
Computer Support for theDevelopment and Investigation ofLogicsHans J�urgen Ohlbach, Max-Planck-Institut f�ur Informatik,Im Stadtwald, D-66123 Saarbr�ucken, Germany.E-mail: ohlbach@mpi-sb.mpg.deAbstractThe development and investigation of application{oriented logics comprises many aspects and prob-lems. For a few of them some computer support is possible which frees the investigator from some-times quite complex computations.This paper gives an overview about some developments in this area. In particular, we considerthe correspondences between axiomatic and semantic speci�cations of a logic and the problem of�nding one from the other by means of automated theorem provers and quanti�er elimination algo-rithms. Other topics adressed in this paper are reasoning in Hilbert systems, the investigation of theexpressiveness of a logic and the axiomatizability of semantic conditions.For the technical details of the methods and the proofs I refer to the original papers.1 IntroductionUnfortunately there is not just the universal logic as the basis for every application oflogic. Of course, higher{order logic is expressive enough to emulate all other logics, butit has so many unpleasant features that it is useless for many practical applications.There is a tradeo� between expressiveness of a logic and the complexity of thereasoning algorithms for this logic. Therefore for obtaining an optimal result in aparticular application, one has to �nd a compromise between these two features.However, not every designer of an application program, which needs logic in someof its components, is a logician and can develop the optimal logic for his purposes,neither can he hire a trained logician to do this for him. In this situation we couldeither resign and live with non-optimal solutions, or we could try to give more or lessautomated support and guidance for developing new logics.Although this is a very ambitious goal, there is some evidence that it is in fact pos-sible, at least to a certain extent. MULTLOG [4] for example is a Prolog program thataccepts as input the truth tables of a �nitely many{valued logic, and produces as out-put a LaTeX document describing various calculi for this logic. The �rst MULTLOGgenerated paper has already been accepted at a conference.This paper is a survey of our advances in providing automated support for logicalinvestigations. Considered are:� reasoning in Hilbert systems,� �nding model-theoretic semantics for axiomatically speci�ed logics, and vice versa,� �nding axioms corresponding to a given semantics, and109J. of the IGPL, Vol. 4 No. 1, pp. 109{127 1996 c IGPL



110 Computer Support for the Development and Investigation of Logics� investigating the expressiveness of logics.In most cases we use �rst{order predicate logic (PL1) as meta{logic for encodingand manipulating the object logics. The intention is to map the problems from theobject logic level to the predicate logic level and to use the well established methodsand results for PL1. As long as this is possible, there is therefore no need to usemore expressive systems, higher order predicate logic, �{calculus or type theory forexample. On the other hand, since PL1 has no variable binding mechanism at theterm level, this means that we are restricted to the propositional versions of the objectlogic.In Section 2 it is explained how reasoning in Hilbert systems can be realized withautomated theorem provers and how the proof search can be improved by transform-ing the axioms in a certain way. In Section 4 we consider the correspondence problem,i.e. the problem of �nding corresponding frame properties for given Hilbert axioms.This problem is reduced to a quanti�er elimination problem. A particular quanti-�er elimination algorithm for predicate variables and its implementation is presented.The inverse problem of �nding Hilbert axioms for semantic properties is discussed insection 5. The correlation between an axiomatic presentation of a logic and a seman-tic speci�cation is not straightforward. Correspondence between Hilbert axioms andsemantic properties is only one aspect, and it does not always guarantee completenessof the semantics with respect to the axioms. We discuss these problems in an alge-braic context in Section 3. Finally in Section 6 a new approach for investigating theexpressiveness of a logic and simplifying its semantics is presented. In this approachthis problem is reduced to the redundancy problem of certain predicate logic axioms.In this paper we want to convey the main ideas and results leaving out the technicaldetails and proofs.2 Reasoning in Hilbert SystemsThe most abstract way a logic can be de�ned is by means of a Hilbert system. AHilbert system is a kind of grammar. It consists of axioms and rules. The axiomsare actually axiom schemas because all instances of the axioms are theorems. Therules specify how to derive new theorems from the initial theorems and the previouslyderived ones. For example the axiom` ((p! q) ! r) ! ((r ! p) ! (s! p)) (2.1)together with Modus Ponens: from ` p! q and ` p infer ` q (2.2)specify the implicational fragment of propositional logic [19, p. 295]. For encodingvague notions, like \knows", \believes" and \wants", a Hilbert-style axiomatizationis usually the preferred method because in Hilbert systems their properties can beexpressed in a very abstract and intuitive way.A Hilbert system is a forward reasoning calculus. Starting with the axioms as theinitial theorems, with the rules of the Hilbert system new theorems can be derived.Verifying that a given formula is in fact a theorem in the system amounts to enumer-ating all theorems until eventually the formula appears as one of the derived theorems.Computers can solve this problem with a well known technique.Using �rst{order predicate logic as meta logic, the Hilbert system can be encoded asa Horn theory. The logical connectives are encoded as function symbols and formulae



