NOTE

A New Proof of a Classical Theorem in Design Theory ${ }^{1}$

G. B. Khosrovshahi ${ }^{2}$ and B. Tayfeh-Rezaie
Department of Mathematics, University of Tehran, and Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran
Communicated by the Managing Editors

Received November 1, 1999

Abstract

We present a new proof of the well known theorem on the existence of signed (integral) t-designs due to Wilson and Graver and Jurkat. © 2001 Academic Press

1. INTRODUCTION

Given integers t, k, and v such that $0 \leqslant t \leqslant k \leqslant v$, the inclusion matrix $W_{t k}(v)$ is a $(0,1)$ matrix whose rows are indexed by the t-subsets T and whose columns are indexed by the k-subsets K (called blocks) of a v-set X and $W_{t k}(v)(T, K)=1$ if and only if $T \subseteq K$. We simply write $W_{t k}$ instead of $W_{t k}(v)$ if there is no danger of confusion.

An integral solution \mathbf{x} of the equation

$$
\begin{equation*}
W_{t k} \mathbf{x}=\lambda \mathbf{e} \tag{1}
\end{equation*}
$$

where \mathbf{e} is a column vector of all ones and λ is a positive integer, is called a signed (integral) t - (v, k, λ) design. We index the blocks to the positions of \mathbf{x} in the similar ordering of indices of columns of $W_{t k}$. So $\mathbf{x}(B)$ is the number of appearances of block B in design \mathbf{x}.

For $\lambda=0$, the integral solutions of (1) are called (v, k, t) trades. Clearly, the set of all (v, k, t) trades, denoted by $N_{t k}(v)$ or simply $N_{t k}$, is a \mathbb{Z}-module.

[^0]Theorem 1. A signed $t-(v, k, \lambda)$ design exists if and only if

$$
\begin{equation*}
\lambda\binom{v-i}{t-i} \equiv 0 \quad\left(\bmod \binom{k-i}{t-i}\right), \tag{2}
\end{equation*}
$$

for $i=0, \ldots, t$.
Theorem 1 was first proved by J. E. Graver and W. B. Jurkat [3]. At the same time, R. M. Wilson independently proved a general result, which asserts that the equation $W_{t k} \mathbf{x}=\mathbf{a}$ has an integral solution if and only if $\left(1 /\binom{k-i}{t-i}\right) W_{i t} \mathbf{a}$ are integral for $i=0, \ldots, t$ [8]. When applied to a constant vector a, it results in Theorem 1. Later, Wilson published a nicer proof of his result in [9]. His both proofs are inductive and use the following well known recursive structure of $W_{t k}$:

$$
W_{t k}(v)=\left[\begin{array}{cc}
W_{t-1, k-1}(v-1) & 0 \\
W_{t, k-1}(v-1) & W_{t, k}(v-1)
\end{array}\right] .
$$

The inductive proof of Graver and Jurkat is of a different nature and is more technical. They consider a signed $(t-1)-\left(v, k, \lambda^{\prime}\right)$ design and by adding a $(v, k, t-1)$ trade to it, then produce a signed $t-(v, k, \lambda)$ design. To find an appropriate trade, one needs a basis of $N_{t k}$. A few different bases have been introduced in the literature [1, 2, 5, 6]. A simple and fast algorithm for producing a basis in [5] is presented. By utilizing this basis, a flexible algorithm for generating signed designs based on the proof of Graver and Jurkat has been presented in [4].

In this paper, we prove the existence of a so-called standard basis for $N_{t k}$ which can also be extracted from the basis of [5] as in [6]. We then show how a signed design is simply obtained by the elements of this basis.

