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Consistently predicting outcomes in novel situations is colloquially called “going beyond

the data,” or “generalization.” Going beyond the data features in spatial and non-spatial

cognition, raising the question of whether such features have a common basis—a kind

of systematicity of generalization. Here, we conceptualize this ability as the patching of

local knowledge to obtain non-local (global) information. Tracking the passage from local

to global properties is the purview of sheaf theory, a branch of mathematics at the nexus

of algebra and geometry/topology. Two cognitive domains are examined: (1) learning

cue-target patterns that conform to an underlying algebraic rule, and (2) visual attention

requiring the integration of space-based feature maps. In both cases, going beyond

the data is obtained from a (universal) sheaf theory construction called “sheaving,” i.e.,

the “patching” of local data attached to a topological space to obtain a representation

considered as a globally coherent cognitive map. These results are discussed in the

context of a previous (category theory) explanation for systematicity, vis-a-vis, categorical

universal constructions, along with other cognitive domains where going beyond the

data is apparent. Analogous to higher-order function (i.e., a function that takes/returns

a function), going beyond the data as a higher-order systematicity property is explained

by sheaving, a higher-order (categorical) universal construction.

Keywords: learning, generalization, sheaf theory, sheaf, sheaving, category theory, universal

1. INTRODUCTION

A ubiquitous cognitive ability is the capacity to “go beyond the data.” That is, to put it broadly,
an ability to successfully respond to stimuli not previously encountered. Such a characterization
encompasses a wide variety of situations from perception-based classification to logic-like
reasoning. For example, given feedback on the edibility of a particular kind of fruit, one knows
when the fruit can be eaten next time it comes into season. Or, having been (repeatedly) rewarded
for choosing stimulusA over stimulus B and B over stimulus C, one correctly predicts that choosing
A over C will also elicit a reward. In general, a capacity to go beyond the data is referred to as
generalization. And, this ability is typically expressed as correct responses to novel inputs given
some knowledge about other input-output (cue-target) examples.

This broad view of generalization affords an instructive comparison/contrast of two distinctive
views of cognition, to wit, classical (symbolic) and connectionist (subsymbolic/vectorial). The
relative merits of these two views (Fodor and Pylyshyn, 1988) have been extensively debated in
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the literature (see Calvo and Symons, 2014, for a cross-section of
arguments). Our interest, here, is with several key aspects of the
debate that motivate and help illustrate a different conception of
generalization to follow.

The classical view is that our ability to reason about the
world is founded upon a compositional syntax and semantics:
the world is interpreted through a language of thought (Fodor,
1975). A language of thought is a system of representations—
complex entities are modeled by corresponding compositional
representations so that the semantic relationships between the
constituent entities are reflected in the syntactic relationships
between the corresponding constituent representations—and
processes that are compatible with the way such compositional
representations are constructed. So, for instance, on seeing
that John is standing to the left of Mary, there is a symbol
representing John juxtaposed with a symbol representing Mary
in a way that captures the relative spatial locations of John and
Mary. What matters to the classical theory is not the particular
syntactic relationship, but that the relationship employed is
used consistently in all such situations. In this way, a classical
cognitive system with the capacity to juxtapose all such relevant
combinations of symbols is supposed to explain the productivity
and systematicity properties of language (Chomsky, 1980) and
thought (Fodor and Pylyshyn, 1988), more generally.

Productivity and systematicity can be seen as forms of
generalization in the sense just introduced. Productivity, as the
term suggests, is characterized as having a cognitive capacity that
is more than the sum of its parts. For instance, suppose in the
course of understanding the meaning of “to the left of” that
upon being told, “John is standing to the left of Mary,” “Mary
is standing to the left of Tom,” and “John is standing to the left
of Tom” when indeed one sees that John is to the left of Mary,
and so on, that symbols are recruited to represent John, Mary
and Tom. Suppose, further, that a (product) rule is exercised to
combine that set of symbols into a set of symbol pairs: e.g., (John,
Mary) in corresponding (left, right) order, together with a process
for accessing the first symbol in each pair, thereby affording
the inference that John is the person on the left when applied
to the pair (John, Mary). This system exhibits productivity,
therefore generalization in the aforementioned sense, because
a basic capacity to represent three pairs of people produces
(generalizes to) a capacity to represent all six possible pairs
of people without further instruction. A similar consideration
applies to systematicity: where having the capacity for one such
instance implies having the capacity for another (structurally-
related) instance, via application of the same combinatorial
process (Fodor and Pylyshyn, 1988; Aizawa, 2003).

A connectionist view, which eschews symbolic
representations and processes, is that our ability to reason
about the world is founded upon vector (coordinate) based
representations and processes, realized as networks of neuron-
inspired computational units (Rumelhart et al., 1986). A
connectionist model employs vectorial representations—
complex entities are modeled by corresponding vectors so that
the semantic relationships between the constituent entities are
reflected in the spatial (geometrical) relationships between the
corresponding constituent representations—and functions that

are compatible with the way such vectorial representations are
constructed. In the linear case, where the computational units
involve only linear functions, connectionist models can provide
analogous accounts of productivity and systematicity via linear
algebra (Smolensky, 1990). In the non-linear case, where units
involve non-linear functions, productivity and systematicity,
and other forms of generalization, obtain from judicious choices
of learning methods and non-linear functions (see e.g., Hadley,
1994; Frank et al., 2009, among many others).

Although classical and connectionist approaches can
demonstrate various generalization properties, they both fall
short of an important theoretical challenge. That challenge is to
explain why, not just how properties such as systematicity derive
from the core principles of the theory. This challenge was the
one originally raised against connectionist theories (Fodor and
Pylyshyn, 1988), and later shown to be problematic for classical
theories too (Aizawa, 2003). The essence of the problem is that
the core principles admit systems that do and systems that do not
exhibit systematicity. In both cases, the core theoretical claims
do not derive the systematicity properties without tailoring
auxiliary assumptions to fit the data whenever such properties
are evident. Such assumptions are characteristically ad hoc in
being unconnected to the core principles of the theory, motivated
solely to fit the data, and cannot be confirmed independently of
confirming the theory—accordingly, classical and connectionist
theories fail to fully explain such properties (Aizawa, 2003).