2. REASONING IN HILBERT SYSTEMS 111are encoded as terms. The propositional variables in Hilbert axioms are place holdersfor arbitrary formulae. Therefore they become universally quanti�ed variables in theencoded axiomatization. For example the system consisting of (2.1) and (2.2) can beencoded as the predicate logic clauses8p; q; r; s Th(i(i(i(p; q); r); i(i(r; p); i(s; p)))) (2.3)8p; q Th(i(p; q)) ^ Th(p)) Th(q) (2.4)`Th' is the only predicate needed. Th(p) means `p is a theorem'. `i' denotes the im-plication connective. A PL1 encoding of a Hilbert system together with a theorem tobe proved is now a suitable input for an automated theorem prover. And in fact, thesekinds of problems have been used for a long time as test problems in the automatedtheorem proving community [22].Hilbert systems as we �nd them in logic textbooks usually specify each aspect of thelogic explicitly. For example, if a binary connective is supposed to be commutative,there is usually an axiom expressing the commutativity explicitly. The theoremsproved from such systems in textbooks are in general so simple that for current daysautomated theorem provers there is absolutely no problem to prove them. However,if the Hilbert system is optimized by minimizing the number of axioms as in theabove case (2.1), the proof of quite simple theorems can already become extremelycomplicated. Proofs may require hundreds of rule applications, and �nding them mayneed hours of CPU time. The technique of clause K-transformations, presented below,can improve the behaviour of automated theorem provers for these more complexsystems.2.1 Clause K-TransformationsClauses like Modus Ponens (2.4) are self{resolving. This means there are resolventsbetween renamed copies of the clause. Such self{resolving clauses generate a very largesearch space in an automated theorem prover. Big search spaces can be controlledeither with strategies and heuristics for eliminating redundant parts and searchingthrough the remaining parts in a hopefully promising way, or by reformulating theproblem. Reformulating the problem in this case means changing the axiomatizationin such a way that the same theorems can still be proved, but hopefully in less time.For the Hilbert system examples we are, in particular, interested in changing or evendeleting the clause responsible for the big search space, the Modus Ponens clause. Tothis end we have been investigating the general problem: given a particular clause Cin a set � of clauses, is it possible to �nd a transformation �C(�) of � such that theclause C becomes superuous in � and can be deleted without changing the set ofprovable theorems? That means ' is provable from � if and only if �C(') is provablefrom �C(�). Let us call this a faithful transformation.A �rst idea for a transformation that makes C superuous comes from the followingconsideration. A clause C = A1 ^ : : : ^ An )B can be seen as a procedure that, giveninstances of the antecedent literals Ai as input, computes the appropriate instancesof B as output. Well, if the only thing, we were interested in, is in producing Bfrom the Ai, an alternative way to obtain this `output' would be to ensure that thetransformed `input' Vi �C(Ai) implies B, i.e. Vi �C(Ai))B is a tautology. If wetransform � such that instead, or in addition to Ai itself, �C(Ai) is available, we do



112 Computer Support for the Development and Investigation of Logicsnot need C anymore.Unfortunately it may be the case (and necessary) that the `output' B of the clauseC needs to be used as `input' for C again. This is typical for self{resolving clausesC where a resolvent B with C may be resolvable with the same clause C again.But after eliminating C, B will not be transformed. Thus, the `output' B is notavailable anymore as input. Therefore our �rst guess for a condition on �C has to bestrengthened: We must ensure that the transformed `input' implies the transformed`output' �C(B). That means Vi �C(Ai))�C(B) must be a tautology.On the technical level this condition must be re�ned because for non-ground clauseswhere variables may become instantiated we cannot just transform clauses by trans-forming their literals separately. Instead of this we must require that for all groundinstances C� of C: Vni=1 ~8�C(Ai�)) Wmj=1 ~8�C(Bj�)is a tautology. ~8�C(: : :) means that all variables introduced by �C are universallyquanti�ed.This is the main faithfulness criterion, �C must ful�ll. The other more technicalcriteria and the faithfulness proof can be found in [25]. The faithfulness criterionrequires a test for, in general, in�nitely many ground instances, and it does not yetsay, how to �nd �C . Fortunately it is possible to derive a procedure for �nding �Cand for testing the faithfulness criterion. The basic idea is: �C is represented bya set S�C of self{resolvents of C (including C itself) where for each self{resolventD a single literal LD is selected. �C then transforms a clause set � by adding theresolvents between the clauses E in � and the clauses D in S�C to �, but choosingonly LD as the resolution literal in D.As an example, consider the transitivity clause C = R(x; y) ^ R(y; z) ) R(x; z).We choose S�C = fCg. (It turns out that no self{resolvent at all is necessary inthis case.) As selected literal LC we may choose either of the two antecedent literals.Lets choose the second one LC = R(y; z). The transformation �C speci�ed herewithtransforms a clause set by adding for each clause containing a positive literal R(s; t)the resolvent with C where the second literal is the resolution literal. For example,�C(R(a; b)) = (R(a; b) ^ (8x R(x; a)) R(x; b))). It is important to notice that theliterals in the resolvents which originate from C itself are never again resolved withC. Therefore this is a terminating procedure.Notice that in the presence of the reexivity axiom R(x; x), the original literalR(a; b) can be derived from 8x R(x; a)) R(x; b) and the reexivity clause. Thereforethe original clauses in � can be deleted and only the transformed clauses, and of coursealso the reexivity clause, need to be kept. This gives precisely the transformation,Brand used in his modi�cation method to eliminate the transitivity of the equalitypredicate [8].The important question is now, whether this transformation is faithful. One canshow that the selected literals determine a su�cient set of ground instances of C tobe tested in the faithfulness test.In order to check the faithfulness condition, suppose R(a; b) ^ R(b; c)) R(a; c) isa ground instance of C.~8�C(R(a; b)) ^ ~8�C(R(b; c))) ~8�C(R(a; c))



