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Molecular simulation is an important and ubiquitous tool in the study of microscopic phenomena in
fields as diverse as materials science, protein folding and drug design. While the atomic-level resolution
provides unparalleled detail, it can be non-trivial to extract the important motions underlying simula-
tions of complex systems containing many degrees of freedom. The diffusion map is a nonlinear dimen-
sionality reduction technique with the capacity to systematically extract the essential dynamical modes
of high-dimensional simulation trajectories, furnishing a kinetically meaningful low-dimensional frame-
work with which to develop insight and understanding of the underlying dynamics and thermodynamics.
We survey the potential of this approach in the field of molecular simulation, consider its challenges, and
discuss its underlying concepts and means of application. We provide examples drawn from our own
work on the hydrophobic collapse mechanism of n-alkane chains, folding pathways of an antimicrobial
peptide, and the dynamics of a driven interface.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The development of efficient, scalable and highly parallelized
simulation algorithms together with ever increasing computa-
tional power, bolstered in recent years by the advent of the multi-
core era [1], has given rise to molecular simulations spanning time
and length scales unthinkable merely a decade ago [2,3]. This has
permitted the exploration of previously inaccessible phenomena,
such as millisecond conformational rearrangements of proteins
[2], or the observation of DNA translocation through a transmem-
brane pore [4]. Atomistically detailed classical molecular dynamics
simulations furnish the positions and velocities of, and forces upon,
every atom in the system over the course of nano to millisecond
time periods, providing a resolution unattainable by experimental
approaches, and access to length and time scales far beyond those
accessible to quantum mechanical treatments.

Attendant to the exploration of large molecular systems over
long time scales, is a vast increase in both the length and dimen-
sionality of the associated simulation trajectories, further exacer-
bating the perennial issue of how to systematically extract the
important dynamical motions and distinct conformational states
underlying voluminous simulation data sets [5]. The existence of
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low-dimensional effective descriptions is supported, for example,
by studies of proteins demonstrating the important dynamics to
be confined within a handful of collective motions [6–10], permit-
ting the conformational space explored by a 22-residue b-hairpin
[11] and a 10-residue polyalanine chain [12] to be parametrized
by as few as three effective degrees of freedom.

Despite the availability of unprecedented computational power,
many phenomena remain beyond the length and time scales
attainable with atomistically detailed simulation techniques, for
instance the folding/unfolding transitions of large proteins or the
assembly of multimeric enzymes into their quaternary structure.
One means to reduce the computational cost of simulating large
molecules and collective assembly processes is to coarse grain
the molecules into lower resolution abstractions in a manner pre-
serving their salient features, while greatly reducing the number of
degrees of freedom [13]. An alternative approach exploits the
Mori–Zwanzig projection operator approach to formulate a low-
dimensional generalized Langevin equation in a small number of
variables describing the slow dynamical modes of the system
[14–16]. The ‘right’ variables in which to construct the low-dimen-
sional parametrization, however, may be intuited for only the
simplest systems, with dimensionality reduction of short, atomis-
tically detailed simulations providing a means to systematically
determine these variables and properly parametrize the associated
Langevin equation [16–18].

The validity of a low-dimensional representation of a molecular
system is founded on the assumption that the system dynamics
may be well-modeled by a diffusion process, whereby its dynamical
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evolution is governed by small number of slow modes to which the
remaining fast degrees of freedom couple as effective stochastic
noise [14,18,19]. The order parameters associated with these slow
modes are ‘good’ in the sense that the dynamical evolution accord-
ing to the stochastic differential equations written in these vari-
ables is, on sufficiently long timescales, Markovian – the
evolution of the system depends only on the instantaneous state
and not on its previous history – and closed – all information re-
quired to propagate the system in time is contained within this
set of variables [15].

Geometrically, the existence of a low-dimensional description
assumes that the molecular system exhibits a low-dimensional
manifold structure [20], in the sense that the full-dimensional
phase space accessible to the process is only sparsely populated.
The values – or more generally, the statistics – of the fast degrees
of freedom are slaved to the evolution of the slow variables, possi-
bly due to the presence of steep free energy gradients, thereby
effectively restraining the dynamical evolution of the system to a
low-dimensional hypersurface which we term the intrinsic mani-
fold [15,19].

The existence of such low-dimensional descriptions has been
demonstrated for many complex biophysical systems, and may
be considered to arise from cooperative couplings between molec-
ular degrees of freedom leading to a separation of time scales be-
tween fundamental and slaved dynamical modes [6–8,10–
12,19,21,22]. The development of tools with which to systemati-
cally extract these fundamental underlying modes is of critical
importance in gaining insight and understanding of the process,
parametrization of dynamically meaningful free energy surfaces,
and robust classification of the metastable and stable conforma-
tional states.

The goals of this letter are to place the diffusion map in the con-
text of the spectrum of dimensionality reduction methods, to dis-
cuss recent examples of its useful application to the
interpretation of molecular simulation data, and to outline what
we consider to be promising future applications of this technique
in the broad area of molecular simulation.

The organization of this letter is as follows. In Section 2 we
briefly survey popular contemporary dimensionality reduction
methodologies. Section 3 describes the diffusion map approach in
some detail, considering its application, interpretation, advantages,
limitations and computational aspects of its deployment. In Sec-
tion 4 we briefly survey three case studies from our own research
in which diffusion maps have proved a powerful and effective tool
in the analysis of molecular simulation data. Finally, in Section 5
we present our view of the current and future role of the diffusion
map in the field of molecular simulation, mention some particular
applications for which we believe it holds great promise, and out-
line current challenges and directions for the technique.
2. Dimensionality reduction techniques

In the application of dimensionality reduction methodologies to
molecular simulation trajectories, one typically seeks to construct
a low-dimensional description of the ensemble of configurations
explored by the system over the course of the simulation. Unex-
plored regions of phase space may be inaccessible due to physical
constraints such as excluded volume overlaps or the existence of
high free energy barriers. Methods to achieve adequate sampling
of the thermally accessible phase space for systems exhibiting high
free energy barriers is an important area of continuing research,
but one which is distinct from the goals of dimensionality
reduction.

