Model Checking Metric Temporal Logic over Automata with One Counter

Karin Quaas

11th April 2013

Overview of the Talk

- Automata with one counter:
- 1-Counter Machines
- 1-Dimensional Vector Addition State Systems
- Weighted Automata
- Metric Temporal Logic
- Undecidability Result
- Decidability Result

1-Counter Machines (1CM)

$$
M=\left(Q, q_{0}, \Delta\right), \text { where }
$$

- Q is a finite set of control states,
- $q_{0} \in Q$ is the initial control state,
- $\Delta \subseteq Q \times \mathrm{Op} \times Q$, where $\mathrm{Op}=\{+,-,=0$? $\}$

$$
\left(q_{0}, 0\right) \xrightarrow{+}\left(q_{1}, 1\right) \xrightarrow{-}\left(q_{1}, 0\right) \xrightarrow{=0 ?}\left(q_{2}, 0\right) \xrightarrow{+}\left(q_{1}, 1\right) \ldots
$$

- Zero Test-edges are blocked if the value of the counter is not zero
- Decrement-edges are blocked if the value of the counter is zero

1-Dimensional (Vector) Addition State Systems (1-VASS)

$M=\left(Q, q_{0}, \Delta\right)$, where

- Q is a finite set of control states,
- $q_{0} \in Q$ is the initial control state,
- $\Delta \subseteq Q \times \mathrm{Op} \times Q$, where $\mathrm{Op}=\{+,-\} \quad$ No Zero Test!

$$
\left(q_{0}, 0\right) \xrightarrow{+}\left(q_{1}, 1\right) \xrightarrow{-}\left(q_{1}, 0\right) \xrightarrow{+}\left(q_{2}, 1\right) \xrightarrow{+}\left(q_{1}, 2\right) \ldots
$$

- Decrement-edges are blocked if the value of the counter is zero

Weighted Automaton (WA)

$M=\left(Q, q_{0}, \Delta\right)$, where

- Q is a finite set of control states,
- $q_{0} \in Q$ is the initial control state,
- $\Delta \subseteq Q \times \mathrm{Op} \times Q$, where $\mathrm{Op}=\{+,-\} \quad$ No Zero Test!

$$
\left(q_{0}, 0\right) \xrightarrow{+}\left(q_{1}, 1\right) \xrightarrow{--}\left(q_{1}, 0\right) \xrightarrow{-}\left(q_{1},-1\right) \xrightarrow{+}\left(q_{2}, 0\right) \ldots
$$

- No edges are blocked. The counter may have a negative value.

Metric Temporal Logic (MTL) - Syntax

The set of MTL formulae over a finite set Q is defined by induction:

- q is a formula,
- if φ and ψ are formulae, then so are $\neg \varphi$ and $\varphi \wedge \psi$,
- if φ and ψ are formulae, then so are $\bigcirc_{I} \varphi$ and $\varphi \mathrm{U}_{I} \psi$,
where $q \in Q$ and $I \subseteq \mathrm{z}$ is an interval with endpoints in $\mathrm{z} \cup\{-\infty, \infty\}$. If $I=\mathrm{Z}$, then we may omit I.

Abbreviations:

$$
\begin{aligned}
& \varphi \vee \psi:=\neg(\neg \varphi \wedge \neg \psi) \\
& \varphi \rightarrow \psi:=\neg \varphi \vee \psi \\
& \text { true }:=\varphi \vee \neg \varphi \\
& \diamond_{I} \varphi:=\operatorname{trueU}_{I} \varphi \\
& \square_{I} \varphi:=\neg \diamond_{I} \neg \varphi
\end{aligned}
$$

Metric Temporal Logic (MTL) - Semantics

Let $\gamma=\left(q_{0}, c_{0}\right) \rightarrow\left(q_{1}, c_{1}\right) \rightarrow\left(q_{2}, c_{2}\right) \rightarrow \ldots$ be a computation of a 1-CM (1-VASS, WA), and let $i \in \mathrm{~N}$.
The satisfaction relation for MTL is defined by induction:

