that is similar to their approach. However, the PAG representation
requires identification of security concepts not supported by Joshi et al.’s corpus,

Automated Extraction of Vulnerability Information 3

most notably attacker and user actions. We, therefore, constructed our own cor-
pus comprising of 210 randomly selected vulnerability descriptions taken from
NVD as of April 2014. We used the BRAT web based annotation tool [7] to man-
ually annotate the descriptions with the labels required for our PAG model. The
annotation task was done by a computer science graduate student with substan-
tial knowledge of computer security. We chose BRAT because it could be easily
configured to allow for annotation of custom entity types. Our corpus consists
of 8409 labeled tokens: 3821 default label tokens and 4588 security concept label
tokens.

2 Our Approach to Extracting Computer Vulnerability
Information

We implemented two independent NER solutions: a machine learning module
and a part-of-speech, rule-based component. Machine learning is less brittle and
may be able to accommodate examples never before seen. However, it requires
training examples and a well selected set of features to support generalization.
Rule systems can be efficient and well tailored to the domain; however, the
accuracy drops quickly when new examples fail to match previous ones.

2.1 Machine Learning Module

The process of producing a machine-learning (ML) model for the task can be
divided into two parts: feature selection and model training.
Feature Selection: We adopted the same features as in [5]: Taggy-sequences,
N-grams, UsePrev, UseNext, Word-pairs, and Gazette. For the gazette, we com-
piled a list of software and operating systems consisting of 48709 entries using
the product information repository available at www.secunia.com.
Model Training: We chose the Stanford Named Entity Recognizer (Stanford
NER), that implements a CRF classifier [4]. It has the chosen features already
built-in, and its CRF classifier has been widely adopted for custom NERs [13].
CRF takes into account contextual information by considering sequences of to-
kens, a property that can be specifically exploited by the structure of vulnera-
bility descriptions.

2.2 Part-of-Speech Tagging

POS tagging allowed us to discover patterns in the grammatical structure of a
vulnerability description and define a set of rules.
Identifying Software Names and Versions: POS tagging labels a word in
text based on its role in the sentence (e.g., noun, verb, adjective, etc.) and the
context in which it is used. We manually analyzed a sample of 30 vulnerability
descriptions from NVD to identify persistent patterns of POS. We found that
software names are typically tagged as NNP (proper nouns) and version numbers

4 S. Weerawardhana, S. Mukherjee, I. Ray and A. Howe

are tagged as CD (cardinal numbers). This rule was applicable to 100% of the
sample.

Software names are often followed by an IN tag (a preposition or subordi-
nating conjunction), e.g., “Adobe Reader before 10.3”. About half (45%) of the
descriptions followed this rule. A variation to this rule happens when a software
name is preceded by an IN tag and followed by another IN tag (e.g., “index.html
in Mozilla Firefox 5.4 through 6.0”), which accounted for another 30% of the
examples. For 17%, a software name is immediately followed by a CD tag (e.g.,
“Adobe Reader 9.3”). The remaining 6% were rare or erroneous structures (e.g.,
software name without a version number), which suggests that it would be dif-
ficult to achieve 100% accuracy.

Our POS tag processing algorithm is based on the observed patterns. We
use 3-grams because they best match the length of common software names
(e.g., “Adobe Acrobat Reader”). The Stanford coreNLP POS Tagger [14] provide
the POS mappings. For each sequence of 3-grams, the algorithm checks for the
specific patterns. If one of the patterns is found, then a gazette(see section 2.1)
lookup is performed to identify the selected NNP tag as a software name. If none
of the conditions are satisfied, a regular expression matching is performed. The
3-grams are then processed to identify any tokens tagged as CDs to find version
numbers.

Identifying File Names, Modifiers and Vulnerability Type: File names
in vulnerability descriptions typically denote a specific system artifact in which
vulnerabilities are present. We try to identify modifiers, i.e., words that are
used to indicate specific information about vulnerable software versions, as
well as vulnerability types. File names are matched to a regular expression for
base name.file extension:
[[A-Z][a-z]{1, }]∗[-]?[[A-Z][a-z]{1,}0-9]∗\\.[A-Z]?[a-z]{1,4}

