Model Checking Metric Temporal Logic over Automata with One Counter

Karin Quaas

11th April 2013

Overview of the Talk

- Automata with one counter:
 - 1-Counter Machines
 - 1-Dimensional Vector Addition State Systems
 - Weighted Automata
- Metric Temporal Logic
- Undecidability Result
- Decidability Result

1-Counter Machines (1CM)

$$M=(Q,q_0,\Delta)$$
, where

- Q is a finite set of control states,
- $q_0 \in Q$ is the initial control state,
- $\Delta \subseteq Q \times \mathsf{Op} \times Q$, where $\mathsf{Op} = \{+, -, =0?\}$

$$(q_0,0) \xrightarrow{+} (q_1,1) \xrightarrow{-} (q_1,0) \xrightarrow{=0?} (q_2,0) \xrightarrow{+} (q_1,1) \dots$$

- Zero Test-edges are blocked if the value of the counter is not zero
- Decrement-edges are blocked if the value of the counter is zero

1-Dimensional (Vector) Addition State Systems (1-VASS)

$$M=(Q,q_0,\Delta)$$
, where

- Q is a finite set of control states,
- $q_0 \in Q$ is the initial control state,
- $\Delta \subseteq Q \times \mathsf{Op} \times Q$, where $\mathsf{Op} = \{+, -\}$ No Zero Test!

$$(q_0,0) \xrightarrow{+} (q_1,1) \xrightarrow{-} (q_1,0) \xrightarrow{+} (q_2,1) \xrightarrow{+} (q_1,2) \dots$$

• Decrement-edges are blocked if the value of the counter is zero

Weighted Automaton (WA)

$$M=(Q,q_0,\Delta)$$
, where

- Q is a finite set of control states,
- $q_0 \in Q$ is the initial control state,
- $\Delta \subseteq Q \times \mathsf{Op} \times Q$, where $\mathsf{Op} = \{+, -\}$ No Zero Test!

$$(q_0,0) \xrightarrow{+} (q_1,1) \xrightarrow{-} (q_1,0) \xrightarrow{-} (q_1,-1) \xrightarrow{+} (q_2,0) \dots$$

• No edges are blocked. The counter may have a negative value.

Metric Temporal Logic (MTL) - Syntax

The set of MTL formulae over a finite set Q is defined by induction:

- q is a formula,
- ullet if φ and ψ are formulae, then so are $\neg \varphi$ and $\varphi \wedge \psi$,
- ullet if φ and ψ are formulae, then so are $\bigcirc_I \varphi$ and $\varphi \mathsf{U}_I \psi$,

where $q \in Q$ and $I \subseteq Z$ is an interval with endpoints in $Z \cup \{-\infty, \infty\}$. If I = Z, then we may omit I.

Abbreviations:

$$\varphi \lor \psi := \neg(\neg \varphi \land \neg \psi)$$

$$\varphi \to \psi := \neg \varphi \lor \psi$$

$$\mathsf{true} := \varphi \lor \neg \varphi$$

$$\Diamond_I \varphi := \mathsf{true} \mathsf{U}_I \varphi$$

$$\Box_I \varphi := \neg \Diamond_I \neg \varphi$$

Metric Temporal Logic (MTL) - Semantics

Let $\gamma = (q_0, c_0) \to (q_1, c_1) \to (q_2, c_2) \to \dots$ be a computation of a 1-CM (1-VASS, WA), and let $i \in \mathbb{N}$.

The satisfaction relation for MTL is defined by induction:

$$(\gamma, i) \models q \quad \text{iff} \quad q = q_i$$

$$(\gamma, i) \models \neg \varphi \quad \text{iff} \quad (\gamma, i) \models \varphi \text{ is not the case}$$

$$(\gamma, i) \models \varphi \land \psi \quad \text{iff} \quad (\gamma, i) \models \varphi \text{ and } (\gamma, i) \models \psi$$

$$(\gamma, i) \models \bigcirc_I \varphi \quad \text{iff} \quad (\gamma, i + 1) \models \varphi \text{ and } c_{i+1} - c_i \in I$$

$$(\gamma, i) \models \varphi \cup_I \psi \quad \text{iff} \quad \exists j \geq i. (\gamma, j) \models \psi, c_j - c_i \in I \text{ and}$$

$$\forall i \leq k < j. (\gamma, k) \models \varphi$$

$$(\gamma, i) \models \Diamond_I \varphi \quad \text{iff} \quad \exists j \geq i. (\gamma, j) \models \varphi \text{ and } c_j - c_i \in I$$

$$(\gamma, i) \models \Box_I \varphi \quad \text{iff} \quad \forall j \geq i. \text{ If } c_j - c_i \in I \text{ then } (\gamma, j) \models \varphi$$

We write $\gamma \models \varphi$ if $(\gamma, 0) \models \varphi$.