2. PRELIMINARIES

There is an easy but important equation

$$
\begin{equation*}
W_{i t} W_{t k}=\binom{k-i}{t-i} W_{i k}, \tag{3}
\end{equation*}
$$

which holds for $0 \leqslant i \leqslant t$. Let $\bar{W}_{t k}$ be a $(0,1)$ matrix in the sense of $W_{t k}$, but define it as $\bar{W}_{t k}(T, K)=1$ if and only if $T \cap K=\varnothing$. By the inclusionexclusion principal we have

$$
\begin{equation*}
\bar{W}_{t k}=\sum_{i=0}^{t}(-1)^{i} W_{i t}^{T} W_{i k} \tag{4}
\end{equation*}
$$

The following lemma is a well-known fact and a few different proofs of it appear in the literature. (See, for example, [3, 8, 9].) Here, for the sake of completeness we present a shorter proof.

Lemma 1. $W_{t k}$ is a full rank matrix over rationals.
Proof. First let $k=v-t$. We can order the indices of rows and columns of $\bar{W}_{t k}$ such that we have $\bar{W}_{t k}=I$. If $\mathbf{x} \in N_{t k}$, then by (3), $\mathbf{x} \in N_{i k}$ for $0 \leqslant i \leqslant t$. By (4), it yields that $\mathbf{x}=\mathbf{0}$. Therefore, $N_{t k}=0$ and $W_{t k}$ is full rank.

Now, let $k<v-t$. By (3), we have

$$
W_{t k} W_{k, v-t}=\binom{v-2 t}{k-t} W_{t, v-t} .
$$

This shows that $W_{t k}$ is full rank, because $W_{t, v-t}$ is invertible. If $k>v-t$, then by (3), we have

$$
W_{v-k, t} W_{t, k}=\binom{2 k-v}{k+t-v} W_{v-k, k} .
$$

Since $W_{v-k, t}$ is invertible so $W_{t k}$ is full rank.
Let $k<v-t$ and let $\operatorname{col}_{\mathbb{Z}}\left(W_{t k}\right)$ denote the \mathbb{Z}-module generated by the columns of $W_{t k}$. A consequence of Lemma 1 is that $\operatorname{dim}\left(\operatorname{col}_{\mathbb{Z}}\left(W_{t k}\right)\right)=\binom{v}{t}$. Are there $\binom{v}{t}$ columns in $W_{t k}$ such that they form a basis for $\operatorname{col}_{\mathbb{Z}}\left(W_{t k}\right)$? In order to answer this question we present the notion of starting blocks which were initially introduced in [5]. Let $X=\{1, \ldots, v\}$ and $B=\left\{b_{1}, \ldots, b_{k}\right\}$ be a block such that $b_{1}<b_{2}<\cdots<b_{k}$. B is called a starting block if

$$
b_{i} \leqslant \begin{cases}v-k-t+2 i-2, & 1 \leqslant i \leqslant t+1, \\ v-k+i, & t+2 \leqslant i \leqslant k .\end{cases}
$$

The other blocks are called non-starting blocks.
Observation. Let $Y=\{1, \ldots, v-k-t\}$. The starting blocks corresponding to the triple (v, k, t) on the set X have the following property: If we choose from the starting blocks the ones containing $i(i \in Y)$ and omit i from them, then the resulting blocks form the starting blocks of the triple $(v-1, k-1, t-1)$ over the set $X \backslash\{i\}$. (It will of course be necessary to shift the elements of the set $X \backslash\{i\}$.) On the other hand, the starting blocks not containing $i(i \in Y)$ can be regarded as the starting blocks for the triple $(v-1, k, t)$ on the set $X \backslash\{i\}$. The same argument is true about the nonstarting blocks. It is easily seen by induction that the number of non-starting blocks is equal to $\binom{v}{t}$.

3. MAIN RESULTS

In Section 2, we showed that $\operatorname{col}_{\mathbb{Z}}\left(W_{t k}\right)$ has dimension $\binom{v}{t}$ which is equal to the number of non-starting blocks or columns of $W_{t k}$. We prove that these columns form a basis for $\operatorname{col}_{\mathbb{Z}}\left(W_{t k}\right)$. This fact was first proved in [7] differently.