To address this challenge, a category theory (Eilenberg and
Mac Lane, 1945; Mac Lane, 1998) approach was proposed
whereby systematicity properties derive from universal
(categorical) constructions (Phillips and Wilson, 2010). For
example, of the many possible ways of combining symbols or
vectors to represent pairs there is only “one” way (see remark 8
in Appendix of the Supplementary Material) to combine
them so that the constituents are uniquely accessible in every
possible case, called the categorical product. Various scenarios for
systematicity were explained in terms of appropriate universal
constructions (see Phillips and Wilson, 2016b, for an overview).
A summary of the systematicity challenge, which motivates the
categorical theory approach is given in the last section of the
Appendix (Supplementary Material).

An explanation for systematicity, however, raises to a wider
question, Why do people fail to exhibit systematicity in some
situations? In particular, failure to apply certain rules of inference
(modus ponens and modus tollens) in the relevant situations at
least calls into question the classical account of systematicity
(van Gelder and Niklasson, 1994). Other forms of fallacious
reasoning, such as the conjunction/disjunction fallacy (Tversky
and Kahneman, 1983) and pseudo-transitive inference (Goodwin
and Johnson-Laird, 2008), raise a similar challenge. A general
framework within which such questions and challenges may be
addressed is called dual-process (see Evans, 2003, for a review).

Dual-process accounts of cognition assume two modes of
thinking, generically labeled Type 1 and Type 2, which are
typically characterized as fast, reflexive, associative and relatively
effortless—Type 1—vs. slow, reflective, rule-based and relatively
effortful—Type 2 (Kahneman, 2011; Evans and Stanovich, 2013).
The basic idea is that the two systems trade off complementary
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properties so that, for example, under time pressure a faster
Type 1 process may supersede a slower Type 2 process yielding
an incorrect response (Kahneman, 2011; Evans and Stanovich,
2013)—the two types of processes trade the benefit of speed for
the cost of accuracy.

Along similar lines, a trade-off was hypothesized in regard to
systematicity: for the categorical account, lack of systematicity is
due to the relative cost/benefit of constructing the appropriate
universal morphism (Phillips et al., 2016). This hypothesis was
tested in a stimulus-response learning experiment, where the
maps to be learned were products of cue-target maps. The
supposed trade-off involved learning a single (associative) route
of n2 mappings vs. a pair of routes (via a product-rule) of
2n mappings—increased memory vs. decreased attention. Two
groups of participants were administered the task. The ascend
group were trained and tested on four different cue-target maps
in ascending order of map size (i.e., from three-by-three to
six-by-six possible cue-target associations). This group showed
generalization (correct responses) to novel stimuli in the testing
set only when the number of cue-target pairs to be learned
was large, indicating that they did not construct the universal
morphism (product map) for small maps, even though there
were sufficient training examples to induce the construction.
The descend group were trained and tested in descending order
of map size. This group showed generalization to the testing
set at all sizes, indicating systematic induction of the product
map. Together, these results support a cost/benefit explanation
(Phillips et al., 2016).

The cost/benefit explanation, as it pertains to the experiment,
raises two closely related questions: (1) what determines the
choice of (associative vs. [product] rule-based) learning route,
and (2) in the case of the rule-based learning route, how/why
are universal morphisms systematically constructed? This paper
is primarily concerned with the second question: under the
assumption that participants are driven toward the rule-based
route, how/why are universal morphisms constructed?We return
to the broader question of how/why participants are driven to this
learning route, i.e., the interaction between cost/benefit and the
construction of universal morphisms in the Discussion. To the
second question, then, the consistent (systematic) transition from
no systematicity (no universal construction) to systematicity
(universal construction) itself suggests another form of universal
construction. These considerations, which constitute the starting
point for the current work, lead naturally to another (closely
related) branch of mathematics, called sheaf theory (Hartshorne,
1977; Mac Lane and Moerdijk, 1992), applied here as a basis for
generalization.

The import of sheaf theory to cognitive science may seem
obscure. So, a preview of the sheaf theory approach is provided in
the remainder of this introduction before delving deeper into the
conceptual details and cognitive applications (subsequent main
text), and supporting formal theory (Appendix in Supplementary
Material).

1.1. Preview: Generalization as Patching
(Sheaving)
A capacity to generalize beyond the given instances connotes
a property that is (re)constructed from local information.

Conceptually, at least, this situation is akin to tracking the passage
from a local to a global property, which is the purview of
sheaf theory. This way of looking at generalization renders the
essential ingredients (axioms) of sheaf theory as a formalization
of some classical and connectionist concepts already introduced.
In this light, the path from sheaf theory to cognition is
less abstruse. Indeed, sheaf theory is where algebra meets
geometry/topology. If one regards classical and connectionist
approaches as complementary, which some researchers do (e.g.,
Holyoak and Hummel, 2000; Clark et al., 2008)—a language of
thought (Fodor and Pylyshyn, 1988) on one hand and a geometry
of thought (Gardenfors, 2000) on the other, then sheaf theory
alludes to a natural integration of the two.

There are three fundamental aspects to sheaf theory that we
will interpret in terms of cognitive representations and processes:
(1) presheaf (sheaf ), a basic element of sheaf theory, which we
will regard as a (coherent) cognitive map or representation,
(2) sheaving, the (universal) process of constructing a sheaf from
a presheaf, which we will interpret as a form of systematic
generalization, and (3) sheaf morphism, regarded here as a kind
of inference, i.e., a cognitive process acting on a cognitive
representation.

A sheaf is like a work of art, and sheaf operations are like the
artistic process, in the following sense. To create a portrait, an
artist applies paint to canvas. The canvas is a topological space
and the paint is the data attached to that space. As a work in
progress, there are unpainted regions on the canvas, or sections
of the portrait that don’t quite match. In unfinished form, the
portrait is a presheaf. Paint is added to the vacant regions, or laid
over existing sections to obtain the finished form. This patching
process is likened to sheaving, and the finished form to a sheaf.
The finished portrait may be further altered, e.g., by changing
tone to affect mood, thus creating a new portrait, and this process
is likened to a sheaf morphism.

This artistic rendering of sheaves has analogs in classical and
connectionist theory. The canvas is a representational space in
which symbolic, or vectorial representations are constructed,
combined (patched), or transformed. As we shall see, sheaf theory
provides a formal basis for such processes and, in particular,
generalization as the patching of local knowledge to obtain non-
local (global) information. We present the basic sheaf theory
and the sheaving construction considered as a “universal” basis
for generalization (section 2). Then we examine sheaving in two
cognitive domains (section 3): cue-target learning, involving the
product of two cue-target maps, and visual search involving
the integration of two visuospatial maps. In terms of sheaves,
the first domain is a special case of the second domain. These
results are discussed in the context of a previous (category theory)
explanation for systematicity, vis-a-vis, categorical universal
constructions, along with other cognitive domains where going
beyond the data is apparent (section 4). Supporting technical
material is provided in the Appendix (Supplementary Material).