Since the intrinsic manifold is typically defined as a hypersur-
face in configurational space, its reconstruction does not consider
particle velocities. Accordingly, while the dimensionality reduc-
tion techniques discussed below are often applied to molecular
dynamics (MD) simulation trajectories, they are equally applica-
ble to Monte-Carlo (MC) simulations where particle velocities
are not defined. Conceptually, one may consider the simulation
algorithm simply as a means to sample the thermally accessible
regions of configurational space, and dimensionality reduction
as a means to synthesize a low-dimensional parametrization of
this space [19].

Approaches to dimensionality reduction may be broadly classi-
fied as linear or nonlinear. In the case of the former, the reduced
dimensional representations generated are restricted to linear
combinations of the input variables. Geometrically, this is equiva-
lent to assuming that the purported low-dimensional manifold
structure of the data in the original high-dimensional space may
be well-approximated by a hyperplane. Conversely, nonlinear
techniques admit low-dimensional descriptions formed by arbi-
trary nonlinear functions of the input variables, rendering such
techniques more appropriate for systems whose dynamics lie on
complex, possibly highly curved and convoluted, low-dimensional
intrinsic manifolds.

Principal component analysis (PCA) [23] – also known as the
Karhunen–Loève transform (KLT) – is the prototypical linear
dimensionality reduction technique, which has found widespread
applications in fields ranging from stock portfolio optimization
[24] to analysis of evolutionary modules in three-dimensional pro-
tein structure [25]. The technique was introduced in the analysis of
molecular simulation trajectories by Karplus and coworkers (under
the name ‘quasi-harmonic analysis’) [26] and García [6], as a
means to obtaining a set of orthogonal vectors spanning the ‘essen-
tial subspace’ [8] capturing the largest amplitude dynamical mo-
tions contained within the trajectory. A particularly attractive
feature of PCA is that the linear transformation mapping the input
atomic coordinates into the low-dimensional essential subspace is
explicit, permitting unambiguous physical interpretation of the
collective dynamical motions associated with the order parameters
defining the low-dimensional essential subspace.

In some instances, linear techniques may adequately capture
complex dynamics by embedding inherently nonlinear intrinsic
manifolds in higher dimensional hyperplanes [11,21,27], but in
other cases such approaches have been shown to fail more se-
verely, providing inadequate preservation of local structures [28]
and separation of stable conformational states [10,11]. In that they
do not assume the a priori validity of a hyperplane approximation,
nonlinear techniques are expected to be more robust, parsimoni-
ous and globally valid than linear approaches employing the same
number of variables [10,11,29].

Variants of PCA have been developed to lift the linear restric-
tion, including kernel PCA [30] and what was described as ‘nonlin-
ear PCA’ [31,32]. The former assumes the availability of an
appropriate nonlinear transformation with which to ‘pre-treat’
the data, whereas the latter employs neural networks to uncover
appropriate nonlinear transformations. Full correlation analysis
(FCA) [27] is a relatively new technique which seeks to capture
nonlinear and multivariable correlations among input variables
by minimizing the Shannon mutual information.

The majority of recent advances in nonlinear dimensionality
reduction have, however, focused on the development of manifold
learning techniques, which infer the global geometry of the intrin-
sic manifold by integrating local information about its structure
into a coherent global description [33]. The physical interpretation
of the low-dimensional representations furnished by these tech-
niques is more challenging than for linear approaches, since the ex-
plicit (nonlinear) functions relating the input and output variables
are typically unavailable. This is an important issue to which we
will return below.
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Several manifold learning algorithms have emerged in recent
years, examples of which include local tangent space alignment
(LTSA) [34], local linear embedding (LLE) and its variants [35,36],
Isomap and its variants [10,37,38], semidefinite embedding
(SDE)/maximum variance unfolding (MVU) [39], Laplacian eigenm-
aps [40], Hessian eigenmaps [41], and diffusion maps [28,42].
These methodologies share many common features [20,42], but
under some assumptions to be discussed below, it has been shown
that the low-dimensional order parameters furnished by diffusion
maps may be interpreted as descriptors of the underlying dynam-
ical motions contained within the data set [33]. This feature is par-
ticularly attractive in the analysis of molecular simulation
trajectories, permitting the synthesis of dynamically meaningful
low-dimensional representations, and facilitating the inference of
transition mechanisms between conformational states.
3. The diffusion map

3.1. Introduction

Diffusion maps were introduced by Coifman and coworkers in
2005 as a tool for the multiscale analysis of high-dimensional data
sets [33]. The technique has been rapidly adopted by many
researchers, finding diverse applications in many fields, such as
harmonic analysis, graph partitioning, and tomographic image
reconstruction [19,22,28,43–47].

In recent years, we have applied and developed the diffusion
map technique to synthesize low-dimensional embeddings of
high-dimensional molecular simulation trajectories [19,21,22,29].
As we shall see, the embeddings are constructed by the diffusion
map in such a manner that configurational microstates which are
kinetically close – in the sense that they are connected by a large
number of short pathways – are placed nearby one another,
whereas states which are only connected by a relatively small
number of long pathways – perhaps due to the presence of a
dynamical bottleneck – are placed far apart [33]. Furthermore, un-
der some modest assumptions, the order parameters spanning the
low-dimensional embedding characterize the important dynami-
cal motions underlying the temporal evolution of the molecular
system [33].

To make these ideas concrete, and illuminate the means by
which diffusion maps embody these features, we consider the
application of the approach to a hypothetical simulation trajectory
of a molecular system comprising P atoms. The instantaneous
(classical mechanical) configurational microstate of the system
may be specified by a 3P-dimensional state vector recording, for
example, the Cartesian coordinates of the constituent atoms. Cor-
respondingly, a simulation trajectory comprising N frames or snap-
shots may be represented as an N-by-3P observation matrix
tracking the instantaneous state of the system as it moves through
the 3P-dimensional configurational space. In the diffusion map ap-
proach, the ordering of the snapshots (rows) and observation/input
variables (columns) is immaterial, and snapshots need not be col-
lected at uniform time intervals.