2. REASONING IN HILBERT SYSTEMS 113is (R(a; b) ^ 8x R(x; a)) R(x; b))^ (R(b; c) ^ 8x R(x; b)) R(x; c))) (R(a; c) ^ 8x R(x; a))R(x; c))which is in fact a tautology. The transformation is independent of the structure of a; band c. Therefore the condition holds for all ground instances of C. Thus, �C is soundand complete and no self{resolvent of the transitivity clause needs to be consideredat all.In general �C can be obtained by successively computing self{resolvents and choos-ing selected literals until the faithfulness test succeeds. We have a prototypic PRO-LOG implementation of this search process. The program was implemented by JanSmaus and can �nd many of the �nitely representable transformations.2.1.1 Transforming the Modus Ponens ClauseIn the context of investigating logics, it is interesting to see whether clause K-transformations can improve the performance of automated theorem provers for Hilbertsystems. Unfortunately, a faithful transformer for Modus Ponens consists of all self{resolvents between the �rst and the third literal.S� = fTh(i(x; y)) ^ Th(x)) Th(y),Th(i(x; i(z1; z2))) ^ Th(x) ^ Th(z1)) Th(z2),...,Th(i(x; i(z1; i(: : : zi))) ^ Th(x) ^ Th(z1) ^ : : : ^ Th(zi�1)) Th(zi),... gThe �rst literal Th(i(x; i(z1; i(: : : zi))) is the selected literal in the clause i. Trans-forming a clause like (2.3) now means adding all resolvents between (2.3) and the�rst literal of the clauses in S�, which yields in�nitely many clauses. Fortunately,with some well known predicate logic tricks one can �nd a �nite encoding1 of thesein�nitely many clauses [25]:Th(i(i(i(x; y); z); i(i(z; x); i(u; x)))) q2(x) ) q3(x)Th(i(i(x; y); z)) q1(x; z) q3(i(x; y)) ^ Th(x)) q4(y)q1(x; z)) Th(i(i(z; x); i(u; x))) q4(x) ) q3(x)q1(x; z) ^ Th(i(z; x))) q2(x) q4(x) ) Th(x)q2(x)) Th(x)The auxiliary predicates qi have been introduced for abbreviating repeatetly occur-ring terms. The in�nitely many clauses are �nitely encoded with a cycle involving thepredicates q3, q4 and Th. This way the cycle represented by Modus Ponens reappears,but, as the experiments show, it is less dangerous. I proved from the transformedaxioms some of the challenging problems discussed in the Automated Reasoning lit-erature. The following results [25] were obtained with the theorem prover Otter 3.0.1A small Prolog program that performs this transformation is available as a gzipped tar �le by anonymous ftpfrom ftp.mpi-sb.mpg.de, �le /pub/guide/sta�/ohlbach/modus-ponens.tar.gz.



114 Computer Support for the Development and Investigation of Logicstheorem original transformed improvement1 Th(i(x; x)) 1.91 0.11 17.32 Th(i(x; i(y; x))) 1.94 0.13 14.93 Th(i(i(i(x; y); x); x)) 4.77 0.52 9.24 Th(i(i(x; y); i(i(y; z); i(x; z)))) 2520.77 49.51 50.95 Th(i(x; i(i(x; y); y))) 35.07 13.75 2.5The numbers in the third and fourth column give the total CPU time in secondsthat Otter needed to prove the given theorem (on a Solburn machine with SuperSparc processors), �rst from the original two axioms, and then from the transformedaxioms. For other examples of Hilbert systems we observed mixed results. Thereare examples where a proof was found only in the transformed system and there areexamples where the transformed system behaves much worse than the original system.This means this transformation is a heuristic which may help or which may not.3 Semantics for Hilbert SystemsThe speci�cation of a logic as a Hilbert system is quite intuitive, but for many pur-poses this presentation is not adequate. One reason for developing an alternativeto Hilbert systems is to improve the e�ciency of the calculus. Another reason is tounderstand the logic better by bringing properties to the surface which are sometimesvery deeply hidden. One alternative way for describing a logic is by mapping the syn-tactic constructs to a (hopefully) simple and well understood mathematical structure.Typical examples for this semantical description of a logic are Tarski's set theoreticsemantics for predicate logic or Kripke's possible worlds semantics for modal logic[17, 18].For example consider the di�erent versions of the semantics for modal logic. Com-mon to all of them is the possible worlds framework as basic semantic structure.Each possible world determines the interpretation of the propositional variables. Theclassical connectives are interpreted in the usual way. The interpretation of formulaewith non-classical operators is de�ned in terms of relations or functions connectingthe worlds. The weakest semantics for modal logic is the (weak) neighbourhood se-mantics (also called minimal model semantics [10]). Each world has sets of worlds as`neighbourhoods'. A formula � p is true in a world w i� the truth set of p, i.e. theset of worlds where p is true, is among w's neighbourhoods. This semantics satis�esthe ME rule, namely ` p, q implies ` � p, � q, but no stronger axioms or rules.In a stronger version of neighbourhood semantics, � p is true in a world w i� oneof w's neighbourhoods is a subset of p's truth set. Strong neighbourhood semanticssatis�es a monotonicity property: ` p) q implies ` � p) � q. The next stage instrengthening the semantics is the well known Kripke semantics determined by a bi-nary accessibility relation. But this is not the end of the story. For example, modallogic S5 has a semantics in terms of an accessibility relation with the extra conditionthat the accessibility condition is an equivalence relation. This condition guaranteesthat the S5 axioms hold. An alternative semantics for S5 has the truth conditionfor the �{operator: � p is true in a world i� p is true everywhere. In this semanticswithout accessibility relation, all S5 axioms are tautologies.Each version in the hierarchy of the semantics consists of two parts. The basic se-mantics contains just the de�nition of the primitive notions, neighbourhood relations



3. SEMANTICS FOR HILBERT SYSTEMS 115or accessibility relations for example, and the satis�ability relation. The possibleworlds together with the relations and functions operating on them are usually calledframes.The second part of the full speci�cation of the semantics restricts the class ofsemantic structures by imposing constraints on the frames (so called frame properties)and sometimes by restricting the assignment of truth values to the propositionalvariables. Modal logic T, for example is characterized by restricting the class offrames to those with reexive accessibility relations. Intuitionistic logic as anotherexample has a restriction on the assignment of propositional variables: if p is true ina world w then it remains true in all words accessible from w.Each part of the semantics validates a certain part of the Hilbert axioms. Thebasic semantics of normal modal logic with binary accessibility relation for examplevalidates the K-axiom ` �(p) q)) (� p) � q) and the Necessitation rule: from` p infer ` � p. The reexivity condition on the accessibility relation validates theaxiom ` � p) p.A semantics S1 is stronger than a semantics S2 if the basic part of S1 validatesmore axioms than the basic part of S2. A semantics is optimal for a Hilbert systemif all axioms are validated in the basic part and no extra conditions are needed.Since �nding an appropriate semantics for a given Hilbert system is essential forunderstanding the logic and �nding better calculi, the question is, can we give somecomputer support for solving this usually quite hard problem? Here is a �rst idea forsupporting the search for the second part of the semantics, the frame properties. Letus consider as an example again a normal modal logic with standard Kripke semanticsand the axiom T: ` � p) p. This axiom is taken to be true for all formulae p in allworlds w, i.e. 8p 8w w j= � p) p: (3.1)Taking the semantic de�nitions for )w j= p) q i� w j= p) w j= q (3.2)and for � w j= � p i� 8v R(w; v) ) v j= p (3.3)as rewrite rules for (3.1) yields8p 8w (8v R(w; v)) v j= p)) w j= p (3.4)If it was possible to interpret the quanti�er 8p which quanti�es over all formulae asa quanti�er over all subsets of the possible worlds and to write p(v) instead of v j= pthen (3.4) becomes the second{order formula8p 8w (8v R(w; v)) p(v))) p(w): (3.5)This can be proved to be equivalent to 8w R(w;w). And in fact reexivity is theframe property corresponding to the T-axiom. (3.5) is the second{order translationSO of the T-axiom (cf. [31]).In general, the way the second{order translation of a Hilbert axiom ` ' is de�nedvaries for di�erent logics. First of all it depends on the truth condition in the givenlogic. In modal logic as well as in many other logics, a formula is considered a