2. SHEAVES AND SHEAVING

As previewed in the Introduction, sheaf theory concerns the
passage from local to global properties, which we interpret
as generalization in the context of cognition. This section
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TABLE 1 | Corresponding set/relational database and category/sheaf theory

concepts.

Set theory Relational database theory

Element, set Column name, header

(assignment) function (data) table

(higher-order) function (table) transformation

optimal function natural join, renormalization

Category theory Sheaf theory

Object/morphism, category Open set/inclusion, topology

(contravariant) functor presheaf/sheaf

natural transformation presheaf/sheaf morphism

universal morphism pullback, sheaving

provides a conceptualization of the formal details. Although the
presentation in this section is primarily intuitive, some notation
is included to facilitate links to the formal theory. Sheaf theory is
initially given in terms of sets and functions. However, a category
theory view is particularly relevant here, because of our interest in
universal constructions as an explanatory basis for systematicity
(generalization). In short, there are two levels of universality:
one at the level of sheaf, which is defined via a universal
construction, and the other at the level of collection of sheaves
that pertains to sheaving, which is another kind of universal
construction. Accordingly, sheaving pertains to a kind of second-
order systematicity (see Chomsky, 1980; Aizawa, 2003; Phillips
and Wilson, 2016a), alluded to earlier. Moreover, a category
theory approach affords wider applicability to domains involving
more structure than just sets. A guide to formal concepts for
the various theoretical views and their relationships is given in
Table 1.

Conceptually, one can think of sheaving as a process of
obtaining a coherent “map” or representation of a complex
situation that is a sheaf. Hence, the state of affairs before having a
sheaf is called a presheaf. Sheaving is a (universal) way of going
from a presheaf to a sheaf. An immediately intuitive example
is navigating a city using a street directory. Each page of the
directory contains a map of a local area. To visit a distant part of
town, pages mapping contiguous areas must be “glued” together
along common landmarks to yield a map that includes both the
current location and the destination. Gluing all such pages is akin
to constructing a sheaf, and the construction process is akin to
sheaving.

The street directory example is intended to bootstrap some
basic intuitions about presheaves and sheaves. A presheaf, or a
sheaf is an assignment of data (sets of elements) to (regions of)
a topological space, where a sheaf is required to satisfy some
additional coherence conditions. In the context of the street
directory example, we have the following interpretation.

• A topological space is a set of elements together with
a collection of its subsets, which indicates the relative
proximity of those elements (definition 6 in Appendix of
the Supplementary Material). The collection (set) of subsets
is called the topology of the space, and the subsets are the
open sets of the topology. So, the pages of the street directory
correspond to open sets.

• A presheaf is an assignment of data to the open sets of the
topological space. The assignment is given by a function that
sends each open set to some set (definition 16 in Appendix of
the Supplementary Material). The data in the current example
are the markings that constitute the street map on each page
of the directory. The assignment of data to the open sets is
required to satisfy a certain restriction condition, which says
that the data assigned to an open setV ⊆ U is the data assigned
to open set U restricted to V (definition 4 in Appendix of
the Supplementary Material). For instance, this condition says
that the markings on two adjacent pages treated as a single
page restrict to the markings on the individual pages. For a
presheaf, in general, the restrictions of data to the intersection
of open sets need not agree. This situation occurs when, for
example, the map for an urban area may contain more detailed
information than the map for an adjacent nature reserve so
that the two sets of landmarks shown for the overlapping area
are not the same set.

• A sheaf is a presheaf such that the data for overlapping
open sets is the same (definition 17 in Appendix of the
Supplementary Material). There are two conditions for a
presheaf to be a sheaf (definition 17 in Appendix of the
Supplementary Material). The requirement that the data agree
on overlaps is called the gluing condition; the requirement that
the gluing be unique is called the locality condition, which
essentially says that there is no ambiguity in the way local
information is patched together.

• Sheaving (definition 18 in Appendix of the Supplementary
Material) is a universal way (theorem 1 in Appendix of the
Supplementary Material) of constructing the “best” possible
sheaf from a given presheaf (example 9 in Appendix of the
Supplementary Material).

The foregoing illustration, though intuitive, glosses over
important details that may leave one questioning the motivation
for a sheaf theory approach. Firstly, why are we concerned with
the more abstract notion of topological space, rather than the
more concrete notion of coordinate space used, for example, in
connectionist models where the vectors take on real numbers?
Secondly, how are data attached to a topological space? Thirdly,
in what sense does sheaving return the “best” possible sheaf for
a given presheaf? Each question is addressed in the next three
sections, in turn.

2.1. A Topological View of Space
The street map example may leave one wondering about the
need to work with a topological space. A topological approach
is appropriate when there is no suitable notion of “distance,”
between representations, as required by a metric space. The
extra abstraction also affords a parsimonious treatment of
symbolic and numeric (coordinate) representations, as both sets
of symbols and sets of numbers can be given a topology.

To illustrate how symbols have a (topological) order without
defining a distance measure, suppose we have a set of abstract
symbols, X = {A,B,C}. A topology on X is a collection T of
subsets of X that, at least, includes the empty set, ∅, and X. These
subsets are designated as the open sets of T and indicate the
relative proximity of the elements in X. For example, suppose

Frontiers in Psychology | www.frontiersin.org 4 October 2018 | Volume 9 | Article 1926

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Phillips Going Beyond the Data

T = {∅, {C}, {B,C}, {A,B,C}}. This topology is a specialization
order topology corresponding to the order A ≤ B ≤ C, which
says that B is closer to C than A.

Every set X can be given two extreme topologies (example 1 in
Appendix of the SupplementaryMaterial), which have associated
orders. One extreme is called the indiscrete topology, which
contains just the empty set and X. The other extreme is called
the discrete topology, which contains every subset of X. The
(pre)order associated with the indiscrete topology on {A,B} has
the order relations A ≤ B and B ≤ A, and the order associated
with the discrete topology has just the order relations A ≤ A
and B ≤ B. Both can be interpreted as reflecting “minimal”
information about the proximity of A and B.