INPUT: A 1-CM (1-VASS, WA) M, an MTL formula φ .

QUESTION: Is there some computation γ of M such that $\gamma \models \varphi$?

INPUT: A 1-CM (1-VASS, WA) M, an MTL formula φ . QUESTION: Is there some computation γ of M such that $\gamma \models \varphi$?

State of the Art:

• MTL-Model Checking WA with non-negative weights is EXPSPACE-complete (Laroussinie et al. 2002).

INPUT: A 1-CM (1-VASS, WA) M, an MTL formula φ . QUESTION: Is there some computation γ of M such that $\gamma \models \varphi$?

State of the Art:

- MTL-Model Checking WA with non-negative weights is EXPSPACE-complete (Laroussinie et al. 2002).
- Freeze LTL-Model Checking 2-VASS is undecidable. (Demri et al. 2010)
- Freeze LTL-Model Checking 1-CM is undecidable (Demri et al. 2008)
- Freeze LTL: are the counter values equal at two different arbitrary positions?
- MTL formulae can be translated into equivalent formulae of Freeze LTL interval extension
- It is conjectured that Freeze LTL interval extension is expressively stronger than MTL

INPUT: A 1-CM (1-VASS, WA) M, an MTL formula φ .

QUESTION: Is there some computation γ of M such that $\gamma \models \varphi$?

State of the Art:

- MTL-Model Checking WA with non-negative weights is EXPSPACE-complete (Laroussinie et al. 2002).
- Freeze LTL-Model Checking 2-VASS is undecidable. (Demri et al. 2010)
- Freeze LTL-Model Checking 1-CM is undecidable (Demri et al. 2008)
- Freeze LTL: are the counter values equal at two different arbitrary positions?
- MTL formulae can be translated into equivalent formulae of Freeze LTL interval extension
- It is conjectured that Freeze LTL interval extension is expressively stronger than MTL

Theorem

MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Theorem

MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Proof

Reduction of the reachability problem for 2-Counter Machines

A 2-Counter Machine (2-CM) is a tuple $M=(Q,q_0,\Delta)$, where

- Q is a finite set of control states,
- $q_0 \in Q$ is the initial control state,
- $\Delta \subseteq Q \times \mathsf{Op} \times Q$, where $\mathsf{Op} = \{c_1+, c_1-, c_1=0?, c_2+, c_2-, c_2=0?\}$

$$(q_0, 0, 0) \xrightarrow{c_2^+} (q_1, 0, 1) \xrightarrow{c_1^{=0?}} (q_2, 0, 1) \xrightarrow{c_1^+} (q_1, 1, 1) \xrightarrow{c_1^-} (q_1, 0, 1) \dots$$

A 2-Counter Machine (2-CM) is a tuple $M=(Q,q_0,\Delta)$, where

- Q is a finite set of control states,
- $q_0 \in Q$ is the initial control state,
- $\Delta \subseteq Q \times \mathsf{Op} \times Q$, where $\mathsf{Op} = \{c_1+, c_1-, c_1=0?, c_2+, c_2-, c_2=0?\}$

$$(q_0, 0, 0) \xrightarrow{c_2^+} (q_1, 0, 1) \xrightarrow{c_1=0?} (q_2, 0, 1) \xrightarrow{c_1^+} (q_1, 1, 1) \xrightarrow{c_1^-} (q_1, 0, 1) \dots$$

The Reachability Problem

INPUT: A 2-CM $M=(Q,q_0,\Delta)$, $q\in Q$.

QUESTION: Is there a computation of M ending in q?

This problem is undecidable.

Theorem

MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Proof

Reduction of the reachability problem for 2-Counter Machines

We present a procedure how to translate every 2-CM $M^{\prime\prime}$ and q into a WA M^\prime and an MTL-Formula φ such that

there is a computation of M'' ending in q iff there is a computation γ of M' such that $\gamma \models \varphi$.

