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Abstract. Let A be a family of n pairwise disjoint compact convex sets in R a. Let 

=2Y,=o,,,_l(m-1)i . We show that the directed lines in R d, d>-3, can be ~d(m)  

o((")t partitioned into ,1 2 sets such that any two directed lines in the same set 

which intersect any A'c_ A generate the same ordering on A'. The directed lines in 
R 2 can be partitioned into 12n such sets. This bounds the number of geometric 

permutations on A by ½qbd ( ( ~ ) ) f o r d > - 3 a n d b y 6 n f o r d = 2 .  

I. Introduction 

Let A = {at, a 2 , . . . ,  a,} be a family of n pairwise disjoint compact convex sets 
in R a. A common transversal for A is a line intersecting each set in A. Each 
common transversal intersects the sets in A in a unique order, up to reversal. 
Katchalski, Lewis, Zaks, and Liu called this ordering and its "reversal" a geometric 
permutation of A [KLZ],  [KLLI] .  They showed that any family A of n disjoint 

oom a t  onv x io.  at ( ) oomot i  =utat oos 

Geometric permutations partition the common transversals of  A into disjoint 
sets such that any two transversals in the same set intersect A in the same order. 
We can extend the idea of  geometric permutations to include orderings from 
lines which intersect a subset of  A. Two lines which intersect A'c_ A can be 
associated if they intersect A' in the same order. We wish to partition the directed 
lines in Rd into as few sets as possible such that every two lines in the same set 
which intersect any A'~_ A generate the same ordering on A'. Each geometric 
permutation is associated with a unique pair of  sets from the partition. Thus 
bounding the size of  the partition bounds the number  of  geometric permutations. 
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We define a new term, a separation set for A. We say that a hyperplane h 
separates a~ e A from aj c A if a~ lies in one of  the closed half-spaces bounded 
by h and aj lies in the other. We say that a hyperplane h strictly separates a 
convex set a~ from a convex set aj, if h separates a~ from aj and h ch ai = h c~ a) = O. 
I f  H is a set of  hyperplanes in R a, then we say that H is a separation set for A 
if, for every pair of  elements, a~, aj c A, there exists a hyperplane h ~ H such that 
h strictly separates ai from aj. Obviously, there exist infinitely many different 
sets which are separation sets for A. 

Let H be a finite set of  hyperplanes in R d and let IHI be the number of  
elements in H. Define 

i = 0  

and define ~ a ( H )  to be the number of  cones in the pencil obtained by translating 
the hyperplanes in H to the origin. Winder [W] proved that ~d(H)<--~a( jHt) .  

We present three main theorems in this paper. Bill Lenhart provided the 
inspiration for Theorem 3. 

Theorem 1. Let A be a family of  pairwise disjoint compact convex sets in R d and 
H be some separation set for A. The directed lines in R d can be partitioned into 
• d ( H )  sets such that every two directed lines in the same set which intersect any 
A'  c A generate the same ordering on A'. 

Theorem 2. I f  A is a family o f  n pairwise disjoint convex polygons in R 2, then 
there exists a separation set L for A where each line in L is parallel to some edge 
o f  a polygon in A. 

Theorem 3. Given A, a family of  n pairwise disjoint compact convex sets in R 2, 
there exists a family B of  n pairwise disjoint compact convex polygons, such that: 

(i) each convex set in A is entirely contained in a unique polygon in B, 
(ii) the total number o f  edges in all the polygons in B is at most 12n, and 

(iii) i f  L is the set o f  lines containing the edges of  the polygons in B, then 
• 2(L) -< 12n. 

For every pair of  disjoint compact  convex sets, there exists some hyperplane 
which strictly separates the pair [G]. By choosing such a hyperplane for every 
pair, we can always construct a separation set H for n compact  convex sets (°) containing 2 elements. Since We ( H )  <- q)d (JIll), we have the following corollary 

to Theorem 1: 

Coro i l a~  1. I f  A is a family o f  n pairwise disjoint compact convex sets in R d, the 

lines in the same set which intersect any A'  c_ A generate the same ordering on A'. 
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Finally, combining Theorems 2 and 3, we can always find a separation set L for 
n convex sets in R 2 such that qt2(L)<-12n. Applying Theorem 1, we have the 
following corollary: 

Corollary 2. I f  A is a family  o f  n pairwise disjoint compact convex sets in R 2, the 
directed lines in R 2 can be partitioned into 12n sets such that any two directed lines 
in the same set which intersect any A'  c A generate the same ordering on A'. 

As noted before, each geometric permutat ion is associated with a unique pair 
o f  sets in the partition o f  directed lines. Thus the number  o f  geometric permutat ions 
on A is bounded  by hal f  the size o f  the partition. Corollaries 1 and 2 imply that 

t h e r e a r e a t m o s t ½ d ) d ( ( 2 ) ) g e o m e t r i c p e r m u t a t i o n s o f A i n R a a n d a t m o s t 6 n  

geometric permutat ions o f  A in R 2. 