Modifiers typically follow version numbers (e.g. “version 4.0 through 5.1”)
and are tagged as IN. Each description is separated into POS Tag - Value pairs
(e.g. {before, IN},{2.0, CD}). To find phrases with version numbers, the de-
scription is scanned to find words that have been tagged as CD. If a word tagged
as CD is found in the description, POS tag of the word preceding a version num-
ber is checked. If this POS tag is of type IN, then the associated word is identified
as a modifier. Identifying vulnerability type was done by searching for keywords:
“vulnerability”, “vulnerabilities” and “in”. Then, the adjacent adjectives (POS
tag JJ) are extracted.
Identifying Attacker Actions, Impacts, User Actions: To extract at-
tacker, user actions and impact entities, we first partition a description into
separate sentences and then discard information such as “aka Bug id ...”,“re-
lated to ..vulnerability” etc., which we know for sure can not be included as a
part of the final result.

Identifying human actors is a two step process, which includes the use of
the Stanford Parser [6], the Stanford Typed Dependency Representation [9],
and WordNet Glosses [3], via the API RiWordNet(http://rednoise.org/rita/
reference/RiWordNet.html). First, we identify actors as the nominal subject,

Automated Extraction of Vulnerability Information 5

agent or the direct object of a verb. In case of a passive nominal subject de-
pendency, we consider the passive agent as an indirect actor. We extract the
WordNet Glosses [3] for these subjects, and if the glosses contain terms like
“human”,“person” or“someone”, we classify these as human actors.

However, at this point, we do not have enough evidence to identify the indi-
rect actors as humans. Hence, we perform a search across the generated parsed
dependency tree, pushing verbs into a stack, if they are directly related to both
the passive nominal subjects and their governing verbs. As each verb is popped
from the stack, it is verified whether its dependent is a non-human nominal sub-
ject or agent. If so, the concerned indirect actor is considered non-human and
the iteration ends; else the verb is added to the stack and the iteration continues.
If at the end of the search process, an indirect actor is found to have no direct
or indirect relation with another non-human subject or agent, it is added to the
list of human actors for further processing.

Each actor is attributed with a set of verbs and modifiers which are directly
or indirectly related to this actor. If the actor is indirect, the set of verbs and
modifiers for that actor can be enumerated as: humanActor.V erbList ←
{governing verb, open clausal complements of governing verb}
and humanActor.ModifierList ← {adjective modifiers for dir-
ect object of governing verb} respectively, else, as humanActor.V erbList ←
{governing verb, reduced non−finite verbal modifiers of the dependent, ope-
n clausal complements of governing verb} and humanActor.ModifierList←
{adjective modifiers for direct object of governing verb, adjective modifiers
of the dependent} respectively.

Since, in vulnerability summaries, the actor is not always referred to as “at-
tacker”, our next step involves identifying the actor as a “malicious attacker”
or a “benign user”/“victim.” In these cases, we analyze the sentiment value,
obtained using SentiWordNet [2], of each of the verbs and modifiers attributed
to the actor. This step assumes that the actors are malicious if the set of verbs
or modifiers attributed to them contains at least one verb or modifier with a
negative sentiment. We assign such actors as attackers, and others as victims.

To identify attacker actions, impact, and user actions, we consider each verb
that has been attributed to each actor and identify the minimal verb phrases or
sub-sentences they belong to. The term “minimal phrases/sub-sentence” refers to
phrases or sub-sentences that do not contain any nested phrases or sub-sentences
of the same type. Each phrase/sub-sentence is then considered individually and
added to the impacts; any nested minimal verb and/or preposition phrase is ex-
tracted from it. The nested verb phrases are tested for starting verbs like “result-
ing” and “using” to denote them as impact or attacker-action respectively. The
preposition phrases are first extended to the end of the verb-phrase/sub-sentence,
and then verified for a starting preposition like “by”, “through”, “with”, “via”,
etc. to be judged as attacker-action.

Finally, we perform a clean-up procedure. In this phase, for all actors, and
for the three categories – user actions, impacts, and attacker actions – we ver-
ify whether any of these strings is a complete sub-string of another. If so, we

6 S. Weerawardhana, S. Mukherjee, I. Ray and A. Howe

completely remove the smaller string from the larger string. However, we do
not remove an attacker action from a different attacker action if both of them
belong to the same actor. If any of these strings contain a minimal noun phrase
enclosing the noun that identifies the actor, that section is also removed. Also,
if the final strings start or end with stopwords and/or whitespaces/punctuations
we remove them.

