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We present a new proof of the well known theorem on the existence of signed
(integral) t-designs due to Wilson and Graver and Jurkat. � 2001 Academic Press

1. INTRODUCTION

Given integers t, k, and v such that 0�t�k�v, the inclusion matrix
Wtk(v) is a (0, 1) matrix whose rows are indexed by the t-subsets T and
whose columns are indexed by the k-subsets K (called blocks) of a v-set X
and Wtk(v)(T, K )=1 if and only if T�K. We simply write Wtk instead of
Wtk(v) if there is no danger of confusion.

An integral solution x of the equation

Wtk x=*e, (1)

where e is a column vector of all ones and * is a positive integer, is called
a signed (integral ) t-(v, k, *) design. We index the blocks to the positions of
x in the similar ordering of indices of columns of Wtk . So x(B) is the
number of appearances of block B in design x.

For *=0, the integral solutions of (1) are called (v, k, t) trades. Clearly,
the set of all (v, k, t) trades, denoted by Ntk(v) or simply Ntk , is a
Z-module.
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Theorem 1. A signed t-(v, k, *) design exists if and only if

* \v&i
t&i+#0 \mod \k&i

t&i++ , (2)

for i=0, ..., t.

Theorem 1 was first proved by J. E. Graver and W. B. Jurkat [3]. At the
same time, R. M. Wilson independently proved a general result, which
asserts that the equation Wtkx=a has an integral solution if and only if
(1�( k&i

t&i )) Wit a are integral for i=0, ..., t [8]. When applied to a constant
vector a, it results in Theorem 1. Later, Wilson published a nicer proof of
his result in [9]. His both proofs are inductive and use the following well
known recursive structure of Wtk :

Wtk(v)=_Wt&1, k&1(v&1)
Wt, k&1(v&1)

0
Wt, k(v&1)& .

The inductive proof of Graver and Jurkat is of a different nature and is
more technical. They consider a signed (t&1)-(v, k, *$) design and by
adding a (v, k, t&1) trade to it, then produce a signed t-(v, k, *) design. To
find an appropriate trade, one needs a basis of Ntk . A few different bases
have been introduced in the literature [1, 2, 5, 6]. A simple and fast algo-
rithm for producing a basis in [5] is presented. By utilizing this basis, a
flexible algorithm for generating signed designs based on the proof of
Graver and Jurkat has been presented in [4].

In this paper, we prove the existence of a so-called standard basis for Ntk

which can also be extracted from the basis of [5] as in [6]. We then show
how a signed design is simply obtained by the elements of this basis.

2. PRELIMINARIES

There is an easy but important equation

WitWtk=\k&i
t&i+ Wik , (3)

which holds for 0�i�t. Let W� tk be a (0, 1) matrix in the sense of Wtk , but
define it as W� tk(T, K )=1 if and only if T & K=<. By the inclusion-
exclusion principal we have

W� tk= :
t

i=0

(&1) i W T
it Wik . (4)
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The following lemma is a well-known fact and a few different proofs of
it appear in the literature. (See, for example, [3, 8, 9].) Here, for the sake
of completeness we present a shorter proof.

Lemma 1. Wtk is a full rank matrix over rationals.

Proof. First let k=v&t. We can order the indices of rows and columns
of W� tk such that we have W� tk=I. If x # Ntk , then by (3), x # Nik for
0�i�t. By (4), it yields that x=0. Therefore, Ntk=0 and Wtk is full rank.

Now, let k<v&t. By (3), we have

Wtk Wk, v&t=\v&2t
k&t + Wt, v&t .

This shows that Wtk is full rank, because Wt, v&t is invertible. If k>v&t,
then by (3), we have

Wv&k, t Wt, k=\ 2k&v
k+t&v+ Wv&k, k .

Since Wv&k, t is invertible so Wtk is full rank. K

Let k<v&t and let colZ(Wtk) denote the Z-module generated by the
columns of Wtk . A consequence of Lemma 1 is that dim(colZ(Wtk))=( v

t).
Are there ( v

t) columns in Wtk such that they form a basis for colZ(Wtk)? In
order to answer this question we present the notion of starting blocks
which were initially introduced in [5]. Let X=[1, ..., v] and B=[b1 , ..., bk]
be a block such that b1<b2< } } } <bk . B is called a starting block if

bi�{v&k&t+2i&2,
v&k+i,

1�i�t+1,
t+2�i�k.

The other blocks are called non-starting blocks.