116 Computer Support for the Development and Investigation of Logicstheorem if it is true in all worlds. In this case ` ' is �rst turned into a formula8w w j= '. If theoremhood means truth in particular worlds or even only in a singleworld then this �rst step has to be changed in an appropriate way. In the second stepthe semantic de�nitions of the connectives are used exhaustively as rewrite rules forliterals of the form v j=  . Finally in the third step, the formula variables are turnedinto universally quanti�ed predicate variables. Literals v j= p are turned into literalsp(v). In logics with assignment restrictions, like for example in intuitionistic logic,the assignment restriction has to be added as an antecedent in an implication. Thatmeans, for example, instead of 8p ' we get a formula of the kind 8p restr(p) ) 'where restr(p) captures the assignment restriction. In intuitionistic logic this is theformula 8u; v p(u) ^ u � v) p(v) where � is the accessibility relation in intuitionisticframes.The second{order translation of Hilbert axioms speci�es a class of frames or a classof models. It is sound if all formulae provable from the Hilbert axioms are true inthis class of frames or models respectively, and it is complete (to be be more precise,weakly complete) if all formulae which are true in this class are provable from theHilbert axioms and rules.Now we have two problems: (i) when is it possible to turn a quanti�cation overformulae into a quanti�cation over predicate variables, (which is the same as a quan-ti�cation over subsets of the set of worlds), and (ii) given a second{order formula like(3.5), can we mechanically compute the corresponding �rst{order equivalent, if thereis some?3.1 Basic Semantics and Representation TheoremsLet us �rst concentrate on problem (i) which is in fact a very deep mathematicalproblem. This problem may become clearer if we formulate it algebraically. It iswell known that by the Lindenbaum{Tarski construction in many cases a logic corre-sponds to a certain algebra [7]. This algebra is usually given by a set of congruenceclasses of equivalent formulae. For extensions of propositional logic, for example, withoperators that are invariant under equivalences, we can de�ne a congruence relation� on formulae by p � q i� ` p) q and ` q ) p (3.6)and factorize the set of all formulae with �. An n{place logical connective f 0 is asso-ciated with a function f on the congruence classes [p], de�ned by f([p1]; : : : ; [pn]) =def[f 0(p1; : : : ; pn)]. The classical logical connectives are associated with functions (oper-ators) in Boolean algebras: ^ is associated to u (meet), _ is associated to t (join),: is associated to 0 (inverse). Now we have an algebra in the usual sense, except thatits elements are congruence classes of formulae. In the case of normal modal logics,the Lindendbaum{Tarksi algebra is a Boolean algebra with one operator, which istraditionally associated with the 3{operator.Since in most logics there is explicitly or implicitly some kind of reexive transitivebinary consequence relation `0 between formulae, the corresponding algebras are usu-ally lattices where the consequence relation corresponds to the � relation between thelattice elements. There is a one-to-one correspondence between the Hilbert axioms ofthe logic and equations in the Lindenbaum-Tarski algebra. As an example, considerthe T-axiom ` � p) p. An equivalent formulation with the 3{operator is ` p)3p.



3. SEMANTICS FOR HILBERT SYSTEMS 117Since ) is classical implication, we get a corresponding formulation in the latticelanguage: p � f(p) where f corresponds to 3. Equivalent to this is the equation8p (puf(p)) = p. In the sequel we assume that instead of Hilbert axioms, we have aset � of equations specifying the class of algebras corresponding to the given logic.One of the fundamental achievements in lattice theory is the discovery of set rep-resentations, i.e. isomorphisms between elements of the lattice and certain subsetsof some basic set. For example, in the case of Boolean algebras (without operators)there is the famous Stone{isomorphism [29] between an element x of the algebra Aand the set of ultra�lters2 in A containing x. Moreover, this representation maps theBoolean algebra function u (meet) to \, t (join) to [, 0 (inverse) to the complementand � to the subset relation on sets.Notice that if the Boolean algebra is in fact the Lindenbaum{Tarski algebra of somelogic, then its ultra�lters correspond to the maximally consistent sets of formulae usedin the canonical model constructions and these in turn are the worlds in the canonicalframe. Furthermore, there is the straightforward correspondence between the logicalconnectives (e.g. ^ ), the functions in the algebra (e.g. u) and the operations on sets(e.g. \).The general setting is now: We are given a lattice A (without extra functions), andwe are given an isomorphism � that maps an element x of the lattice to some set �(x)and the basic lattice functions g to functions �(g) operating on the sets in �(A). (Fromdistributive lattices upward in the hierarchy of lattics, the basic lattice functions aremapped to the usual set operations \, [, complement and �. Without distributivityof meet and join, the join t cannot be mapped to [.) Then we add some extraoperations, for example to a Boolean algebra we may add a function f correspondingto the modal 3{operator, and we know that some set � of equations hold for f . f isde�ned for all elements of A and therefore, by the isomorphism, f� =def �(f) is de�nedfor all representable sets �(x). The de�nition of f� for representable sets is simplyf�(�(x)) =def �(f(x)). The main question is now, can we extend f� to some function f+�that is de�ned for all subsets X in �(A), and not only for those which are �{imagesof some x in A? The function f+� must in some sense interpolate f� for the non-representable sets. To be useful, this extension f+� must satisfy two conditions (a) f+�must agree with f� on the representable sets, i.e. f+� (�(x)) = f�(�(x)) for all x in A(soundness), and (b) the equations in � which hold for f must hold for f+� as well(completeness)3.J�onsson and Tarski have investigated this problem for Boolean algebras with op-erators [15]. It turns out that under certain conditions a de�nition for f+� can befound which at least satis�es condition (a) and is therefore sound. If f is one-place(the extension to n{place functions is straightforward), normal, i.e. f(0) = 0, and2A �lter F in a lattice A is a subset of A which is upwards closed, i.e. if x 2 F and x � y then y 2 F , andclosed under meet, i.e. xuy 2 F i� x 2 F and y 2 F . An ultra�lter is a maximal �lter. In the case of Booleanalgebras an ultra�lter is a �lter which is closed under join, i.e. xty 2 F i� x 2 F or y 2 F , and F either containsx or the the inverse x0 for each x 2 A.3This notion of completeness corresponds to the notion of weak completeness on the logical side. It means that ifa formula ' holds in all frames of the class characterized by � then ' is provable in the Hilbert system correspondingto �.