Open sets are fundamental to the topological notion of space
and continuity. Not only do they indicate proximity, but also
how the regions of space relate to each other via inclusion. If
two regions are open sets, then their intersection and union
are also open sets (regions) of that space. As we shall see, next,
intersections pertain to gluing and unions pertain to coverage.
We have already introduced the importance of gluing, the
importance of coverage is similarly efficacious—we require as
many pages as needed to cover all city regions. Likewise, a
representational space should cover the things that need to be
represented. The corresponding concept in topology is open cover
(definition 8 in Appendix of the Supplementary Material).

Perhaps less obvious is the role of opens sets to the property
of being continuous. A function between topological spaces is
called continuous if the preimage of an open set is an open set
(definition 7 in Appendix of the Supplementary Material)—a
continuous transformation obtains closely related things from
closely related things. Notice that this topological definition
admits continuous functions over “discrete” symbols. Being
continuous is a property of a function, not a space. Connectionist
representations are sometimes regards as “continuous” and
symbolic representations as “discrete.” However, this difference
is more akin to the difference between countable vs. uncountable
sets: e.g., the set of natural numbers vs. the set of real numbers.

2.2. A Relational View of Data
The foregoing conception of representational space lays the
groundwork, as it were, for a parsimonious treatment of
representation as data attached to a (topological) space. A
crucial observation is that relational databases can be viewed as
presheaves, or sheaves (Abramsky and Brandenburger, 2011)
(Note that presheave/sheaves are more general constructions
than relational tables, because every point/column, or
combination of points/columns need not constitute an open
set of the topology). A relational database table consists of a
header, listing the names of each column of a table, and rows that
contain the data for that table. A collection of tables constitutes
a relational database, and the headers constitute the relational
schema. In terms of sheaf theory, the schema corresponds to a
topological space, where each header is an open set, and the rows
of a table correspond to the data attached to an open set. Thus, a
relational database corresponds to a presheaf, or a sheaf when the
tables can be glued together to give another table that is also part
of the database. The relational database operation that realizes

gluing is called the natural join (example 6 in Appendix of the
Supplementary Material). A natural join, described in detail
next, combines two tables into a single table whose rows are just
those constructed by combining (joining) the rows from each
table that have the same value at the columns in common. When
there are no columns with the same name, i.e., the intersection of
the table headers is the empty set, the natural join reduces to the
(Cartesian) product of the two tables. The next section illustrates
this situation first, and the section that follows illustrates the
case where the two tables have common columns. For reasons
that will become clearer later, the second situation is called a
constrained product. From a relational database view, sheaving
involves constructing tables not already in the database by gluing
together existing tables. This process is also described next, and
applied to cognition in section 3.

2.2.1. Gluing as a Product
To illustrate gluing as a product, suppose we are given a pair
of objects (characters/letters) in the visual field of view. The
knowledge that the pair of characters (G, A) differs from the
pair (A, G) is captured by recognizing the relative locations
of each object: e.g., the first character is located at the left
position, and the second character is located at the right position.
Suppose the pairs (G, E) and (K, A) were also presented on
separate occasions. This information is recorded in a relational
database table that has two columns, named Left and Right,
and three rows containing the three pairs of characters at the
corresponding positions. Each row corresponds to a character
pair. In addition, there is a one-column table headed Left and
a one-column table headed Right, recording the locations of
each character individually. The location names and headers
constitue a (discrete) topological space: (Location, Proximity),
where Location = {Left, Right} is the set of locations, and
Proximity = {∅, {Left}, {Right}, {Left, Right}} is the discrete
topology on that set. This situation corresponds to a presheaf,
where the rows are the data attached to the topological space,
see Figure 1 (top row). (The data attached to the empty set
is the singleton set {∗}, i.e., the one-element set containing an
element whose name is unimportant. The corresponding table,
not shown, is the table with the empty header and one row
containing the unnamed element.) For instance, the pair (G, A)
appears as a row of the two-column table, and the individual
characters as rows of the corresponding one-column tables. From
a sheaf theory perspective, the topological space provides the
ground on which the data are attached. Accordingly, the tables
are shown with the “header” at the foot of the table—footer.

Relational databases come equipped with operations for
extracting information from tables. One basic operation is called
projection, which returns all the values at the named columns for
all the rows of the specified table. For instance, the characters
located at the left position are obtained by a projection onto
the Left column of the two-column table (Figure 1, upper left
arrow), and likewise for the characters located at the right
position (Figure 1, upper right arrow). In sheaf theory terms,
these projections are given by restrictions for the presheaf. Recall
that a presheaf is an assignment of open sets to sets of elements
that preserves inclusions as restrictions: for each inclusion in the
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FIGURE 1 | An example of sheaving as a product.

underlying topological space there is a corresponding restriction
map. So, in this example, the restriction corresponding to the
inclusion {Left} ⊆ {Left, Right} is the projection onto the Left
column; likewise, the restriction corresponding to {Right} ⊆

{Left, Right} is the projection onto the Right column (The empty
set is included in every open set, so the corresponding restrictions
send every row to the only element in the singleton set).

This relational database specifies a presheaf, but not a sheaf,
because the two-column table cannot be (re)constructed as
the gluing (product) of the one-column tables. Specifically, the
product of the one-column tables results in the row that is the
pair (K, E), which is not contained in the two-column table. To
be a sheaf, the gluing condition essentially says that there must be
a row in the two-column table that contains (restricts to) a given
pair of rows from the one-column tables, which is not the case for
the pair (K, E). Thus, this presheaf is not a sheaf.

The sheaving process turns a presheaf into a sheaf by
gluing along overlapping regions. In terms of relational database
operators, gluing is the natural join. When the overlap is the
empty set, gluing is essentially the product of tables. In this
example, the product is all pairwise combinations of rows from
the one-column tables. Hence, sheaving adds the (K, E) pair
to the two-column table. Thus, the updated relational database
corresponds to a sheaf, see Figure 1 (bottom row). The sheaving
construction is a map from the top row to the bottom row
(Figure 1, left vertical arrow).

2.2.2. Gluing as a Constrained Product
The essential difference between gluing as a product and gluing
as a constrained product is that the intersection of the underlying
open sets, to which the data are attached, is not the empty set.
This situation often occurs in relational databases, e.g., where
personal information about employees is stored in one table and
work-related information in another table, and taking the natural
join on the common employee-identifier column links the two
kinds of information.