The particular simulation algorithm employed may simply be
regarded as a means to populate the accessible configurational
space [19], where the precise region explored, and therefore the
low-dimensional parametrization extracted, depends on the ther-
modynamic ensemble in which the simulations are conducted,
and the sampling efficiency of the algorithm. In the following out-
line of the technique, which broadly follows that presented in Refs.
[19,21], we shall consider the hypothetical system to consist of
explicitly modeled atoms, but the technique is also extensible to
higher-level models consisting of united atoms, coarse-grained
interaction sites or multi-molecular aggregates. Correspondingly,
the approach is also applicable to simulation trajectories generated
by algorithms beyond conventional MD and MC, such as coarse-
grained Brownian dynamics, dissipative particle dynamics, kinetic
Monte-Carlo [22] (c.f. Section 4.3) or even systems of coupled
deterministic or stochastic differential equations [45].

3.2. Calculation of similarity distances

The initial step in the application of the diffusion map is the cal-
culation of similarity distances d(i, j) between all pairs of 3P-
dimensional snapshots i, j = 1 . . . N in the observation matrix. For
the low-dimensional order parameters synthesized by the diffu-
sion map to be good descriptors of the important dynamical mo-
tions of the high-dimensional molecular system, these similarity
distances should be a good measure of the ease with the system
may evolve from the microstate defined by one snapshot, to that
corresponding to another.

Ideally one would like to employ a dynamic measure of inter-
state transition rates, but for more than a small number of snap-
shots this would require a prohibitively expensive calculation by
a computationally intensive technique such as transition interface
sampling [48]. Instead, one typically employs a structural metric
capturing the short time diffusive motions of the system from
one configurational microstate to another. It is from this structural
proxy for the short-time dynamic proximity of the constituent sim-
ulation snapshots that the diffusion map synthesizes a global
description of the important underlying modes contained in the
data.

For simulations of a single solute, either in isolation, or in impli-
cit or explicit solvent, the translationally and rotationally mini-
mized root mean squared deviation (rmsd) between the solute
atom coordinates is a natural choice for d(i, j) that is expected to
capture the thermal fluctuations driving the short time diffusive
molecular motions [19,29]. Depending on the particular system,
alternative metrics based on, for example, the earth mover’s or
Hamming distances may be appropriate [22]. Prior experimental
or computational knowledge about the conformational dynamics
may warrant the use of more elaborate metrics. For example, a
study of enzyme conformational dynamics or substrate docking
may employ heavier weightings on the subset of solute atoms
defining the active site or binding pocket.

The reorganization of solvent molecules around a solute, or
more generally of one molecule relative to another, renders the
definition of meaningful distance measure explicitly accounting
for multi-molecular atomic coordinates, a non-trivial matter. Nev-
ertheless, metrics based on coarse-grained abstractions of the sys-
tem to a grid have shown promise in the application of the
diffusion map to collective phenomena [22,29]. We have also dem-
onstrated that solvent effects may sufficiently strongly influence
the ensemble of solute conformations sampled by the simulation
to be implicitly captured by a purely solute-centric distance metric
[19].

3.3. Soft thresholding

Having defined d(i, j) for all snapshot pairs, the pairwise dis-
tances are then soft-thresholded by a Gaussian kernel of band-
width �, and stored in a matrix A with elements,

Aij ¼ exp � dði; jÞ2

2�

 !
i; j ¼ 1 . . . N: ð1Þ

The soft-thresholding operation has the effect of retaining only
short pairwise distances on the order of

ffiffiffi
�
p

, providing a description
of the local connectivity of each point with its neighbors on the
surface of the intrinsic manifold. Large distances, which are not
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expected to meaningfully characterize the manifold structure, are
discarded.

Interpreting the fractal dimension of the data points in the 3P-
dimensional configurational space as a measure of effective dimen-
sionality [49], Coifman et al. proposed twice the slope of the linear
regime in a plot of log

P
i;jAij

� �
against log (�) as an estimate of the

dimensionality of the intrinsic manifold, with appropriate values of
� delimited by the extent of this linear region [43].

Since the diffusion map proceeds by integrating local structural
information into a unified global reconstruction of the intrinsic
manifold, the trajectory must be well-connected, in the sense that
each snapshot be accessible from any other by a series of ‘small
hops’ of O

ffiffiffi
�
p� �

in the distance metric [21]. In the case of discon-
nected data – as may arise, for example, in replica exchange molec-
ular dynamics simulations (REMD) [21], or due to poor sampling of
high free energy barrier regions [29] – the diffusion map may not
generate a single useful global approximation to the underlying
manifold, but rather synthesize distinct embeddings of each dis-
connected region. By filling in the gaps in the sampled conforma-
tional ensemble, perhaps through the use of biased sampling
techniques [29], or by discarding the disconnected regions in the
data [21], a meaningful low-dimensional embedding may be
recovered.

3.4. The diffusion map embedding

The rows of the A matrix are then normalized to yield the M
matrix, a right-stochastic Markov transition matrix with elements,

Mij ¼
AijPN
j¼1Aij

i; j ¼ 1 . . . N: ð2Þ

By virtue of its Markovian nature, the top eigenvalue/eigenvector
pair of M is trivial, with w1 = 1 and ~W1 ¼~1, where ~1 is the all-ones
vector. The diffusion map embedding is defined as the mapping of the
ith snapshot into the ith components of each of the top k non-trivial
eigenvectors of the M matrix,

snapshoti # ~W2ðiÞ; ~W3ðiÞ; . . . ~Wkþ1ðiÞ
� �

: ð3Þ

The low-dimensional embedding defined by the mapping is a
reconstruction of the intrinsic manifold underlying the molecular
system, data-mined directly from the simulation trajectory. We
present a simple illustration of an application of the approach to
the canonical ‘Swiss roll’ data set in Figure 1. (We observe that a
more generalized time dependent version of the diffusion map
embedding may be defined, as discussed in Ref. [15].)

