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Overview of the Talk

• Automata with one counter:
- 1-Counter Machines
- 1-Dimensional Vector Addition State Systems
- Weighted Automata

• Metric Temporal Logic
• Undecidability Result
• Decidability Result



1-Counter Machines (1CM)

M = (Q, q0,∆), where

• Q is a finite set of control states,
• q0 ∈ Q is the initial control state,
• ∆ ⊆ Q× Op×Q, where Op = {+, -, =0?}

q0 q1 q2

+ =0?

+

-

(q0, 0)
+

−→ (q1, 1)
-

−→ (q1, 0)
=0?

−−→ (q2, 0)
+

−→ (q1, 1) . . .

• Zero Test-edges are blocked if the value of the counter is not zero
• Decrement-edges are blocked if the value of the counter is zero



1-Dimensional (Vector) Addition State Systems (1-VASS)

M = (Q, q0,∆), where

• Q is a finite set of control states,
• q0 ∈ Q is the initial control state,
• ∆ ⊆ Q× Op×Q, where Op = {+, -} No Zero Test!

q0 q1 q2

+ +

+

-

(q0, 0)
+

−→ (q1, 1)
-

−→ (q1, 0)
+

−→ (q2, 1)
+

−→ (q1, 2) . . .

• Decrement-edges are blocked if the value of the counter is zero



Weighted Automaton (WA)

M = (Q, q0,∆), where

• Q is a finite set of control states,
• q0 ∈ Q is the initial control state,
• ∆ ⊆ Q× Op×Q, where Op = {+, -} No Zero Test!

q0 q1 q2

+ +

+

-

(q0, 0)
+

−→ (q1, 1)
-

−→ (q1, 0)
-

−→ (q1,−1)
+

−→ (q2, 0) . . .

• No edges are blocked. The counter may have a negative value.



Metric Temporal Logic (MTL) - Syntax

The set of MTL formulae over a finite set Q is defined by induction:

• q is a formula,
• if ϕ and ψ are formulae, then so are ¬ϕ and ϕ ∧ ψ,
• if ϕ and ψ are formulae, then so are ,Iϕ and ϕUIψ,

where q ∈ Q and I ⊆ Z is an interval with endpoints in Z ∪ {−∞,∞}.
If I = Z, then we may omit I .

Abbreviations:

ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)
ϕ→ ψ := ¬ϕ ∨ ψ
true := ϕ ∨ ¬ϕ
♦Iϕ := trueUIϕ

�Iϕ := ¬♦I¬ϕ



Metric Temporal Logic (MTL) - Semantics

Let γ = (q0, c0) → (q1, c1) → (q2, c2) → . . . be a computation
of a 1-CM (1-VASS, WA), and let i ∈ N.
The satisfaction relation for MTL is defined by induction:

(γ, i) |= q iff q = qi

(γ, i) |= ¬ϕ iff (γ, i) |= ϕ is not the case

(γ, i) |= ϕ ∧ ψ iff (γ, i) |= ϕ and (γ, i) |= ψ

(γ, i) |= ,Iϕ iff (γ, i+ 1) |= ϕ and ci+1 − ci ∈ I

(γ, i) |= ϕUIψ iff ∃j ≥ i.(γ, j) |= ψ, cj − ci ∈ I and

∀i ≤ k < j.(γ, k) |= ϕ

(γ, i) |= ♦Iϕ iff ∃j ≥ i.(γ, j) |= ϕ and cj − ci ∈ I

(γ, i) |= �Iϕ iff ∀j ≥ i. If cj − ci ∈ I then (γ, j) |= ϕ

We write γ |= ϕ if (γ, 0) |= ϕ.



The Model Checking Problem

Input: A 1-CM (1-VASS, WA) M , an MTL formula ϕ.
Question: Is there some computation γ of M such that γ |= ϕ?
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The Model Checking Problem

Input: A 1-CM (1-VASS, WA) M , an MTL formula ϕ.
Question: Is there some computation γ of M such that γ |= ϕ?

State of the Art:
• MTL-Model Checking WA with non-negative weights is Expspace-
complete (Laroussinie et al. 2002).

• Freeze LTL-Model Checking 2-VASS is undecidable. (Demri et al. 2010)
• Freeze LTL-Model Checking 1-CM is undecidable (Demri et al. 2008)

• Freeze LTL: are the counter values equal at two different arbitrary positions?

• MTL formulae can be translated into equivalent formulae of Freeze LTL interval extension

• It is conjectured that Freeze LTL interval extension is expressively stronger than MTL

Theorem
MTL-model checking WA (1-VASS, 1-CM) is undecidable.



