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In ‘‘optional’’ variants of the iterated prisoner’s dilemma, players may choose whether or not to
participate. Members of evolving populations playing optional variants of the iterated prisoner’s dilemma
by following inherited strategies tend to cooperate more than do members of populations playing the
standard, ‘‘compulsory’’ version. This result is due to dynamical properties of the evolving systems: the
populations playing the compulsory game can become stuck in states of low cooperation that last many
generations, while the optional games provide routes out of such states to states of high cooperation.
Computational simulations of the evolution of populations playing these games support these analytic
results and illustrate the interactions between the genetic representation of strategies and the composition
of populations in which those strategies are deployed.
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1. Introduction

Contemporary biological discussions of the evolution
of altruism define altruistic behavior as that which
increases the fitness of another animal at a cost in
fitness to the animal engaging in the behavior. In
the past decades, study of the evolution of genetic
dispositions to altruistic behavior in this sense has been
advanced by considering two special instances: (i) cases
inwhich the animal’s own reproductive losses aremade
up through increases in the reproductive successes of
kin, and (ii) cases in which the short-term losses of
altruistic actions are made up through a system of
reciprocation. Separating these instances is heuristi-
cally helpful, but artificial, since it is possible that
interactions with relatives might involve short-term
fitness losses that are made up through contributions
from both sources.

Our concern is with cases of type (ii) and with a
modification of what has become the standard way
of dealing with such cases. Reciprocal altruism was
originally introduced in a seminal paper by Robert
Trivers (1971). Following the work of Axelrod and

Hamilton (Axelrod & Hamilton, 1981; Axelrod, 1984),
reciprocal altruism has been explored by considering
strategies for playing iterated Prisoner’s Dilemma
(henceforth PD). Initially it appeared that the strategy
Tit-for-Tat would be evolutionarily stable (in the sense
of Maynard Smith & Price, 1973; see Maynard-Smith,
1982), but further investigation has shown that it is not
so (Boyd & Lorberbaum, 1987; Farrell & Ware, 1989;
Mesterton-Gibbons, 1992). Indeed, the many discus-
sions of the Axelrod–Hamilton approach have
revealed unsuspected complexities in the selection of
strategies for playing the iterated Prisoner’s Dilemma
(Dugatkin & Wilson, 1991; Peck & Feldman, 1986;
Lindgren 1992). Our aim in this paper is to suggest a
modification of the Axelrod–Hamilton scenario, and
to explore the dynamics of the selection of altruistic
strategies.

We begin by presenting a new version of the
Prisoner’s Dilemma in which players have the option
of not participating in interactions. Analytical
evaluations of strategies for this game are presented to
show that populations playing the optional games will
achieve states of high cooperation more reliably than
will populations playing the standard, compulsory,
Prisoner’s Dilemma. We then present the results ofE-mail: batali.cogsci.ucsd.edu or pkitcher.ucsd.edu
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computer simulations of these games that confirm the
analytic results, and also illustrate the dynamics of
strategy changes in different kinds of game.

1.1.    ’ 

In each round of the standard Prisoner’s Dilemma,
each of two players must choose one of two actions: C,
(Cooperate) or D (Defect). After each player has
chosen, a payoff for each is computed from a payoff
matrix as follows:

C D

R T
C R S

S P
D T P

withR=reward formutual cooperation;T=‘‘traitor’’
payoff to defector if other cooperates; S= ‘‘sucker’’
payoff to cooperator if other defects; P= payoff for
mutual defection, where TqRqPqS and 2RqT+S.

This standard game is compulsory in the following
sense: first, theplayers haveno choice of partner but are
forced to interact with the assigned individual; second,
they have no choice but to play: there is no individual
asocial behavior available to them. In focusing on the
iterated Prisoner’s Dilemma, Axelrod and Hamilton
considered the evolution of altruism in a population of
animals that is forced into social activity, so that the
problem is posed in terms of the victory of cooperation
over anti-social behavior.Aswe shall explainbelow,we
believe that it may be more realistic to consider the
evolution of altruism in situations in which the
possibility of asociality is present, and that this will
make a difference to the evolutionary scenarios.

Various authors have considered the possibility that
animals facing repeated game-like situations might
either have an asocial option (Miller, 1967; Lima,
1989) or be able to discriminate partners (Nöe et al.,
1991; Peck, 1990; Bull & Rice, 1991), but we believe
that the concept of an optional game has
not previously been clearly articulated (the closest
approach we know is that of Stanley et al., 1994). In
an optional game, individuals have the possibility of
signaling willingness to play to other individuals in the
population. When signals of mutual willingness are
given, the individuals play the game together.
An animal that is unwilling to play with any of the
animals willing to play with it is forced to opt out,
performing some asocial behavior. We allow that such
asocial behavior might have some intermediate benefit
to the player, which we represent by the payoff W. In
the cases of interest, TqRqWqPqS, i.e. the
opting-out payoff is less advantageous to both players

than is mutual cooperation, but is more advantageous
to both players than is mutual defection. Optional
games of this sort will be referred to as ‘‘fully optional’’
versions of the iterated Prisoner’s Dilemma.