$$
\begin{array}{rll}
(\gamma, i) \models q & \text { iff } & q=q_{i} \\
(\gamma, i) \models \neg \varphi & \text { iff } & (\gamma, i) \models \varphi \text { is not the case } \\
(\gamma, i) \models \varphi \wedge \psi & \text { iff } & (\gamma, i) \models \varphi \text { and }(\gamma, i) \models \psi \\
(\gamma, i) \models \bigcirc_{I} \varphi & \text { iff } & (\gamma, i+1) \models \varphi \text { and } c_{i+1}-c_{i} \in I \\
(\gamma, i) \models \varphi \cup_{I} \psi & \text { iff } & \exists j \geq i .(\gamma, j) \models \psi, c_{j}-c_{i} \in I \text { and } \\
& & \forall i \leq k<j \cdot(\gamma, k) \models \varphi \\
(\gamma, i) \models \diamond_{I} \varphi & \text { iff } & \exists j \geq i .(\gamma, j) \models \varphi \text { and } c_{j}-c_{i} \in I \\
(\gamma, i) \models \square_{I} \varphi & \text { iff } & \forall j \geq i . \text { If } c_{j}-c_{i} \in I \text { then }(\gamma, j) \models \varphi
\end{array}
$$

We write $\gamma \models \varphi$ if $(\gamma, 0) \models \varphi$.

The Model Checking Problem

Input: A 1-CM (1-VASS, WA) M, an MTL formula φ. Question: Is there some computation γ of M such that $\gamma \models \varphi$?

The Model Checking Problem

Input: A 1-CM (1-VASS, WA) M, an MTL formula φ. Question: Is there some computation γ of M such that $\gamma \models \varphi$?

State of the Art:

- MTL-Model Checking WA with non-negative weights is Expspacecomplete (Laroussinie et al. 2002).

The Model Checking Problem

Input: A 1-CM (1-VASS, WA) M, an MTL formula φ.
Question: Is there some computation γ of M such that $\gamma \models \varphi$?

State of the Art:

- MTL-Model Checking WA with non-negative weights is Expspacecomplete (Laroussinie et al. 2002).
- Freeze LTL-Model Checking 2-VASS is undecidable. (Demri et al. 2010)
- Freeze LTL-Model Checking 1-CM is undecidable (Demri et al. 2008)
- Freeze LTL: are the counter values equal at two different arbitrary positions?
- MTL formulae can be translated into equivalent formulae of Freeze LTL interval extension
- It is conjectured that Freeze LTL interval extension is expressively stronger than MTL

The Model Checking Problem

Input: A 1-CM (1-VASS, WA) M, an MTL formula φ. Question: Is there some computation γ of M such that $\gamma \models \varphi$?

State of the Art:

- MTL-Model Checking WA with non-negative weights is Expspacecomplete (Laroussinie et al. 2002).
- Freeze LTL-Model Checking 2-VASS is undecidable. (Demri et al. 2010)
- Freeze LTL-Model Checking 1-CM is undecidable (Demri et al. 2008)
- Freeze LTL: are the counter values equal at two different arbitrary positions?
- MTL formulae can be translated into equivalent formulae of Freeze LTL interval extension
- It is conjectured that Freeze LTL interval extension is expressively stronger than MTL

Theorem

MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Theorem

MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Proof

Reduction of the reachability problem for 2-Counter Machines

A 2-Counter Machine (2-CM) is a tuple $M=\left(Q, q_{0}, \Delta\right)$, where

- Q is a finite set of control states,
- $q_{0} \in Q$ is the initial control state,
- $\Delta \subseteq Q \times \mathrm{Op} \times Q$, where $\mathrm{Op}=\left\{c_{1}+, c_{1}-, c_{1}=0\right.$?, $c_{2}+, c_{2}{ }^{-}, c_{2}=0$? $\}$

$$
\left(q_{0}, 0,0\right) \xrightarrow{c_{2}+}\left(q_{1}, 0,1\right) \xrightarrow{c_{1}=0 ?}\left(q_{2}, 0,1\right) \xrightarrow{c_{1}+}\left(q_{1}, 1,1\right) \xrightarrow{c_{1}-}\left(q_{1}, 0,1\right) \ldots
$$

A 2-Counter Machine (2-CM) is a tuple $M=\left(Q, q_{0}, \Delta\right)$, where

- Q is a finite set of control states,
- $q_{0} \in Q$ is the initial control state,
- $\Delta \subseteq Q \times \mathrm{Op} \times Q$, where $\mathrm{Op}=\left\{c_{1}+, c_{1}-, c_{1}=0\right.$?, $c_{2}+, c_{2}{ }^{-}, c_{2}=0$? $\}$

$$
\left(q_{0}, 0,0\right) \xrightarrow{c_{2}+}\left(q_{1}, 0,1\right) \xrightarrow{c_{1}=0 ?}\left(q_{2}, 0,1\right) \xrightarrow{c_{1}+}\left(q_{1}, 1,1\right) \xrightarrow{c_{1}^{-}}\left(q_{1}, 0,1\right) \ldots
$$

The Reachability Problem
Input: A 2-CM $M=\left(Q, q_{0}, \Delta\right), q \in Q$.
QUESTION: Is there a computation of M ending in q ?
This problem is undecidable.

