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Abstract

The development and investigation of application—oriented logics comprises many aspects and prob-
lems. For a few of them some computer support is possible which frees the investigator from some-
times quite complex computations.

This paper gives an overview about some developments in this area. In particular, we consider
the correspondences between axiomatic and semantic specifications of a logic and the problem of
finding one from the other by means of automated theorem provers and quantifier elimination algo-
rithms. Other topics adressed in this paper are reasoning in Hilbert systems, the investigation of the
expressiveness of a logic and the axiomatizability of semantic conditions.

For the technical details of the methods and the proofs I refer to the original papers.

1 Introduction

Unfortunately there is not just the universal logic as the basis for every application of
logic. Of course, higher—order logic is expressive enough to emulate all other logics, but
it has so many unpleasant features that it is useless for many practical applications.

There is a tradeoff between expressiveness of a logic and the complexity of the
reasoning algorithms for this logic. Therefore for obtaining an optimal result in a
particular application, one has to find a compromise between these two features.
However, not every designer of an application program, which needs logic in some
of its components, is a logician and can develop the optimal logic for his purposes,
neither can he hire a trained logician to do this for him. In this situation we could
either resign and live with non-optimal solutions, or we could try to give more or less
automated support and guidance for developing new logics.

Although this is a very ambitious goal, there is some evidence that it is in fact pos-
sible, at least to a certain extent. MULTLOG [4] for example is a Prolog program that
accepts as input the truth tables of a finitely many—valued logic, and produces as out-
put a LaTeX document describing various calculi for this logic. The first MULTLOG
generated paper has already been accepted at a conference.

This paper is a survey of our advances in providing automated support for logical
investigations. Considered are:

e reasoning in Hilbert systems,
e finding model-theoretic semantics for axiomatically specified logics, and vice versa,

e finding axioms corresponding to a given semantics, and
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e investigating the expressiveness of logics.

In most cases we use first-order predicate logic (PL1) as meta—logic for encoding
and manipulating the object logics. The intention is to map the problems from the
object logic level to the predicate logic level and to use the well established methods
and results for PL1. As long as this is possible, there is therefore no need to use
more expressive systems, higher order predicate logic, A calculus or type theory for
example. On the other hand, since PL1 has no variable binding mechanism at the
term level, this means that we are restricted to the propositional versions of the object
logic.

In Section 2 it is explained how reasoning in Hilbert systems can be realized with
automated theorem provers and how the proof search can be improved by transform-
ing the axioms in a certain way. In Section 4 we consider the correspondence problem,
i.e. the problem of finding corresponding frame properties for given Hilbert axioms.
This problem is reduced to a quantifier elimination problem. A particular quanti-
fier elimination algorithm for predicate variables and its implementation is presented.
The inverse problem of finding Hilbert axioms for semantic properties is discussed in
section 5. The correlation between an axiomatic presentation of a logic and a seman-
tic specification is not straightforward. Correspondence between Hilbert axioms and
semantic properties is only one aspect, and it does not always guarantee completeness
of the semantics with respect to the axioms. We discuss these problems in an alge-
braic context in Section 3. Finally in Section 6 a new approach for investigating the
expressiveness of a logic and simplifying its semantics is presented. In this approach
this problem is reduced to the redundancy problem of certain predicate logic axioms.

In this paper we want to convey the main ideas and results leaving out the technical
details and proofs.

2 Reasoning in Hilbert Systems

The most abstract way a logic can be defined is by means of a Hilbert system. A
Hilbert system is a kind of grammar. It consists of axioms and rules. The axioms
are actually axiom schemas because all instances of the axioms are theorems. The
rules specify how to derive new theorems from the initial theorems and the previously
derived ones. For example the axiom

F(p—=q)—=r) = ((r—p) = (s—p) (2.1)
together with Modus Ponens: from Fp— ¢gand F pinfer ¢ (2.2)

specify the implicational fragment of propositional logic [19, p. 295]. For encoding
vague notions, like “knows”, “believes” and “wants”, a Hilbert-style axiomatization
is usually the preferred method because in Hilbert systems their properties can be
expressed in a very abstract and intuitive way.

A Hilbert system is a forward reasoning calculus. Starting with the axioms as the
initial theorems, with the rules of the Hilbert system new theorems can be derived.
Verifying that a given formula is in fact a theorem in the system amounts to enumer-
ating all theorems until eventually the formula appears as one of the derived theorems.
Computers can solve this problem with a well known technique.

Using first order predicate logic as meta logic, the Hilbert system can be encoded as
a Horn theory. The logical connectives are encoded as function symbols and formulae
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are encoded as terms. The propositional variables in Hilbert axioms are place holders
for arbitrary formulae. Therefore they become universally quantified variables in the
encoded axiomatization. For example the system consisting of (2.1) and (2.2) can be
encoded as the predicate logic clauses

Vp.q,r,s  Th(i(i(i(p,q),r),i(i(r,p),i(s,p)))) (2.3)
Vp,q  Th(i(p,q)) A Th(p) = Th(q)

‘Th’ is the only predicate needed. Th(p) means ‘p is a theorem’. ‘4’ denotes the im-
plication connective. A PL1 encoding of a Hilbert system together with a theorem to
be proved is now a suitable input for an automated theorem prover. And in fact, these
kinds of problems have been used for a long time as test problems in the automated
theorem proving community [22].