Intermediate between fully optional and compul-
sory games are ‘‘semi-optional’’ games. These are of
two types. In one version, individuals have no choice
of partners, but they do have the ability to opt out. In
the other, they cannot opt out, but can signal
willingness to play with particular partners. The latter
type of game will be of no concern to us, and we shall
henceforth use ‘‘semi-optional’’ game to refer only to
those games in which there is the possibility of opting
out, but no choice of partners. We hope that the
distinction between compulsory, fully optional, and
semi-optional games is now sufficiently clear, and
proceed with an illustrative example.

1.2.  -   

Mutual grooming among primates serves the
function of removing parasites from the fur. An animal
that grooms another incurs a cost, depending on the
length of time taken up in grooming, an animal that is
groomed receives a benefit, which we can also assume
to be proportional to the amount of time spend in
grooming. Assume that there are two possibilities for
each animal: to groom for a long period (C) or to
groom for a short period (D). Let the cost of grooming
for a short period be c0, the benefit from a short period
of grooming be b0, the cost of a long period of
grooming be c2, and the benefit from a long period of
grooming be b2. Then, in a single interaction between
two animals, the payoff matrix will be

C D

b2−c2 b2−c0

C b2−c2 b0−c2

b0−c2 b0−c0

D b2−c0 b0−c0

Since b2qb0 and c2qc0, it is clear that b2−c0 is the
highest payoff and b0−c2 is the lowest. We may
reasonably assume that a more thorough grooming
is worth the extra time spent, and thus that
b2−c2qb0−c0. Given this inequality, it follows that
2(b2−c2)qb2−c2+b0−c0=(b2−c0)+(b0−c2). Thus
the payoff matrix may be rewritten as:

C D

R T
C R S

S P
D T P
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with: R=b2−c2; T=b2−c0; S=b0−c2; P=b0−c0; and
so TqRqPqS and 2Rq(T+S). These are the
conditions for a compulsory Prisoner’s Dilemma.

But our primates surely have another option—they
can groom themselves. Presumably the payoff from
self-grooming is less than one would receive from an
earnest grooming job from another, but greater than
the payoff from a more desultory performance. This
can be modeled by assigning an intermediate cost
c1, and an intermediate benefit b1 for self-grooming.
The payoff from self-grooming is thus b1−c1, and
we will assume that b2−c2qb1−c1qb0−c0. Given
that primates can also signal willingness to engage in
grooming interactions with some animals and to
forswear grooming interactions with others, we can
expect that grooming interactions among primates
take the form of an optional Prisoner’s Dilemma,
where the opt-out payoff W is intermediate between
R (the reward for mutual cooperation) and P (the
penalty for mutual defection). To understand the
evolution of mutual grooming under natural selec-
tion, we therefore need to consider the evolution of
cooperative behavior in iterated optional Prisoner’s
Dilemmas.

Our illustration is loosely based on recent
discussions of the social lives of primates (for
example Smuts et al., 1987). Plainly, it would be
possible to test our assumptions about the ordering of
costs and benefits by assessing the contributions to
fitness of various commitments of time and of various
states of parasitic infestation. Until such testing is
done, we can only suggest that it is plausible that this
part of primate social life may be understood in
terms of optional Prisoner’s Dilemmas. We also
think it likely that optional games will prove useful
in understanding cooperative hunting, cooperative
foraging, mate-seeking coalitions, systems of
defense against predation, and cooperation among
females in exercising mate choice. But in all
these cases the promise of the approach we
recommend must be assessed in the light of field
studies.

2. Analytic Results for Simple Strategies

Consider the following very simple strategies for
playing an iterated optional Prisoner’s Dilemma
with the standard payoffs T, R, P, S and the opt out
payoff W:

Solo: always opt out;
Undiscriminating Altruist: always interact and

always play C;
Discriminating Altruist: interact with any animal

that is willing to interact with you provided that that
animal has never previously defected on you, and
cooperate in any such interaction, (or, if there are no
such animals, opt out);

Undiscriminating Defector: always interact and
always play D;

Discriminating Defector: interact with any animal
that is willing to interact with you, provided that that
animal has never previously defected on you, and
defect in any such interaction (or, if there are no such
animals, opt out).