Theorem
MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Proof
Reduction of the reachability problem for 2-Counter Machines



A 2-Counter Machine (2-CM) is a tuple M = (Q, q0,∆), where

• Q is a finite set of control states,
• q0 ∈ Q is the initial control state,
• ∆ ⊆ Q× Op×Q, where Op = {c1+, c1-, c1=0?, c2+, c2-, c2=0?}

q0 q1 q2

c2+ c1=0?

c1+

c1-

(q0, 0, 0)
c2+−−→ (q1, 0, 1)

c1=0?−−−→ (q2, 0, 1)
c1+−−→ (q1, 1, 1)

c1-−−→ (q1, 0, 1) . . .



A 2-Counter Machine (2-CM) is a tuple M = (Q, q0,∆), where

• Q is a finite set of control states,
• q0 ∈ Q is the initial control state,
• ∆ ⊆ Q× Op×Q, where Op = {c1+, c1-, c1=0?, c2+, c2-, c2=0?}

q0 q1 q2

c2+ c1=0?

c1+

c1-

(q0, 0, 0)
c2+−−→ (q1, 0, 1)

c1=0?−−−→ (q2, 0, 1)
c1+−−→ (q1, 1, 1)

c1-−−→ (q1, 0, 1) . . .

The Reachability Problem

Input: A 2-CM M = (Q, q0,∆), q ∈ Q.
Question: Is there a computation of M ending in q?

This problem is undecidable.



Theorem
MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Proof
Reduction of the reachability problem for 2-Counter Machines

We present a procedure how to translate every 2-CM M ′′ and q
into a WA M ′ and an MTL-Formula ϕ such that

there is a computation of M ′′ ending in q
iff

there is a computation γ of M ′ such that γ |= ϕ.



Proof
Encoding two counters...

q q′ q′′

op op′
δ = (q, op, q′)
δ′ = (q′, op′, q′′)

. . . . . .

. . . (q, c, d)
op
−→ (q′, c′, d′)

op′

−−→ (q′′, c′′, d′′) . . .

...into one counter:

q δ− q.δ δ+ q′ δ′
− q′.δ′ δ′+ q′′

-

-

+

+

. . . . . .

. . . (q, c+d) . . . (q.δ, c) . . . (q′, c′+d′) . . . (q′.δ′, c′) . . . (q′′, c′′+d′′) . . .

-

-

+

+



Proof
Encoding two counters...

q q′ q′′

c1= 0? op′
δ = (q, c1=0?, q

′)
δ′ = (q′, op′, q′′)

. . . . . .

. . . (q,c, d)
c1=0?−−−→(q′,c′, d′)

op′

−−→ (q′′, c′′, d′′) . . . ⇒ c = 0, c′ = c, d′ = d

...into one counter:

q δ− q.δ δ+ q′ δ′
− q′.δ′ δ′+ q′′

-

-

+

+

. . . . . .

. . . (q, c+d) . . . (q.δ, c) . . . (q′, c′+d′) . . . (q′.δ′, c′) . . . (q′′, c′′+d′′) . . .

-

-

+

+

Ensure the correct semantics, e.g. zero tests:
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Proof
Encoding two counters...

q q′ q′′

c1= 0? op′
δ = (q, c1=0?, q

′)
δ′ = (q′, op′, q′′)

. . . . . .

. . . (q,c, d)
c1=0?−−−→(q′,c′, d′)

op′

−−→ (q′′, c′′, d′′) . . . ⇒ c = 0, c′ = c, d′ = d

...into one counter:

q δ− q.δ δ+ q′ δ′
− q′.δ′ δ′+ q′′

-

-

+

+

. . . . . .

. . . (q, c+d) . . . (q.δ, c) . . . (q′, c′+d′) . . . (q′.δ′, c′) . . . (q′′, c′′+d′′) . . .

-

-

+

+

Ensure the correct semantics, e.g. zero tests:
ϕzero1 = (�[1,∞)¬q.δ) ∧ (�(−∞,−1]¬q.δ)

ϕnochange = �[(q ∧ ,δ−) → ((q ∨ δ− ∨ q.δ ∨ δ+)U[0,0]q
′)]



Theorem
MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Proof
Reduction of the undecidable reachability problem for 2-Counter Machines

We presented a procedure how to translate every 2-CM M ′′ and q
into a WA M ′ and an MTL-Formula ϕ such that

there is a computation of M ′′ ending in q
iff

there is a computation γ of M ′ such that γ |= ϕ.