Encoding two counters...

$$\dots (q, c, d) \xrightarrow{\mathsf{op}} (q', c', d') \xrightarrow{\mathsf{op}'} (q'', c'', d'') \dots$$

...into one counter:

$$\dots (q,c+d) \dots (q.\delta,c) \dots (q',c'+d') \dots (q'.\delta',c') \dots (q'',c''+d'') \dots$$

Encoding two counters...

...into one counter:

$$\dots (q, c+d) \dots (q.\delta, c) \dots (q', c'+d') \dots (q'.\delta', c') \dots (q'', c''+d'') \dots$$

Ensure the correct semantics, e.g. zero tests:

Encoding two counters...

...into one counter:

$$\dots (q,c+d) \dots (q.\delta,c) \dots (q',c'+d') \dots (q'.\delta',c') \dots (q'',c''+d'') \dots$$

Ensure the correct semantics, e.g. zero tests:

$$\varphi_{\mathsf{zero1}} = (\square_{[1,\infty)} \neg q.\delta) \land (\square_{(-\infty,-1]} \neg q.\delta)$$

Encoding two counters...

$$\delta = (q, c_1$$
=0?, $q')$
 $\delta' = (q', \mathsf{op}', q'')$

$$\dots (q, c, d) \xrightarrow{c_1 = 0?} (q', c', d') \xrightarrow{\operatorname{op}'} (q'', c'', d'') \dots \qquad \Rightarrow c = 0, c' = c, d' = d$$

$$\Rightarrow c = 0, c' = c, d' = d$$

...into one counter:

$$\dots (q,c+d) \dots (q.\delta,c) \dots (q',c'+d') \dots (q'.\delta',c') \dots (q'',c''+d'') \dots$$

Ensure the correct semantics, e.g. zero tests:

$$\varphi_{\mathsf{zero1}} = (\square_{[1,\infty)} \neg q.\delta) \land (\square_{(-\infty,-1]} \neg q.\delta)$$

$$\varphi_{\mathsf{nochange}} = \Box[(q \land \bigcirc \delta_{-}) \to ((q \lor \delta_{-} \lor q.\delta \lor \delta_{+}) \mathsf{U}_{[0,0]} q')]$$

Theorem

MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Proof

Reduction of the undecidable reachability problem for 2-Counter Machines

We presented a procedure how to translate every 2-CM $M^{\prime\prime}$ and q into a WA M^\prime and an MTL-Formula φ such that

there is a computation of M'' ending in q iff there is a computation γ of M' such that $\gamma \models \varphi$.

Theorem

MTL-model checking WA (1-VASS, 1-CM) is undecidable.

Proof

Reduction of the undecidable reachability problem for 2-Counter Machines

We presented a procedure how to translate every 2-CM $M^{\prime\prime}$ and q into a WA M^\prime and an MTL-Formula φ such that

there is a computation of M'' ending in q iff there is a computation γ of M' such that $\gamma \models \varphi$.

Remark

Reduction also works if the formulae may only contain intervals of the form

$$Z, (-\infty, -1], [0, \infty)$$

INPUT: A deterministic 1-CM (1-VASS, WA) M, an MTL formula φ .

QUESTION: Is there some computation γ of M such that $\gamma \models \varphi$?

Deterministic 1-Counter Machines

For each configuration (q, c) there is at most one successor configuration.

$$(q_0,0) \xrightarrow{+} (q_1,1) \xrightarrow{-} (q_1,0) \xrightarrow{=0?} (q_2,0) \xrightarrow{+} (q_1,1) \dots$$

This 1-CM is deterministic:

$$\operatorname{succ}(q_1, c) = \begin{cases} (q_1, c - 1) & \text{if } c \neq 0 \\ (q_2, 0) & \text{if } c = 0 \end{cases}$$

Deterministic Weighted Automata

For each configuration (q,c) there is at most one successor configuration.

$$(q_0,0) \xrightarrow{+} (q_1,1) \xrightarrow{-} (q_1,0) \xrightarrow{+} (q_2,1) \xrightarrow{+} (q_1,2) \dots$$

This WA is not deterministic:

$$succ(q_1, c) = \{(q_1, c - 1), (q_2, c + 1)\}\$$

INPUT: A deterministic 1-CM (1-VASS, WA) M, an MTL formula φ . QUESTION: Is there some computation γ of M such that $\gamma \models \varphi$?