We now consider, from a standard evolutionary
game-theoretic perspective, the fitness relationships
among some of these strategies under various
conditions. Throughout we shall suppose that the
population of animals with we are dealing has size N,
and that the average number of occasions that an
animal has to play the optional Prisoner’s Dilemma
during its lifetime is M. We assume that M is
significantly larger than N, an assumption that we base
on the idea that animals have frequent opportunities
for playing the game and that they interact with a
relatively small number of conspecifics. (Think of the
number of times primates groom one another during
their lifetimes and the relatively small sizes of
the groups of conspecifics with which they interact.)
Since our strategies involve the ability of animals to
recognize one another, to recognize when another has
defected on them, and to remember past defections, we
are obviously supposing that our animals have
substantial cognitive capacities. We are encouraged
both by recent studies of the cognitive lives of primates
(Cheney & Seyfarth, 1990) and by investigations
of cooperative behavior in guppies (Dugatkin &
Alfieri, 1991). However, these assumptions about
the cognitive capacities of the animals concerned
are plainly in tension with the ‘‘like begets like’’
assumption of evolutionary game theory (Maynard
Smith, 1982). For the moment, we shall simply
suppose that ‘‘like begets like’’ is a good approximate
rule of thumb. Later sections will explore the
dynamics of the evolutionary game in a less simplistic
way.

 1.    

  

Suppose that the population contains N−n
Discriminating Defectors and n Solos (nq0). The
payoff to each Solo is MW (on each of the M occasions
on which the opportunity arises, a Solo opts out
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for payoff W). The payoff to each Discriminating
Defector is:

(N−n−1)P+(M−N+n+1)W,

since each Discriminating Defector plays with each
other Discriminating Defector just once, each attempt-
ing to exploit the other and receiving payoff P; when all
have been tested, all opt out. Since WqP, the payoff
to Solos is greater than that to Discriminating
Defectors. A population fixed for Discriminating
Defector should be invaded by Solo, and Solo should
sweep to fixation.

 1.1.   



The payoff to Undiscriminating Defector is less than
that for Discriminating Defector. The payoff to Solo is
the same as in Result 1.

 2.      



In a population consisting entirely of Solos, a single
mutant Discriminating Altruist is indistinguishable
from the other members. If there are n (q1)
Discriminating Altruists in a population with N−n
Solos, then the payoff to each Discriminating Altruist
is MR (provided that n is even) and (n−1)Mr/n
+MW/n (when n is odd). (These provisions are needed
since, with an odd number of Discriminating Altruists,
if the decision opportunities arise for all simul-
taneously, arithmetical considerations dictate that one
will have to opt out; the probability that any particular
DiscriminatingAltruist is the unlucky one is 1/n.)Given
nq1, it is trivial that the payoff to a Discriminating
Altruist exceeds that to aSolo, for all values of n.Hence
Discriminating Altruist can be expected to invade a
population of Solos, and to sweep to fixation.

 2.1.    



,     

 ;        

,      

If a population of Solos containing a single
Discriminating Altruist mutant comes to have a single
Discriminating Defector mutant, then the Discriminat-
ing Altruist mutant will be selected against. The
condition for Discriminating Altruists to enter the
population when Discriminating Defector mutations
are also likely to arise is that the order of mutations be
[Discriminating Altruist, Discriminating Altruist]
rather than [Discriminating Altruist, Discriminating
Defector]. If both mutations arise at the same
frequency, we can expect that the probability that

Discriminating Altruists will drift into a population
of Solos will be p/2, where p is the probability that
Discriminating Altruists would increase in frequency in
a population of Solos without Discriminating Defector
mutations (i.e. a population like that described in
Result 2).

 3.       

       , 

       

    , 

     

 .

Suppose that a population contains n Discriminating
Altruists and N−n Discriminating Defectors where
nq1. The worst case for a Discriminating Altruist is to
be exploited by each Discriminating Defector and then
to spend the rest of the decision opportunities
cooperating with other Discriminating Altruists (or,
occasionally, opting out if the number of Discriminat-
ing Altruists is odd). This means that the payoff to a
Discriminating Altruist is bounded below by

(N−n)S+(M−N+n)[(n−1)R/n+W/n].

The best a Discriminating Defector can expect to
do is to exploit each of the Discriminating Altruists
once, and opt out on the remaining occasions. Hence
the payoff to a Discriminating Defector is bounded
above by

nT+(M−n)W.

The condition for Discriminating Altruists to increase
in frequency under selection is thus

(N−n)S+(M−N+n)[(n−1)R/n+W/n]

qnT+(M−n)W.

This reduces to

M/NqK+Hn/N,

where

K=[(n−1)R+W−nS]/(n−1)(R−W);

H=[n(T+S)−(n+1)W−(n−1)R]/(n−1)(R−W).

When n is large (approximately N), the crucial
condition for the maintenance of Discriminating
Altruists is

M/Nq(T−W)/(R−W),
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which is clearly satisfied if the reward for cooperating
is significantly larger than the payoff for opting out, the
payoff to exploiters is not too big, and the number of
decision opportunities is sufficiently large relative to
the population size. Hence it will be possible for
Discriminating Altruists to resist invasion by Discrimi-
nating Defectors. At the other extreme, when n is small,
the worst case is given by n=3. Since N�3, we can
ignore the term in H, and approximate the inequality
by

M/Nq(2R+W−3S)/2(R−W).