Hilbert systems as we find them in logic textbooks usually specify each aspect of the
logic explicitly. For example, if a binary connective is supposed to be commutative,
there is usually an axiom expressing the commutativity explicitly. The theorems
proved from such systems in textbooks are in general so simple that for current days
automated theorem provers there is absolutely no problem to prove them. However,
if the Hilbert system is optimized by minimizing the number of axioms as in the
above case (2.1), the proof of quite simple theorems can already become extremely
complicated. Proofs may require hundreds of rule applications, and finding them may
need hours of CPU time. The technique of clause K-transformations, presented below,
can improve the behaviour of automated theorem provers for these more complex
systems.

2.1 Clause K-Transformations

Clauses like Modus Ponens (2.4) are self-resolving. This means there are resolvents
between renamed copies of the clause. Such self-resolving clauses generate a very large
search space in an automated theorem prover. Big search spaces can be controlled
either with strategies and heuristics for eliminating redundant parts and searching
through the remaining parts in a hopefully promising way, or by reformulating the
problem. Reformulating the problem in this case means changing the axiomatization
in such a way that the same theorems can still be proved, but hopefully in less time.

For the Hilbert system examples we are, in particular, interested in changing or even
deleting the clause responsible for the big search space, the Modus Ponens clause. To
this end we have been investigating the general problem: given a particular clause C
in a set ® of clauses, is it possible to find a transformation Y (®) of ® such that the
clause C becomes superfluous in ® and can be deleted without changing the set of
provable theorems? That means ¢ is provable from @ if and only if Y¢(p) is provable
from Y (®). Let us call this a faithful transformation.

A first idea for a transformation that makes C superfluous comes from the following
consideration. A clause C = A; A ... A A, = B can be seen as a procedure that, given
instances of the antecedent literals A; as input, computes the appropriate instances
of B as output. Well, if the only thing, we were interested in, is in producing B
from the A;, an alternative way to obtain this ‘output’ would be to ensure that the
transformed ‘input’ A, Yo (4;) implies B, i.e. A; Yo(4;) = B is a tautology. If we
transform ® such that instead, or in addition to A; itself, Y (A4;) is available, we do
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not need C' anymore.

Unfortunately it may be the case (and necessary) that the ‘output’ B of the clause
C needs to be used as ‘input’ for C' again. This is typical for self resolving clauses
C where a resolvent B with C' may be resolvable with the same clause C' again.
But after eliminating C, B will not be transformed. Thus, the ‘output’ B is not
available anymore as input. Therefore our first guess for a condition on Y has to be
strengthened: We must ensure that the transformed ‘input’ implies the transformed
‘output’ Y (B). That means A\; Yo (4;) = Y (B) must be a tautology.

On the technical level this condition must be refined because for non-ground clauses
where variables may become instantiated we cannot just transform clauses by trans-
forming their literals separately. Instead of this we must require that for all ground
instances Cp of C:

AL VY e (Aip) = VI VYo (B)p)

is a tautology. QTC(. ..) means that all variables introduced by Y are universally
quantified.

This is the main faithfulness criterion, Y¢ must fulfill. The other more technical
criteria and the faithfulness proof can be found in [25]. The faithfulness criterion
requires a test for, in general, infinitely many ground instances, and it does not yet
say, how to find Y. Fortunately it is possible to derive a procedure for finding Y«
and for testing the faithfulness criterion. The basic idea is: Y is represented by
a set Sy, of self-resolvents of C' (including C itself) where for each self-resolvent
D a single literal Lp, is selected. Yo then transforms a clause set ® by adding the
resolvents between the clauses E in ® and the clauses D in Sy, to @, but choosing
only Lp as the resolution literal in D.

As an example, consider the transitivity clause C' = R(z,y) A R(y,z2) = R(z,z2).
We choose Sy, = {C}. (It turns out that no self-resolvent at all is necessary in
this case.) As selected literal Lo we may choose either of the two antecedent literals.
Lets choose the second one Lo = R(y, z). The transformation Y¢ specified herewith
transforms a clause set by adding for each clause containing a positive literal R(s,t)
the resolvent with C' where the second literal is the resolution literal. For example,
Yco(R(a,b)) = (R(a,b) A (Vx R(z,a) = R(x,b))). It is important to notice that the
literals in the resolvents which originate from C' itself are never again resolved with
C. Therefore this is a terminating procedure.

Notice that in the presence of the reflexivity axiom R(z,x), the original literal
R(a,b) can be derived from Vz R(z,a) = R(x,b) and the reflexivity clause. Therefore
the original clauses in ® can be deleted and only the transformed clauses, and of course
also the reflexivity clause, need to be kept. This gives precisely the transformation,
Brand used in his modification method to eliminate the transitivity of the equality
predicate [8].

The important question is now, whether this transformation is faithful. One can
show that the selected literals determine a sufficient set of ground instances of C' to
be tested in the faithfulness test.

In order to check the faithfulness condition, suppose R(a,b) A R(b,c) = R(a,c) is
a ground instance of C.

VYo (R(a,b)) ANYo(R(b,c)) = VY o(R(a, c))
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is
(R(a,b) ANVz R(x,a) = R(x,b))

A (R(b,c) ANVx R(z,b) = R(z,c))
= (R(a,c) AVz R(z,a) = R(x,c))

which is in fact a tautology. The transformation is independent of the structure of a, b
and c. Therefore the condition holds for all ground instances of C. Thus, YT ¢ is sound
and complete and no self resolvent of the transitivity clause needs to be considered
at all.

In general Y can be obtained by successively computing self-resolvents and choos-
ing selected literals until the faithfulness test succeeds. We have a prototypic PRO-
LOG implementation of this search process. The program was implemented by Jan
Smaus and can find many of the finitely representable transformations.

2.1.1 Transforming the Modus Ponens Clause

In the context of investigating logics, it is interesting to see whether clause K-
transformations can improve the performance of automated theorem provers for Hilbert
systems. Unfortunately, a faithful transformer for Modus Ponens consists of all self
resolvents between the first and the third literal.