Theorem
MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Proof
Reduction of the undecidable reachability problem for 2-Counter Machines

We presented a procedure how to translate every 2-CM M ′′ and q
into a WA M ′ and an MTL-Formula ϕ such that

there is a computation of M ′′ ending in q
iff

there is a computation γ of M ′ such that γ |= ϕ.

Remark
Reduction also works if the formulae may only contain intervals of the form

Z, (−∞,−1], [0,∞)



The Model Checking Problem

Input: A deterministic 1-CM (1-VASS, WA) M , an MTL formula ϕ.
Question: Is there some computation γ of M such that γ |= ϕ?



Deterministic 1-Counter Machines

For each configuration (q, c) there is at most one successor configuration.

q0 q1 q2

+ =0?

+

-

(q0, 0)
+

−→ (q1, 1)
-

−→ (q1, 0)
=0?

−−→ (q2, 0)
+

−→ (q1, 1) . . .

This 1-CM is deterministic:

succ(q1, c) =

{

(q1, c− 1) if c 6= 0

(q2, 0) if c = 0



Deterministic Weighted Automata

For each configuration (q, c) there is at most one successor configuration.

q0 q1 q2

+ +

+

-

(q0, 0)
+

−→ (q1, 1)
-

−→ (q1, 0)
+
−→ (q2, 1)

+

−→ (q1, 2) . . .

This WA is not deterministic:

succ(q1, c) = {(q1, c− 1), (q2, c+ 1)}



The Model Checking Problem
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• It is conjectured that Freeze LTL interval extension is expressively stronger than MTL



The Model Checking Problem

Input: A deterministic 1-CM (1-VASS, WA) M , an MTL formula ϕ.
Question: Is there some computation γ of M such that γ |= ϕ?

State of the Art:
• Freeze LTL-Model Checking of deterministic 1-CM is Todo.
(Demri et al. 2008)

• Freeze LTL: are the counter values equal at two different positions?

• MTL formulae can be translated into equivalent formulae of Freeze LTL interval extension

• It is conjectured that Freeze LTL interval extension is expressively stronger than MTL

Theorem
Freeze LTL interval extension-model checking of deterministic
1-CM (1-VASS, WA) is decidable.

Corollary
MTL-model checking of deterministic 1-CM (1-VASS, WA) is decidable.



Theorem
Freeze LTL interval extension-model checking of deterministic
1-CM (1-VASS, WA) is decidable.

Proof
Reduction to the Büchi-acceptance problem for Büchi automata.

We present a procedure how to translate every deterministic 1-CM M and
MTL formula ϕ into a Büchi automaton A such that

there is a computation γ of M with γ |= ϕ

iff
there is a Büchi accepting run of A



Proof
The unique computation of M has a regular structure:

q0 q1 q2 q3 q4

+ + - +

+

(q0, 0)
+

−→ (q1, 1)
+

−→ (q2, 2)
-

−→ (q3, 1)
+

−→ (q4, 2)
+

−→

(q1, 3)
+

−→ (q2, 4)
-

−→ (q3, 3)
+

−→ (q4, 4)
+

−→

(q1, 5)
+

−→ (q2, 6)
-

−→ (q3, 5)
+

−→ (q4, 6)
+

−→
. . .



Proof
The unique computation of M has a regular structure:

q0 q1 q2 q3 q4

+ + - +

+

(q0, 0)
+

−→ (q1, 1)
+

−→ (q2, 2)
-

−→ (q3, 1)
+

−→ (q4, 2)
+

−→

(q1, 3)
+

−→ (q2, 4)
-

−→ (q3, 3)
+

−→ (q4, 4)
+

−→

(q1, 5)
+

−→ (q2, 6)
-

−→ (q3, 5)
+

−→ (q4, 6)
+

−→
. . .

︸ ︷︷ ︸
prefix

︸ ︷︷ ︸
repeated infinitely often

}+2

}+2

}+2

Infinitely many counter values occur, but with regularity.