State of the Art:

- Freeze LTL-Model Checking of deterministic 1-CM is PSPACE-complete. (Demri et al. 2008)
- Freeze LTL: are the counter values equal at two different positions?
- MTL formulae can be translated into equivalent formulae of Freeze LTL interval extension
- It is conjectured that Freeze LTL interval extension is expressively stronger than MTL

INPUT: A deterministic 1-CM (1-VASS, WA) M, an MTL formula φ . QUESTION: Is there some computation γ of M such that $\gamma \models \varphi$?

State of the Art:

- Freeze LTL-Model Checking of deterministic 1-CM is Todo. (Demri et al. 2008)
- Freeze LTL: are the counter values equal at two different positions?
- MTL formulae can be translated into equivalent formulae of Freeze LTL interval extension
- It is conjectured that Freeze LTL interval extension is expressively stronger than MTL

Theorem

Freeze LTL interval extension-model checking of deterministic 1-CM (1-VASS, WA) is decidable.

Corollary

MTL-model checking of deterministic 1-CM (1-VASS, WA) is decidable.

Theorem

Freeze LTL interval extension-model checking of deterministic 1-CM (1-VASS, WA) is decidable.

Proof

Reduction to the Büchi-acceptance problem for Büchi automata.

We present a procedure how to translate every deterministic 1-CM M and MTL formula φ into a Büchi automaton A such that

there is a computation γ of M with $\gamma \models \varphi$ iff there is a Büchi accepting run of A

$$(q_0,0) \xrightarrow{+} (q_1,1) \xrightarrow{+} (q_2,2) \xrightarrow{-} (q_3,1) \xrightarrow{+} (q_4,2) \xrightarrow{+}$$

$$(q_1,3) \xrightarrow{+} (q_2,4) \xrightarrow{-} (q_3,3) \xrightarrow{+} (q_4,4) \xrightarrow{+}$$

$$(q_1,5) \xrightarrow{+} (q_2,6) \xrightarrow{-} (q_3,5) \xrightarrow{+} (q_4,6) \xrightarrow{+}$$

$$\cdots$$

The unique computation of M has a regular structure:

Infinitely many counter values occur, but with regularity.

$$(q_0,0) \xrightarrow{+} (q_1,1) \xrightarrow{+} (q_2,2) \xrightarrow{-} (q_3,1) \xrightarrow{+} (q_4,2) \xrightarrow{+}$$

$$(q_1,3) \xrightarrow{+} (q_2,4) \xrightarrow{-} (q_3,3) \xrightarrow{+} (q_4,4) \xrightarrow{+}$$

$$(q_1,5) \xrightarrow{+} (q_2,6) \xrightarrow{-} (q_3,5) \xrightarrow{+} (q_4,6) \xrightarrow{+}$$

$$\cdots$$

$$\mathsf{offset}(i,I) = \{j \mid c_{i+j} - c_i \in I\}$$

$$(q_0,0) \xrightarrow{+} (q_1,1) \xrightarrow{+} (q_2,2) \xrightarrow{-} (q_3,1) \xrightarrow{+} (q_4,2) \xrightarrow{+}$$

$$(q_1,3) \xrightarrow{+} (q_2,4) \xrightarrow{-} (q_3,3) \xrightarrow{+} (q_4,4) \xrightarrow{+}$$

$$(q_1,5) \xrightarrow{+} (q_2,6) \xrightarrow{-} (q_3,5) \xrightarrow{+} (q_4,6) \xrightarrow{+}$$

$$\cdots$$

offset
$$(i,I)=\{j\mid c_{i+j}-c_i\in I\}$$
 e.g., offset $(2,[2,3])=\{j\mid c_{2+j}-c_2\in [2,3]\}$

$$(q_0,0) \xrightarrow{+} (q_1,1) \xrightarrow{+} (q_2,2) \xrightarrow{-} (q_3,1) \xrightarrow{+} (q_4,2) \xrightarrow{+}$$

$$(q_1,3) \xrightarrow{+} (q_2,4) \xrightarrow{-} (q_3,3) \xrightarrow{+} (q_4,4) \xrightarrow{+}$$

$$(q_1,5) \xrightarrow{+} (q_2,6) \xrightarrow{-} (q_3,5) \xrightarrow{+} (q_4,6) \xrightarrow{+}$$

$$\cdots$$

$$\begin{aligned} \text{offset}(i,I) &= \{j \mid c_{i+j} - c_i \in I\} \\ \text{e.g., offset}(2,[2,3]) &= \{j \mid c_{2+j} - c_2 \in [2,3]\} \\ &= \{j \mid c_{2+j} = 4 \text{ or } c_{2+j} = 5\} \end{aligned}$$