Visual cognition can be considered analogously where
object features (e.g., location, color, or shape) are stored in
separate tables that can be joined to recover information
about feature conjunctions to identify objects, e.g., that the
displayed objects are red square and green triangle, not
red triangle and green square. For this situation, suppose
that objects are indexed by location, and color and shape
information are recorded in separate two-column tables
with headers (Location, Color) and (Location, Shape),
respectively. Here, we have a set of feature dimensions,
Feature = {Location, Colour, Shape}, and a topology, Bind =

{∅, {Location}, {Location, Colour}, {Location, Shape}, Feature}.
This topological space associates color and shape more closely
to location than each other, which is interpreted as saying that
color and shape feature maps are more basic than color-shape
conjunction maps.

In this situation, sheaving recovers the binding of color
and shape as the natural join of Location-Color and Location-
Shape tables, which results in the Location-Color-Shape
table corresponding to a color-shape conjunction map. A
psychologically compatible interpretation of this situation is
binding-by-location (Treisman, 1996). An example is shown in
Figure 2. The natural join in this case is constrained to return
only those rows that agree on location, not all combinations of
rows, as in the previous example. Hence, this case is called a
constrained product.

Note that for the presheaf shown in Figure 2, the empty box
indicates that the data attached to the open set is the empty set.
Hence, all restrictions from this set are empty maps.

2.3. A Category Theory View of Sheaves
and Sheaving (Universality/Systematicity)
Up to this point, we have presented the basic ideas of sheaves
and sheaving in terms of sets and functions. This approach
is easier to grasp, but obscures the importance of universal
construction and its role in an explanation for systematicity and
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FIGURE 2 | An example of sheaving as a constrained product (empty box indicates empty set).

productivity. So, in this section, we present the category theory
view of sheaves. The core concept that links sheaves, systematicity
and generalization is universal morphism (definition 15 in
Appendix of the Supplementary Material). This concept depends
on the concepts of category (definition 9 in Appendix of the
Supplementary Material) and functor (definition 13 in Appendix

of the Supplementary Material), and is closely related to the
concept of natural transformation (definition 14 in Appendix

of the Supplementary Material). For a quick intuition, one can
think of a category as a set with relations (morphisms) between
its elements (objects), a functor as a function between categories
that “preserves” those relations, and a natural transformation as
a kind of higher-order function (i.e., a function that takes/returns
a function, see remark 5 in Appendix of the Supplementary
Material).

In the context of category theory, a topological space is
a category with open sets for objects and inclusions for
morphisms (example 2 in Appendix of the Supplementary
Material). A presheaf (hence, a sheaf) is a functor from a
topological space to the category set, which consists of sets for
objects and functions for morphisms. This functor sends each
open set to the data attached to that set, and each inclusion
to the corresponding restriction. Since sheaves are functors,
maps between sheaves are maps between functors, i.e., natural
transformations. Thus, sheaving pertains to a particular universal
natural transformation, i.e., a second-order universal morphism.

The category theory concept of universal morphism is central
to an explanation of systematicity (Phillips and Wilson, 2010).
Conceptually, a universal morphism is the “best” possible
construction (definition 15 in Appendix of the Supplementary
Material). We have already seen two examples: product and
constrained product. In general, the categorical product of two
objects A and B is the best possible way of constructing an
object that affords the recovery of A and B. In the category set,
the product is the Cartesian product A × B together with two
functions (projections) that retrieve the first and second elements
from each pair (example 2 in Appendix of the Supplementary
Material). In regard to tables, the Cartesian product is just
all pairwise combinations of rows from each table, which are
retrieved by the (relational) projection operations. Similarly,

the constrained product is a universal construction: the best
possible way of combining two tables so that they agree on
overlapping columns, which is just the natural join. The product
is a special case of the constrained product in that the agreement
is automatic. In category theory, the constrained product (natural
join) is an instance of the universal construction, called pullback
(definition 12 in Appendix of the Supplementary Material).

The relevance of these concepts to sheaves and sheaving
is two-fold. Firstly, a presheaf must satisfy the gluing (and
the locality) condition to be a sheaf. From a category theory
perspective, the gluing condition is given by products (pullbacks).
Thus, to be a sheaf, a presheaf must satisfy a certain universality
condition. Secondly, sheaving also pertains to a universal
morphism in the context of a category of presheaves and
presheaf morphisms. In this sense, sheaving obtains the best
possible sheaf for the given presheaf. We have already explained
that systematicity results from universal constructions (Phillips
and Wilson, 2010). Thus, sheaving is a universal form of
generalization. Since the construction returns a sheaf, which itself
is a form of universal construction, sheaving pertains to a kind of
second-order systematicity.

3. GOING BEYOND THE DATA: SHEAVING
IN COGNITION

The sheaf theory constructions just presented are applied to
cognitive domains.

3.1. Cue-Target Learning: Product
In this section, we show why generalization is afforded by
sheaving for a task requiring participants to learn a set of cue-
target mappings that is the product of two sets of cue-target
mappings (Phillips et al., 2016). More details of the sheaf theory
basis for generalization in this task are given in the “Cue-
target (product) task: generalization as sheaving” section of the
Appendix in Supplementary Material.

The task was to learn cue-target maps where the cues were
pairs of characters and the targets were colored shapes, e.g.,
(G, K) 7→ (red, square), (G, P) 7→ (red, triangle), and so
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on. In the product condition, the map was the product of a
map from characters to colors and a map from characters to
shapes, e.g., G 7→ red and K 7→ square, etc. The motivation
for this task was to test the hypothesis that systematicity, or
failure to exhibit systematicity is due to a cost/benefit trade-
off: for a small number of mappings participants were expected
to learn the training set without the overhead of inducing the
universal (product) construction and thereby not demonstrate
generalization to novel pairs (testing set); for a larger number of
mappings, where the demand on learning each pair separately
becomes excessive, participants were expected to induce the
product construction and thereby demonstrate generalization
(systematicity). Experimental results supported these predictions
(Phillips et al., 2016).

The cue-target task investigated conditions that elicit universal
constructions, hence systematicity. Here, we are interested in why
such constructions are generated. According to the sheaf theory
account, the relevant universal construction is a sheaf, which is
obtained from another universal construction, sheaving.We have
already shown how a product results from the sheaving process,
in the previous section. Here, we show that the product map is
a result of a sheaf morphism. From the relational database view
of sheaves, a (pre)sheaf morphism is a map between relational
databases. Sheaving as a basis for generalization is shown in
Figure 3, where the sheaving constructions are the horizontal
arrows, the presheaf morphism obtained from the training set is
the left vertical arrow, and the sheaf morphism obtained from
sheaving is the right vertical arrow, which affords generalization
on the testing set. This arrangement is an instance of the
commutative diagram (square) for a natural transformation
(diagram 4 in Appendix of the Supplementary Material). Note
that the morphism relating the test cues back to the training
cues is given by the fact that sheaving involves an adjoint
functor (see remark 16 in Appendix of the Supplementary
Material). In psychological terms, participants recognize the
importance of decomposing a pair of characters into their
component characters: responses to novels pairs of characters can
be determined by the responses to the individual characters as
they appeared in other pairs during training.