The following lemma is immediate from an induction argument on t and the identity $\binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}$. Let $g(v, k, t)=$ g.c.d. $\left\{\left.\binom{v-i}{k-i} \right\rvert\, i=0, \ldots, t\right\}$.

Lemma 2. $\quad\left({ }^{v}{ }_{k} t\right) \equiv 0(\bmod g(v, k, t))$.

Let \mathbf{x} and \mathbf{y} be two integral vectors. By notation $\mathbf{x} \equiv \mathbf{y}(\bmod n)$ we mean that there is an integral vector \mathbf{c} such that $\mathbf{x}-\mathbf{y}=n \mathbf{c}$.

Lemma 3. Let $\mathbf{x} \in N_{t k}$ and \mathscr{B} be the set of all starting blocks.
(i) If $\mathbf{x}(B)=0$ for every $B \in \mathscr{B}$, then $\mathbf{x}=\mathbf{0}$.
(ii) If $\mathbf{x}(B) \equiv 0(\bmod n)$ for every $B \in \mathscr{B}$, then $\mathbf{x} \equiv \mathbf{0}(\bmod n)$.
(iii) If $\mathbf{x}(B)=1$ for every $B \in \mathscr{B}$, then $\mathbf{x} \equiv \mathbf{e}(\bmod g(v, k, t))$.

Proof. The proofs of the different parts are very similar. Thus, we only prove part (iii). The proof is by induction on t. If $t=0$, then there is just one non-starting block B and $\mathbf{x}(B)=-\binom{v}{k}+1$. But then, by Lemma 2, it follows that $\mathbf{x}(B) \equiv 1(\bmod g(v, k, 0))$. We prove the statement for the triple (v, k, t) under the induction hypothesis. Recall that $X=\{1, \ldots, v\}$ and $Y=\{1, \ldots, v-k-t\}$. Let C be a non-starting block such that $C \cap Y \neq \varnothing$. Then, by the induction hypothesis and the observation in Section 2,

$$
\mathbf{x}(C) \equiv 1 \quad(\bmod g(v-1, k-1, t-1))
$$

and since $g(v, k, t) \mid g(v-1, k-1, t-1)$, we obtain that

$$
\begin{equation*}
\mathbf{x}(C) \equiv 1 \quad(\bmod g(v, k, t)) \tag{5}
\end{equation*}
$$

Now assume that B is a non-starting block such that $B \cap Y=\varnothing$. Let $T=X \backslash(B \cup Y)$. Then, $|T|=t$, and by (3) and (4),

$$
\sum_{C \cap T=\varnothing} \mathbf{x}(C)=0
$$

so by (5) and Lemma 2, we have

$$
\begin{aligned}
\mathbf{x}(B) & =-\sum_{C \subset B \cup Y, C \neq B} \mathbf{x}(C) \\
& \equiv-\binom{v-t}{k}+1 \quad(\bmod g(v, k, t)) \\
& \equiv 1 \quad(\bmod g(v, k, t)) .
\end{aligned}
$$

This establishes the statement of part (iii).
Theorem 2. The non-starting columns of $W_{t k}$ form a basis of $\operatorname{col}_{\mathbb{Z}}\left(W_{t k}\right)$.
Proof. By Lemma 3(i), those ($\binom{v}{t}$ columns are independent over the rationals. So by Lemma 1 every starting column can be written as a rational linear combination of the non-starting columns. But then, Lemma 3(ii) implies that every starting column is an integral linear combination of the non-starting columns.

Corollary 1. Let $\mathscr{B}=\left\{B_{i}: 1 \leqslant i \leqslant\binom{ v}{k}-\binom{v}{t}\right\}$ be the set of all starting blocks. There is a basis $\left\{\mathbf{x}_{i}: 1 \leqslant i \leqslant\binom{ v}{k}-\binom{v}{t}\right\}$ for $N_{t k}$ such that $\mathbf{x}_{i}\left(B_{j}\right)=\delta_{i j}$ for $1 \leqslant i, j \leqslant\binom{ v}{k}-\binom{v}{t}$.