Proof
The unique computation of M has a regular structure:

q0 q1 q2 q3 q4

+ + - +

+

(q0, 0)
+

−→ (q1, 1)
+

−→ (q2, 2)
-

−→ (q3, 1)
+

−→ (q4, 2)
+

−→

(q1, 3)
+

−→ (q2, 4)
-

−→ (q3, 3)
+

−→ (q4, 4)
+

−→

(q1, 5)
+

−→ (q2, 6)
-

−→ (q3, 5)
+

−→ (q4, 6)
+

−→
. . .

offset(i, I) = {j | ci+j − ci ∈ I}



Proof
The unique computation of M has a regular structure:

q0 q1 q2 q3 q4

+ + - +

+

(q0, 0)
+

−→ (q1, 1)
+
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-
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+
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+
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. . .
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(q2, 2)



Proof
The unique computation of M has a regular structure:

q0 q1 q2 q3 q4

+ + - +

+

(q0, 0)
+

−→ (q1, 1)
+

−→ (q2, 2)
-

−→ (q3, 1)
+

−→ (q4, 2)
+

−→

(q1, 3)
+

−→ (q2, 4)
-

−→ (q3, 3)
+

−→ (q4, 4)
+

−→

(q1, 5)
+

−→ (q2, 6)
-

−→ (q3, 5)
+

−→ (q4, 6)
+

−→
. . .

offset(i, I) = {j | ci+j − ci ∈ I}

e.g., offset(2, [2, 3]) = {j | c2+j − c2 ∈ [2, 3]}

= {j | c2+j = 4 or c2+j = 5}

(q2, 2)



Proof
The unique computation of M has a regular structure:

q0 q1 q2 q3 q4

+ + - +

+

(q0, 0)
+

−→ (q1, 1)
+

−→ (q2, 2)
-

−→ (q3, 1)
+

−→ (q4, 2)
+

−→

(q1, 3)
+

−→ (q2, 4)
-

−→ (q3, 3)
+

−→ (q4, 4)
+

−→

(q1, 5)
+

−→ (q2, 6)
-

−→ (q3, 5)
+

−→ (q4, 6)
+

−→
. . .

offset(i, I) = {j | ci+j − ci ∈ I}

e.g., offset(2, [2, 3]) = {j | c2+j − c2 ∈ [2, 3]}

= {j | c2+j = 4 or c2+j = 5}

= {4, 6, 7, 9}

(q2, 2)

(q2, 4) (q4, 4)

(q1, 5) (q3, 5)



Proof
The unique computation of M has a regular structure:

q0 q1 q2 q3 q4

+ + - +

+

(q0, 0)
+

−→ (q1, 1)
+

−→ (q2, 2)
-

−→ (q3, 1)
+

−→ (q4, 2)
+

−→

(q1, 3)
+

−→ (q2, 4)
-

−→ (q3, 3)
+

−→ (q4, 4)
+

−→

(q1, 5)
+

−→ (q2, 6)
-

−→ (q3, 5)
+

−→ (q4, 6)
+

−→
. . .

offset(i, I) = {j | ci+j − ci ∈ I}

e.g., offset(2, [2, 3]) = {j | c2+j − c2 ∈ [2, 3]}

= {j | c2+j = 4 or c2+j = 5}

= {4, 6, 7, 9}

= offset(6, [2, 3]) = offset(10, [2, 3]) = . . .

(q2, 2)

(q2, 4) (q4, 4)

(q1, 5) (q3, 5)



Proof
The unique computation of M has a regular structure:

q0 q1 q2 q3 q4

+ + - +

+

(q0, 0)
+

−→ (q1, 1)
+

−→ (q2, 2)
-

−→ (q3, 1)
+

−→ (q4, 2)
+

−→

(q1, 3)
+

−→ (q2, 4)
-

−→ (q3, 3)
+

−→ (q4, 4)
+

−→

(q1, 5)
+

−→ (q2, 6)
-

−→ (q3, 5)
+

−→ (q4, 6)
+

−→
. . .

Configurations in have the same behaviour with respect to formulae.
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We define an equivalence relation ≡ over the set of configurations of M .

• form the equivalence classes induced by ≡,

• the index of ≡ is finite,
• each equivalence class can be symbolically represented in a finite manner,
• the symbolic representations and the subformulas of ϕ form the states
of the Büchi automaton.
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there is a Büchi accepting run of A



Proof
We define an equivalence relation ≡ over the set of configurations of M .

• form the equivalence classes induced by ≡,

• the index of ≡ is finite,
• each equivalence class can be symbolically represented in a finite manner,
• the symbolic representations and the subformulas of ϕ form the states
of the Büchi automaton.

It holds that
there is a computation γ of M with γ |= ϕ

iff
there is a Büchi accepting run of A

Theorem
Freeze LTL interval extension-model checking of deterministic
1-CM (1-VASS, WA) is decidable.



Open Questions

• Complexity of Model Checking Deterministic automata?
• Is Freeze LTL Interval Extension expressively stronger than MTL?
• What about MTL Model Checking Non-deterministic automata,
if intervals are restricted to [0, 0] (like in Freeze LTL)?
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Thank you for your attention!