Theorem

MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Proof

Reduction of the reachability problem for 2-Counter Machines
We present a procedure how to translate every $2-\mathrm{CM} M^{\prime \prime}$ and q into a WA M^{\prime} and an MTL-Formula φ such that
there is a computation of $M^{\prime \prime}$ ending in q iff
there is a computation γ of M^{\prime} such that $\gamma \models \varphi$.

Proof
Encoding two counters...

$$
\begin{aligned}
& \delta=\left(q, \text { op, } q^{\prime}\right) \\
& \delta^{\prime}=\left(q^{\prime}, \mathrm{op}^{\prime}, q^{\prime \prime}\right)
\end{aligned}
$$

$$
(q, c, d) \xrightarrow{\text { op }}\left(q^{\prime}, c^{\prime}, d^{\prime}\right) \xrightarrow{\text { op }}\left(q^{\prime \prime}, c^{\prime \prime}, d^{\prime \prime}\right) \ldots
$$

..into one counter:

$$
(q, c+d) \ldots(q \cdot \delta, c) \ldots\left(q^{\prime}, c^{\prime}+d^{\prime}\right) \ldots\left(q^{\prime} \cdot \delta^{\prime}, c^{\prime}\right) \ldots\left(q^{\prime \prime}, c^{\prime \prime}+d^{\prime \prime}\right) \ldots
$$

Proof

Encoding two counters...

...into one counter:

Ensure the correct semantics, e.g. zero tests:

Proof

Encoding two counters...

...into one counter:

Ensure the correct semantics, e.g. zero tests:
$\varphi_{\text {zero1 }}=\left(\square_{[1, \infty)} \neg q \cdot \delta\right) \wedge\left(\square_{(-\infty,-1]} \neg q \cdot \delta\right)$

Proof
Encoding two counters...

$$
\begin{aligned}
& \delta=\left(q, c_{1}=0 ?, q^{\prime}\right) \\
& \delta^{\prime}=\left(q^{\prime}, o \mathrm{p}^{\prime}, q^{\prime \prime}\right)
\end{aligned}
$$

$$
\cdot(q, c, d) \xrightarrow{c_{1}=0 ?}\left(q^{\prime}, c^{\prime}, d^{\prime}\right) \xrightarrow{\circ \mathrm{op}^{\prime}}\left(q^{\prime \prime}, c^{\prime \prime}, d^{\prime \prime}\right) \ldots \quad \Rightarrow c=0, c^{\prime}=c, d^{\prime}=d
$$

..into one counter:

$$
\ldots(q, c+d) \ldots(q \cdot \delta, c) \ldots\left(q^{\prime}, c^{\prime}+d^{\prime}\right) \ldots\left(q^{\prime} \cdot \delta^{\prime}, c^{\prime}\right) \ldots\left(q^{\prime \prime}, c^{\prime \prime}+d^{\prime \prime}\right) \ldots
$$

Ensure the correct semantics, e.g. zero tests:

$$
\begin{aligned}
& \varphi_{\text {zero1 }}=\left(\square_{[1, \infty)} \neg q \cdot \delta\right) \wedge\left(\square_{(-\infty,-1]} \neg q \cdot \delta\right) \\
& \varphi_{\text {nochange }}=\square\left[\left(q \wedge \bigcirc \delta_{-}\right) \rightarrow\left(\left(q \vee \delta_{-} \vee q . \delta \vee \delta_{+}\right) \mathrm{U}_{[0,0]} q^{\prime}\right)\right]
\end{aligned}
$$

Theorem

MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Proof

Reduction of the undecidable reachability problem for 2-Counter Machines
We presented a procedure how to translate every $2-\mathrm{CM} M^{\prime \prime}$ and q into a WA M^{\prime} and an MTL-Formula φ such that
there is a computation of $M^{\prime \prime}$ ending in q iff
there is a computation γ of M^{\prime} such that $\gamma \models \varphi$.

