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1. The path-partition conjectures 

Let G be a (directed) graph with vertex set X and let k be a positive integer. A purtiul 
k-coloring (S,, S2, . . . ,S,) is a family of k disjoint stable sets of G. A vertex which 
belongs to Si is said to be ‘of color i’, but some vertices may be uncolored. We say that 
a partial k-coloring of G saturates a subset A of X if the number of difSerent colors 
represented in A is exactly B,(A) = min{k; IA]}, i.e. the maximum possible. A parti- 
tion of X is saturated if each of its classes is saturated. 

A puth p can denote either a sequence of distinct vertices (directed elementary path) 
or the subset of X defined by these vertices. Consider a partition M = {p1, p2, 1 of 
X into paths; if k is a positive integer, we write 

The partition M is k-optimul if M minimizes B,(M). These concepts permit to 
suggest two conjectures: 

The (weak) path-partition conjecture. Let G be a graph and let k be a positive integer; 
there exists a path-partition which can be saturated by a partial k-coloring. 

The (strong) path-partition conjecture. Let G be a graph and let k be a positive integer; 
for every k-optimal path-partition M of G, there exists a partial k-coloring which 
saturates M. 

These two conjectures, that I posed in 1981 at the Combinatorics Seminar of Paris 
and a few months later at the Silver Jubilee Conference of the University of Waterloo 
(see [ 131) were an attempt to unify the Gallai-Milgram theorem [3 l] and a compan- 
ion result proved independently by Gallai [30] and by Roy [48]. Clearly, for k = 1. 
the strong path-partition conjecture reduces to: 

For every path-partition M with a minimum number of paths. there exists a stable set 
which meets ull the paths Qf M. 

0012-36SX./97.S17.00 Copyright [Q 1997 Elsevier Science B.V. All rights reserved 
PI1 SOOlZ-365X(96)00161-6 



62 C. Berge /Discrete Mathematics 165/I 66 (1997) 61~ 70 

This is the Gallai-Milgram theorem, or more precisely a strengthening of this 
famous result which can be obtained by the same proof (see [ 111). 

For k 3 max 1~1, the strong path-partition conjecture becomes: 

For every path-partition M, the graph G can be colored with max 1 p 1 colors so that all 
the vertices which belong to the same path of M have difSerent colors. 

This is a slight and easy generalization of the classical result of Gallai and Roy [30,48]. 
If the graph G is transitive (and in particular if G is the graph of a poset), the strong 

path-partition conjecture is valid because it is equivalent to the GreeneeKleitman 
theorem [34] (for a shorter proof, see [SO]). In [ll], we proved also the validity of the 
strong path-partition conjecture if max 1~1 = 3, or if the skeleton of G is bipartite. 
Sridharan [52] proved it for a connected graph with only one cycle. The weak path- 
partition conjecture has been proved for an acyclic graph by using linear program- 
ming [37], network flow theory, or other techniques [39,50]. Also, a short proof of 
the weak path-partition conjecture when G is symmetric is due to Payan [47]. 

More recently, we proved the weak path-partition conjecture for a large class of 
perfect graphs with any orientation of the edges and for specific values of k [17, IS]. 
This class includes in particular: 
- the comparability graphs, 
~ the co-comparability graphs (complement of comparability graphs), 
- the balanced graphs (‘with a balanced clique-incidence matrix’), 
- the parity graphs (for k = 2 only), etc. 

The statement of the weak path-partition conjecture is slightly stronger than an 
open problem proposed in 1981 by Linial [39]. For a graph G, let Q(G) denote the 
maximum number of vertices which can be colored with a partial k-coloring of G. 
Then Linial asked if there exists a path-partition M such that B,(M) d a,(G)? 

Remark. Later on, these conjectures suggested similar ones in which ‘paths’ and 
‘stable sets’ are exchanging roles (see [l, 2, 371). However, it is not true that a graph 
G admits necessarily a full coloring and k disjoint paths whose union covers the maximum 
number of vertices, such that all the paths are saturated. For k = 1, a counterexample is 

the graph G defined by the arcs: (a, b), (a, e), (c, b), (c, d), (d, e), ( A g), ( f, j ), (h, g), (h, i), 
(i, j) together with all the arcs going from the set {a, b, c, d, e} to the set { Jg, h, i, j}, 
except the arc (a, f); a coloring with x = 5 colors has necessarily C = {a, f } as a color 
class, but the (unique) longest path {c,d,e, h, i, j) does not meet C and cannot be 
saturated. Also, for k = 2, the color class C does not meet min{ I Cl; 2) different paths 
of the 2-optimal path-partition {cdehij, abfg}. 