This basis is called standard basis. Now let $\mathbf{z}:=\sum \mathbf{x}_{i}$. By Lemma 3(iii), we have

$$
\begin{equation*}
\mathbf{z} \equiv \mathbf{e} \quad(\bmod g(v, k, t)) . \tag{6}
\end{equation*}
$$

We can now prove Theorem 1.
Proof of Theorem 1. Let \mathbf{x} be an integral solution of $W_{t k} \mathbf{x}=\lambda \mathbf{e}$. Then, by (3)

$$
\begin{aligned}
\binom{k-i}{t-i} W_{i k} \mathbf{x} & =W_{i t} W_{t k} \mathbf{x} \\
& =\lambda\binom{v-i}{t-i} \mathbf{e},
\end{aligned}
$$

which implies that

$$
\lambda\binom{v-i}{t-i} \equiv 0 \quad\left(\bmod \binom{k-i}{t-i}\right),
$$

for $i=0, \ldots, t$. Thus, the conditions (2) are necessary.

Now assume that the conditions (2) are satisfied. By the identity

$$
\binom{v-i}{t-i}\binom{v-t}{k-t}=\binom{v-i}{k-i}\binom{k-i}{t-i}
$$

we obtain that

$$
\lambda \equiv 0 \quad\left(\bmod \frac{\binom{v-t}{k-t}}{g(v, k, t)}\right),
$$

or equivalently,

$$
\begin{equation*}
\lambda g(v, k, t) \equiv 0 \quad\left(\bmod \binom{v-t}{k-t}\right) . \tag{7}
\end{equation*}
$$

First let $k \geqslant v-t$. By Lucas' Lemma one can easily see that $g(v, k, t)=1$ and trivially $\mathbf{x}=\left(\lambda /\binom{v-t}{k-t}\right) \mathbf{e}$ is integral and is a solution of (1). Now suppose that $k<v-t$. Let $\mathbf{x}=\left(\lambda /\binom{v-t}{k-t}\right)(\mathbf{e}-\mathbf{z})$. By (6) and (7), \mathbf{x} is integral and

$$
W_{t k} \mathbf{x}=\frac{\lambda}{\binom{v-t}{k-t}} W_{t k} \mathbf{e}=\lambda \mathbf{e}
$$

REFERENCES

1. P. Frankl, Intersection theorems and mod p rank of inclusion matrices, J. Combin. Theory Ser. A 54 (1990), 85-94.
2. R. L. Graham, S.-Y. R. Li, and W.-C. W. Li, On the structure of t-designs, SIAM J. Algebraic Discrete Methods 1 (1980), 8-14.
3. J. E. Graver and W. B. Jurkat, The module structure of integral designs, J. Combin. Theory Ser. A 15 (1973), 75-90.
4. A. S. Hedayat, G. B. Khosrovshahi, and D. Majumdar, A prospect for a general method of constructing t-designs, Discrete Appl. Math. 42 (1993), 31-50.
5. G. B. Khosrovshahi and S. Ajoodani-Namini, A new basis for trades, SIAM J. Discrete Math. 3 (1990), 364-372.
6. G. B. Khosrovshahi and Ch. Maysoori, On the bases for trades, Linear Algebra Appl. 226-228 (1995), 731-748.
7. G. B. Khosrovshahi and Ch. Maysoori, On the structure of higher incidence matrices, Bull. Inst. Combin. Appl. 25 (1999), 13-22.
8. R. M. Wilson, The necessary conditions for t-designs are sufficient for something, Utilitas Math. 4 (1973), 207-217.
9. R. M. Wilson, A diagonal form for the incidence matrices of t-subsets vs. k-subsets, European J. Combin. 11 (1990), 609-615.

[^0]: ${ }^{1}$ This research was partially supported by a grant from IPM.
 ${ }^{2}$ To whom correspondence should be addressed at IPM, P.O. Box 19395-5746, Tehran, Iran. E-mail: rezagbk@ipm.ac.ir.