3.5. Properties of the embedding

If the dynamical system is well-approximated as a diffusion
process, and the pairwise similarity metric is a good measure of
the short time microscopic diffusive motions, then the diffusion
map embedding possesses two attractive attributes. Firstly, Euclid-
ean distances in the diffusion map embedding incorporating all
(N � 1) eigenvectors correspond to diffusion distances in the full-
dimensional configurational space, where the latter measures the
ease with which the system can dynamically transition between
two microstates [33,50]. States connected by a large number of
short paths possess small diffusion distances, whereas those linked
by only a few long routes have large values of this measure. For
systems in which the top k eigenvectors are significant (see the fol-
lowing section), Euclidean distances in embeddings in the top k <
(N � 1) eigenvectors provide good approximations of the diffusion
distance [50].

Secondly, in the limit of N ?1 and �? 0 the eigenvectors
f~WigN

i¼2 converge to the eigenfunctions of an effective Fokker–Planck
operator [51] (modulo a factor of 2 in the associated potential),
describing a diffusion process over the low-dimensional free energy
surface explored by the simulation trajectory [19,33,43]. In other
words, the top eigenvectors of M are discrete approximations to
the top eigenfunctions of the spectral solution of the diffusion pro-
cess, and therefore describe the slowest diffusive modes and dictate
the long-time dynamics of the system [33,50].

We note that correspondence to other continuous-space opera-
tors may be obtained by performing alternative normalizations of
the A matrix in Eq. (2) [33]. The normalization corresponding to
the Laplace–Beltrami operator explicitly compensates for non-uni-
form distribution of data points over the intrinsic manifold, effec-
tively separating the geometry of the manifold from the
topography of its free-energy surface [43].
3.6. Estimation of the intrinsic dimensionality

The effective dimensionality of the system, and therefore the
specification of an appropriate number of eigenvectors to incorpo-
rate into the diffusion map embedding (Eq. (3)), may be inferred by
three means: the presence of a spectral gap in the eigenvalue spec-
trum of the M matrix [44], the aforementioned fractal measure of
the intrinsic manifold dimensionality [43], or the plateau dimension
of the diffusion map embedding [49]. Regarding the diffusion map
embedding as a mapping of the simulation snapshots onto the sur-
face of the intrinsic manifold, the dimensionality of this (possibly
highly convoluted) surface may be estimated by computing the
(fractal) dimensionality of the mapping defined by Eq. (3). We per-
form this evaluation by computing the correlation dimension [49]
of mappings incorporating successively more eigenvectors, and
determine the dimensionality at which this measure levels out,
remaining unchanged with the inclusion of additional eigenvec-
tors. Following Grassberger and Procaccia [49], we define this mea-
sure as the plateau dimension, and take it as an estimation of the
effective dimensionality of the intrinsic manifold [19].

In some instances, the observation of a spectral gap may be ob-
scured by (the statistics of) the components of certain higher order
eigenvectors being slaved to, and therefore uniquely specified by,
the components of certain other lower order eigenvectors. Despite
the mutual orthogonality of the eigenvectors of M, such functional
dependencies may arise from distinct eigenvectors characterizing
the same low-dimensional dynamical mode. We have previously
drawn an analogy with multivariate Fourier series, in which cos(x)
and cos(2x) correspond to the same direction in space, but are
nonetheless orthogonal Fourier components [19]. The existence
of such a functional dependency is manifest in collapse of the data
onto an effectively one-dimensional curve in scatter plots of the
components of one eigenvector against another (c.f. caption to Fig-
ure 2). In the absence of a clear gap in the eigenvalue spectrum, the
detection of such dependencies may facilitate the identification of
an effective spectral gap [44].

Care must be taken in interpreting eigenvalue spectra possess-
ing a series of gaps, where global conformational modes may not
be entirely contained within the eigenvectors prior to the first
gap [44]. Spectra with no gaps suggests that dimensionality reduc-
tion will fail, since the system is not well-approximated by a low-
dimensional diffusion process, and that no low-dimensional man-
ifold underlies the distribution of data points in high-dimensional
phase space [44].
3.7. Free energy surfaces and transition mechanisms

The free energy surface (FES) supported by the intrinsic mani-
fold may be computed by collecting a multidimensional histogram
approximation to the probability distribution of points in the top k



Figure 1. Application of diffusion maps and PCA to the ‘Swiss roll’ data set in which data reside on a two-dimensional surface in three-dimensional space. (a) In the context of
molecular simulation, the (x, y, z) coordinate triplets may be considered to describe the Cartesian coordinates of a single point particle, and the two-dimensional manifold to
represent a surface to which it is effectively restrained by a nonlinear coupling between its degrees of freedom. The intrinsic dimensionality of the system is therefore one less
than that of the ambient space in which it dynamically evolves. Points are colored according to their geodesic distances along the spiral. (b) Application of the diffusion map
approach and embedding of the data into the top two non-trivial eigenvectors synthesizes a meaningful reconstruction of the underlying intrinsic manifold of the system.
Diffusion maps provide a means to extract the underlying (nonlinear) two-dimensional intrinsic manifold from an set of observations of the particle position. (c) The two-
dimensional embedding of the data into the top two principal components determined by application of PCA to the data. This embedding does not adequately parametrize the
underlying manifold, instead synthesizing an effective projection of the Swiss roll in (a) into the x,y-plane.
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Figure 2. Free energy surface constructed over the intrinsic manifold of a solvated
C24H50 n-alkane chain. G is the Gibbs free energy and b = kBT, where kB is
Boltzmann’s constant and T is temperature. In this instance we observed redun-
dancy between evec2 and evec4, revealed by data collapse onto a one-dimensional
curve in a scatter plot of the components of one eigenvector against the other.
Correspondingly, the [evec2, evec4] embedding coordinates were instead defined by
the distance of the point along this one-dimensional curve, termed the arclength.
Arrows indicate the low-free energy collapse pathways from extended to collapsed
chain conformations that initiate by the development of an asymmetric kink
towards the head or tail of the molecule. The dynamic interpretability of diffusion
map embeddings permitted inference of the mechanism of collapse by superpo-
sition of representative molecular conformations from the simulation trajectory
onto the low-free energy pathways. Figure adapted from Ref. [19].
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eigenvectors, bP f~Wgkþ1
i¼2

� �
, and inverting this distribution to obtain

the FES,

bF ¼ � ln bP f~Wgkþ1
i¼2

� �
þ C; ð4Þ

where b = 1/kBT, kB is Boltzmann’s constant, T is the temperature, F
is the free energy potential corresponding to the ensemble in which
the simulations were performed, and C is an arbitrary additive con-
stant. An example of a three-dimensional FES constructed over the
intrinsic manifold extracted from simulations of a C24H50 n-alkane
chain is presented in Figure 2.