As before, if the reward for cooperation is large
in relation to the payoff for opting out, and if
the number of decision opportunities is large in
relation to population size, Discriminating Altruists
can increase in frequency against Discriminating
Defector.

These results are encouraging, for they suggest
that, contrary to our naı̈ve expectations, it might be
very hard for anti-social or asocial behavior to be
evolutionarily sustainable. By Result 1, anti-social
populations are likely to decay into states of asociality.
ByResult 2, asocial populationsare likely tobe invaded
by Discriminating Altruists, and, given Result 3,
Discriminating Altruists can resist invasion
by Discriminating Defectors. The only problem for
a population of Discriminating Altruists is that
Undiscriminating Altruists can drift in unnoticed, and,
once thepopulationhas a sufficient numberof them it is
ripe for invasionbyDiscriminatingDefector (or evenby
Undiscriminating Defector). Nevertheless, the combi-
nation of Results 1 and 2, and also Result 3, show that
Discriminating Altruists can stage a comeback. Our
analysis reveals that, while altruism may not be stable,
the absence of altruism is also unstable. Moreover,
when fitness differences are marked, we can expect that
populations will spend most of their time in states of
high cooperation, with occasional crashes and brief
recovery periods. As we shall see later, this
optimistic expectation is confirmed by computer
simulations.

We now briefly explore the consequences of
supposing that interactions are not fully optional.
Animals are paired at random, and can either play
with their assigned partner or opt out. As before,
Solos always opt out, Discriminating Altruists play
if and only if the assigned partner has not previously
defected on them (and opt out otherwise) and
they cooperate when they play, Discriminating
Defectors also play if and only if the assigned partner
has not defected on them and they defect when they
play.

 4.     

   

Initially Discriminating Altruists are indistinguish-
able from Solos. Once there are two (or more)
Discriminating Altruists there is a non-zero probability
that they will be paired, and, on such occasions,
each will receive R, a payoff that exceeds the opt out
payoff W. So the fitness of Discriminating Altruists can
be written as M(rR+(1−r)W) where rq0, which
exceeds the payoff for Solos of MW.

 5.       

 

In a population of Discriminating Defectors,
the payoff to a Discriminating Defector will be
M(rP+(1−r)W), where rq0 (r is now the probability
that two Discriminating Defectors who have never
previously met are paired). The payoff to Solo is MW,
and, since WqP, Solo has a selective advantage.

 6.    

     

,       

-      

   

Suppose the population has n Discriminating
Altruists and (N−n) Discriminating Defectors. The
expected number of encounters of a Discriminating
Altruist with a Discriminating Defector is M(N−n)/N.
The total payoff to a maximally unlucky Discriminat-
ing Altruist from these encounters is
(N−n)S+M(N−n)W/N. The rest of the time
Discriminating Altruists are paired with one another
for total payoff MnR/N. The total payoff for
Discriminating Altruists is thus bounded below by

(N−n)S+M[(N−n)W+nR]/N.

The total payoff for Discriminating Defector is
bounded above by

(N−n)T+(M−N+n)W.

Discriminating Altruists will have a selective advantage
provided that

Mn(R−W)/Nq(N−n)(T−S−W).

When Discriminating Altruists are prevalent (n is close
to N), this condition becomes

M/Nq(T−S−W)/(R−W),

which is very similar to the condition in the
fully-optional game.WhenDiscriminatingAltruists are
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rare (nq1, but small in relation to N), increase of
Discriminating Altruists requires that

2M/N2q(T−S−W)/(R−W).

This is farmore exacting than the condition ofResult 3,
and it is thus only in special cases (M extremely large)
that we could expect a small number of Discriminating
Altruists to invade a population fixed for Discriminat-
ing Defector in the semi-optional game.

From Results 4–6, we can expect that the dynamics
of the evolution of cooperative behavior in semi-
optional games will resemble that in the fully-optional
case, but that recovery from crashes is likely to
be slower and mediated by the presence of Solos.
Intuitively, the direct route from Discriminating
Defector to Discriminating Altruist is now partially
blocked, and, very frequently, only the trajectory from
Discriminating Defector to Solo to Discriminating
Altruist will be available.

3. Computational Simulations

The above analytical results are based on assuming
that the populations are relatively simple in two ways:
first, that the populations consist of individuals who
use one of a small set of strategies; second, that the
strategies are chosen from the set of simple strategies
described in Section 2. In order to investigate the
properties of more heterogeneous populations, and of
populations containing individuals following more
complex strategies, we performed a number of
computational simulations of populations of players
who participate in the iterated Prisoner’s Dilemma by
following inherited strategies. Our simulation results
support and expand upon the analytic results, and also
illustrate how the genetic representation of strategies
can influence the evolutionary dynamics of popu-
lations whose members deploy those strategies.

This section describes the algorithms used in the
computational simulations. The next section presents
the results of those simulations, and describes the
dynamics of a few of the runs we performed.