2. The perfect graph conjecture 

In 1958-1959, I started to investigate new combinatorial properties of a graph 
G with an emphasis for three invariants: a(G) (called first, with von Neumann, the 
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‘coefficient of internal stability’, then the ‘stability number’, or also the ‘independence 
number’), U(G) (the ‘partition number’, the minimum number of cliques needed to 
cover the vertex set), and 4(G) (the zero-error capacity introduced by Claude Shannon 
for a noisy channel). These investigations concerned the four following classes: 

(1) a graph G is in Class 1 if 4(G) = X(G); 
(2) a graph G is in Class 2 if x(G’) = O(G’) (the Beautiful Property’) for all induced 

subgraphs G’ of G; 
(3) a graph G is in Class 3 if II = o(G’) (the chromatic number is equal to the 

clique number) for every induced subgraph G’ 
(4) a graph G is in Class 4 if G contains no induced C,,, i, the odd cycle of length 

2k + 1 3 5 (called odd hole) and no induced complement of an odd hole (called odd 
antihole). 

It is easy to see that every graph in Class 2 is also in Class 4; the Perfect Graph 
Conjecture says that Classes 2 and 4 are equivalent. 

To trace back the history of perfect graphs, we shall distinguish different steps: 
June 1957: When he heard that I was writing a book on graph theory, my friend 

M.P. Schutzenberger drew my attention on an interesting paper of Shannon [Sl] 
which was presented at a meeting for engineers and statisticians, but which could have 
been missed by mathematicians working in algebra or combinatorics. In his paper. 
Shannon posed two problems: 

(1) what are the minimal graphs which do not belong to Class l? (He knew that 
C, was the smallest one); 

(2) what is the zero-error capacity of the graph C5? 
The second problem was solved by Lo&z [43] several years later. The first 

problem, completed by my young student Alain Ghouila-Houri (Shannon overlooked 
the antiholes), was discussed in January 1960 at the Seminar of Professor FORTET, 
where I asked: 

Is it true that every graph in Class 4 is also in Class l? 

(see Ghouila-Houri [32]). This conjecture, somewhat weaker than the Perfect Graph 
Conjecture, was motivated by the remark that for the most usual channels, the graphs 
representing the possible confusions between a set of signals (in particular the interval 
graphs) have no odd holes and no odd antiholes, and are optimal in the sense oj’ 
Shannon. I developed this idea at the General Assembly of U.R.S.I. (Information 
Theory) in Tokyo where my research paper [S] was distributed to all the participants,: 
this paper appeared much later in a book edited by Caianello [6], but at that time 
I had the possibility to add in the galley proofs new references and an appendix with 
some results proved in [7], in order to make the conjecture more plausible and more 
interesting. In fact, at that time, no one really cared about such a problem excepl. 
Ghouila-Houri; unfortunately, in 1966, this remarkable young mathematician corn.. 
mitted suicide, and all the notes concerning his results about the zero-error capacity of 
the antiholes were definitively lost. 
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October 19.59: Invited by T. Gallai, I attended the first international meeting on 
Graph Theory at Dobogoko (Hungary), with A. Stone, W. Tutte, A. Rlnyi, P. ErdSs, 
G. Dirac, G. Hajos, H. Sachs, and others. At this meeting, Hajnal and Suranyi 
presented an elegant result [35] which could be repharsed as follows: Every tri- 
angulated graph belongs to Class 2. (a graph is ‘triangulated’, or ‘chordal’, ifevery cycle 
of length larger than 3 has a chord). 

April 1960: Invited by H. Sachs, I attended the second international meeting on 
Graph Theory at the Martin Luther University, Halle-Wittenberg, with G. Hajos, G. 
Dirac, A. Kotzig, and G. Ringel and I presented a new result: 

Every triangulated graph belongs to Class 3. 

At that time, I was trying to find all the minimal counterexamples to Class 
3 (because I suspected that the only ones were the holes and the antiholes, conviction 
which appeared later to be equivalent to the Perfect Graph Conjecture). In the 
extended abstract of my talk in Halle published in German [4], as in a more 
developed text published simultaneously in French [3], I stressed the importance of 
the holes and of the antiholes for this problem. 