The product task revealed that participants failed to exhibit
systematicity for small maps even though the training set
contained sufficient information to specify the underlying
product and participants correctly learned the cue-target
mappings for that set. From a sheaf theory perspective, this failure
to demonstrate systematicity results from failure to identify the
appropriate underlying topology. In this case, we regard the
training set as a presheaf on an indiscrete topological space, in
contrast to a discrete topological space. Recall, that an indiscrete
topology on a set X consists of just the empty set and X as the
open sets. A presheaf on an indiscrete topological space is trivially
a sheaf: the gluing condition is automatically satisfied, because
there is only one nonempty open set. Sheaving is just the identity
transformation in this case, so no new rows are added to the table,
hence participants do not go beyond the training data.

A psychological interpretation is that participants fail to
recognize/represent the appropriate order relationship between
the points of the space that correspond to the dimensions of the

task, which impacts upon generalization. Recall (section 2.1) that
a two-point space with the indiscrete topology corresponds to the
preordered set: e.g., A ≤ B and B ≤ A, where A and B are the two
points. The two points (dimensions) are equivalent, effectively
regarded as a single point, hence sheaving has no effect in terms of
generalization. By contrast, the discrete topology corresponds to
the discrete ordered set: A ≤ A and B ≤ B, effectively regarding
the two dimensions as independent, which affords generalization
via sheaving. This difference can be interpreted as attentional
load: spatial attention to stimuli as data attached to one vs. two
locations.

Analysis of response data based on participant self-reports
(Phillips et al., 2016) lends support to this interpretation. Upon
completion of the experiment, participants were asked to report
on how they performed the task. Participants were then divided
into two groups indicating whether or not they were aware of
the product structure of the mapping task. The aware group
showed the same effects as observed in the original analysis. By
contrast, the unaware group were not significantly above chance
level performance in all conditions.

3.2. Visual Search: Constrained Product
In a visual search task, participants are required to locate
an object, designated as the target of search, in a display
also containing nontargets. Typically, the target is uniquely
identifiable by one or more features, e.g., color, shape, or
orientation. The time to locate the target as a function of the
number of objects in the search field is called the search slope.
Search slope is typically shallower when targets can be identified
by a single feature than when targets are identifiable by a
conjunction of two or more features, e.g., color and shape (see
Wolfe, 2003, for a review). Such behavioral differences led to the
well-known and influential Feature Integration Theory of visual
attention (Treisman and Gelade, 1980; Treisman and Sato, 1990),
see Humphreys (2016) for a recent review. Although search slope
may not be indicative of feature (shallow) vs. conjunctive (steep)
search (Wolfe, 1998), recordings of monkey cortical activity
support a feature vs. conjunction mode of attention (Buschman
and Miller, 2007).

There is an obvious cost/benefit trade-off associated with
having a features-detection system on one hand and a
conjunctive construction system on the other. Dedicated feature
units afford rapid response, but a unit is needed for each
possible feature; (re)constructing conjunctions of features with
dynamically reconfigurable units (i.e., units that can represent
more than one conjunction) requires fewer units, but more time
to detection. This trade-off is analogous to a trade-off in relational
database design in that large tables are typically (re)constructed
from smaller tables to save space, as well as to maintain data
integrity (Halpin, 1995), but at the expense of longer query
times. Construction of feature conjunctions is formally a natural
join (Phillips et al., 2012, Text S3), hence it involves a sheaving
process.

There is also a systematicity property in regard to feature
binding: if one has the capacity to bind say features red and
square, and features green and triangle, then one also has the
capacity to bind features red and triangle, and green and square,
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FIGURE 3 | An example of generalization as sheaving.

regardless of whether one has seen that exact combination of
features before. This property raises the familiar challenge of
explaining why such a property exists: Why does having the
capacity to bind, say, red with triangle and blue with square
imply having the capacity to bind red with square and blue with
triangle, assuming the capacity to recognize red, blue, triangle
and square? The sheaf theory explanation is that systematicity
of conjunctive features follows from a categorical universal
construction, sheaving, which involves the natural join of feature
maps, as explained in section 2.2.2. The universal morphism
explanation for the systematicity of binding as a constrained
product parallels the universal morphism explanation for cue-
target pairs as products given in the previous section: the
conditions for being a universal morphism (pullback) imply just
those combinations.

Sheaving comports with the primacy of location-based
feature maps (Riesenhuber and Poggio, 2004). In terms of
the underlying topological space, the color and shape feature
dimensions are closer to the location dimension than the color
and shape dimensions are to each other. Accordingly, color-
location and shape-location information are computed before

color-shape-location information, which is typically expressed as
faster response times (shallower search slopes) for feature than
conjunction search (Treisman and Gelade, 1980; Wolfe, 2003).

The importance of the topology is reflected in the implications
for binding. Dimensions are typically regarded as orthogonal
and independent (as in the cue-target example of the previous
section), which corresponds to a discrete topology. However, the
discrete topology generates all possible conjunctions of features,
not just those bindings present in the field of view.

Note that for ease of exposition, location is identified by
a label/symbol for the example shown in Figure 2. However,
location can also be modeled as a topological space, e.g.,
the product of topological spaces modeling the horizontal
and vertical axes of two-dimensional display screen. Indeed,
a parsimonious treatment of symbolic and spatial forms was
one of the motivations for taking a sheaf theory approach, as
foreshadowed in the Introduction.

In this example, we concerned ourselves with just the
construction of representations for conjunctions of features,
not with the process of searching for the target given those
representations. A category theory approach to visual search
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has been discussed elsewhere (Phillips and Takeda, 2017). The
theory employed there introduces another form of pullback,
involving a change of base, that is beyond the scope of our current
concern. Also, we have not considered the learning/development
of conjunction search: e.g., young children are less efficient
at conjunction search than older children and adults (Merrill
and Lookadoo, 2004). Here and in the previous example, we
concerned ourselves with representations and processes that
pertain to a single topological space. More general situations that
require changing the topological space are discussed in the next
section.