118 Computer Support for the Development and Investigation of Logicsadditive, that means f(xty) = f(x)tf(y) holds4, thenx 2 f+� (X) i� 9y y 2 X ^ 8Z� y 2 Z� ) x 2 f�(Z�) (3.7)turns out to be a suitable de�nition for f+� . Here Z� means that Z� is a representableset, i.e. Z� = �(z) for some z in A, such that f�(Z�) is de�ned.The second part of the conjunction in (3.7) depends only on x and y. If we abbre-viate this conjunct by R(x; y) we can write (3.7) asx 2 f+� (X) i� 9y y 2 X ^ R(x; y): (3.8)This is in fact the algebraic counterpart of the semantics de�nition for the modal3{operator and R is the accessibility relation.� maps elements x of the algebra A to the set of ultra�lters containing x. Thismeans for an ultra�lter y and an element x we havey 2 �(x) i� x 2 y:This allows us to reformulate the de�nition of R and to bring it into a more convenientform: R(x; y) , 8Z� y 2 Z� ) x 2 f�(Z�), 8z y 2 �(z)) x 2 �(f(z)), 8z z 2 y) f(z) 2 x:If f is again the modal 3{operator, this is the de�nition of R in the usual canonicalmodel construction, and this brings us back to the modal logic level.We have not yet checked whether f+� as de�ned in (3.7) satis�es the equations in�. If this can be guaranteed, we are licensed to assume that the algebra �(A) isin fact the full power set algebra and a quanti�cation over all the elements of A isequivalent to a quanti�ciation over all subsets of the domain of �(A). This is justwhat we wanted to achieve in order to solve Problem (i), replacing quanti�ers overformula variables with quanti�ers over predicate variables.The question when equations � holding for f continue to hold for f+� has beeninvestigated and various preservation theorems for certain classes of equations havebeen proved [14]. For the case of modal algebras, i.e. Boolean algebras correspondingto modal logics, the results of correspondence theory [31, 32, 6] and in particularthe Sahlqvist theorem [27] guarantee that � holds for f+� if the axioms in � have aparticular syntactic form.In general there is no satisfactory solution so far. There is no unique way to geta de�nition of f+� and there is no general result which characterizes precisely whichequations � are preserved. From a logical point of view this means there is no uniqueway to get a basic semantics for a logic and there is no guarantee that given a basicsemantics, the second{order translation of the Hilbert axioms speci�es a class offrames or models which is complete. The model class speci�ed by the second{ordertranslation may be too restricted. Formulae may be true in all models of this class,but they may not be provable from the axioms.4normality and additivity of the function f correspond to the presence of the necessitation rule and the K-axiomin the corresponding modal logic. Therefore Boolean algebras with operators correspond to normal modal logics inthe sense of Chellas [10].



4. COMPUTING FRAME PROPERTIES BY QUANTIFIER ELIMINATION 1194 Computing Frame Properties by Quanti�er EliminationOften a class of logics (like the class of normal modal logics) has one basic semanticsand the di�erent members of the class are determined by di�erent frame properties.As we have seen, we can obtain the corresponding frame property for a given Hilbertaxiom by translating the Hilbert axiom into a second{order formula and by thentrying to �nd an equivalent �rst{order formula. This method guarantees at leastsoundness. Completeness has to be checked separately.In this section we consider the problem: given a formula 9P1; : : : ; Pk � where � is a�rst{order formula and Pi are the predicate variables occurring in �, �nd a �rst{orderformula �0 such that (9P1; : : : ; Pk �) ,�0.Since 8P1; : : : ; Pk �,:9P1; : : : ; Pk :�, an algorithm that solves the problem forexistentially quanti�ed predicate variables can also be applied to universally quanti�edpredicate variables, and vice versa.To my knowledge, Wilhelm Ackermann was the �rst one who considered this prob-lem [1, 2, 3]. He gave two procedures for eliminating existential quanti�ers overone{place predicate variables. Both eliminate only one quanti�er at a time. The �rstone requires to bring the formula into a form9P 8x (A(x) _ P (x)) ^�[P ]where �[P ] is a formula containing only negative occurrences of P (x). The resultis then �[A], i.e. all occurrences of P (x) are replaced with A(x) in �. We haveproblems if we try to apply this method to clauses with several occurrences of P .These problems are overcome in Ackermann's second method.For Ackermann's second method it is necessary to bring the formulae into a kind ofclause form. In his notation he writes clauses as disjunctions in the form Ax1;:::;xny1;:::;ym . Ais a formula free of P{literals, the subscripts yi are short for P (yi) and the superscriptsxi are short for :P (xi). A contraction operationAx1;:::;xn;zy1;:::;ym ^ Bp1;:::;pnq1;:::;ql;z ! Ax1;:::;xny1;:::;ym _ Bp1;:::;pnq1;:::;qlgenerates a new clause from the two old ones. Thus, contraction on z actually meansresolution between P (z) and :P (z). (The step to full resolution with uni�cation issmall.) Ackermann showed that generating exhaustively all contractions and takingthe conjunction of the P{free clauses yields a formula which is equivalent to theoriginal second{order formula. His formulation of the second method is still quiterestrictive and not very practical. n{place predicates have to be turned into one{place predicates and all arguments have to be abstracted to variables. Furthermorethere is no redundancy checking like subsumption or tautology elimination. But thebasic idea is strong enough to be turned into a powerful method.This basic idea was still further abstracted by Kreisel and Krivine [16] who proveda theorem showing that a set of formulae with a predicate variable P which containsall consequences of the formulae with P is equivalent to its P{free part. That means,as soon as you have all consequences with P , you don't need the P anymore. Sincein general these are in�nitely many consequences, for practical purposes this theoremhas to be further re�ned.Di�erent variations and improvements of these basic ideas have been published inrecent years [27, 30, 28, 11]. The only algorithm which, to my knowledge, has beenimplemented is the SCAN Algorithm.