In the simulations, the actions performed by each
player are represented as a history sequence. The
lengths of histories recorded in our simulations varied
from 2 to 4. For example the sequence (C C) indicates
that a player cooperated on both of the previous two
rounds; the sequence (D C) indicates that a player
defected two rounds ago, but cooperated the last
round. The symbol N is used when the players haven’t
played as many rounds as the history records. Thus for
a history of length 2, the sequence (N N) indicates that
no rounds at all have been played; the sequence (N C)

means that a single round was played, and the player
cooperated.

Strategies are represented by pairing each possible
history of opponent’s actions with the action to make
in response the next round. This pairing of a history
with a response action will be called a ‘‘move’’. The
following move represents the response of defecting if
the opponent cooperated twice in a row:

((C C) D)

This move represents the action of cooperating in the
first round:

((N N) C)

Given a specific history length, a complete strategy
contains a move for each possible history sequence of
that length. For example this strategy represents
the Tit-for-Tat strategy in which two steps of history
are recorded:

((N N) C)
((N C) C)
((N D) D)
((C C) C)
((C D) D)
((D C) C)
((D D) D)

In this strategy, the player begins by cooperating and
then responds with whatever its opponent did the last
round.

A sequence of rounds between two players is
simulated by using the strategies of the two players to
determine their moves for each round, depending
on what the other player did the last rounds. Each
player receives an increment to a ‘‘fitness’’ value
according to this payoff schedule:

Payoff Explanation Value

T Defect if other cooperates 7
R Both cooperate 5
W Opt out 3
P Both defect 2
S Cooperate if other defects 0

In a generation, each player plays against each other
player in the population some number of rounds.

For example consider a simulation of the
compulsory game in which one step of history is
recorded. Two players with the following strategies are
chosen to play the game:

((N) C) ((N) D)
((C) C) ((C) D)
((D) D) ((D) C)
Player one Player two
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The players begin their interactions with fitness
values of 0. In the first round both of the histories are
(N), so player one will cooperate and player two will
defect. Player one’s fitness will remain 0, while player
two’s fitness will be set to 7. In the second round, player
one consults its strategy with the history (D) and
defects. Player two uses the history (C) and also
defects. Both players fitness values are incremented
by 2. On the third round, player one defects again,
but player two cooperates. Hence player one receives
7 and player two receives 0. The next round player one
cooperates again and so does player two, so they both
receive 5 points. The next round player one cooperates
but player two defects. After this point the histories are
identical to that after the first move, and so the players
performas they did then, and continue to cycle through
the same sequence of moves.

In the first generation of a simulation, each of the
players is assigned a random strategy—the response
action to each possible history sequence is randomly
chosen from the available moves. At the end of each
subsequent generation, the set of players is sorted in
order of decreasing value of the total fitness payoffs
each received while playing against the other players.
The top third of the players is preserved into the next
generation, and those players are also used to create
the strategies of the rest of the players in the next
generation. Each new strategy is created by mixing
the strategies of two of the most successful
players—for each possible history, the response
action is taken randomly from one or the other
parent’s strategy. Mixing strategies in this way has the
effect of rapidly distributing advantageous moves
through the population. A small fraction (for most of
our runs: 1%) of the moves are then mutated by
replacing the action part of the move with a randomly
chosen action.

In each generation, a record is kept of the total
number of moves of each type: ‘‘cooperate’’, ‘‘defect’’,
and for the optional games, ‘‘opt out’’. At the end of
a generation the average fitness of the population is
also recorded. A sample run of the compulsory game
is shown in Fig. 1. As is typical for the runs reported
here, the population moves through a number of states
in which the levels of cooperation and defection are
fairly stable for tens of generations or longer. Rapid
transitions then occur, yielding other stable states.

In this run the population quickly enters a state of
high cooperation and fitness. Around generation 70, it
reverts to a state of virtually 100% defection and low
fitness. This is followed at generation 150 with a state
of 50% cooperation, 50% defection and an
intermediate fitness value. Around generation 310, the
population again finds a state of very high cooperation.

The results of an entire run are summarized with two
numerical values:

The ‘‘cooperativity’’ measure is meant to quantify
the degree to which cooperative behavior dominated
during the run. Cooperativity is defined as the fraction
of generations during a run when the difference
between the percentages of cooperative moves and
defection moves is greater than a threshold of 25.
The cooperativity value for the run shown in Fig. 1 is
0.494. (The precise value of the threshold for
computing the cooperativity value is not crucial. For
example changing the threshold to 70 for the run in
Fig. 1 changes the cooperativity value from 0.494 to
0.488. This is because the runs tend to remain in states
where either cooperation or defection is relatively high,
and the other is correspondingly low.)