4. DISCUSSION

Our main purpose in this paper has been to (re)conceptualize
generalization as sheaving: a process of “putting two and
two together to make five,” so to speak. In the service of
understanding cognition, sheaf theory appears to be a relatively
unexplored area of mathematics—see, e.g., Goguen (1992) and
Malcolm (2009) for applications to the related area of distributed
systems, and Goguen (2018) for a discussion in regard to
information integration. In this section, we discuss the prospects
of a sheaf theory approach to learning and generalization,
generally.

From a sheaf theory perspective, going beyond the data is
about patching (or, gluing) local information to obtain new
knowledge. The core property that affords sheaving is the ability
to form the product of pieces of local knowledge constrained
by their common source. So, by this account, sheaving should
be evident in other cognitive abilities where products play a key
role. Cognitive abilities such as matrix reasoning and transitive
inference come to mind. A matrix reasoning task typically
consists of a matrix of items (e.g., colored shapes) with the goal
of identifying the item that goes in the empty cell location (e.g.,
Raven’s Progressive Matrices Raven et al., 1998). For a relatively
simple example, suppose that the rows are identified with colors:
red, green and blue, and the columns are identified with shapes:
circle, triangle and square, in those orders. The target that goes in
the cell located at the third row and column is a blue square. This
situation is similar to the cue-target learning task in section 3.1, as
both involve a product of two dimensions. The topology consists
of the two dimensions as open sets, and sheaving obtains the
target by the product of the shape and color features attached to
their respective dimensions.

More complex examples of matrix reasoning involve relations
between the items within rows or columns. Models have been
developed to account for simple and complex forms of matrix
reasoning (Carpenter et al., 1990; Lovett et al., 2010). From our
viewpoint, these situations involve data that have more internal
structure than sets. The category theory approach to sheaves
extends naturally to such cases as functors from a topological
space to some other kind of category that has products, e.g., a
category whose objects are groups, or rings (i.e., sets with one,
or two internal operations). A challenge for the sheaf theory
approach is to model both simple and complex forms of matrix
reasoning.

Another cognitive ability pertaining to constrained products
is transitive inference. Transitive inference has the form, if A is

R-related to B and B is R-related to C, then A is R-related to C,
where the relation R has the transitivity property. For example,
if John is shorter than Mary and Mary is shorter than Tom,
then John is shorter than Tom. In this situation, the premises
are given by the order topology: P = {∅, {P2}, {P1, P2}} and
Q = {∅, {Q2}, {Q1,Q2}}, where P and Q are the order topologies
for the premises John is shorter than Mary and Mary is shorter
than Tom, respectively. A capacity for transitive inference is
regarded as crucially depending on an ability to integrate the
premises into an ordered triple (Maybery et al., 1986; Andrews
andHalford, 1998). In topological terms, integration corresponds
to attaching data to a topology that encodes the three-term
order, e.g., T = {∅, {T3}, {T2,T3}, {T1,T2,T3}}. Modeling this
situation requires methods for changing the topological space.
Here, category theory is again useful as there are two functors
for changing the topology of a sheaf (presheaf): the direct
image functor and the inverse image functor (Hartshorne, 1977;
Mac Lane and Moerdijk, 1992). Another challenge, then is to
model various aspects of transitive inference, including pseudo-
transitive inference (Goodwin and Johnson-Laird, 2008), where
the elements of the premises are locally, but not globally
ordered.

A sheaf theory approachmay also have something to say about
the development of transitive inference and other reasoning tasks
in terms of the development of the underlying topological space.
Young children (below about 5 years of age) repeatedly have been
shown to lack a capacity for transitive inference and a range
of other reasoning tasks (Halford, 1984; Andrews and Halford,
1998, 2002). Some have argued that such capacities turn on
the development of relational information processes (Halford
et al., 1998, 2014; Penn et al., 2008), which has also been given
a category theory account (Phillips et al., 2009). The category
theory perspective attributed the difference to a capacity for
products, including constrained products (pullbacks). We have
already seen how these constructions are related to presheaves
and sheaves, and the underlying topology. The sheaf theory
approach presented here provides another related perspective
on the development and evolution of intelligence, i.e., as
a capacity to represent space. In particular, we noted that
every set has two extreme topologies: indiscrete and discrete.
For the collection of topological spaces on a given set, the
indiscrete and discrete spaces are, respectively, the coarsest and
finest topologies that can be given for that set, which are
themselves instances of particular universal constructions. The
relative coarseness/fineness of the underlying space alludes to
developing progressively coarser/finer capacity to make spatial
distinctions. For example, young children represent changes
in shape differently than adults (Abecassis et al., 2001). The
progression from holistic to category (class) based processes
has been modeled computationally as learning/development
via “intersection discovery” (Doumas and Hummel, 2010),
by a symbolic connectionist model (DORA; Doumas et al.,
2008). In our sheaf theory view, intersection discovery connotes
development of a topological space.

The process of intersection discovery in DORA raises
the possibility of developing a neural semantics for our
category/sheaf theoretic approach to systematicity and
generalization, as the pullback is a kind of intersection: in

Frontiers in Psychology | www.frontiersin.org 10 October 2018 | Volume 9 | Article 1926

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Phillips Going Beyond the Data

the category of sets and inclusions the pullback is just set
intersection; in the category of sets and functions the pullback
is the set of points that intersect (agree) on their images. DORA
uses the role-filler binding method of the LISA model (Hummel
and Holyoak, 2003) to induce relational representations via the
interaction between proposition units representing relations,
role-filler units representing the binding of values to relational
roles, and feature units representing features of the related fillers
(values)—role-filler units that coactivate the same feature units
tend to be bound together by units representing a common
relation. Conceptually, this arrangement is akin to a pullback
of functions f :A → C and g :B → C, where the feature units
correspond to the constraining object C, the interaction between
role-filler and feature units to f and g, and the pullback object
A ×C B to the units representing the relation. The dynamics
of the DORA model are more complex than projections. So,
the extent of a formal connection is not yet known. Developing
a neural model for the theory would provide a basis for cost
in terms of the neural resources needed to realize a universal
construction.

Whether similar considerations apply to the development of
conjunction search is a topic for future work. A capacity to
represent conjunctions is just one aspect of visual attention,
and there are multiple possible reasons for a change in search
efficiency with age (see Merrill and Lookadoo, 2004, for a
discussion). Here, we simply note that the pullback of two
morphisms f :A → C and g :B → C is constrained by C.
Thus, changing C (which means changing f and g) can change
the number of elements constructed by the pullback, hence
the number of elements selected for search, and thereby search
efficiency.