St = {Th(i(z,y)) ANTh(zx) = Th(y),
Th(i(z,i(z1,22))) NTh(x) NTh(z1) = Th(z),

Th§ i(x,i(z21,0( . 2))) ATh(z) ATh(z1) A ... ATh(zi—1) = Th(z),

The first literal T'h(i(x,i(z1,4(...2;))) is the selected literal in the clause i. Trans-
forming a clause like (2.3) now means adding all resolvents between (2.3) and the
first literal of the clauses in Sy, which yields infinitely many clauses. Fortunately,
with some well known predicate logic tricks one can find a finite encoding® of these
infinitely many clauses [25]:

Th(i(i(i(z,y), 2),i(i(z, x),i(u,2))))  g2(2) = g3(2)
Th(ii(z,y), 2) = 0 (2, 2) a5 (i ) A Th(z) = 4(y)
q1(x,z) = Th(i(i(z,z),i(u, x))) qa(z) = g3 (x)

q1(z,2) NTh(i(z,x)) = ¢2(x) qs(z) = Th(x)

g2(x) = Th(x)

The auxiliary predicates g; have been introduced for abbreviating repeatetly occur-
ring terms. The infinitely many clauses are finitely encoded with a cycle involving the
predicates ¢3, g4 and T'h. This way the cycle represented by Modus Ponens reappears,
but, as the experiments show, it is less dangerous. I proved from the transformed
axioms some of the challenging problems discussed in the Automated Reasoning lit-
erature. The following results [25] were obtained with the theorem prover Otter 3.0.

TA small Prolog program that performs this transformation is available as a gzipped tar file by anonymous ftp

from ftp.mpi-sb.mpg.de, file /pub/guide/staff/ohlbach/modus-ponens.tar.gz.
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theorem original | transformed | improvement
1| Th(i(z,x)) 1.91 0.11 17.3
2 | Th(i(z,i(y,x))) 1.94 0.13 14.9
3| Th(i(i(i(z,y),x),z)) 4.77 0.52 9.2
4 | Th(i(i(z,y),i(i(y, 2),i(x,2)))) | 2520.77 49.51 50.9
5| Th(i(z,i(i(x,y),y))) 35.07 13.75 2.5

The numbers in the third and fourth column give the total CPU time in seconds
that Otter needed to prove the given theorem (on a Solburn machine with Super
Sparc processors), first from the original two axioms, and then from the transformed
axioms. For other examples of Hilbert systems we observed mixed results. There
are examples where a proof was found only in the transformed system and there are
examples where the transformed system behaves much worse than the original system.
This means this transformation is a heuristic which may help or which may not.

3 Semantics for Hilbert Systems

The specification of a logic as a Hilbert system is quite intuitive, but for many pur-
poses this presentation is not adequate. One reason for developing an alternative
to Hilbert systems is to improve the efficiency of the calculus. Another reason is to
understand the logic better by bringing properties to the surface which are sometimes
very deeply hidden. One alternative way for describing a logic is by mapping the syn-
tactic constructs to a (hopefully) simple and well understood mathematical structure.
Typical examples for this semantical description of a logic are Tarski’s set theoretic
semantics for predicate logic or Kripke’s possible worlds semantics for modal logic
(17, 18].

For example consider the different versions of the semantics for modal logic. Com-
mon to all of them is the possible worlds framework as basic semantic structure.
Each possible world determines the interpretation of the propositional variables. The
classical connectives are interpreted in the usual way. The interpretation of formulae
with non-classical operators is defined in terms of relations or functions connecting
the worlds. The weakest semantics for modal logic is the (weak) neighbourhood se-
mantics (also called minimal model semantics [10]). Each world has sets of worlds as
‘neighbourhoods’. A formula Op is true in a world w iff the truth set of p, i.e. the
set of worlds where p is true, is among w’s neighbourhoods. This semantics satisfies
the ME rule, namely + p < ¢ implies - Op < Og¢, but no stronger axioms or rules.
In a stronger version of neighbourhood semantics, O p is true in a world w iff one
of w’s neighbourhoods is a subset of p’s truth set. Strong neighbourhood semantics
satisfies a monotonicity property: F p=- ¢ implies F Op= O¢. The next stage in
strengthening the semantics is the well known Kripke semantics determined by a bi-
nary accessibility relation. But this is not the end of the story. For example, modal
logic S5 has a semantics in terms of an accessibility relation with the extra condition
that the accessibility condition is an equivalence relation. This condition guarantees
that the S5 axioms hold. An alternative semantics for S5 has the truth condition
for the O-operator: dp is true in a world iff p is true everywhere. In this semantics
without accessibility relation, all S5 axioms are tautologies.

Each version in the hierarchy of the semantics consists of two parts. The basic se-
mantics contains just the definition of the primitive notions, neighbourhood relations
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or accessibility relations for example, and the satisfiability relation. The possible
worlds together with the relations and functions operating on them are usually called
frames.

The second part of the full specification of the semantics restricts the class of
semantic structures by imposing constraints on the frames (so called frame properties)
and sometimes by restricting the assignment of truth values to the propositional
variables. Modal logic T, for example is characterized by restricting the class of
frames to those with reflexive accessibility relations. Intuitionistic logic as another
example has a restriction on the assignment of propositional variables: if p is true in
a world w then it remains true in all words accessible from w.

Each part of the semantics validates a certain part of the Hilbert axioms. The
basic semantics of normal modal logic with binary accessibility relation for example
validates the K-axiom F O(p = q) = (Op= Oq) and the Necessitation rule: from
F p infer F Op. The reflexivity condition on the accessibility relation validates the
axiom - Op = p.