2. Upper Bounds on the Number of Geometric Permutations 

We now prove Theorem 1. Let A = {a~, a2 . . . .  , a,} be a family o f  n pairwise 
disjoint compact  convex sets in R d and let H = {h~, h2 . . . .  , h,,} be a separation 
set o f  A containing m elements. Let {u~, u2,. • . ,  urn} be a set o f  normal  vectors 
to H where Uk is normal  to hk. 

Let v be a vector in R d and let T be the set o f  all lines with direction v. Let 
hk be the hyperplane separating a~ and aj and assume (a; - a;) • Uk > 0. If  V" Uk > O, 
then any line in T must intersect ai before aJ. i f  v.  Uk < 0, then any line in T 
must intersect aj before ai. Furthermore,  even if no line with direction v intersects 
ai and aj simultaneously,  sgn(v .  Uk) still determines an ordering relation on a~ 
and a t. Thus sgn(v-  Uk), k = 1 , . . . ,  m, determines the relative order  in which any 
line with direction v intersects any two elements o f  A. 

Consider  the cones created by hyperplanes through the origin with normals 
Uk, k = 1 , . . . ,  m. The values o f  sgn(v ,  uk), k = 1 , . . . ,  m, are determined by the 
cone into which v points. Any two lines which point  into a given cone and 
intersect some A'c_ A generate the same ordering on A'. There are at most  ~ d ( H )  
cones, and so the directed lines can be parti t ioned into ~ d ( H )  sets with the 
desired property.  This proves Theorem 1. 

3. Separation Sets for Convex Polygons 

Let A be a family o f  pairwise disjoint compact  convex polygons  in R 2. For 
Theorem 2, we show how to construct a separation set L for A where each line 
in L is parallel to some edge in A. We need merely show that for any two polygons,  
ai and a;, there exists some line strictly separating af from ai and parallel to 
some edge in A. 

Let i* be some line strictly separating convex polygon a~ from convex polygon 
aj and tangent to a; at some vertex. Let l~ and 12 be the two lines containing the 
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Fig. 1. Convex polygons a, and a r 
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edges of  a~ which meet at that vertex. It and/2 divide the plane into four quadrants, 
q~, q2, qs, q4, with a~ lying wholly in one quadrant,  say q~ (see Fig. I). We 
include in each quadrant  the boundary of  that quadrant. 

Since l* separates aj from a~, a t does not intersect quadrant  q~. I f  at does not 
intersect quadrant q2, then/2 separates ai from aj, I f  a t does not intersect quadrant 
q4, then I t separates a~ from a t. By translating either of  these separators slightly 
toward aJ, we have a line strictly separating a~ from a t and parallel to a line 
through an edge of ai. 

Assume a~ contains a point from quadrant  q2 and from quadrant q4- Some 
edge of  a t must intersect l~. Let/3 be the line containing that edge. /3 separates 
a~ from a2 so by translating it slightly toward aj we have a line strictly separating 
ai from aj and parallel to an edge of  a~. 

For each pair of  polygons a~, aj E A, we add to L a line strictly separating a~ 
from a t and parallel to some edge in ai or a t. L is a separation set for A such 
that every line in L is parallel to some edge of a polygon in A, fulfilling the 
conditions in Theorem 2. 

4. Embedding Compact Convex Sets in Polygons 

Given n pairwise disjoint compact  convex sets, we show how to embed these 
convex sets in n pairwise disjoint compact  convex polygons satisfying the condi- 
tions in Theorem 3. We first note that n pairwise disjoint convex sets can be 
embedded in n pairwise disjoint convex polygons using a total of  not more than 
n ( n + 2 )  edges. Choose some convex set a and find n -  1 lines separating a from 
the n - 1 other convex sets. These n - 1 lines bound n - 1 half-planes containing 
a. I f  the intersection of  these half-planes is unbounded,  we can add three suitable 
half-planes containing a such that the intersection of the n + 2  half-planes is 
bounded.  The intersection of  these half-planes forms a polygon with at most 
n + 2 edges which contains a. Repeat the procedure n times to get a set A of  n 
pairwise disjoint convex polygons containing the n convex sets. 

Following [PS], a complete triangulation of a finite set of  points S is a planar 
graph whose vertices are the points of  S, whose edges are nonintersecting line 
segments joining the points in S, and whose faces (including the external face) 
are bounded by triangles. We define a new type of  triangulation, a complete 
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Fig. 2. A complete triangulation of convex polygons. 

triangulation of a finite family of convex polygons A is a planar graph whose 
vertices can be mapped to polygons in A, whose edges can be mapped to 
nonintersecting line segments joining two polygons and not intersecting any other 
polygon, and whose faces (including the external face) are bounded by triangles 
(see Fig. 2). We allow graphs to have multiple edges, i.e., more than one edge 
between any two vertices. 