Since the leading eigenvectors correspond to the slow underly-
ing dynamical motions, the low free energy pathways linking local
free energy minima on the surface of the intrinsic manifold may be
used to infer conformational transition mechanisms. Du et al. [52]
define the reaction coordinate as the precise low-free energy path
along which the system evolves from one conformational state to
another, with only small oscillations in the degrees of freedom
orthogonal to the reaction path. In contrast, the transition coordi-
nate is defined as the motion between (meta) stable conforma-
tional states that exhibits the largest relaxation time, and may
involve large fluctuations in degrees of freedom orthogonal to
the path. Since the top eigenvectors of the diffusion map corre-
spond to the slowest dynamical motions of the system, the low free
energy paths in diffusion map embeddings may be associated with
transition coordinates, providing a good parametrization of the
evolution of the system between its (meta) stable states. The con-
formational changes associated with motions of the system along
transition pathways may be used to infer transition mechanisms,
with the fine details of the transition identifiable by superposition
of representative system configurations onto the free energy sur-
face (c.f. Figures 2 and 3) [19].

The dynamic interpretability of diffusion map embeddings
permits mechanistic information to be extracted by data mining
equilibrium simulation trajectories. The validity of this approach
requires that the simulation trajectories adequately sample the
stable and metastable states of interest, and the pathways by
which they are connected. For systems exhibiting high free energy
barriers, unbiased simulation trajectories may only surmount free
energy barriers on the order of �kBT, and are not expected to ade-
quately sample barrier regions between states. To ameliorate this
difficulty, we have recently developed a variant of the diffusion
map approach appropriate for biased simulation data which we
term the umbrella adapted diffusion map approach [29]. By reformu-
lating the diffusion map eigenvalue problem, we have shown that
the diffusion map order parameters of the unbiased system may be
obtained by appropriate reweighting and analysis of biased simula-
tion data, facilitating the efficient synthesis of low-dimensional
embeddings for systems possessing rugged free energy landscapes.

Given the important distinction between reaction and transition
coordinates, we emphasize that while the diffusion map may be
used to efficiently infer transition mechanisms, approaches such
as transition path sampling [53], forward flux sampling [54] or
geometry optimization [55] must be employed to extract precise
reaction coordinates, rates and committor probabilities. We note,
however, the potential synergy of nonlinear dimensionality reduc-
tion and path sampling, where the former may be used to robustly
identify initial and final conformational states, order parameters
through which they may be defined and transition pathways along
which path sampling should be conducted [19,29].

3.8. Eigenvector interpretation

In contrast with linear dimensionality reduction techniques
such as PCA, where the linear transformation from the ambient
to low-dimensional space is explicitly available, the primary (in
our view) weakness of the diffusion map approach is the unavail-
ability of the explicit nonlinear mapping between the input
observables – the atomic coordinates – and the diffusion map or-
der parameters – the components of the eigenvectors of the M ma-
trix. This deficiency is characteristic of nonlinear approaches,
where the physical interpretation of the eigenvectors may only
be inferred by correlation with candidate physical variables, and
the superposition of representative system configurations onto
the low-dimensional embedding (c.f. Figures 2 and 3) [19,21].

More systematic means to ascertain this physical correspon-
dence may employ techniques for high-throughput screening of
putative physical variables such as those suggested by Ma and Din-
ner [56] and Peters et al. [57,58]. The E-Isomap adaptation of the
Isomap technique by Li et al. [37,59] expresses the coordinates of
each ambient space data point as a sum of localized, nonlinear ba-
sis functions, and then computes an explicit expression for the
low-dimensional mapping by solving a linear regression problem
between the ambient and low-dimensional space [59]. Neverthe-
less, the explicit expression for the mapping strongly depends on
the choice of basis functions, and remains difficult to interpret
physically.

In the ‘equation free’ approach pioneered by Kevrekidis and
coworkers, complex dynamical systems comprising many degrees
of freedom are cast as low-dimensional effective equations (here,
generalized Langevin equations) in a small number of variables
governing the long-time evolution of the system [60]. Parameters
in the resulting Langevin equations are then determined by per-
forming appropriately initialized short bursts of detailed simula-
tion in the full-dimensional space [16,17,61]. The ability of the
diffusion map to systematically identify the important modes
underlying a dynamical system suggested a means to systemati-
cally identify ‘good’ variables in which to construct the low-dimen-
sional descriptions, and was incorporated into the methodology in
the ‘variable-free/equation-free’ approach [45]. The absence of an
explicit physical interpretation of the diffusion map eigenvectors
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has typically resulted in the formulation of the low-dimensional
Langevin equations in proxy physical variables [45], but interpola-
tive approaches have been developed to permit the development of
descriptions directly in the diffusion map variables themselves (i.e.
the eigenvectors of the M matrix) [62].

Closely related to the absence of an explicit mapping is the issue
of out of sample extension, or situating a new data point within an
existing low-dimensional N-point embedding without explicitly
computing the diffusion mapping of the augmented (N + 1)-point
system. The Nyström extension provides a means to incorporate
new points into the intrinsic manifold defined by the top eigenvec-
tors of the N-point system, but performs poorly for points located
further than a distance of

ffiffiffi
�
p

from the manifold, and is therefore
not practicable for arbitrarily located points [22,63].
3.9. Computational issues

For large M matrices, the eigenvectors corresponding to the few
leading eigenvalues may be efficiently computed by power itera-
tion, using, for example, the Implicitly Restarted Arnoldi Method
[64,65] implemented as serial and parallel FORTRAN routines in the
ARPACK [65] and PARPACK libraries [66], and underlying the MATLAB ‘eigs’
function [67].