A semantics Sy is stronger than a semantics Sy if the basic part of S; validates
more axioms than the basic part of Sy. A semantics is optimal for a Hilbert system
if all axioms are validated in the basic part and no extra conditions are needed.

Since finding an appropriate semantics for a given Hilbert system is essential for
understanding the logic and finding better calculi, the question is, can we give some
computer support for solving this usually quite hard problem? Here is a first idea for
supporting the search for the second part of the semantics, the frame properties. Let
us consider as an example again a normal modal logic with standard Kripke semantics
and the axiom T: F Op = p. This axiom is taken to be true for all formulae p in all
worlds w, i.e.

Vp Yw w |=Op = p. (3.1)

Taking the semantic definitions for =

wEp=qiffwuEp=>wEq (3.2)
and for O

wE=Op iff Yo R(w,v) = v Ep (3.3)

as rewrite rules for (3.1) yields
VpVw (Vo R(w,v)=>vEp =>wlEp (3.4)

If it was possible to interpret the quantifier Vp which quantifies over all formulae as
a quantifier over all subsets of the possible worlds and to write p(v) instead of v = p
then (3.4) becomes the second order formula

Vp Yw (Vo R(w,v) = p(v)) = p(w). (3.5)

This can be proved to be equivalent to Yw R(w,w). And in fact reflexivity is the
frame property corresponding to the T-axiom. (3.5) is the second-order translation
SO of the T-axiom (cf. [31]).

In general, the way the second—order translation of a Hilbert axiom F ¢ is defined
varies for different logics. First of all it depends on the truth condition in the given
logic. In modal logic as well as in many other logics, a formula is considered a



116 Computer Support for the Development and Investigation of Logics

theorem if it is true in all worlds. In this case - ¢ is first turned into a formula
Vw w [ . If theoremhood means truth in particular worlds or even only in a single
world then this first step has to be changed in an appropriate way. In the second step
the semantic definitions of the connectives are used exhaustively as rewrite rules for
literals of the form v |= 4. Finally in the third step, the formula variables are turned
into universally quantified predicate variables. Literals v |= p are turned into literals
p(v). In logics with assignment restrictions, like for example in intuitionistic logic,
the assignment restriction has to be added as an antecedent in an implication. That
means, for example, instead of Vp ¢ we get a formula of the kind Vp restr(p) = ¢
where restr(p) captures the assignment restriction. In intuitionistic logic this is the
formula Vu, v p(u) A u < v = p(v) where < is the accessibility relation in intuitionistic
frames.

The second order translation of Hilbert axioms specifies a class of frames or a class
of models. It is sound if all formulae provable from the Hilbert axioms are true in
this class of frames or models respectively, and it is complete (to be be more precise,
weakly complete) if all formulae which are true in this class are provable from the
Hilbert axioms and rules.

Now we have two problems: (i) when is it possible to turn a quantification over
formulae into a quantification over predicate variables, (which is the same as a quan-
tification over subsets of the set of worlds), and (ii) given a second—order formula like
(3.5), can we mechanically compute the corresponding first—order equivalent, if there
is some?

3.1 Basic Semantics and Representation Theorems

Let us first concentrate on problem (i) which is in fact a very deep mathematical
problem. This problem may become clearer if we formulate it algebraically. It is
well known that by the Lindenbaum—Tarski construction in many cases a logic corre-
sponds to a certain algebra [7]. This algebra is usually given by a set of congruence
classes of equivalent formulae. For extensions of propositional logic, for example, with
operators that are invariant under equivalences, we can define a congruence relation
~ on formulae by

p~qgif Fp=>qgand Fqg=p (3.6)

and factorize the set of all formulae with ~. An n-place logical connective f' is asso-

ciated with a function f on the congruence classes [p], defined by f([p1],...,[pn]) &

[f'(p1,...,pn)]- The classical logical connectives are associated with functions (oper-
ators) in Boolean algebras: A is associated to M (meet), V is associated to U (join)
= is associated to ' (inverse). Now we have an algebra in the usual sense, except that
its elements are congruence classes of formulae. In the case of normal modal logics,
the Lindendbaum—Tarksi algebra is a Boolean algebra with one operator, which is
traditionally associated with the & operator.

Since in most logics there is explicitly or implicitly some kind of reflexive transitive
binary consequence relation F' between formulae, the corresponding algebras are usu-
ally lattices where the consequence relation corresponds to the < relation between the
lattice elements. There is a one-to-one correspondence between the Hilbert axioms of
the logic and equations in the Lindenbaum-Tarski algebra. As an example, consider
the T-axiom F Op = p. An equivalent formulation with the & operator is - p = Op.

3
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Since = is classical implication, we get a corresponding formulation in the lattice
language: p < f(p) where f corresponds to ¢. Equivalent to this is the equation
Vp (pnf(p)) = p. In the sequel we assume that instead of Hilbert axioms, we have a
set ¥ of equations specifying the class of algebras corresponding to the given logic.

One of the fundamental achievements in lattice theory is the discovery of set rep-
resentations, i.e. isomorphisms between elements of the lattice and certain subsets
of some basic set. For example, in the case of Boolean algebras (without operators)
there is the famous Stone isomorphism [29] between an element 2 of the algebra A
and the set of ultrafilters? in A containing x. Moreover, this representation maps the
Boolean algebra function M (meet) to N, U (join) to U, ' (inverse) to the complement
and < to the subset relation on sets.