The ‘‘instability’’ measure is meant to quantify the
degree to which the amount of cooperation varies from
generation to generation. This is defined as the average
of the square of the difference between the number of
cooperative moves in successive generations. The
instability value for the run shown Fig. 1 is 19.41. The
instabilitymeasure increases if a run entersmore states,
or if the states that it enters do not have constant values
of cooperation. The value of the instability measure for
simulations depends on the simulation parameters.
For example in a set of 20 runs of 500 generations of
the compulsory game with 36 players, a history of
length 2, and 10 rounds between each pair of players,
increasing the fraction of moves mutated each
generation from 0.1% to 10% changed the average
instability value from 3.28 to 28.37. As is shown below,
the instability value is also strongly affected by whether
the game is compulsory or optional.

Two versions of the optional game were simulated:
the ‘‘semi-optional’’ and the ‘‘fully-optional’’ game. In
the semi-optional game players are paired off as in the
compulsory game, and each pair plays some number of
rounds against each other. If either player chooses to
opt out in any move, both players receive the opt-out
payoff W.

In the fully optional game, players first attempt to
locate other players who will not opt out against them.
Such pairs then play one round against each other as
in the compulsory game, and each player keeps a
record of what its opponent does which it consults the
next time they are looking for partners.All playerswho
do not find a willing partner in a given round are
awarded the opt-out payoff. The fully optional game
requires more computational overhead to simulate,
and the runs take much longer, than the semi-optional
game, because each player must record all of the
histories of its interactions with all of the players it has
played against in a generation; and because the process
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T 1
Mean Standard Mean Standard

Game cooperativity deviation instability deviation

Compulsory 0.105 0.160 5.28 3.80
Semi-optional 0.719 0.283 13.2 5.96

of pairing off the players is more complicated than for
the semi-optional game.

Runs of the optional games are illustrated and
discussed below.

4. Simulation Results

The results of this study can be summarized in
Tables 1 and 2. The statistics in Table 1 are for a set
of 27 runs, each of 500 generations. There were 60
players in each run, two steps of history were recorded,
and each pair of players played 30 rounds each
generation. As can be seen from Table 1, the
compulsory game yields populations which are more
stable but less cooperative than those that play the
semi-optional game.

Fewer runs of the fully optional game were done, as
they take much longer. However the general result is
similar. Table 2 shows results for 12 runs of each of the
indicated games of 500 generations each, with 30
players, two steps of history were recorded and the
players played against each other an average of ten
rounds.

The reason that the statistics for the compulsory
game in Table 2 are different from those in Table 1 is
that the algorithm for pairing off players in this set of
runs corresponded to that used for the fully optional
game, except that no player could opt out. In each
round of the game, a player was paired with another
player in the population at random. The fact that some
pairs played fewer (and some played more) rounds
than the average of ten is reflected in the higher
instability values for these runs as compared with the
first table. Again however, the optional version of the
game yields more cooperative generations than does
the compulsory version of the game, and the instability
of the optional game is higher than that of the
compulsory game.

4.1.     

Runs of the compulsory game tend to become stuck
in a small number of states, either with very high
cooperation, very high defection, or half cooperation
and half defection. Often a run will be stuck in a state
for many generations. This is reflected in the relatively
low instability value for the compulsory game, and the
high ratio of the standard deviation of its cooperativity
to the mean value.

For example, when one step of history is recorded,
a run often first enters a state where all of the
players defect each round. This is because the initial
strategies are random, and so there are a large number
of players who cooperate no matter what their
opponents do. Hence the defectors receive the high T
payoff, and their offspring take over the population.

Subsequent events can be understood by examining
the strategies shown in Fig. 2, beginning with the
Undiscriminating Defector strategy shown in Fig. 2a.
Two of the single-move mutations of this strategy will
be at a disadvantage playing against it because theywill
cooperate in a round where the original will defect. If
everyone in the population is defecting all the time,
however, the move ((C) D) is never exercised. So a
mutation from the move ((C) D) to ((C) C) will not
affect the behavior of (nor the fitness payoffs
accumulated by) a player using the strategy.

After several generations of this kind of ‘‘genetic
drift’’, a population initially containing only players
with strategy 2a can be expected to contain a fraction
of players with strategy 2b. From here, a single
mutation in the ((C) D) move can change the strategy
to Tit-for-Tat, as shown in Fig. 2c. Provided that
enough of these mutations occur at about the same
time, players using Tit-for-Tat can dominate the
population, which will enter a state of very high
cooperation.This is essentiallywhat happens in the run
shown in Fig. 1 around generation 10.

T 2
Mean Standard Mean Standard

Game cooperativity deviation instability deviation

Compulsory 0.248 0.267 14.8 8.85
Fully-optional 0.668 0.292 29.9 5.10
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F. 4. A run of the semi-optional game, with one step of historyF. 1. A run of the compulsory game, with two steps of history
recorded. The trace marked O records the percentage of ‘‘opt out’’recorded. The trace marked C records the percentage of ‘‘cooperate’’

moves each generation; the trace marked D records the percentage moves each generation. The ‘‘cooperativity’’ value for this run is 0.581;
of ‘‘defect’’ moves each generation; the trace marked F records the its ‘‘instability’’ is 45.1.
average fitness of the population as a percentage of the maximum
possible value. The ‘‘cooperativity’’ value for this run is 0.494; its
‘‘instability’’ is 19.41.

