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Overview of the Talk

e Automata with one counter:
- 1-Counter Machines
- 1-Dimensional Vector Addition State Systems
- Weighted Automata

e Metric Temporal Logic

e Undecidability Result

e Decidability Result



1-Counter Machines (1CM)

M = (Q, qo, A), where

e () is a finite set of control states,
e gp € () is the initial control state,

e A CQ xOpxQ, where Op = {+,-,=07}

OJOME0
(90,0) = (q1,1) = (g1,0) = (g2,0) = (q1,1)...

e /Zero Test-edges are blocked if the value of the counter is not zero
e Decrement-edges are blocked if the value of the counter is zero



1-Dimensional (Vector) Addition State Systems (1-VASS)

M = (Q, qo, A), where

e () is a finite set of control states,

® go € Q is the initial control state,
e AC@QxOpxQ, where Op={+,-}  No Zero Test!

+ +
OROWE0
(90,0) = (q1,1) = (g1,0) = (g2,1) = (a1,2) ..

e Decrement-edges are blocked if the value of the counter is zero



Weighted Automaton (WA)

M = (Q, qo, A), where

e () is a finite set of control states,
e gp € () is the initial control state,
e AC@QxOpxQ, where Op={+,-}  No Zero Test!

+

(90,0) = (g1,1) = (41,0) = (g1, —1) = (g2,0) . .

e No edges are blocked. The counter may have a negative value.



Metric Temporal Logic (MTL) - Syntax

The set of MTL formulae over a finite set () is defined by induction:

e ¢ is a formula,
e if © and ¢ are formulae, then so are = and ¢ A ¥,
e if © and ¢ are formulae, then so are () and U,

where ¢ € @ and I C Z is an interval with endpoints in Z U {—o00,00}.
If I = 7, then we may omit 1.

Abbreviations:

p Vb= (o A1)
=P i="pVy
true := p V

Orp := trueljp
Orp = =01



Metric Temporal Logic (MTL) - Semantics

Let v = (qo,c0) = (q1,c1) =

(q2,¢2) — ... be a computation

of a 1-CM (1-VASS, WA), and let ¢ € N.
The satisfaction relation for MTL is defined by induction:

(v,i) Fq iff
(7:9) E e i
(v,i) Eony  iff
(7,%) F Ore  iff
(7,%) E Uy iff

(7,1) E Orp iff
(7,7) Edre iff

q4 = 4q;

(v,7) = @ is not the case

(7,2) = ¢ and (v,4) =9

(v,i+1) Fpand ciy1 —¢ €1

37 > i.(v,J) F¥,¢; —c; € I and

Vi <k <k F o

3j zi(v,j) Feandc; —ciel

Vj >i. If ¢; —¢; € I then (v,)) = ¢

We write v = ¢ if (7,0) = ¢.



The Model Checking Problem

InpPUT: A 1-CM (1-VASS, WA) M, an MTL formula ¢.
QUESTION: Is there some computation v of M such that v = ¢?
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A 2-Counter Machine (2-CM) is a tuple M = (Q, qo, A), where

e () is a finite set of control states,
e gp € () is the initial control state,
o A C Q X Op X Q, where Op = {014‘, c1—,c1=07, co+, Co—, CQ=O?}




A 2-Counter Machine (2-CM) is a tuple M = (Q, qo, A), where

e () is a finite set of control states,
® gp € () is the initial control state,
e A CQ xOpxQ, where Op = {c1+,¢1-,¢1=07, co+, ca—, c2=07}

c1=07

((]0,0,0) 2 (Q17O 1) (QQ707 1) _i_> (Qh 17 1) _Cil) (Q1707 1) “ e

The Reachability Problem

|

InpUT: A 2-CM M = (Q,q0,4), q € Q.
(QUESTION: Is there a computation of M ending in g7

This problem is undecidable.



|

Theorem
MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Proof
Reduction of the reachability problem for 2-Counter Machines

We present a procedure how to translate every 2-CM M" and ¢
into a WA M’ and an MTL-Formula ¢ such that

there is a computation of M ending in ¢
iff
there is a computation « of M’ such that v = ¢.



Proof
Encoding two counters...

op op’
6 = (q,0p,q’)
@ @ 0" = (q';0p",q")

(g, e, d) S (¢, d) s (¢, LAY

...Into one counter:

- + - +
—af \ al —af \ ol
(@ ' ® ' @ ' & ' @ -

.. (q,c+d) ... (q.0,¢) ... (¢, /+d) ... (¢"d¢,c) ... (¢",c"+d")...



Proof
Encoding two counters..

C1= 0?
6 = (q,c1=07,q")
() @ @ 5 — (¢/,op',q")

- (g.6,d) (g d) 2

...Into one counter:

(q c’,d").. =c=0,=c¢,d=d

@@@@@@@@@
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Proof
Encoding two counters..

C1= 0?
6 = (q,c1=07,q")
() @ @ 5 — (¢/,op',q")

- (g.6,d) (g d) 2
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.. (qg,c+d) ... (q.0,¢) ... (¢, c/+d) ... (¢"¢,c) ... (¢",c"+d")...

Ensure the correct semantics, e.g. zero tests:
Pzerol = (O[1,00)7¢-0) N (O(=00,—1]7¢-0)



Proof
Encoding two counters..

C1= 07
0= <Q761=O?7q,)
IORO] @ 5 = .ol
.. (gq,c, d)ﬂ(q’,c’,d’) i — (¢",",d") .. =c=0,=c¢,d =4d

...Into one counter:

@@@@@@@@@

. (q,c+d) ... (q.0,¢) ... (¢, +d) ... (¢6,c) ... (¢","+d")...