Notice that if the Boolean algebra is in fact the Lindenbaum Tarski algebra of some
logic, then its ultrafilters correspond to the maximally consistent sets of formulae used
in the canonical model constructions and these in turn are the worlds in the canonical
frame. Furthermore, there is the straightforward correspondence between the logical
connectives (e.g. A ), the functions in the algebra (e.g. M) and the operations on sets
(e.g. N).

The general setting is now: We are given a lattice A (without extra functions), and
we are given an isomorphism ¢ that maps an element x of the lattice to some set £(x)
and the basic lattice functions g to functions £(g) operating on the sets in {(A). (From
distributive lattices upward in the hierarchy of lattics, the basic lattice functions are
mapped to the usual set operations N, U, complement and C. Without distributivity
of meet and join, the join U cannot be mapped to U.) Then we add some extra
operations, for example to a Boolean algebra we may add a function f corresponding
to the modal & operator, and we know that some set ¥ of equations hold for f. f is
defined for all elements of A and therefore, by the isomorphism, f¢ * £(f) is defined
for all representable sets {(x). The definition of f¢ for representable sets is simply
fe(€(z)) E(f(x)). The main question is now, can we extend fe to some function fEJr
that is defined for all subsets X in £(A), and not only for those which are ¢ images
of some z in A? The function fg' must in some sense interpolate f; for the non-

representable sets. To be useful, this extension fg' must satisfy two conditions (a) -fE+
must agree with f¢ on the representable sets, i.e. fg'(g(r)) = fe(&(x)) for all z in A
(soundness), and (b) the equations in ¥ which hold for f must hold for fEJr as well

(completeness)3.

Jénsson and Tarski have investigated this problem for Boolean algebras with op-
erators [15]. It turns out that under certain conditions a definition for fg' can be
found which at least satisfies condition (a) and is therefore sound. If f is one-place
(the extension to n—place functions is straightforward), normal, i.e. f(0) = 0, and

2A filter F in a lattice A is a subset of A which is upwards closed, i.e. if z € F and z < y then y € F, and
closed under meet, i.e. zMy € F iff z € F and y € F. An ultrafilter is a maximal filter. In the case of Boolean
algebras an ultrafilter is a filter which is closed under join, i.e. zUy € F iff ¢ € F or y € F, and F either contains
z or the the inverse =’ for each = € A.

3This notion of completeness corresponds to the notion of weak completeness on the logical side. It means that if
a formula ¢ holds in all frames of the class characterized by 3 then ¢ is provable in the Hilbert system corresponding

to 3.
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additive, that means f(xUy) = f(x)Lf(y) holds*, then

refH(X)iff yy e XAVZe y € Ze = x € fe(Ze) (3.7)

turns out to be a suitable definition for f;' Here Z; means that Z; is a representable
set, i.e. Zg = &(z) for some z in A, such that f¢(Z;) is defined.

The second part of the conjunction in (3.7) depends only on x and y. If we abbre-
viate this conjunct by R(z,y) we can write (3.7) as

xef;'(X) iff y y € X A R(z,v). (3.8)

This is in fact the algebraic counterpart of the semantics definition for the modal
<& operator and R is the accessibility relation.

& maps elements x of the algebra A to the set of ultrafilters containing x. This
means for an ultrafilter y and an element x we have

y € &(x) iff x € y.

This allows us to reformulate the definition of R and to bring it into a more convenient

form:
R(z,y) & VZiy€Zg=uw€ fe(Z)

& Vzyel(z) =z el(f(z)
& Vzzey= f(z) €.

If f is again the modal O—operator, this is the definition of R in the usual canonical
model construction, and this brings us back to the modal logic level.

We have not yet checked whether fg as defined in (3.7) satisfies the equations in
Y. If this can be guaranteed, we are licensed to assume that the algebra £(A) is
in fact the full power set algebra and a quantification over all the elements of A is
equivalent to a quantificiation over all subsets of the domain of {(A). This is just
what we wanted to achieve in order to solve Problem (i), replacing quantifiers over
formula variables with quantifiers over predicate variables.

The question when equations X holding for f continue to hold for fg' has been
investigated and various preservation theorems for certain classes of equations have
been proved [14]. For the case of modal algebras, i.e. Boolean algebras corresponding
to modal logics, the results of correspondence theory [31, 32, 6] and in particular
the Sahlqvist theorem [27] guarantee that ¥ holds for fEJr if the axioms in X have a
particular syntactic form.

In general there is no satisfactory solution so far. There is no unique way to get
a definition of fg' and there is no general result which characterizes precisely which
equations X are preserved. From a logical point of view this means there is no unique
way to get a basic semantics for a logic and there is no guarantee that given a basic
semantics, the second order translation of the Hilbert axioms specifies a class of
frames or models which is complete. The model class specified by the second order
translation may be too restricted. Formulae may be true in all models of this class,
but they may not be provable from the axioms.

4norma|ity and additivity of the function f correspond to the presence of the necessitation rule and the K-axiom
in the corresponding modal logic. Therefore Boolean algebras with operators correspond to normal modal logics in
the sense of Chellas [10].
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4 Computing Frame Properties by Quantifier Elimination

Often a class of logics (like the class of normal modal logics) has one basic semantics
and the different members of the class are determined by different frame properties.
As we have seen, we can obtain the corresponding frame property for a given Hilbert
axiom by translating the Hilbert axiom into a second—order formula and by then
trying to find an equivalent first order formula. This method guarantees at least
soundness. Completeness has to be checked separately.

In this section we consider the problem: given a formula 3P, ..., Py ® where ® is a
first—order formula and P; are the predicate variables occurring in ®, find a first—order
formula ®' such that (3P;,..., P, ®) < &'

Since VPy,..., P, ® < —3P;,..., Py =®, an algorithm that solves the problem for
existentially quantified predicate variables can also be applied to universally quantified
predicate variables, and vice versa.