120 Computer Support for the Development and Investigation of Logics4.1 The SCAN AlgorithmIn [13] we have developed an algorithm which can compute for second{order formulaeof the kind 9P1; : : : ; Pk � where � is a �rst{order formula, an equivalent �rst{orderformula | if there is one.The de�nition of the algorithm is:Definition 4.1 (The SCAN Algorithm)The input to SCAN is a formula � = 9P1; : : : ; Pn � with predicate variables P1; : : : ; Pnand an arbitrary �rst{order formula �.The output of SCAN | if it terminates | is a formula '� which is logically equivalentto �, but does not contain the predicate variables P1; : : : ; Pn.SCAN performs the following three steps:1. � is transformed into clause form.2. All C{resolvents and C{factors with the predicate variables P1; : : : ; Pn are gener-ated. C{resolution (`C' for constraint) is de�ned as follows:P (s1; : : : ; sn) _ C P (: : :) and :P (: : :):P (t1; : : : ; tn) _D are the resolution literalsC _D _ s1 6= t1 _ : : : _ sn 6= tnand the C{factorization rule is de�ned analogously:P (s1; : : : ; sn) _ P (t1; : : : ; tn) _ CP (s1; : : : ; sn) _ C _ s1 6= t1 _ : : : _ sn 6= tn: :Notice that only C{resolutions between di�erent clauses are allowed (no self{resolution). A C{resolution or C{factorization steps can be optimized by de-structively resolving literals x 6= t where the variable x does not occur in t withthe reexivity equation. C{resolution and C{factorization takes into account thatsecond{order quanti�ers may well impose conditions on the interpretations whichmust be formulated in terms of equations and inequations.As soon as all resolvents and factors between a particular literal and the rest of theclause set have been generated (we say the literal is `resolved away'), the clausecontaining this literal must be deleted (purity deletion). If all clauses are deletedthis way, � is a tautology.All equivalence preserving simpli�cations may be applied freely. If an empty clauseis generated, this means that � is contradictory.3. If the previous step terminates and there are still clauses left then reverse theSkolemization.The SCAN algorithm is correct in the sense that its result is logically equivalent tothe input formula. It cannot be complete, i.e. there may be second{order formulaewhich have a �rst{order equivalent, but SCAN cannot �nd it. An algorithm whichis complete in this sense cannot exists, otherwise the theory of arithmetic would beenumerable.There are two stages where SCAN can fail at computing a �rst{order equivalentfor �: (i) the resolution does not terminate and (ii) reversing Skolemization is notpossible. If (ii) occurs the output is a second{order solution involving existentiallyquanti�ed Skolem functions.



4. COMPUTING FRAME PROPERTIES BY QUANTIFIER ELIMINATION 121The SCAN ImplementationOur SCAN implementation is a modi�ed version of the Otter theorem prover devel-oped by Bill McCune at Argonne National Laboratory. The main modi�cations inOtter itself are the integration of the constrained resolution rule, the purity deletionoperation, some further simpli�cations and the particular resolution strategy SCANrequires. The unskolemization routine was implemented by Thorsten Engel as a sep-arate module.SCAN/Otter simply reads an input �le containing the full speci�cation of the quan-ti�er elimination problem and it generates an output �le with the protocol of the runand the �nal result. Besides this simple interface there are two further levels ofinterfaces. The next level of interfaces is a Prolog interface for applying SCAN to dif-ferent problems which can be reduced to quanti�er elimination problems. Currentlytwo such applications are implemented. The �rst one uses SCAN to compute thecorresponding frame properties for Hilbert axioms as explained above.The second interface realizes circumscription. Circumscription was proposed byJohn McCarthy as a logically simple and clear means to doing default reasoning. Inhis most general form the circumscription of a given formula ' with some predicatesP and some other predicates Z is the second{order formulacirc('[P;Z]; P; Z) = '[P;Z] ^ 8P �; Z� ('[P �; Z�] ^ (P �) P ))) (P ) P �)This formula minimizes the extension of the predicates P , possibly at the cost of thepredicates Z whose extension are allowed to vary freely. The SCAN circumscriptioninterface computes this formula and then invokes the basic SCAN algorithm to getrid of the second{order quanti�ers. All this is accessible by WWW inhttp://www.mpi-sb.mpg.de/pub/guide/sta�/ohlbach/scan/scan.html.We have prepared a html form that can be completed by the user to furnish the inputto our SCAN implementation. The program will be run on our machines at the MPIand the output will automatically forwarded back to the user.4.2 Quanti�er Elimination with Fixpoint FormulaeThe fact that the resolution operation in the SCAN algorithm may loop inspiredNonnengart and Sza las [24] to develop a new approach that attempts to keep bettercontrol of the loops. Their approach is an improved version of Ackermann's �rstmethod. It uses formulae with a least �xpoint operator �P:�[P ] for representingpossibly in�nite conjunctions and disjunctions:�P:�[P ] = _�2���[?] (4.1)� is an ordinal number (the least such ordinal is called the closure ordinal for �(P )).? is falsity.Theorem 4.2 (Nonnengart & Sza las)Assume that all occurrences of the predicate symbol P in the formula 	 bind onlyvariables.