A first remark was that all the graphs which were known to belong to Class 3 are 
without odd holes. In honor of T. Gallai, I proposed to call ‘semi-Gallai’ a graph which 
has no odd hole. However, a terminology change was imposed by the editor of the 
Proceedings of Halle-Wittenberg, who added to my paper the following footnote: ‘The 
original title of the presentation given in Halle was Coloring of Gall&, resp. semi- 
Gallai, graphs. Gallai informed us, however, that this was an oversight since he had 
not concerned himself closely with these graphs. Therefore the title was changed with 
the author’s agreement following a suggestion by Dirac’. 

It is not true that every graph without holes belongs to Class 3, and the smallest 
counterexample, published in [3, 43, is the antihole of size 7. Clearly, no antihole 
belongs to Class 3, but we had also to check that the antiholes of size 37 do not 
contain u hole, and are minimal with respect to the nonmembership in Class 3. At that 
time, we were pretty sure that there were no other minimal obstructions; for that 
reason, at the end of my talk in Halle, I proposed the following open problem: Zf 
a graph G and its complement are semi-Gallai graphs, is it ture that y(G) = w(G)? 

Clearly, this statement is equivalent to the Perfect Graph Conjecture. 
July-August 1961: During a long symposium on Combinatorial Theory at Rand 

Corporation (with R.C. Bose, G. Dantzig, J. Edmonds, L. Ford, R. Fulkerson, A. 
Hoffman, N. Mendelsohn, Ph. Wolfe, and other), I presented a new result: Every 
unimodular graph is in Class 2 and in Class 3. 
(I call ‘totally unimodular’ a matrix which was called at that time ‘matrix with the 
unimodularity property’, and a ‘unimodular graph’ is a graph with a totally unimodular 
clique-incidence matrix). At this meeting, I met for the first time Alan Hoffman, who 
mentioned to me interesting new problems about comparability graphs. Also, the 
fruitful discussions we had together encouraged me to write a paper in English about 
all the graphs for which I could prove their membership in either Class 2 or Class 
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3 (with the obvious conclusion that each graph in Class 2 seems to belong to Class 3, 
and vice versa). When I came back to France, I sent my manuscript to Alan, at 
Yorktown Heights, for comments and hopefully for submission to some US journal. 

March-April 1964: I attended a NATO Advanced Study Institute on Graph 
Theory organized by Dr. E. Aparo at the beautiful Villa Monastero in Frascati, Italy, 
with L.W. Beineke, P.R. Bryant, A.L. Dulmage, J. Groenveld, P.W. Kasteleyn, N.S. 
Mendelsohn, J.W. Moon, R.C. Read, W.T. Tutte and W.T. Youngs. During one week, 
I had the opportunity to present this new concept. I had received a few months earlier 
an answer from Alan who discussed the problem at the I.B.M. Research Center of 
Yorktown Heights with Paul Gilmore and Harry McAndrew and suggested some 
improvements to my paper; so, before the end of the meeting, I could handover to ‘il 
Direttore’ (Frank Harary) a final version, with proper acknowledgements to ‘Dr. A.J. 
Hoffman and Dr. P. Gilmore for suggestions and helpful discussions’ and to ‘Dr. M.H. 
McAndrew for the proof of Theorem 5 which is shorter than our original version’. 
Unfortunately, my paper came out only three years later [7]. 

In fact, this approach led Gilmore to an attempt to axiomatize the relevant 
properties of cliques in graphs and to a rediscovery of the Halle open problem. This 
strengthened my conviction that the conjecture in its strongest version was valid, even 
if I was more interested in trying to prove that the graphs of Class 2 (the ‘a-perfect’ 
graphs) are the same as the graphs of Class 3 (the ‘y-perfect’ graphs). This became the 
‘weak’ conjecture, which seemed easier to settle than the ‘strong’ conjecture. The weak 
conjecture was proved in 1971 by Lovasz 1411 who made this terminology obsolete: 
since ‘x-perfect’ and ‘y-perfect are synonymous, both of them may be replaced by 
‘perfect’. and the ‘strong conjecture’ became the ‘Perfect Graph Conjecture’. 

1965-I 969: During that period, I did not do much research in combinatorics: I was 
in Rome as elected Director of the International Computation Centre, and I was 
obliged to postpone the ‘Seminar on Combinatorial Problems’ of the University of 
Paris which we founded with M.P. Schutzenberger in 1961. 