Theorem

MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Proof

Reduction of the undecidable reachability problem for 2-Counter Machines
We presented a procedure how to translate every $2-\mathrm{CM} M^{\prime \prime}$ and q into a WA M^{\prime} and an MTL-Formula φ such that
there is a computation of $M^{\prime \prime}$ ending in q
iff
there is a computation γ of M^{\prime} such that $\gamma \models \varphi$.

Remark

Reduction also works if the formulae may only contain intervals of the form

$$
Z,(-\infty,-1],[0, \infty)
$$

The Model Checking Problem

Input: A deterministic 1-CM (1-VASS, WA) M, an MTL formula φ. Question: Is there some computation γ of M such that $\gamma \models \varphi$?

Deterministic 1-Counter Machines

For each configuration (q, c) there is at most one successor configuration.

$$
\left(q_{0}, 0\right) \xrightarrow{+}\left(q_{1}, 1\right) \xrightarrow{-}\left(q_{1}, 0\right) \xrightarrow{=0 ?}\left(q_{2}, 0\right) \xrightarrow{+}\left(q_{1}, 1\right) \ldots
$$

This 1-CM is deterministic:

$$
\operatorname{succ}\left(q_{1}, c\right)= \begin{cases}\left(q_{1}, c-1\right) & \text { if } c \neq 0 \\ \left(q_{2}, 0\right) & \text { if } c=0\end{cases}
$$

Deterministic Weighted Automata

For each configuration (q, c) there is at most one successor configuration.

$$
\left(q_{0}, 0\right) \xrightarrow{+}\left(q_{1}, 1\right) \xrightarrow{-}\left(q_{1}, 0\right) \xrightarrow{+}\left(q_{2}, 1\right) \xrightarrow{+}\left(q_{1}, 2\right) \ldots
$$

This WA is not deterministic:

$$
\operatorname{succ}\left(q_{1}, c\right)=\left\{\left(q_{1}, c-1\right),\left(q_{2}, c+1\right)\right\}
$$

The Model Checking Problem

Input: A deterministic 1-CM (1-VASS, WA) M, an MTL formula φ. Question: Is there some computation γ of M such that $\gamma \models \varphi$?

State of the Art:

- Freeze LTL-Model Checking of deterministic 1-CM is PSPACE-complete. (Demri et al. 2008)
- Freeze LTL: are the counter values equal at two different positions?
- MTL formulae can be translated into equivalent formulae of Freeze LTL interval extension
- It is conjectured that Freeze LTL interval extension is expressively stronger than MTL

The Model Checking Problem

Input: A deterministic 1-CM (1-VASS, WA) M, an MTL formula φ.
Question: Is there some computation γ of M such that $\gamma \models \varphi$?

State of the Art:

- Freeze LTL-Model Checking of deterministic 1-CM is Todo.
(Demri et al. 2008)
- Freeze LTL: are the counter values equal at two different positions?
- MTL formulae can be translated into equivalent formulae of Freeze LTL interval extension
- It is conjectured that Freeze LTL interval extension is expressively stronger than MTL

Theorem

Freeze LTL interval extension-model checking of deterministic 1-CM (1-VASS, WA) is decidable.

Corollary
MTL-model checking of deterministic 1-CM (1-VASS, WA) is decidable.

Theorem

Freeze LTL interval extension-model checking of deterministic 1-CM (1-VASS, WA) is decidable.

Proof

Reduction to the Büchi-acceptance problem for Büchi automata.
We present a procedure how to translate every deterministic 1-CM M and MTL formula φ into a Büchi automaton A such that

$$
\text { there is a computation } \gamma \text { of } M \text { with } \gamma \models \varphi
$$

iff
there is a Büchi accepting run of A

Proof

The unique computation of M has a regular structure:

$$
\begin{aligned}
\left(q_{0}, 0\right) \xrightarrow{+}\left(q_{1}, 1\right) & \xrightarrow[\rightarrow]{+}\left(q_{2}, 2\right) \xrightarrow{-}\left(q_{3}, 1\right) \xrightarrow{+}\left(q_{4}, 2\right) \xrightarrow{+} \\
& \left(q_{1}, 3\right) \xrightarrow{+}\left(q_{2}, 4\right) \xrightarrow{\rightarrow}\left(q_{3}, 3\right) \xrightarrow{+}\left(q_{4}, 4\right) \xrightarrow{+} \\
& \left(q_{1}, 5\right) \xrightarrow{+}\left(q_{2}, 6\right) \xrightarrow{-}\left(q_{3}, 5\right) \xrightarrow{+}\left(q_{4}, 6\right) \xrightarrow{+}
\end{aligned}
$$

Proof

The unique computation of M has a regular structure:

Infinitely many counter values occur, but with regularity.