To my knowledge, Wilhelm Ackermann was the first one who considered this prob-
lem [1, 2, 3]. He gave two procedures for eliminating existential quantifiers over
one—place predicate variables. Both eliminate only one quantifier at a time. The first
one requires to bring the formula into a form

3P Va (A(z) V P(z)) A A[P]

where A[P] is a formula containing only negative occurrences of P(x). The result
is then A[A], i.e. all occurrences of P(z) are replaced with A(z) in A. We have
problems if we try to apply this method to clauses with several occurrences of P.
These problems are overcome in Ackermann’s second method.

For Ackermann’s second method it is necessary to bring the formulae into a kind of
clause form. In his notation he writes clauses as disjunctions in the form Aj!:7/». A
is a formula free of P-literals, the subscripts y; are short for P(y;) and the superscripts

x; are short for = P(x;). A contraction operation

T P1yeeesPn T1,esn P1yeeesPn
Ay1,---7ym /\Bq17---7qz,z - Ayu---,ym VBqu---m

generates a new clause from the two old ones. Thus, contraction on z actually means
resolution between P(z) and —P(z). (The step to full resolution with unification is
small.) Ackermann showed that generating exhaustively all contractions and taking
the conjunction of the P—free clauses yields a formula which is equivalent to the
original second—order formula. His formulation of the second method is still quite
restrictive and not very practical. n place predicates have to be turned into one
place predicates and all arguments have to be abstracted to variables. Furthermore
there is no redundancy checking like subsumption or tautology elimination. But the
basic idea is strong enough to be turned into a powerful method.

This basic idea was still further abstracted by Kreisel and Krivine [16] who proved
a theorem showing that a set of formulae with a predicate variable P which contains
all consequences of the formulae with P is equivalent to its P free part. That means,
as soon as you have all consequences with P, you don’t need the P anymore. Since
in general these are infinitely many consequences, for practical purposes this theorem
has to be further refined.

Different variations and improvements of these basic ideas have been published in
recent years [27, 30, 28, 11]. The only algorithm which, to my knowledge, has been
implemented is the SCAN Algorithm.
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4.1 The SCAN Algorithm

In [13] we have developed an algorithm which can compute for second order formulae
of the kind 3Py,..., P ® where ® is a first order formula, an equivalent first order

formula — if there is one.
The definition of the algorithm is:

DEFINITION 4.1 (The SCAN Algorithm)
The input to SCAN is a formula a = 3P, ..., P, ® with predicate variables Py, ..., P,
and an arbitrary first order formula ®.
The output of SCAN — if it terminates — is a formula ¢, which is logically equivalent
to a, but does not contain the predicate variables Py, ..., P,.

SCAN performs the following three steps:

1. ® is transformed into clause form.

2. All C resolvents and C factors with the predicate variables Py, ..., P, are gener-
ated. C-resolution (‘C’ for constraint) is defined as follows:
P(s1,...,8,)VC P(...) and =P(...)
=P(t1,...,tn) VD are the resolution literals

C\/DVS] 7ét] V...VSn#tn
and the C—factorization rule is defined analogously:

P(Sl.,...,Sn)\/P(tl,...,tn)\/c
P(s1,...,8)VCVs1 #t1 V... Vsp £ tn.

Notice that only C-resolutions between different clauses are allowed (no self-
resolution). A C-resolution or C—factorization steps can be optimized by de-
structively resolving literals & # ¢ where the variable = does not occur in ¢ with
the reflexivity equation. C resolution and C factorization takes into account that
second order quantifiers may well impose conditions on the interpretations which
must be formulated in terms of equations and inequations.

As soon as all resolvents and factors between a particular literal and the rest of the
clause set have been generated (we say the literal is ‘resolved away’), the clause
containing this literal must be deleted (purity deletion). If all clauses are deleted
this way, « is a tautology.

All equivalence preserving simplifications may be applied freely. If an empty clause
is generated, this means that a is contradictory.

3. If the previous step terminates and there are still clauses left then reverse the
Skolemization.

The SCAN algorithm is correct in the sense that its result is logically equivalent to
the input formula. It cannot be complete, i.e. there may be second—order formulae
which have a first order equivalent, but SCAN cannot find it. An algorithm which
is complete in this sense cannot exists, otherwise the theory of arithmetic would be
enumerable.

There are two stages where SCAN can fail at computing a first—order equivalent
for a: (i) the resolution does not terminate and (ii) reversing Skolemization is not
possible. If (ii) occurs the output is a second order solution involving existentially
quantified Skolem functions.
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The SCAN Implementation

Our SCAN implementation is a modified version of the Otter theorem prover devel-
oped by Bill McCune at Argonne National Laboratory. The main modifications in
Otter itself are the integration of the constrained resolution rule, the purity deletion
operation, some further simplifications and the particular resolution strategy SCAN
requires. The unskolemization routine was implemented by Thorsten Engel as a sep-
arate module.

SCAN/Otter simply reads an input file containing the full specification of the quan-
tifier elimination problem and it generates an output file with the protocol of the run
and the final result. Besides this simple interface there are two further levels of
interfaces. The next level of interfaces is a Prolog interface for applying SCAN to dif-
ferent problems which can be reduced to quantifier elimination problems. Currently
two such applications are implemented. The first one uses SCAN to compute the
corresponding frame properties for Hilbert axioms as explained above.