122 Computer Support for the Development and Investigation of Logics� If � and 	 have only negative occurrences of P then the closure ordinal for �(P )5is less than or equal to !, and9P8~y (P (~y) _ �[P ]) ^	[P ] = 	[�P (~y):�[P ]] (4.2)� If � and 	 have only positive occurrences P then the closure ordinal for �(P ) isless than or equal to !, and9P8~y(:P (~y) _ �[P ] ^	[P ]) = 	[�P (~y):�[P ]] (4.3)where the above substitutions replace the variables bound by �xpoint operators bythe corresponding actual variables of the substituted predicate6. �Here �P:�(P ) is an abbreviation for :�P ::�(P ). For eliminating P �rst we haveto transform the formula into a form as required by the theorem above, do the sub-stitution with the �xpoint formula, and then expand the �xpoint formula using itsrepresentation (4.1). After each expansion step one has to check whether the newpart of the formula follows form the old parts or not. This way redundant loops canbe detected and non-redundant loops can be approximated. In [24] many examplesof this transformation are presented.5 Finding Hilbert Axioms from Semantic PropertiesFor axiomatizing vague notions whose mathematical structure is not clear, Hilbertsystems are a good starting point. If, however, the semantic structure is clear, forexample the time structure in a temporal logic, we might want to go the other directionand, starting with a semantics, develop a Hilbert system. For example we might wanta linear and dense time structure and ask for the corresponding Hilbert axioms.In order to solve this problem, one can again use PL1 as meta logic and encodethe relevant information as PL1 axioms. In particular the interpretation of the con-nectives, which is known in this case, is written as PL1 equivalence with the binarysatis�ability relation j= and the PL1 encoding of the semantic notions. For examplethe interpretation of the modal logic 3{operator becomes8w; p w j= 3p,9v R(w; v) ^ v j= p;which is an ordinary PL1 formula (in in�x notation). We can encode the semanticsof all relevant connectives this way, add the frame property we want to translate intoa Hilbert axiom, and ask an automated theorem prover to enumerate all constructiveproofs for a formula 9p 8w w j= p:That means we try to verify the existence of a tautology, a formula which is true in allworlds. Usually there are lots of them. Therefore each answer of the theorem provermust be checked by translating it back using the methods we have developed forthe `Hilbert system ! semantics' direction. Hopefully the theorem prover eventuallycomes up with the right answer. In [9] we have shown the details of this procedure5P denotes a negated occurrence of P in a formula.6Observe that the assumption that P 's in 	 bind only variables is necessary here.



6. SIMPLIFYING SEMANTICS AND EXPRESSIVENESS OF THE LOGIC 123and tested it with a lot of examples from modal and relevance logic. In one of theexamples we tried to �nd the corresponding Hilbert axiom for transitive accessibilityrelations in modal logic. In order to give an impression of the procedure, we listthe protocol of a typical proof run with the Otter theorem prover [21, 20]. s is thesatis�ability relation, d is the 3{operator, i is the standard implication. j is Otterssymbol for disjunction, $ans is a special literal for extracting variable bindings. Ithas no logical meaning.%Interpretation of the connectives d and i.(all z X (s(z,d(X)) <-> (exists x (R(z,x) & s(x,X))))).(all z X (all Y (s(z,i(X,Y)) <-> (s(z,X) -> s(z,Y))))).%Property to be translated.(all x y z ((R(x,y) & R(y,z)) -> R(x,z))).%Negated theorem.-(exists f all z (s(z,f) & -$ans(f))).end_of_list.---------------- PROOF ----------------1 -s(z,d(x1))|R(z,f1(z,x1)).2 -s(z,d(x1))|s(f1(z,x1),x1).3 s(z,d(x1))| -R(z,x)| -s(x,x1).5 s(z,i(x2,x3))|s(z,x2).6 s(z,i(x2,x3))| -s(z,x3).7 -R(x,y)| -R(y,z)|R(x,z).8 -s(f2(x4),x4)|$ans(x4).12 [8,5] $ans(i(x,y))|s(f2(i(x,y)),x).15 [12,2] $ans(i(d(x),y))|s(f1(f2(i(d(x),y)),x),x).16 [12,1] $ans(i(d(x),y))|R(f2(i(d(x),y)),f1(f2(i(d(x),y)),x)).19 [15,2] $ans(i(d(d(x)),y))|s(f1(f1(f2(i(d(d(x)),y)),d(x)),x),x).20 [15,1] $ans(i(d(d(x)),y))|R(f1(f2(i(d(d(x)),y)),d(x)),f1(f1(f2(i(d(d(x)),y)),d(x)),x)).115 [20,7,16] $ans(i(d(d(x)),y))|R(f2(i(d(d(x)),y)),f1(f1(f2(i(d(d(x)),y)),d(x)),x)).171 [115,3,19] $ans(i(d(d(x)),y))|s(f2(i(d(d(x)),y)),d(x)).174 [171,6] $ans(i(d(d(x)),y))|s(f2(i(d(d(x)),y)),i(z,d(x))).175 [binary,174,8] $ans(i(d(d(x)),d(x))).------------ end of proof -------------In the usual notation, this answer is 33x)3x, which is in fact the correspondingHilbert axiom.6 Simplifying Semantics and Expressiveness of the LogicThe semantics of a logic is usually formulated in set{theoretic notation. This is oneof the most expressive mathematical languages we have. Therefore it is very easy toformulate in this language conditions on the semantic structure of our logic which haveno counterpart on the syntactic (axiomatic) side. But even if we do not exploit thefull mathematical language and restrict ourselves to fragments of predicate logic, thise�ect may happen. For example it is well known that properties like the irreexivityor antisymmetry of the accessibility relation in modal logic are not axiomatizable inthe corresponding Hilbert system. This means that the syntax of modal logic is sorestricted that one cannot distinguish irreexive frames from arbitrary frames. Thus,requiring irreexivity has no e�ect at all on the theorems provable in modal logic. In