F. 6. A run of the fully optional game with two steps of historyF. 5.A portion of a run of the semi-optional game, showing two
recorded. The ‘‘cooperativity’’ value for this run is 0.716; its‘‘predator–prey’’ cycles, and the beginning of a state of high

cooperation. ‘‘instability’’ is 31.7.
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((N) D) ((N) D) ((N) C) ((N) C) ((N) C) ((N) D)
((C) D) ((C) C) ((C) C) ((C) C) ((C) D) ((C) D)
((D) D) ((D) D) ((D) D) ((D) C) ((D) C) ((D) C)

a b c d e f

F. 2. Some strategies for the compulsory game, when one step of history is recorded.

However Tit-for-Tat is not immune to variation.
For example the ((N) C) move could mutate back to
((N) D) and return the population to strategies like 2b
and a state of high defection. This is what happens near
generation 70 in the run shown in Fig. 1.

Another mutation from Tit-for-Tat can yield the
Undiscriminating Altruist strategy 2d. If the population
is in a state where everyone else is following
Tit-for-Tat, following the Undiscriminating Altruist
strategy will not affect the fitness of the player, as
the ((D) C) move in Tit-for-Tat is never exercised.
However if defectors appear, they can exploit the
player who always cooperates. For example, strategy
2e is one mutation away from Undiscriminating
Altruist. If it appears, the number of players using it
will increase in the population as they prey on the
cooperators. A single mutation from 2e is 2f, which
increases defection in the population even more.

Strategies like the one shown in Fig. 2f can lead
to very stable populations, with relatively low
cooperation and fitness values. A pair of players
playing this strategy will cooperate 50% of the time
and defect 50% of the time. Furthermore there is no
possibility of genetic drift with this strategy as each
move of it is exercised and each one-mutation variant
of this strategy is at a disadvantage against it. The
population in the run shown in Fig. 1 enters a state
where each member of the population is playing
a variant of this strategy around generation 155.
Note that the state remains steady for around 60
generations, before the population returns to a state of
relatively high cooperation.

With longer history lengths, strategies like 2f, in
which pairs of players using the strategies alternate
between cooperation and defection, can be very stable.
For example the strategy shown in Fig. 3 is a variant
of 2e for a history length of 2. In Figure 3, the ‘*’
character indicates moves that are exercised when
players using this strategy play against each other. Five
of the seven moves are used in such an encounter, and
therefore cannot mutate away from those shown
without having an immediate effect. Mutations to the
other two moves actually serve to reinforce the
patterns of interactions seen when the rest of the
players are using this strategy. It is important to note
that the stability of this strategy is not a matter of any
static superiority of the strategy compared with all
possible competitors: instead this strategy is stable

because its genetic representation is such that there are
no better alternatives to it via single mutations. So a
population in which all players are following such a
strategy constitutes a robust local optimum in the
evolutionary search. We have observed runs of the
compulsory game in which the population remains
stuck in states where populations are using such
strategies for thousands of generations, though
transitions to states of high cooperation or high
defection eventually occur.

4.2.     

With the option of opting out, populations in the
optional games can escape from states in which there
is a significant amount of defection. Since the payoff
for opting out, W, is larger than both S, the payoff for
cooperating when the opponent defects, and P, the
payoff for mutual defection, the presence of defection
in the population makes opting out an advantageous
alternative. Thus populations playing the optional
games will tend to revert to states of high opting out
whenever a number of defectors appear. This fact
alone accounts for some of the reason why the optional
game leads to higher cooperativity—it just can’t
become stuck in states of high defection.

A run of the semi-optional game with one step of
history recorded is shown in Fig. 4. As is typical
for runs of the optional games, the population enters
more states than otherwise equivalent runs of the
compulsory game, and the states that it enters aremuch
less stable.

Since the initial strategies are random, and therefore
include many defectors, opting out is initially favored,
and most runs of the semi-optional game enter states
of virtually 100% opting out in the early generations,
often as early as generation 10. From then one, the
populations tend to go through cycles of various sorts.
One kind of cycle involves the appearance of defectors,

((N N) D) (
((N C) C)
((N D) C) (
((C C) D) (
((C D) C) (
((D C) C) (
((D D) D)

F. 3. A stable sub-optimal strategy for the compulsory game,
when two steps of history are recorded. The moves marked * are
exercised when a pair of players with this strategy compete against
each other.
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T 3
Optional Mean Standard Mean Standard

game cooperativity deviation instability deviation

Semi- 0.401 0.263 27.8 10.02
Fully- 0.668 0.292 29.9 5.10

which is usually soon followed by a reversion to high
opting out.