Observation. Let Y=[1, ..., v&k&t]. The starting blocks correspond-
ing to the triple (v, k, t) on the set X have the following property: If we
choose from the starting blocks the ones containing i (i # Y ) and omit i
from them, then the resulting blocks form the starting blocks of the triple
(v&1, k&1, t&1) over the set X"[i]. (It will of course be necessary to
shift the elements of the set X"[i].) On the other hand, the starting blocks
not containing i (i # Y ) can be regarded as the starting blocks for the triple
(v&1, k, t) on the set X"[i]. The same argument is true about the non-
starting blocks. It is easily seen by induction that the number of non-starting
blocks is equal to ( v

t).
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3. MAIN RESULTS

In Section 2, we showed that colZ(Wtk) has dimension ( v
t) which is equal

to the number of non-starting blocks or columns of Wtk . We prove that
these columns form a basis for colZ(Wtk). This fact was first proved in [7]
differently.

The following lemma is immediate from an induction argument on t and
the identity ( n

r)=( n&1
r )+( n&1

r&1). Let g(v, k, t)=g.c.d.[( v&i
k&i) | i=0, ..., t].

Lemma 2. ( v&t
k )#0 (mod g(v, k, t)).

Let x and y be two integral vectors. By notation x#y (mod n) we mean
that there is an integral vector c such that x&y=nc.

Lemma 3. Let x # Ntk and B be the set of all starting blocks.

(i) If x(B)=0 for every B # B, then x=0.

(ii) If x(B)#0 (mod n) for every B # B, then x#0 (mod n).

(iii) If x(B)=1 for every B # B, then x#e (mod g(v, k, t)).

Proof. The proofs of the different parts are very similar. Thus, we
only prove part (iii). The proof is by induction on t. If t=0, then there is
just one non-starting block B and x(B)=&( v

k)+1. But then, by Lemma 2,
it follows that x(B)#1 (mod g(v, k, 0)). We prove the statement for
the triple (v, k, t) under the induction hypothesis. Recall that X=[1, ..., v]
and Y=[1, ..., v&k&t]. Let C be a non-starting block such that
C & Y{<. Then, by the induction hypothesis and the observation in
Section 2,

x(C)#1 (mod g(v&1, k&1, t&1)),

and since g(v, k, t) | g(v&1, k&1, t&1), we obtain that

x(C)#1 (mod g(v, k, t)). (5)

Now assume that B is a non-starting block such that B & Y=<. Let
T=X"(B _ Y ). Then, |T |=t, and by (3) and (4),

:
C & T=<

x(C)=0,
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so by (5) and Lemma 2, we have

x(B)=& :
C/B _ Y, C{B

x(C )

#&\v&t
k ++1 (mod g(v, k, t))

#1 (mod g(v, k, t)).

This establishes the statement of part (iii). K

Theorem 2. The non-starting columns of Wtk form a basis of colZ(Wtk).

Proof. By Lemma 3(i), those ( v
t) columns are independent over the

rationals. So by Lemma 1 every starting column can be written as a rational
linear combination of the non-starting columns. But then, Lemma 3(ii)
implies that every starting column is an integral linear combination of the
non-starting columns. K

Corollary 1. Let B=[B i : 1�i�( v
k)&( v

t)] be the set of all starting
blocks. There is a basis [xi : 1�i�( v

k)&( v
t)] for Ntk such that xi (Bj)=$ ij

for 1�i, j�( v
k)&( v

t).

This basis is called standard basis. Now let z :=� x i . By Lemma 3(iii),
we have

z#e (mod g(v, k, t)). (6)

We can now prove Theorem 1.

Proof of Theorem 1. Let x be an integral solution of Wtk x=*e. Then,
by (3)

\k&i
t&i+ Wikx=Wit Wtk x

=* \v&i
t&i+ e,

which implies that

* \v&i
t&i+#0 \mod \k&i

t&i++ ,

for i=0, ..., t. Thus, the conditions (2) are necessary.
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Now assume that the conditions (2) are satisfied. By the identity

\v&i
t&i+\

v&t
k&t+=\v&i

k&i+\
k&i
t&i+ ,

we obtain that

*#0 \ mod
\v&t

k&t+
g(v, k, t)+ ,

or equivalently,

*g(v, k, t)#0 \mod \v&t
k&t++ . (7)

First let k�v&t. By Lucas' Lemma one can easily see that g(v, k, t)=1
and trivially x=(*�( v&t

k&t)) e is integral and is a solution of (1). Now sup-
pose that k<v&t. Let x=(*�( v&t

k&t))(e&z). By (6) and (7), x is integral
and

Wtk x=
*

\v&t
k&t+

Wtk e=*e. K
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