124 Computer Support for the Development and Investigation of Logicsother cases it may turn out that the syntactic side of a logic supports only weakerversions of semantic properties as initially intended. It is of course very important toknow the expressiveness of the logic, because otherwise the e�ects of requirements tothe semantics are unpredictable.This problem has also been investigated in correspondence theory for modal logicand a number of results and techniques have been developed [6]. An alternativetechnique for investigating the expressiveness of the logic L is the following: We for-mulate the semantics of L in a suitable meta logic Lt, usually predicate logic, we takea translation � : L ! Lt which exhibits certain syntactic invariants on the translatedformulae, and use these invariants to investigate the e�ect of a given semantic con-dition C on theorem proving search attempts for translated L{formulae. It may forexample turn out that C can never contribute to a proof search, or that parts of Care always redundant and do not contribute to proof search attempts. If the targetlogic Lt is PL1, all the relevant results about proof search strategies and redundancycriteria can be used for this purpose. What predicate logic theorem provers usuallydo in order to get rid of irrelevant parts of the search space, now becomes valuableinformation about the expressiveness of L.A technique recently developed by Andreas Nonnengart supports these kind ofinvestigations for modal logic. He has developed the so called semi{functional trans-lation [23] from modal logic to many{sorted predicate logic which produces clauseswhere the accessibility relation literals occur only with negative sign. The translationrules for the modal part for formulae in negation normal form are�(3';w) = 9:AF �(';w:)�(�';w) = 8v R(w; v) ) �('; v)For example a formula�3c is translated into 8v R(w; v) )9:AFq c(v:). Intuitivelyone can understand the sort AF as a set of functions mapping worlds to R{accessibleworlds. The colon : is an in�x function symbol which can be understood as applicationfunction, a: =def (a). It is not necessary to understand the details of this translationtechnique here. The important fact we need is that the translated clauses contain onlynegative accessibility relation literals. From the translation there is only one positiveclause per accessibility relation, namely 8x 8:AF R(x; x:). It relates the sort AFwith the predicate R. If we do theorem proving by refutation with resolution, weimmediately see that there is no resolution partner at all for the irreexivity clause:R(x; x). This clause is redundant and cannot contribute to a proof. Thus, requiringirreexivity or not has no e�ect on the provability of modal theorems; it can not becharacterized in modal logic.The semi{functional translation with the strong syntactic invariant that no positiveaccessibility literals ever occur in translated modal formulae, turned out to be anexcellent basis for applying all kinds of redundancy criteria to eliminate or simplifyframe properties. Here we can exploit the results about resolution strategies withdeletion operations [5], and the technique is really easy to apply.7 SummaryThe development and investigation of application oriented logics comprises many as-pects and problems. For a few of them some computer support is possible which frees



7. SUMMARY 125the investigator from sometimes quite complex computations. We have consideredthe problems of� reasoning in Hilbert systems,� �nding corresponding frame properties for given Hilbert axioms, and vice versa� �nding corresponding axioms for semantic properties, and� investigating the expressiveness of logics,Using predicate logic as meta logic, we were able to map these problems to formulamanipulation problems in PL1. With automated theorem provers, a quanti�er elimi-nation algorithm, and the special technique of K-transformations we can �nd solutionsby semi{automatic procedures.As an example for a complex task which de�nitely requires computer support, wedeveloped a translation of the logic of graded modalities into predicate logic [26]. Thelogic of graded modalities has operators Mn which are interpreted as `in more than naccessible worlds' [33]. In contrast to the usual tableau systems for this logic, whichwork only for small numbers, the translation allows for an inference system using somekind of symbolic arithmetic instead of counting Skolem constants. We �rst translatedthe logic of graded modalities into a normal multi{modal logic and then further intopredicate logic. The axiomatization of the multi{modal logic turned out to be quitecomplex and only with the SCAN algorithm we were able to �nd its semantics. Thissemantics was then used as a basis for an optimized translation into predicate logic.AcknowledgmentsI would like to thank Dov Gabbay as well as my colleagues Andreas Nonnengart andRenate Schmidt for very fruitful discussions. Thorsten Engel implemented the SCANalgorithm by modifying the Otter theorem prover and integrating an unskolemizationalgorithm.References[1] Wilhelm Ackermann. Untersuchung �uber das Eliminationsproblem der mathematischen Logik.Mathematische Annalen, 110:390{413, 1935.[2] Wilhelm Ackermann. Zum Eliminationsproblem der mathematischen Logik. MathematischeAnnalen, 111:61{63, 1935.[3] Wilhelm Ackermann. Solvable Cases of the Decision Problem. North{Holland, 1954.[4] Matthias Baaz, Christian G. Ferm�uller, Arie Ovrutcki, and Richard Zach. MULTLOG: A systemfor axiomatizing many-valued logics. In Andrei Voronkov, editor, Logic Programming and Au-tomated Reasoning, Proceedings of LPAR 93, Lecture Notes in AI 698, pages 345{347. SpringerVerlag, 1993.[5] Leo Bachmair and Harald Ganzinger. On restrictions of ordered paramodulation with simpli�-cation. In CADE-10: 10th International Conference on Automated Deduction, Lecture Notesin Arti�cial Intelligence, pages 427{441, Kaiserslautern, FRG, 1990. Springer-Verlag.[6] Patrick Blackburn, Maarten de Rijke, and Yd Venema. The algebra of modal logic. Report CS-R9463, Centrum voor Wiskunde en Informatica / Computer Science, Department of SoftwareTechnology, 1994.[7] W.J. Blok and Don Pigozzi. Algebraizable Logics, volume 77, 396 of Memoirs of the AmericanMathematical Society. American Mathematical Society, Procidence, Rhodes Island, USA, 1989.
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