Other potential applications are probability judgements that
violate classical probability laws, e.g., conjunction fallacy (Tversky
and Kahneman, 1983). In this situation, people judge the
conjunction of two events A and B as more likely than
either event A or event B: e.g., P(A ∧ B) ≥ P(A), which
violates the classical probability law, P(A ∧ B) ≤ P(A).
Quantum probability theory was introduced to explain such
fallacies (see Busemeyer and Bruza, 2012, for an overview
of theory and example applications). An important feature
of this theory is contextuality where the act of measuring
affects the outcome. The conditions for having quantum-like
contextuality effects are closely related to the conditions for
being a presheaf, but not a sheaf (Abramsky and Brandenburger,
2011). In these situations, the points of the topological space
are measures and the values (data attached to the space)
our outcomes, or outcome probabilities. The close connection
between presheaves/sheaves and contextuality suggests that sheaf
theory can also be applied to address contextuality effects in
cognition.

Presheaves involve three kinds of morphisms, in addition to
inclusions and restrictions: (1) morphisms from the topological
space to the data, i.e., presheaves/sheaves, (2) morphisms
between presheaves, i.e., presheafmorphisms, and (3)morphisms
from sheaves on one topological space to sheaves on another
topological space. We have primarily concerned ourselves with
the second kind, in the form of sheaving, with regard to the

generalization aspect of learning. However, for a more complete
picture, we also need to consider how the first and third kinds of
morphism pertain to other aspects of learning.

The first kind of morphism is important with regard to
training and the partial state of knowledge acquisition. In
particular, one difficulty with a category theory approach to
cognition is how to model partial knowledge (Navarrete and
Dartnell, 2017). With sheaf theory, partial knowledge can be
related to the data attached to open sets and their restrictions. For
example, the presheaf in Figure 2 has the empty set as the data
attached to the open set, Feature, hence the associated restriction
maps are empty maps. This situation reflects a temporary state of
having partial (no) knowledge about, or representation of color-
shape binding. In the context of learning, partial acquisition of
knowledge can be modeled as a subset of the sections (rows)
attached to an open set. How data get attached to open sets as
a result of learning is a topic of future work.

The third kind of morphism is important in regard to
explaining the transition from non-systematicity to systematicity.
As mentioned in section 2.2.1, failure to generalize for small
tasks can be attributed to having an indiscrete topological
space. However, this account raises the question of why/how
participants recognize the need to (re)represent space as a
discrete topology to afford generalization. The cost/benefit
hypothesis (Phillips et al., 2016) may help here, because the
discrete topology (generally) contains more open sets than
the indiscrete topology on the same set, hence requires more
resources to represent. How cost/benefit interacts with learning
in a sheaf theory setting is also a topic for further research.

Throughout this paper, we have focussed only on interpreting
the gluing condition for a sheaf as a formal basis for the ability
to go beyond the data. However, a presheaf must also satisfy
the locality condition to be a sheaf. The locality condition says
that gluing must be unique. Sheaving in this situation essentially
identifies the alternatives as being the “same” data up to an
equivalence. A detailed exposition will take us too far afield,
however, this situation is like treating different instances of an
object as the same object up to some equivalence relation. This
situation typically does not arise in a relational database, because
the relational database schema is essentially treated as a discrete
topological space, in which case all rows must be unique, i.e.,
the locality condition is automatically satisfied. In a cognitive
context, the locality condition may also have interpretations
in terms of treating two distinct entities as the same thing:
generalization on the basis of object class, rather than object
instance.

Some authors have argued that the architecture of cognition
(i.e., the basic processes and ways of combining such processes
to afford cognition) is a “kludge” of disparate abilities that are
somehow patched together to give the illusion of a well-organized
system (Clark, 1987; Marcus, 2008). Be that as it may, viewing
cognitive architecture as a hodgepodge of subsystems begs the
question of why the system does actually work coherently, for
the most part. The sheaf theory view presented here says that
patching is a universal construction: an optimal solution to
reconciling differences between subsystems put together as a
kludge.
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A sheaf can be likened to a kind of analogy in that the relations
(inclusions) in the source domain (topological space) are mapped
to relations (restrictions) in the target domain (data attached
to the space), cf. structure mapping theory (Gentner, 1983).
Category theory has been used as a basis for children’s difficulty
with understanding and exploiting the common relations in
a reasoning problem (Halford and Wilson, 1980), and as an
approach to analogy (Navarrete and Dartnell, 2017). However,
a sheaf is a contravariant functor: the directions of arrows in
the source are reversed in the target, which may strike some
people as puzzling, given that analogy is typically conceptualized
as a covariant mapping: the directions of arrows in the source
and target are the same. One can conceptualize the role of
contravariance in sheaf theory as persistence. Topological spaces
can be built up by taking intersections and unions of the open
sets in a basis set. Inclusions order open sets by size from small to
large. A global property can be regarded as a property that persists
over all the open sets—a property that is systematic as opposed to
idiosyncratic (specific) to just some open sets—as we zoom in on
smaller regions of space.

An important topic for further work is to explain how
the cost/benefit proposal is supposed to interact with the
construction of universal morphisms, as mentioned in the
Introduction. An apparently straightforward approach would
be to assign a cost to the alternative routes (see Phillips
and Wilson, 2016b, for a discussion). However, this approach
requires independent justification for the costs assigned, lest
the cost/benefit principle becomes another ad hoc assumption,
i.e., an assumption motivated solely to fit the data (Aizawa,
2003). Independent motivation may come in the form of
empirical measures of the cost of each supposed alternative.
For such purposes, a split-screen paradigm was developed to
examine cost in the context of feature vs. conjunction visual

search (Phillips et al., 2017). In this paradigm, participants
could search for the target object in either the left or right

visual field, which corresponded to feature or conjunction
search. Search time when only one field was presented
provided independent measures of the baseline costs of
feature and conjunction search, which were then used to
assess whether participants chose the alternative of least cost
when both alternatives where presented at the same time.
Analysis indicated that the choice of search field depended
not only on the relative costs of the alternatives, but also
on the cost of that assessment (Phillips et al., 2017). In
this way, a categorical account of least cost may provide a
principled explanation for the interaction between cost/benefit
and universal construction, and its implications for systematicity
and generalization.

Going beyond the data is a ubiquitous cognitive capacity
in need of a theoretical explanation to motivate modeling as
more than just an exercise in data fitting. The theoretical picture
painted here is a view beyond local perception of the world. This
sheaf theory approach formalizes our propensity to connect the
dots. After all, that’s what people do.
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