$$(q_0,0) \xrightarrow{+} (q_1,1) \xrightarrow{+} (q_2,2) \xrightarrow{-} (q_3,1) \xrightarrow{+} (q_4,2) \xrightarrow{+}$$

$$(q_1,3) \xrightarrow{+} (q_2,4) \xrightarrow{-} (q_3,3) \xrightarrow{+} (q_4,4) \xrightarrow{+}$$

$$(q_1,5) \xrightarrow{+} (q_2,6) \xrightarrow{-} (q_3,5) \xrightarrow{+} (q_4,6) \xrightarrow{+}$$

$$\cdots$$

offset
$$(i,I) = \{j \mid c_{i+j} - c_i \in I\}$$

e.g., offset $(2,[2,3]) = \{j \mid c_{2+j} - c_2 \in [2,3]\}$
 $= \{j \mid c_{2+j} = 4 \text{ or } c_{2+j} = 5\}$
 $= \{4,6,7,9\}$

$$(q_0,0) \xrightarrow{+} (q_1,1) \xrightarrow{+} (q_2,2) \xrightarrow{-} (q_3,1) \xrightarrow{+} (q_4,2) \xrightarrow{+}$$

$$(q_1,3) \xrightarrow{+} (q_2,4) \xrightarrow{-} (q_3,3) \xrightarrow{+} (q_4,4) \xrightarrow{+}$$

$$(q_1,5) \xrightarrow{+} (q_2,6) \xrightarrow{-} (q_3,5) \xrightarrow{+} (q_4,6) \xrightarrow{+}$$

$$\cdots$$

offset
$$(i, I) = \{j \mid c_{i+j} - c_i \in I\}$$

e.g., offset $(2, [2, 3]) = \{j \mid c_{2+j} - c_2 \in [2, 3]\}$
 $= \{j \mid c_{2+j} = 4 \text{ or } c_{2+j} = 5\}$
 $= \{4, 6, 7, 9\}$
 $= \text{offset}(6, [2, 3]) = \text{offset}(10, [2, 3]) = \dots$

The unique computation of M has a regular structure:

$$(q_0,0) \xrightarrow{+} (q_1,1) \xrightarrow{+} (q_2,2) \xrightarrow{-} (q_3,1) \xrightarrow{+} (q_4,2) \xrightarrow{+} (q_4,2) \xrightarrow{+} (q_1,3) \xrightarrow{+} (q_2,4) \xrightarrow{-} (q_3,3) \xrightarrow{+} (q_4,4) \xrightarrow{+} (q_4,6) \xrightarrow{+} (q_$$

Configurations in

have the same behaviour with respect to formulae.

We define an equivalence relation \equiv over the set of configurations of M.

- form the equivalence classes induced by \equiv ,
- the index of \equiv is finite,
- each equivalence class can be symbolically represented in a finite manner,
- ullet the symbolic representations and the subformulas of φ form the states of the Büchi automaton.

We define an equivalence relation \equiv over the set of configurations of M.

- form the equivalence classes induced by \equiv ,
- the index of \equiv is finite,
- each equivalence class can be symbolically represented in a finite manner,
- ullet the symbolic representations and the subformulas of φ form the states of the Büchi automaton.

It holds that

there is a computation γ of M with $\gamma \models \varphi$ iff there is a Büchi accepting run of A

We define an equivalence relation \equiv over the set of configurations of M.

- ullet form the equivalence classes induced by \equiv ,
- the index of \equiv is finite,
- each equivalence class can be symbolically represented in a finite manner,
- ullet the symbolic representations and the subformulas of φ form the states of the Büchi automaton.

It holds that

there is a computation γ of M with $\gamma \models \varphi$ iff there is a Büchi accepting run of A

Theorem

Freeze LTL interval extension-model checking of deterministic 1-CM (1-VASS, WA) is decidable.

Open Questions

- Complexity of Model Checking Deterministic automata?
- Is Freeze LTL Interval Extension expressively stronger than MTL?
- What about MTL Model Checking Non-deterministic automata, if intervals are restricted to [0,0] (like in Freeze LTL)?

Open Questions

- Complexity of Model Checking Deterministic automata?
- Is Freeze LTL Interval Extension expressively stronger than MTL?
- What about MTL Model Checking Non-deterministic automata, if intervals are restricted to [0,0] (like in Freeze LTL)?

Thank you for your attention!