Let c be some polygon in A which lies on the convex hull of  A. Add two 
small triangles, d and d' ,  to A such that the convex hull of  A ' = A ~ { d ,  d'} is 
three line segments between c, d, and d'. The convex hull of  A' minus the polygons 
in A' forms a polygon with holes. Triangulate this polygon with holes [PS]. This 
triangulation induces a planar graph on the polygons in A' where polygons are 
mapped to vertices and triangulation line segments to edges. The faces in this 
planar graph are bounded by two or three edges. I f  a face is bounded by only 
two edges, one of  the bounding edges and its corresponding line segment is 
redundant. Remove these redundant edges and line segments until all faces are 
bounded by three edges. The resultant planar graph G is a complete triangulation 
of A'. 

Given this triangulation G of A' we can embed the n pairwise disjoint convex 
polygons in A into n pairwise disjoint convex polygons with at most 12n edges. 
For each triangulation line segment s connecting a, b c A', let Is be the line 
containing s. Let la.b be some line strictly separating a from b. 

For each convex set a ~ A', let N(a)  be a list of the neighbors of  a. Let F(a) 
be a list of  the faces which have a as  a vertex. Let Ll(a)= {la,b: b e N(a )}  and 
let L2(a )=  {l~: s lies on a face o fF(a)  and connects b, b'~ N(a)}.  Let Lo(a) be 
the union of  the lines in L~(a) and L2(a) slightly translated toward a. Let P(a) 
be the intersection of the half-planes containing a and bounded by the lines in 
Lo(a). For any a ~ A other than c, P(a) is bounded by the cycle of  the neighbors 
of  a and the triangulation line segments between them (see Fig. 3). Thus P(a) 
is a convex polygon containing a. By a judicious choice of  lc.d and lc.d,, P(c) is 
also a convex polygon containing c. We claim that B = {P(a):  a ~ A} is a family 
of n pairwise disjoint compact  convex polygons such that each a e A is contained 
in P(a) and the total number  of  edges in the polygons in B is 12n. 

Assume a, b s A are neighbors in G. P(a) and P(b) are both bounded by a 
translation of the same separator, l~.b of a and b. Since P(a) and P(b) are in 
different half-planes bounded by la.b, la,b must separate P(a) from P(b) and 
P(a) and P(b) are pairwise disjoint. 
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Fig. 3. Cycle of neighbors of a. 

Now, assume a, b ~ A are not neighbors in G. P(a) is entirely contained in a 
cycle of  the neighbors of  a while P(b) is entirely contained in a cycle of the 
neighbors of  b. Since b is not a neighbor of a, these two cycles must contain 
different regions in the plane and so P(a) and P(b) must be pairwise disjoint. 

Let m be the number of edges in G. G is a planar graph in which every face 
is a triangle and there are n + 2 vertices in G, so m = 3n [H]. Each edge connects 
two neighbors, so the total number of neighbors over all vertices in the graph is 
6n. The total number of  edges in the polygons in B is at most the total number 
of  lines in Lo(a) over all a c A: 

E ILo(a)l~ ~ ILo(a)l = ~Z [L,(a)l+ E IL2(a)l <~6n+6n=12n. 
a ~ A  a ~ A '  a c A  a ~ A  

Therefore, the total number of edges in the polygons in B is at most 12n. 
Let L be the set of lines containing the edges of the polygons in B. L is a 

subset of L ' = L J a e A  , Lo(a). Each line in Lo(a) is parallel to some line in some 
Lo(b), a, b ~ A'. Since the total number of lines in L' is at most 12n, ~2(L')  -< 12n 
and so ~2(L) -< 12n. 

5. Conclusion 

Katchalski et al. [KLZ] asserted that, for every d, there exists a constant kd and 
a family A of  n pairwise disjoint compact convex sets in R d such that there are 
at least kdn d-~ geometric permutations of  A. Corollary 1 implies an upper bound 
of  O(n 2a-2) for the number of  geometric permutations of  A, leaving a wide gap 
for improvement. Villanger showed that for any n there exist families of  n line 
segments in R 3 inwhich any hyperplane separates at most one line segment from 
one other line segment IT]. Thus, there exist a family A of  n compact convex 

sets in Rd, for any d>-3, such that any separation set of A must have (2)  

elements. In fact, by embedding Villanger's line segments in rectangular prisms, 
we see that Theorem 2 does not generalize to two dimensions. Reduction of  the 
upper bounds must come from other directions. 
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Much attention has been paid to geometric permutations of families of 
translates [K], [KLL1], [KLL2]. Are there separation theorems for families of 
translates? These theorems may increase our understanding about geometric 
permutations of  families of  translates. 

We are also interested in reducing the 12n edges needed for n pairwise disjoint 
compact convex polygons to contain n pairwise disjoint compact convex sets in 
R 2. Approximately 6n edges are needed for any n pairwise disjoint convex 
polygons containing n hexagons in a lattice of hexagons. We do not know if any 
set of  n compact convex sets in R 2 can be contained in n compact convex 
polygons in R 2 with a total of  about 6n edges. Finally, we do not know if Theorem 
3 generalizes to three dimensions. Can any set of  n pairwise disjoint compact 
convex sets in R 3 be embedded in n pairwise disjoint convex polyhedra such 
that the total number of faces is linear in n ? 
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