Subsequent to the computation of the pairwise distances be-
tween snapshots, the computation of the diffusion map embedding
depends only on the number of trajectory snapshots N, possessing
no dependence on the size and dimensionality of the molecular
system. Matrix storage scales as N2, and the algorithmic complex-
ity of the eigenvector computation between N and N2 depending
on the matrix structure [65,68]. Due to the high efficiency of the
ARPACK routines, the maximum number of snapshots in a trajectory
is typically set by RAM limitations rather than execution time. For
example, a modestly sized 30000 snapshot trajectory requires over
3 GB of RAM to be held in working memory during the eigenvector
computation, whereas 500000 snapshots require almost 1 TB.

Shared memory systems are ideally suited to large matrix appli-
cations, although the use of the parallelized ARPACK routines through
an MPI interface permits the use of distributed memory architec-
tures. For very large matrices, the time required to read the large
matrix from file into memory can dominate that of the eigenvector
computation, although this deficiency may be effectively addressed
by the use of libraries and hardware supporting parallel I/O.

As an example of the timings involved in a typical application of
the diffusion map approach, we consider a 36786 snapshot molec-
ular dynamics trajectory of the 22-atom alanine dipeptide in expli-
cit water [29]. Specifying the pairwise distances between
snapshots as the rotationally and translationally minimized rmsd
between peptide conformations, the construction of the 36786-
by-36786 M matrix required 27 h on a single core 2.66 GHz Intel
Xeon processor. The eigenvector calculation was conducted over
three nodes each containing a 2.77 GHz Intel Core 2 Quad proces-
sor, requiring �100 min to serially load the matrix into memory,
and �20 min to compute the top 25 eigenvectors using the PARPACK

libraries.
4. State of the field

A primary research focus in recent years has been the applica-
tion and adaptation of the diffusion map approach in the analysis
of molecular simulation data. In this section we briefly survey
some results which have emerged from our efforts in this area, in
an attempt to illustrate the broad applicability and power of diffu-
sion maps in developing deeper insight and understanding of
molecular phenomena. For more details of these studies, we refer
the readers to the original publications.
4.1. Hydrophobic collapse of n-alkane chains

N-alkanes are prototypical hydrophobic polymers, the study of
which has implications for the understanding of the role of hydro-
phobicity in the dynamics and thermodynamics of proteins and
peptides [69]. We constructed dynamically meaningful embed-
dings of molecular simulation trajectories of n-alkane chains in ex-
plicit water to determine the mechanism of hydrophobic collapse
[19]. Previous work by Chandler and coworkers explored the col-
lapse of idealized hydrophobic polymers [70,71], but to our knowl-
edge this is the first prediction of the collapse pathway where
realistic models were used for both the hydrocarbons and water.
This work employed the rotationally and translationally mini-
mized rmsd between the atomic coordinates of the chains as a sim-
ilarity measure between snapshot pairs. Despite ostensibly
discarding all solvent degrees of freedom, the influence of the sol-
vent was shown to be sufficiently strongly ‘encoded’ in the chain
configurations sampled that its effects were manifested in the
resulting diffusion map embedding. Full details of this study are
provided in Ref. [19].

We determined the intrinsic dimensionality of a C24H50 chain in
water to be approximately three, and Figure 2 presents the associ-
ated effective free energy surface constructed over its three-
dimensional intrinsic manifold. By correlating the diffusion map
order parameters with candidate physical variables, we identified
a correspondence of the three diffusion map order parameters to
the degree of chain collapse, the location of a kink in the chain,
and the handedness of the helicity of the chain. Superposing repre-
sentative chain conformations onto the free energy surfaces re-
vealed the (dynamically meaningful) low-free energy pathway
for chain collapse to proceed by the development of a kink towards
the head or tail of the chain, which slides toward the center of the
chain to form a tight symmetric hairpin, followed by subsequent
collapse into a globular helical conformation. The symmetric col-
lapse pathway corresponding to motions directly through the cen-
ter of the ‘doughnut’ shown in Figure 2 is disfavored by the high
free energy cost associated with the collective expulsion of multi-
ple confined solvent molecules [72].

4.2. Spontaneous lasso formation in an antimicrobial peptide

Microcin J25 (MccJ25) is a 21-residue antimicrobial peptide,
the native state of which is an intriguing ‘lassoed’ b-hairpin, in
which the N-terminus wraps around the C-terminus in a coun-
ter-clockwise manner, covalently sealing it inside an 8-residue
ring [73] (Figure 3a). The structural rigidity of this fold imparts
great resistance to thermal and chemical denaturation, making
this a motif of interest in protein engineering and design
[74,75]. However, the maturation mechanism of MccJ25, and
the precise functions of its attendant maturation enzymes, re-
main poorly understood [21].

To provide an inferential understanding of MccJ25 biosynthesis,
we applied diffusion maps to long replica exchange molecular
dynamics simulations of the 21-residue linear peptide in isolation
to determine the extent to which, and pathways by which, the na-
tive lasso structure was spontaneously approached in the absence
of the maturation machinery [21]. Full details of this work are pro-
vided in Ref. [21].