3 Evaluating the Extraction

A completely automatic extraction process requires a level of natural language
understanding that is not currently feasible. Our evaluation focuses on what
can currently be done. Thus, we ran two experiments to examine the following
questions: What is the accuracy of the two approaches? How much can we rea-
sonably automate? Are some concepts harder to automate than others? Are the
two approaches complementary, favoring a hybrid approach as was done in [5]?
The experiments were:

1. Validate that the performance of the re-implementation of the NER solution
is similar to results reported by authors in [5].

2. Compare the performance of the two approaches with a focus on identifying
trade-offs and possible complementarity.

We compute precision (Prec), recall (Rec) and F-measure (F1) [8] on a particular
testing data set and for different entity labels to determine whether some labels
are more difficult to automatically extract and whether the approaches differ in
how accurately they extract each type.

3.1 Validate Implementation

The performance reported in [5] was computed on their own corpus (referred to
as “Joshi corpus”.) As the first part of validation, we computed the performance
of our ML approach using the “Joshi corpus” and following their procedure (five-
fold cross-validation) as closely as possible. Next, we trained our ML approach on
our corpus and compared the performance to see whether the corpora differences
led to significant differences in performance.

The most salient difference between the two corpora was in the labels ex-
tracted; because our labels were derived from the PAG model, our token set
and “Joshi corpus”’s were not identical although had considerable overlap. Per-
formance was calculated based only on the labels in the intersection: software,
operating system, file name, NER-modifier, and consequence/impact.
Validation Experiment Setup: The Joshi corpus was partitioned into five
equal sized sets: four sets for training and one set for testing. This corpus com-
prised four different sources – NVD, security blogs, Microsoft product specific
vulnerabilities, and Adobe product specific vulnerabilities; the partitioning en-
sured that each source contributed uniformly to the set of descriptions in each

Automated Extraction of Vulnerability Information 7

partition. Our corpus (which we call “NVD”) included labels from 210 vulner-
ability descriptions extracted from NVD. Both corpora were trained using the
CRF Classifier with 5-fold cross validation..
Validation Experiment Results: Table 1 shows the results reported in [5]
(“Orig”) compared to the results of our ML approach (mean and standard devi-
ation over the five folds) when trained/tested on different corpora. Our solution
on the Joshi corpus performs similarly to the reported results on Operating Sys-
tem and File (difference is less than the standard deviation); our precision was
lacking on NER-Modifier and Impact.

For each metric (precision, recall and F1) we ran two-tailed t-tests to test
for statistically significant differences in the accuracies. At the α < 0.05 level,
we found significant differences in eight out of 15; however, a Bonferroni adjust-
ment would reduce the threshold to 0.003 leading to significant differences on
only NER-Modifier and F1 for File. While we cannot use this analysis to con-
firm that there is no difference, it is likely that the differences were due to the
disparate sizes of the corpora and to differences in the sources. Performance on
NER-Modifier and Impact were improved on our corpus, while the others were
worsened.

Table 1. Accuracy metrics and t-test results for validation. Orig is as reported in [5].

Joshi Corpus NVD Corpus t-test
Label Metric Orig Mean SD Mean SD P <

File Prec 1.00 1.00 0.00 0.96 0.09 0.35
Rec 1.00 1.00 0.00 0.35 0.22 0.36
F1 1.00 1.00 0.00 0.58 0.14 0.002

Impact Prec 0.71 0.45 0.08 0.58 0.08 0.20
Rec 0.69 0.57 0.09 0.79 0.11 0.01
F1 0.70 0.54 0.08 0.67 0.09 0.04

NER Modifier Prec 0.79 0.48 0.15 0.94 0.02 0.002
Rec 0.67 0.61 0.12 0.82 0.40 0.002
F1 0.72 0.52 0.13 0.96 0.01 0.001

Operating System Prec 0.95 0.91 0.04 0.54 0.40 0.25
Rec 0.95 0.97 0.01 0.63 0.40 0.29
F1 0.95 0.94 0.03 0.56 0.39 0.24

Software Prec 0.86 0.65 0.05 0.53 0.05 0.008
Rec 0.84 0.81 0.08 0.75 0.03 0.13
F1 0.85 0.72 0.06 0.62 0.04 0.01

3.2 Compare Approaches

The second experiment compares the relative merits of our two approaches for
the labels needed to represent our PAG model.
Comparison Experiment Setup: Essentially, the same procedure was fol-
lowed for the ML approach as in the validation experiment. To assess the POS