Proof

The unique computation of M has a regular structure:

$$
\begin{aligned}
\left(q_{0}, 0\right) \xrightarrow{+}\left(q_{1}, 1\right) & \xrightarrow[\rightarrow]{+}\left(q_{2}, 2\right) \xrightarrow{-}\left(q_{3}, 1\right) \xrightarrow{+}\left(q_{4}, 2\right) \xrightarrow{+} \\
& \left(q_{1}, 3\right) \xrightarrow{+}\left(q_{2}, 4\right) \xrightarrow{-}\left(q_{3}, 3\right) \xrightarrow{+}\left(q_{4}, 4\right) \xrightarrow{+} \\
& \left(q_{1}, 5\right) \xrightarrow{+}\left(q_{2}, 6\right) \xrightarrow{\rightarrow}\left(q_{3}, 5\right) \xrightarrow{+}\left(q_{4}, 6\right) \xrightarrow{+}
\end{aligned}
$$

$\operatorname{offset}(i, I)=\left\{j \mid c_{i+j}-c_{i} \in I\right\}$

Proof

The unique computation of M has a regular structure:

$$
\begin{aligned}
\left(q_{0}, 0\right) \xrightarrow{+}\left(q_{1}, 1\right) & \xrightarrow[\rightarrow]{+}\left(q_{2}, 2\right) \xrightarrow{-}\left(q_{3}, 1\right) \xrightarrow{+}\left(q_{4}, 2\right) \xrightarrow{+} \\
& \left(q_{1}, 3\right) \xrightarrow{+}\left(q_{2}, 4\right) \xrightarrow{\rightarrow}\left(q_{3}, 3\right) \xrightarrow{+}\left(q_{4}, 4\right) \xrightarrow{+} \\
& \left(q_{1}, 5\right) \xrightarrow{+}\left(q_{2}, 6\right) \xrightarrow{\rightarrow}\left(q_{3}, 5\right) \xrightarrow{+}\left(q_{4}, 6\right) \xrightarrow{+}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \operatorname{offset}(i, I)=\left\{j \mid c_{i+j}-c_{i} \in I\right\} \\
& \text { e.g., offset }(2,[2,3])=\left\{j \mid c_{2+j}-c_{2} \in[2,3]\right\}
\end{aligned}
$$

Proof

The unique computation of M has a regular structure:

$$
\begin{aligned}
\left(q_{0}, 0\right) \xrightarrow{+}\left(q_{1}, 1\right) & \xrightarrow[\rightarrow]{+}\left(q_{2}, 2\right) \xrightarrow{-}\left(q_{3}, 1\right) \xrightarrow{+}\left(q_{4}, 2\right) \xrightarrow{+} \\
& \left(q_{1}, 3\right) \xrightarrow{+}\left(q_{2}, 4\right) \xrightarrow{-}\left(q_{3}, 3\right) \xrightarrow{+}\left(q_{4}, 4\right) \xrightarrow{+} \\
& \left(q_{1}, 5\right) \xrightarrow{+}\left(q_{2}, 6\right) \xrightarrow{\rightarrow}\left(q_{3}, 5\right) \xrightarrow{+}\left(q_{4}, 6\right) \xrightarrow{+}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \begin{aligned}
& \operatorname{offset}(i, I)=\left\{j \mid c_{i+j}-c_{i} \in I\right\} \\
& \text { e.g., offset }(2,[2,3])=\left\{j \mid c_{2+j}-c_{2} \in[2,3]\right\} \\
&=\left\{j \mid c_{2+j}=4 \text { or } c_{2+j}=5\right\}
\end{aligned}
\end{aligned}
$$