Using the rotationally and translationally minimized rmsd be-
tween peptide atomic coordinates as a pairwise similarity mea-
sure, we extracted the three-dimensional intrinsic manifold
presented in Figure 3b. The embedding exhibits a triply-branched
structure corresponding to three distinct folding pathways from
the global free energy minimum located in the vicinity of structure
g. The lower route corresponds to global hydrophobic collapse of
the peptide chain (structure e), the upper route to the formation



Figure 3. Application of diffusion maps to microcin J25 (MccJ25). (a) Primary sequence of MccJ25 showing the location of the isopeptide bond between Gly1 and Glu8 residues
forming the 8-residue ring. The cartoon to the right of the sequence illustrates the three-dimensional native fold with the C-terminal strand threaded through the N-terminal
ring. (b) The three-dimensional diffusion map embedding resulting from a 95 ns REMD simulation of the 21-residue antimicrobial ‘lasso’ peptide microcin J25 (MccJ25) in
explicit water. The central pathway in the triply-branched intrinsic manifold corresponds to the spontaneous evolution of the global free energy minimum structure, G, to a
non-native lasso conformation, b, in which the N-terminal Gly1 threads between the Phe19 and Tyr20 encircling the C-terminus in a clockwise manner. In contrast, the native
state possesses a counter-clockwise topology. The data points in the embedding are colored according to a parameter K which is a measure of the identity of the residue in
the turn position of the b-hairpin. K values of�4 indicate the native Ile13 residue in the turn position, while higher values are associated with ratcheting of the b-hairpin away
from its native conformation. For visual clarity only the Gly1, Glu8, Phe19 and Tyr20 residues are explicitly represented upon the peptide backbone, and solvent molecules have
been omitted. See text for a discussion of the two other branches of the intrinsic manifold. Figure adapted from Ref. [21].
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of an improperly wrapped lasso conformation (structure i) and the
central path to the spontaneous adoption of a non-native lasso
conformation with the N-terminus encircling the C-terminus in
the opposite direction to that in the native state (structure b). De-
spite initializing the simulations in the vicinity of the native lasso
conformation, no pathways to a native lasso topology were ob-
served, suggesting a possible role for the maturation machinery
in enforcing the correct topology of the lasso motif.

The data points in Figure 3b are colored according to a param-
eter K, which is a proxy measure for the identity of the residue in
the b-turn position. Small (�4) values of K correspond to the na-
tive Ile13 in this position, while larger values correspond to a shift
in the location of the b-turn. (See Ref. [21] for details.) Only by
observing a good correlation between evec2 and K, and inspection
of the representative peptide structure projected onto the embed-
ding were we able to assign physical meaning to this eigenvector.
Similarly, evec4 was observed to show good correlation with the W
dihedral angle of the Glu8 residue. Our inability to correlate evec3
with any candidate physical variable provides a pointed illustra-
tion of the principal (in our view) current limitation of the diffusion
map approach.

4.3. Description of the dynamics of a driven interface

To study the dynamics of, for example, the motion of polycrys-
talline grain boundaries, we [22] developed a simplified
two-dimensional lattice Ising model describing the motion of a do-
main wall separating bulk regions of up and down spins, and dri-
ven by the influence of an external magnetic field. Mobile
impurities are modeled as interstitial particles that are attracted
to the domain wall. A typical system snapshot is presented in Fig-
ure 4a. The system was evolved using a kinetic Monte-Carlo algo-
rithm, and system snapshots saved for analysis through the
diffusion map approach. Full details of the model are presented
in Refs. [22,76].

The definition of a similarity metric characterizing the short
time diffusive motions of the system was less apparent in this
work than for the molecular systems described above. We devel-
oped a metric capturing the shape and local impurity concentra-
tion on the wall by ‘smearing out’ the concentration of each
impurity over its neighboring lattice sites and computing the min-
imal difference in the domain wall impurity profiles in each snap-
shot pair subject to periodic realignment. We observed a spectral
gap after the second non-trivial eigenvalue, suggesting an intrinsic
dimensionality of two and informing our construction of the two-
dimensional diffusion map embeddings in Figure 4b and c. For full
details of the application of the diffusion map approach, we refer
the reader to Ref. [22].

In Figure 4b the data points are colored according to the domain
wall roughness, while in Figure 4c we have colored them by the
number of impurities located on the domain wall. Visual inspec-
tion suggests that the antisymmetric combination of evec2 and



Figure 4. Analysis of the dynamical evolution of a driven domain wall between bulk regions of up and down spins in a two-dimensional lattice Ising model with mobile
impurities. An external magnetic field drives the wall to the right. (a) A typical system snapshot where red squares denote lattice sites containing up spins, blue contain down
spins and black sites represent interstitial mobile impurities which are attracted to the domain wall. The lattice is vertically periodic, and horizontally infinite. (b and c) Two-
dimensional diffusion map embeddings of kinetic Monte-Carlo simulations of the dynamical evolution of the driven interface colored according to (b) domain wall roughness
and (c) number of impurities located at the wall. For the precise definition of wall roughness, see Ref. [22]. Visual inspection suggests the antisymmetric, resp. symmetric,
combination of evec2 and evec3 to be well-correlated with wall roughness, resp. wall impurity concentration. Together with a non-singular Jacobian of the transformation
between the leading eigenvectors and features of the physical domain, this strongly suggests the dynamics of the domain wall to be governed primarily by the roughness and
its local impurity concentration. Figure adapted from Ref. [22]. Copyright (2009) by the American Physical Society.
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evec3 is well-correlated with wall roughness, while their symmet-
ric combination shows good correlation with the impurity concen-
tration at the wall. The Jacobian of the transformation between the
two eigenvectors and physical observables does not become singu-
lar over the manifold, further intimating the existence of a bijec-
tion between the leading eigenvectors and features of the
physical domain. These results suggest the dynamics of the domain
wall to be well-approximated by an effective two-dimensional
description formulated in the degree of wall roughness and the
impurity concentration at the interface.
5. Conclusions and outlook

The diffusion map is a powerful nonlinear dimensionality
reduction technique, which is rapidly finding broad applications
in the systematic synthesis of dynamically meaningful low-dimen-
sional representations of molecular simulation data. The approach
provides an efficient and inexpensive means to gain insight into
the important dynamical motions underlying molecular phenom-
ena. In contrast to linear dimensionality reduction techniques,
the diffusion map is not restricted to the construction of low-
dimensional embeddings from exclusively linear combinations of
the observed input variables. This attractive feature permits the
development of parametrizations expected to be globally valid
over the configurational space sampled by the simulation, and ren-
ders the technique more appropriate for complex molecular sys-
tems expected to possess highly nonlinear intrinsic manifolds.
Furthermore, nonlinear embeddings are expected to be lower-
dimensional and therefore more parsimonious than embeddings
synthesized by linear methodologies [11].