Another kind of cycle seen in the semi-optional
games involves the appearance and subsequent
disappearance of players who always cooperate.
If almost every other member of the population is
opting out each round, there is no danger to the few
players who mutate to strategies that involve some
cooperation. Indeed, when these players play against
each other, and receive the reward R for mutual
cooperation (which is larger than the W opting out
payoff), they will increase in the population. However
when there are lots of careless cooperators in the
population, there is an advantage to be gained by
defecting. If mutations occur to create strategies that
involve some defection, defectors will rapidly increase,
effectively destroying the cooperators. Since the
resultant level of defection is high, opting out is now
relatively advantageous, and the population reverts to
a state where everyone is opting out. This pattern is
similar to the ‘‘predator–prey’’ cycles seen in
population biology.

A typical run of the semi-optional game will go
through a number of cycles. In some cases it is possible
that the mutations that increase defection either
include or are followed by mutations that increase the
discriminatingness of the strategy, either by playing
Tit-for-Tat, or by opting out when an opponent
defects, i.e. the Discriminating Altruist strategy. If such
mutations occur before defection rises significantly, it
is possible for the players possessing these strategies to
continue to increase in the population even when
defection rises temporarily. Thus the population can
enter and remain in a relatively stable state of high
cooperation.

This process is illustrated in Fig. 5. This shows
a portion of a run of the semi-optional game. At
generation 60, virtually all of the players are opting out
in each game. Around generation 70, a few players
begin cooperating. Since they manage to find other
cooperators, their numbers increase. Within two
generations, however, a few defectors appear. Since
these defectors will prevail over the cooperators, their
numbers increase rapidly, and by generation 80 or so,
the cooperators are gone. A similar but less dramatic
pattern of this sort begins almost immediately, and is
over by generation 90.

At generation 91, another set of cooperators
appears, followed closely by defectors. However in this
case, at least some of the cooperators are playing a
discriminating strategy, and in fact by generation 108,
the defectors begin disappearing from the population.
By generation 110, virtually all of the players are
cooperating all of the time.

As with the compulsory game, states of high
cooperation are not stable either. With all of the
members of the population cooperating, genetic drift
can set in, and mutate some of the discriminating
strategies to their careless versions, providing fodder
for defectorswhen they appear bymutation.As before,
the high rate of defection will ultimately be followed by
an increase in opting out.

The general dynamics of the fully optional game are
similar to those for the semi-optional game. Slightly
higher cooperativity is seen, as illustrated in Table 3,
but it is not clear if this is significant. The parameters
for these runs are: 30 players, 10 game interactions,
history length of 2. The statistics are for 12 runs of 500
generations each.

A run of the fully optional game with 2 steps of
history recorded is shown in Fig. 6. The population
quickly finds a state of high cooperation without an
intervening period of opting out, as predicted by
the analysis in Section 2. Around generation 70, this
state crashes and yields a period of high opting out that
lasts (with one short glitch) until generation 205.
At this point, the population enters a state where
cooperation is still relatively high, but the fraction of
defection moves is around 30%. This state lasts until
generation 440, when a state of high cooperation
occurs. Again, the transition to the higher level of
cooperation happens without an intervening period
of opting out.

5. Conclusion

The superiority of the optional games in reaching
states of high cooperation can be demonstrated
analytically, and is supported by the dynamic
properties that simulations of such games manifest.
There is no way for a population playing the
compulsory game to escape from a state of high
defection, except if several favorable mutations appear
simultaneously. In the optional games there are routes
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out of states of high defection. The option of asocial
behavior facilitates the appearance and maintenance
of altruistic behavior.

In thinking about the evolution of social behavior it
is important to recognize that such behavior occurs
against a changing environment consisting of the
behaviors of the other members of the populations.
Thus suchanevolutionaryprocess isa feedbacksystem,
and the global properties of such a process should be
expected to fluctuate, perhaps chaotically. The relative
fitness of a given behavior or strategy cannot be
assessed statically, with respect to a specific, or to a
fixed, environment. In the long run, the evolutionary
dynamical properties of strategies and their genetic
representations, may have the most significant effect
on the careers of populations using those strategies.

Obviously, in addition to more detailed analysis and
simulation of the optional games, it is important to see
if the optional games provide a more ethologically
valid model of some animal interactions. One would
have to be able to distinguish between an animal’s
refusal to participate in an interaction (‘‘opting out’’)
and its failure to reciprocate an altruistic action of
another animal (‘‘defection’’). Our model predicts that
geographically separate, but genetically equivalent,
populations of the same species might differ markedly
in their social interactions, with some populations
exhibiting high cooperation, some behaving asocially,
and others enduring periods of highly antisocial
behavior.

There are many ways in which to introduce
complications into the study of altruism in optional
and semi-optional games. For example, animals may
make various types of errors of recognition, potential
partners may vary in quality, and different types
of game-theoretic situations may arise. Our prelimi-
nary analyses reveal that these complications do not
markedly affect the results presented herein. A slightly
more detailed survey of some possible complications is
given in Kitcher (1993), where the evolution of
specifically human types of altruism is also addressed.
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