Proof

The unique computation of M has a regular structure:

$$
\begin{aligned}
\left(q_{0}, 0\right) \xrightarrow{+}\left(q_{1}, 1\right) & \xrightarrow[\rightarrow]{+}\left(q_{2}, 2\right) \xrightarrow{-}\left(q_{3}, 1\right) \xrightarrow{+}\left(q_{4}, 2\right) \xrightarrow{+} \\
& \left(q_{1}, 3\right) \xrightarrow{+}\left(q_{2}, 4\right) \xrightarrow{-}\left(q_{3}, 3\right) \xrightarrow{+}\left(q_{4}, 4\right) \xrightarrow{+} \\
& \left(q_{1}, 5\right) \xrightarrow{+}\left(q_{2}, 6\right) \xrightarrow{\rightarrow}\left(q_{3}, 5\right) \xrightarrow{+}\left(q_{4}, 6\right) \xrightarrow{+}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{offset}(i, I)=\left\{j \mid c_{i+j}-c_{i} \in I\right\} \\
& \text { e.g., offset }(2,[2,3])=\left\{j \mid c_{2+j}-c_{2} \in[2,3]\right\} \\
&=\left\{j \mid c_{2+j}=4 \text { or } c_{2+j}=5\right\} \\
&=\{4,6,7,9\}
\end{aligned}
$$

Proof

The unique computation of M has a regular structure:

$$
\begin{aligned}
& \left(q_{0}, 0\right) \xrightarrow{+}\left(q_{1}, 1\right) \xrightarrow{+}\left(q_{2}, 2\right) \xrightarrow{-}\left(q_{3}, 1\right) \xrightarrow{+}\left(q_{4}, 2\right) \xrightarrow{+} \\
& \left(q_{1}, 3\right) \xrightarrow{+}\left(q_{2}, 4\right) \xrightarrow{-}\left(q_{3}, 3\right) \xrightarrow{+}\left(q_{4}, 4\right) \xrightarrow{+} \\
& \left(q_{1}, 5\right) \xrightarrow{+}\left(q_{2}, 6\right) \xrightarrow{-}\left(q_{3}, 5\right) \xrightarrow{+}\left(q_{4}, 6\right) \xrightarrow{+}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \operatorname{offset}(i, I)=\left\{j \mid c_{i+j}-c_{i} \in I\right\} \\
& \text { e.g., offset }(2,[2,3])=\left\{j \mid c_{2+j}-c_{2} \in[2,3]\right\} \\
&=\left\{j \mid c_{2+j}=4 \text { or } c_{2+j}=5\right\} \\
&=\{4,6,7,9\} \\
&=\operatorname{offset}(6,[2,3])=\operatorname{offset}(10,[2,3])=\ldots
\end{aligned}
$$

Proof

The unique computation of M has a regular structure:

$$
\left(q_{0}, 0\right) \xrightarrow[\rightarrow]{+}\left(q_{1}, 1\right) \xrightarrow[+]{+}\left(q_{2}, 2\right) \xrightarrow[\rightarrow]{-}\left(q_{3}, 1\right) \xrightarrow{+}\left(q_{4}, 2\right) \xrightarrow{+}
$$

Configurations in have the same behaviour with respect to formulae.

Proof

We define an equivalence relation \equiv over the set of configurations of M.

- form the equivalence classes induced by \equiv,
- the index of \equiv is finite,
- each equivalence class can be symbolically represented in a finite manner,
- the symbolic representations and the subformulas of φ form the states of the Büchi automaton.

Proof

We define an equivalence relation \equiv over the set of configurations of M.

- form the equivalence classes induced by \equiv,
- the index of \equiv is finite,
- each equivalence class can be symbolically represented in a finite manner,
- the symbolic representations and the subformulas of φ form the states of the Büchi automaton.

It holds that there is a computation γ of M with $\gamma \models \varphi$ iff
there is a Büchi accepting run of A

Proof

We define an equivalence relation \equiv over the set of configurations of M.

- form the equivalence classes induced by \equiv,
- the index of \equiv is finite,
- each equivalence class can be symbolically represented in a finite manner,
- the symbolic representations and the subformulas of φ form the states of the Büchi automaton.

It holds that there is a computation γ of M with $\gamma \models \varphi$ iff
there is a Büchi accepting run of A

Theorem

Freeze LTL interval extension-model checking of deterministic 1-CM (1-VASS, WA) is decidable.

Open Questions

- Complexity of Model Checking Deterministic automata?
- Is Freeze LTL Interval Extension expressively stronger than MTL?
- What about MTL Model Checking Non-deterministic automata, if intervals are restricted to $[0,0]$ (like in Freeze LTL)?

Open Questions

- Complexity of Model Checking Deterministic automata?
- Is Freeze LTL Interval Extension expressively stronger than MTL?
- What about MTL Model Checking Non-deterministic automata, if intervals are restricted to $[0,0]$ (like in Freeze LTL)?

Thank you for your attention!