8 S. Weerawardhana, S. Mukherjee, I. Ray and A. Howe

approach, we followed the same procedure except that no training was required;
the POS approach was tested on the test set for each of the five folds. The label
set was expanded to encompass other labels in our corpus : attacker action (e.g.,
send a crafted image file), user action (e.g., opens a crafted image file), version
and vulnerability (e.g., buffer overflow).
Comparison Results: Table 2 shows the results for each token type and ap-
proach. Component has been omitted because it was not implemented for POS;
the reason was that there was no unique POS pattern to identify “components”
in vulnerability descriptions. For ML, Prec = .22, Rec = .29 and F1 = .25. As
shown by “Diff”, POS is usually more accurate (in 22 out of 27 cases Diff is
negative). ML has better precision for File and Operating System, better recall
for Version and better F1 for Operating System and Version. This is somewhat
surprising given that POS was constructed based on analyzing a small number of
descriptions and encoding the observed patterns. On the other hand, it is using
considerable knowledge about the language.

A two-tailed t-test on each of the metrics comparing the accuracy of the two
approaches overall shows statistically significant differences in 15 out of 27 using
α = 0.05 and 6 out of 27 using a Bonferroni adjustment of 0.002. Although
using POS is most often effective, the five cases where ML excels suggest that
the combination may lead to slightly high accuracy. Overall the accuracy is good;
max ranges from 0.27 for F1 for User to 0.99 for Precision for NER-Modifier.

Both approaches had difficulty in identifying user-action concepts. This is
because vulnerability descriptions we analyzed do not explicitly mention user
action in the description. For this reason, from the dataset we collected to train
and test the learning model, we observed precision, recall and F1 measures of 0.
However, false positives were generated in some of the scenarios for both machine
learning and POS solutions. The reason for this, in the case of the POS tagging
solution, is inaccurate sentiment values obtained from SentiNet 3.0. Since we
rely on sentiments corresponding to verbs related to an actor in a sentence or
its modifiers, if the sentiment of each word is either positive or neutral, even
though the subject “user” in the sentence acts as the attacker, the action of that
subject is classified as user action rather than attacker action.

4 Conclusion and Future Work

This work presents two approaches to automatically extracting information re-
lated to vulnerabilities that is buried in the natural language plaintexts in vulner-
ability databases – a machine learning approach and a POS tagging approach.
Our experiments show that the POS approach is generally better (Prec. and
F1) at identifying implicit entities in vulnerability descriptions such as attacker
action and impact. These implicit entities exhibit limited presence in vulnerabil-
ity descriptions, which affects the model training. POS solution overcomes this
weakness because it relies on grammatical patterns in the sentence and not its
frequency of occurrence. In addition, the POS solution outperforms the machine
learning solution in identifying explicit entities such as file names (better Rec.

Automated Extraction of Vulnerability Information 9

Table 2. Accuracy metrics and t-test results for the two approaches on our corpus.
“Diff” is the ML minus POS – difference between the two approaches on that metric;
“Max” is the maximum value for the two.

ML POS t-test
Label Metric Mean SD Mean SD Diff Max P <

File Prec 0.96 0.09 0.72 0.15 0.24 0.96 0.015
Rec 0.35 0.22 0.96 0.06 -0.60 0.96 0.001
F1 0.58 0.14 0.81 0.12 -0.24 0.81 0.021

Impact Prec 0.58 0.08 0.94 0.06 -0.36 0.94 0.001
Rec 0.79 0.11 0.80 0.11 -0.01 0.80 0.880
F1 0.67 0.09 0.86 0.08 -0.19 0.86 0.007

NER-Modifier Prec 0.94 0.02 0.99 0.01 -0.05 0.99 0.003
Rec 0.82 0.40 0.97 0.02 -0.14 0.97 0.132
F1 0.96 0.01 0.98 0.01 -0.02 0.98 0.108

Operating System Prec 0.54 0.40 0.26 0.08 0.28 0.54 0.348
Rec 0.63 0.40 0.90 0.10 -0.26 0.90 0.377
F1 0.56 0.39 0.40 0.10 0.16 0.56 0.551

Software Prec 0.53 0.05 0.71 0.06 -0.17 0.71 0.001
Rec 0.75 0.03 0.77 0.07 -0.02 0.77 0.509
F1 0.62 0.04 0.74 0.04 -0.11 0.74 0.003