The second interface realizes circumscription. Circumscription was proposed by
John McCarthy as a logically simple and clear means to doing default reasoning. In
his most general form the circumscription of a given formula ¢ with some predicates
P and some other predicates 7 is the second—order formula

circ(p|P, Z], P, Z) = ¢|P, Z) N\NP*, Z* (p|P*, Z*] N (P* = P)) = (P = P")

This formula minimizes the extension of the predicates P, possibly at the cost of the
predicates Z whose extension are allowed to vary freely. The SCAN circumscription
interface computes this formula and then invokes the basic SCAN algorithm to get
rid of the second order quantifiers. All this is accessible by WWW in
http://www.mpi-sb.mpg.de/pub/guide/staff/ohlbach/scan/scan.html.

We have prepared a html form that can be completed by the user to furnish the input
to our SCAN implementation. The program will be run on our machines at the MPI
and the output will automatically forwarded back to the user.

4.2 Quantifier Elimination with Fizpoint Formulae

The fact that the resolution operation in the SCAN algorithm may loop inspired
Nonnengart and Szalas [24] to develop a new approach that attempts to keep better
control of the loops. Their approach is an improved version of Ackermann’s first
method. It uses formulae with a least fixpoint operator uP.®[P] for representing
possibly infinite conjunctions and disjunctions:

uP.o[P=\/ ®°[L1] (4.1)
BEa

a is an ordinal number (the least such ordinal is called the closure ordinal for ®(P)).
L is falsity.

THEOREM 4.2 (Nonnengart & Szalas)
Assume that all occurrences of the predicate symbol P in the formula ¥ bind only
variables.
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e If & and ¥ have only negative occurrences of P then the closure ordinal for ®(P)°
is less than or equal to w, and

APVy (P(§) V ®[P]) AU[P] = Y[vP(y).®[P]] (4.2)

o If ® and ¥ have only positive occurrences P then the closure ordinal for ®(P) is
less than or equal to w, and

APYY(—P(y) V ®[P] A ¥[P]) = UvP(y).®[P]] (4.3)

where the above substitutions replace the variables bound by fixpoint operators by
the corresponding actual variables of the substituted predicate®. <

Here vP.®(P) is an abbreviation for =uP.=®(P). For eliminating P first we have
to transform the formula into a form as required by the theorem above, do the sub-
stitution with the fixpoint formula, and then expand the fixpoint formula using its
representation (4.1). After each expansion step one has to check whether the new
part of the formula follows form the old parts or not. This way redundant loops can
be detected and non-redundant loops can be approximated. In [24] many examples
of this transformation are presented.

5 Finding Hilbert Axioms from Semantic Properties

For axiomatizing vague notions whose mathematical structure is not clear, Hilbert
systems are a good starting point. If, however, the semantic structure is clear, for
example the time structure in a temporal logic, we might want to go the other direction
and, starting with a semantics, develop a Hilbert system. For example we might want
a linear and dense time structure and ask for the corresponding Hilbert axioms.

In order to solve this problem, one can again use PL1 as meta logic and encode
the relevant information as PL1 axioms. In particular the interpretation of the con-
nectives, which is known in this case, is written as PL1 equivalence with the binary
satisfiability relation = and the PL1 encoding of the semantic notions. For example
the interpretation of the modal logic O—operator becomes

Yw,p w = Op & Fv R(w,v) Av = p,

which is an ordinary PL1 formula (in infix notation). We can encode the semantics
of all relevant connectives this way, add the frame property we want to translate into
a Hilbert axiom, and ask an automated theorem prover to enumerate all constructive
proofs for a formula

dp Yw w = p.

That means we try to verify the existence of a tautology, a formula which is true in all
worlds. Usually there are lots of them. Therefore each answer of the theorem prover
must be checked by translating it back using the methods we have developed for
the ‘Hilbert system — semantics’ direction. Hopefully the theorem prover eventually
comes up with the right answer. In [9] we have shown the details of this procedure

5P denotes a negated occurrence of P in a formula.

6Observe that the assumption that P’s in ¥ bind only variables is necessary here.
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and tested it with a lot of examples from modal and relevance logic. In one of the
examples we tried to find the corresponding Hilbert axiom for transitive accessibility
relations in modal logic. In order to give an impression of the procedure, we list
the protocol of a typical proof run with the Otter theorem prover [21, 20]. s is the
satisfiability relation, d is the O—operator, i is the standard implication. | is Otters
symbol for disjunction, $ans is a special literal for extracting variable bindings. It
has no logical meaning.

%Interpretation of the connectives d and i.
(all z X (s(z,d(X)) <-> (exists x (R(z,x) & s(x,X))))).
(all z X (all Y (s(z,i(X,Y)) <-> (s(z,X) -> s(z,Y))))).
%Property to be translated.
(all x y z ((R(x,y) & R(y,2z)) -> R(x,z))).
%#Negated theorem.
-(exists f all z (s(z,f) & -$ans(f))).
end_of_list.
———————————————— PROOF ------=-==—-——--
1 -s(z,d(x1))|R(z,f1(z,x1)).
2 =-s(z,d(x1))Is(f1(z,x1),x1).
3 s(z,dx1))| -R(z,x)| -s(x,x1).
5  s(z,i(x2,x3))s(z,x2).
6 s(z,1(x2,x3))| -s(z,x3).
7 -R(x,y)| -R(y,z)IR(x,z).
8 -s(f2(x4),x4)|$ans(x4).

12 [8,5] $ans(i(x,y)) Is(f2(i(x,y)),x).

15 [12,2] $ans(i(d(x),y)) Is(£1(£2(i(d(x),y)),x),x).

16 [12,1] $ans(i(d(x),y)) IR(£2(i(d(x),y)),f1(£2(i(d(x),y)),x)).