Whereas linear dimensionality reduction techniques require
the specification of a state vector characterizing the system config-
uration at each simulation snapshot, the diffusion map requires
only scalar pairwise distances between snapshot pairs. This is
potentially useful where a natural basis with which to describe
the system is unavailable, but where differences between system
configurations are well-defined. For example, consider a protein-
threading problem in which Monte-Carlo simulations applying res-
idue point mutations are employed to find low-energy primary se-
quences for a specified three-dimensional structure [77].
Dimensionality reduction may be of use to develop a coarse-
grained description of the primary sequence in terms of blocks of
closely associated residues [25]. In this instance, no natural order-
ing of the 20 amino acids exists, but Hamming distances defining
the fraction of conserved residues between sequence pairs would
provide a natural measure of sequence similarity.

Under the dual assumptions that the molecular system is well-
described by a small number of slowly evolving dynamical modes
to which the remaining degrees of freedom are effectively slaved,
and that the similarity measure between snapshot pairs is a good
measure of the short time diffusive motions, the order parameters
furnished by the diffusion map (i.e. eigenvectors of the M matrix)
are good descriptors of the slow dynamical motions of the molec-
ular system. The dynamical interpretability this imparts is a partic-
ularly attractive feature of the technique that permits mechanistic
information to be inferred from the low-dimensional diffusion map
embeddings. However, whereas path-based methods seek to ex-
tract the reaction coordinate linking two conformational states,
the diffusion map seeks to identify one or more transition coordi-
nates; the former describes the precise pathway followed by the
system, and the latter only the slowest evolving dynamical modes
of the system [52].

The (umbrella adapted) diffusion map approach represents an
efficient means to systematically identify good descriptors of the
important dynamical modes underlying (biased) molecular simu-
lations that provide good sampling of the thermally accessible
phase space. Nevertheless, only path-based methodologies have
the means to extract the fine details of a conformational transition,
validate reaction coordinates by the computation of committor
probabilities, and track the precise course of the reaction tube
through phase space [78]. In this regard, diffusion maps may be a
useful precursor to path sampling approaches, facilitating the ro-
bust identification of the reactant and product basins and the
determination of transition paths along which sampling should
proceed [19,29,79].

In our view, the principal limitation of the diffusion map ap-
proach is the absence of an explicit mapping between the ob-
served/input variables and the low-dimensional diffusion map
order parameters. Approximate mappings between the ambient
space and low-dimensional embeddings may be developed by
regressing the low-dimensional embeddings upon the original
high-dimensional coordinates [59], or training of artificial neural
networks [80], but the interpretation of such expressions typically
remains opaque. Currently, the only means to assign physical
meaning to diffusion map order parameters is to correlate them
with combinations of candidate physical variables, a process which
may be efficiently accelerated by high-throughput analysis meth-
ods such as those developed by Peters et al. [57,81] and Ma and
Dinner [56]. The development of more systematic means to assign



Low-dimensional embedding
a reduced dimensional description of the region of full-
dimensional configurational space sampled by a simulation
trajectory
(Meta)stable conformational state
a collection of nearby configurational microstates in the
full-dimensional configurational space which reside in a
local free energy basin
Reaction coordinate
an order parameter tracing the minimum free-energy
pathway along which the system evolves from one (meta)
stable conformational state to another
Transition coordinate
an order parameter describing the slowest component of
the dynamical evolution of a system between two (meta)
stable conformational states; since the reaction coordinate
is generally composed of multiple dynamical modes, the
reaction and transition coordinates are typically not
coincident
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physical meaning to diffusion map order parameters is a current
research focus that we, and others, are pursuing.

We envisage a strong future for diffusion maps in the analysis of
molecular simulation data, providing an inexpensive and efficient
means to develop low-dimensional descriptions where linear
methodologies, such as principal component analysis, are inade-
quate or inappropriate. One particularly interesting direction is
the use of the diffusion map to systematically identify a small
number of variables in which to construct low-dimensional
dynamical descriptions of the system, which, once correctly
parametrized, may permit access to time and length scales orders
of magnitude larger than those attainable by conventional molec-
ular simulation [22,45]. Another potentially intriguing application
we believe warrants further investigation is the synergy between
the diffusion map and transition path sampling. Finally, we see tre-
mendous potential for diffusion maps in the analysis of collective
phenomena such as self-assembly, where their inherently multi-
body nature arguably renders the heuristic or intuitive determina-
tion of appropriate order parameters less transparent than single-
molecule processes. We believe the systematic identification of the
important variables underlying such phenomena to be of great
importance in the understanding and control of important biolog-
ical processes such as viral capsid assembly [82] and cellular pore
formation [83], and in facilitating the rational design of organic and
inorganic building blocks with which to robustly self-assemble
materials with designed properties [84].
Jargon Box

Configurational space
the typically very high-dimensional space recording the
instantaneous value of each degree of freedom contribut-
ing to a system’s potential energy
Configurational microstate
the state of a microscopic system defined by the instanta-
neous value of each degree of freedom that contributes to
a system’s potential energy; associated with a unique
point in configurational space
Simulation trajectory
a particular realization of the dynamical evolution of the
system specified as a succession of configurational
microstates
Diffusion distance
a measure of the ease with which the dynamical system
may evolve from one configurational microstate to another;
microstates connected by a large number of short path-
ways are linked by small diffusion distances, whereas
those connected by few, long pathways are separated by
large diffusion distances
Diffusion process
a set of coupled stochastic differential equations describ-
ing the dynamical evolution of a number of, in this con-
text, slow variables under the action of a gradient field
and coupled to Gaussian white noise, in this context, as
an implicit representation of the interaction with the
remaining fast degrees of freedom in the system
Intrinsic manifold
a low-dimensional hypersurface in the full-dimensional
configurational space to which the evolution of a dynam-
ical system is effectively restrained
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