Attacker Prec 0.12 0.12 0.94 0.04 -0.82 0.94 0.001
Rec 0.30 0.30 0.76 0.07 -0.46 0.76 0.001
F1 0.17 0.17 0.84 0.05 -0.67 0.84 0.001

User Prec 0.00 0.00 0.48 0.69 -0.48 0.48 0.158
Rec 0.00 0.00 0.60 0.55 -0.60 0.60 0.040
F1 0.00 0.00 0.27 0.27 -0.27 0.27 0.054

Version Prec 0.90 0.05 0.94 0.02 -0.05 0.94 0.070
Rec 0.97 0.03 0.90 0.03 0.07 0.97 0.006
F1 0.93 0.04 0.92 0.03 0.01 0.93 0.572

Vulnerability Prec 0.31 0.11 0.59 0.11 -0.28 0.59 0.004
Rec 0.62 0.14 0.73 0.06 -0.11 0.73 0.133
F1 0.42 0.12 0.65 0.08 -0.24 0.65 0.007

and F1), software names (better Prec., Rec. and F1) and versions (better Prec.).
Therefore, we can conclude that POS tagging approach provides a feasible alter-
native to ML in security domain without the need for creating and maintaining
large corpora.

References

1. Bridges, R.A., et al.: Automatic labeling for entity extraction in cyber security.
Computing Research Repository. Available at http://arxiv.org/abs/1308.4941

(2013)
2. Esuli, A., Sebastiani, F.: SentIWordNet: A publicly available lexical resource for

opinion mining. In: Proceedings of the 5th Conference on Language Resources and
Evaluation. Genoa, Italy (May 2006)

3. Fellbaum, C.: WordNet: An Electronic Lexical Database. Bradford Books (1998)

10 S. Weerawardhana, S. Mukherjee, I. Ray and A. Howe

4. Finkel, J.R., et al.: Incorporating non-local information into information extrac-
tion systems by Gibbs sampling. In: Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics. Ann Arbor, MI (June 2005)

5. Joshi, A., et al.: Extracting cybersecurity related linked data from text. In: Pro-
ceedings of the 7th IEEE International Conference on Semantic Computing. Irvine,
CA (September 2013)

6. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of
the 41st Annual Meeting on Association for Computational Linguistics. Sapporo,
Japan (July 2003)

7. Lab, N.: BRAT annotation tool. http://brat.nlplab.org/ (2010)
8. Makhoul, J., et al.: Performance measures for information extraction. In: Proceed-

ings of DARPA Broadcast News Workshop. Herndon, VA (March 1999)
9. de Marneffe, M.C., et al.: Generating typed dependency parses from phrase struc-

ture parses. In: Proceedings of the International Conference on Language Resources
and Evaluation. Genoa, Italy (May 2006)

10. McNeil, N., et al.: PACE: Pattern accurate computationally efficient bootstrapping
for timely discovery of cyber-security concepts. Computing Research Repository.
Available at http://arxiv.org/abs/1308.4648 (2013)

11. Mulwad, V., et al.: Extracting information about security vulnerabilities from web
text. In: Proceedings of the 2011 IEEE/WIC/ACM International Conferences on
Web Intelligence and Intelligent Agent Technology. Lyon, France (August 2011)

12. Roschke, S., et al.: Towards unifying vulnerability information for attack graph
construction. In: Proceedings of the 12th International Conference on Information
Security. LNCS 5735 (2009)

13. Settles, B.: Biomedical named entity recognition using conditional random fields
and rich feature sets. In: Proceedings of the International Joint Workshop on Natu-
ral Language Processing in Biomedicine and Its Applications. Geneva, Switzerland
(August 2004)

14. Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a max-
imum entropy part-of-speech tagger. In: Proceedings of the 2000 Joint SIGDAT
Conference on Empirical Methods in Natural Language Processing and Very Large
Corpora. Hong Kong (October 2000)

15. Urbanska, M., et al.: Structuring a vulnerability description for comprehensive sin-
gle system security analysis. In: Rocky Mountain Celebration of Women in Com-
puting. Fort Collins, CO, USA (November 2012)

16. Urbanska, M., et al.: Accepting the inevitable: Factoring the user into home com-
puter security. In: Proceedings of the Third ACM Conference on Data and Appli-
cation Security and Privacy. San Antonio, TX, USA (February 2013)

17. Wallach, H.M.: Conditional random fields: An introduction. CIS Technical Report
MS-CIS-04-21, University of Pennsylvania (2004)