Ensure the correct semantics, e.g. zero tests:
SDZGI’O]. — (D[17OO)_'Q5) /\ (D(—OO,—l]_'q(s)

¥Pnochange — D[(C] A 05—) — (((] Vo_V Q°5 \ 5—|—)U[O,O]q/)]



|
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|

Theorem
MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Proof
Reduction of the undecidable reachability problem for 2-Counter Machines

We presented a procedure how to translate every 2-CM M" and ¢
into a WA M’ and an MTL-Formula ¢ such that

there is a computation of M ending in ¢
iff
there is a computation « of M’ such that v = ¢.

Remark
Reduction also works if the formulae may only contain intervals of the form

Z, (—o0,—1], 10, 00)



The Model Checking Problem

INPUT: A deterministic 1-CM (1-VASS, WA) M, an MTL formula ¢.
QUESTION: Is there some computation v of M such that v = ¢?




Deterministic 1-Counter Machines

For each configuration (g, c) there is at most one successor configuration.

OROME0
(90,0) = (g1,1) = (g1,0) = (g2,0) = (g1,1) ...

This 1-CM is deterministic:

(qr,c—1) ifc#0

suceldr, €) = {(qQ 0) ife—=0



Deterministic Weighted Automata

For each configuration (g, c) there is at most one successor configuration.

+ +
OROWE0
(90,0) = (g1,1) = (g1,0) = (g2, 1) = (q1,2) ...

This WA is not deterministic:

succ(qi, c) = {(q1,c—1),(q2,c+ 1)}
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The Model Checking Problem

INPUT: A deterministic 1-CM (1-VASS, WA) M, an MTL formula ¢.
QUESTION: Is there some computation v of M such that v = ¢?

J

State of the Art:

e Freeze LTL-Model Checking of deterministic 1-CM is T'ODO.

(Demri et al. 2008)

e Freeze LTL: are the counter values equal at two different positions?

e MTL formulae can be translated into equivalent formulae of Freeze LTL interval extension
e |t is conjectured that Freeze LTL interval extension is expressively stronger than MTL

p
Theorem

Freeze LTL interval extension-model checking of deterministic
| 1-CM (1-VASS, WA) is decidable.

2

;
Corollary

- MTL-model checking of deterministic 1-CM (1-VASS, WA) is decidable.]




p
Theorem

Freeze LTL interval extension-model checking of deterministic
| 1-CM (1-VASS, WA) is decidable.

Proof
Reduction to the Buchi-acceptance problem for Buchi automata.

We present a procedure how to translate every deterministic 1-CM M and
MTL formula ¢ into a Buchi automaton A such that

there is a computation v of M with v = ¢
iff
there is a Biichi accepting run of A



Proof
The unique computation of M has a regular structure:

+ + - +
+

(90,0) = (q1,1) = (g2,2) = (g3, 1) = (qu,2) —
(q1,3) = (g2,4) = (¢3,3) = (q4,4) —
= (g2,6) = (g3,5) = (qu,6) —

(q1,5)



Proof
The unique computation of M has a regular structure:

+ + - +
+

(Q173) — (q 4) % (QSag) — (Q474) — }+2
(q17 5) — (q 6) % (QSa 5) — (Q47 6) —
. P42
h pr:eqcix a repeated in?irnitely often }

Infinitely many counter values occur, but with regularity.
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The unique computation of M has a regular structure:

OO HMOENOBO
(90,0) = (g1,1)

- Y 2)
(g1,3) ; (QQ74) — (q373) ; (Q474) i>
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offset(i, 1) ={j | ci+j —ci € I}
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Proof
The unique computation of M has a regular structure:

offset(i, 1) ={j | ci+j —ci € I}
e.g., offset(2,(2,3]) ={j | co+; —c2 € [2,3]}
={J | c24j =4 or capj = 5}
— [4,6,7,9)



Proof
The unique computation of M has a regular structure:

offset(i, 1) ={j | ci+j —ci € I}
e.g., offset(2,(2,3]) ={j | co+; —c2 € [2,3]}
={J | c24j =4 or capj = 5}
— [4,6,7,9)

= offset(6, [2, 3]) = offset(10, [2,3]) = ...



Proof
The unique computation of M has a regular structure:

+ + - +
+

(C]o,O) - (Q17 1) = (%,2) — (CIS, 1) BN (q4,2) N
(41,3)| | (a2, 4) =|(g5. 3)| = (a1, 4) =
(a1, 5)| > |(a2, 6)| = (a3, 5)| | (a4, 6) =

Configurations in have the same behaviour with respect to formulae.




Proof
We define an equivalence relation = over the set of configurations of M.

o form the equivalence classes induced by =,

e the index of = is finite,
e each equivalence class can be symbolically represented in a finite manner,
e the symbolic representations and the subformulas of ¢ form the states

of the Buchi automaton.
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Proof
We define an equivalence relation = over the set of configurations of M.

o form the equivalence classes induced by =,

e the index of = is finite,
e each equivalence class can be symbolically represented in a finite manner,
e the symbolic representations and the subformulas of ¢ form the states

of the Buchi automaton.

It holds that
there is a computation v of M with v = ¢
iff
there is a Buchi accepting run of A
[ Theorem A

Freeze LTL interval extension-model checking of deterministic
| 1-CM (1-VASS, WA) is decidable.




Open Questions

e Complexity of Model Checking Deterministic automata?

e |s Freeze LTL Interval Extension expressively stronger than MTL?

e What about MTL Model Checking Non-deterministic automata,
if intervals are restricted to [0, 0] (like in Freeze LTL)?
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Thank you for your attention!