19 [15,2] $ans(i(d(d(x)),y)) Is(£1(£1(£2(i(d(d(x)),y)),d(x)),x),x).
20 [15,1] $ans (i(d(d(x)),y)) |

R(£1(£2(i(d(d(x)),y)),d(x)),f1(£f1(£2(i(d(d(x)),y)),d(x)),x)).
115 [20,7,16] $ans(i(d(d(x)),y))|
R(£2(i(d(d(x)),y)),f1(£1(£2(i(d(d(x)),y)),d(x)),x)).
171 [115,3,19] $ans(i(d(d(x)),y))Is(£2(i(d(d(x)),y)),d(x)).
174 [171,6] $ans(i(d(d(x)),y)) Is(£2(i(d(d(x)),y)),i(z,d(x))).
175 [binary,174,8] $ans(i(d(d(x)),d(x))).
———————————— end of proof --—-—--—------

In the usual notation, this answer is ¢Ox = Oz, which is in fact the corresponding
Hilbert axiom.

6 Simplifying Semantics and Expressiveness of the Logic

The semantics of a logic is usually formulated in set—theoretic notation. This is one
of the most expressive mathematical languages we have. Therefore it is very easy to
formulate in this language conditions on the semantic structure of our logic which have
no counterpart on the syntactic (axiomatic) side. But even if we do not exploit the
full mathematical language and restrict ourselves to fragments of predicate logic, this
effect may happen. For example it is well known that properties like the irreflexivity
or antisymmetry of the accessibility relation in modal logic are not axiomatizable in
the corresponding Hilbert system. This means that the syntax of modal logic is so
restricted that one cannot distinguish irreflexive frames from arbitrary frames. Thus,
requiring irreflexivity has no effect at all on the theorems provable in modal logic. In
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other cases it may turn out that the syntactic side of a logic supports only weaker
versions of semantic properties as initially intended. It is of course very important to
know the expressiveness of the logic, because otherwise the effects of requirements to
the semantics are unpredictable.

This problem has also been investigated in correspondence theory for modal logic
and a number of results and techniques have been developed [6]. An alternative
technique for investigating the expressiveness of the logic £ is the following: We for-
mulate the semantics of £ in a suitable meta logic £;, usually predicate logic, we take
a translation 7: £ — £; which exhibits certain syntactic invariants on the translated
formulae, and use these invariants to investigate the effect of a given semantic con-
dition C on theorem proving search attempts for translated L—formulae. It may for
example turn out that C' can never contribute to a proof search, or that parts of C
are always redundant and do not contribute to proof search attempts. If the target
logic £; is PL1, all the relevant results about proof search strategies and redundancy
criteria can be used for this purpose. What predicate logic theorem provers usually
do in order to get rid of irrelevant parts of the search space, now becomes valuable
information about the expressiveness of L.

A technique recently developed by Andreas Nonnengart supports these kind of
investigations for modal logic. He has developed the so called semi functional trans-
lation [23] from modal logic to many-sorted predicate logic which produces clauses
where the accessibility relation literals occur only with negative sign. The translation
rules for the modal part for formulae in negation normal form are

(O, w) = Iv:AF 7(p,w:y)
m(Odp,w) = Yov R(w,v) = 7(p,v)

For example a formula O $c is translated into Vo R(w, v) = 3y:AF,, c(vry). Intuitively
one can understand the sort AF as a set of functions mapping worlds to R—accessible
worlds. The colon : is an infix function symbol which can be understood as application
function, a:y & y(a). It is not necessary to understand the details of this translation
technique here. The important fact we need is that the translated clauses contain only
negative accessibility relation literals. From the translation there is only one positive
clause per accessibility relation, namely Vz Vy:AF R(x,xz:v). It relates the sort AF
with the predicate R. If we do theorem proving by refutation with resolution, we
immediately see that there is no resolution partner at all for the irreflexivity clause
= R(z,z). This clause is redundant and cannot contribute to a proof. Thus, requiring
irreflexivity or not has no effect on the provability of modal theorems; it can not be
characterized in modal logic.

The semi—functional translation with the strong syntactic invariant that no positive
accessibility literals ever occur in translated modal formulae, turned out to be an
excellent basis for applying all kinds of redundancy criteria to eliminate or simplify
frame properties. Here we can exploit the results about resolution strategies with
deletion operations [5], and the technique is really easy to apply.

7 Summary

The development and investigation of application oriented logics comprises many as-
pects and problems. For a few of them some computer support is possible which frees
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the investigator from sometimes quite complex computations. We have considered
the problems of

e reasoning in Hilbert systems,
e finding corresponding frame properties for given Hilbert axioms, and vice versa
e finding corresponding axioms for semantic properties, and

e investigating the expressiveness of logics,

Using predicate logic as meta logic, we were able to map these problems to formula
manipulation problems in PL1. With automated theorem provers, a quantifier elimi-
nation algorithm, and the special technique of K-transformations we can find solutions
by semi—automatic procedures.

As an example for a complex task which definitely requires computer support, we
developed a translation of the logic of graded modalities into predicate logic [26]. The
logic of graded modalities has operators M,, which are interpreted as ‘in more than n
accessible worlds’ [33]. In contrast to the usual tableau systems for this logic, which
work only for small numbers, the translation allows for an inference system using some
kind of symbolic arithmetic instead of counting Skolem constants. We first translated
the logic of graded modalities into a normal multi modal logic and then further into
predicate logic. The axiomatization of the multi modal logic turned out to be quite
complex and only with the SCAN algorithm we were able to find its semantics. This
semantics was then used as a basis for an optimized translation into predicate logic.
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