In July 1966, I organized in Rome an international symposium on graph theory 
with Andrasfai, Balas, Behzad, Dantzig, Denes, Edmonds. Erdos, Hajos, Jewell. 
Kasteleyn. Kotzig, Lawler, Minty, Motzkin, Mycielski, Nash-Williams, Nivat. 
Raynaud, Rosa, Rosenstiehl, Sabidussi. Sachs, and others. and I invited Gilmore to be 
the Chairman. During the meeting, 1 worked with Hajos on some properties of the 
Gallai graphs that we presented together to the symposium. Gallai [27] had a general- 
ization of the Hajnal-Suranyi theorem: If in u graph path ofthe odd cycks of’ length at 
least 5 has two noncrossing chords, then the gruph belongs to C1us.s 2. 

In fact, he proved more, but his proof was complicated and for that reason, Suranyi 
published separately a shorter proof [5.5]. In a letter, Gallai told me that he knew alscl 
that his graphs belong to Class 3, but here again, he did not produce a short proof 
Our proof was simple, but not as short and elegant as the proof produced by Meynie:, 
[43] in 1972 for a stronger result (rediscovered nearly simultaneously in Armenia by 
Markosian and Karpetian [43]), which can be restated as follows: Jf’euch odd cyck o,I 
length at lemt 5 hus at least two chords, then the graph belongs to Class 3. 
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In 1967, I gave several talks on perfect graphs, in particular at the Bose symposium 
of Chapel Hill where Mark Watkins published a short report (an addendum to [S]) 
which contributed to make the Perfect Graph Conjecture popular. It was not always 
so, and the first symposium lecture about perfect graphs from other mathematicians 
was delivered by Horst Sachs [49] at the Calgary conference in 1969. We learned from 
him that E. Olaru defended his doctoral dissertation on perfect graphs at Ilmenau in 
1969; his thesis was the first one of this topic. 

At the Waterloo conference in 1968, I proposed for the Perfect Graph Conjecture 
a completely different approach. A new idea at that time was to treat a general family 
of nonempty sets (called ‘edges’) the same way as the family of edges of a graph in 
order to obtain a theorem which reduces to a graph theory theorem when the ‘edges’ 
are 2-element subsets. In a paper of Lovasz [40], this point of view was used to extend 
the concept of chromatic number, and this family was called a ‘set-system’. In my 
paper [9], it was called ‘graphoid’, and this led me to discover a new class of perfect 
graphs, the ‘balanced graphs’, which generalize the line-graphs of bipartite graphs. We 
must add that it is because of the simplicity of this new point of view that L. Lo&z 
found in 1971 a proof of the weak Perfect Graph Conjecture, published simulta- 
neously in the context of hypergraph theory [41] and in the context of graph theory 
[42]. He gave later another equivalent formulation with the polyhedral point of view, 
and this was followed by a bunch of nice results (of e.g. R.G. Bland, V. Chvatal, R. 
Giles, R.L. Graham, H.C. Huang, M.W. Padberg, A.F. Perold, L.E. Trotter, A. 
Tucker, S.H. Whitesides). 

Lovasz’s proof of the weak perfect graph conjecture was closely related to an earlier 
work of Ray Fulkerson on antiblocking pairs of polyhedra (especially his ‘max-max 
inequality’). Ray proved that the conjecture was equivalent to another statement, 
which he found too strong to be true; when I sent him a postcard from Waterloo to 
inform him that the validity of the conjecture had just been established by Lovasz, he 
was able to supply the missing link in only a few hours. Later, Ray invited me to 
publish the whole story in a volume that he was editing [27]. 

The most significant results obtained before 1980 have been assembled in [19], 
but many classes of perfect graphs have been introduced since then by different 
authors, using completely different arguments. Other papers deal with recognition 
algorithms for specific classes, complexity of optimization problems in perfect graphs 
(of e.g. Grotschel, Lovasz, Schrijver). Other important results have been found in 
the last decase but, after more than 30 years, the Perfect Graph Conjecture remains 
open. 

3. The first conjecture to extend Vizing’s theorem 

One of the most interesting combinatorial result in graph theory is the theorem of 
Vizing: If G is a simple graph (no loops, no multiple edges) of maximum degree d(G), 
the smallest number of colors needed to color the edges so that no two edges of the 
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same color have one endpoint in common, denoted q(G) and called the chromatic 
index, is equal to d(G) or to d(G) + 1. 

A hypergraph H = (E,, E2,. . , E,) is a collection of nonempty subsets, called edges, 
of a finite set X, called the vertex set; if the edges have all cardinality < 2, H is a graph. 
The name of hypergraph was suggested for the first time by an attendant of our 
seminar, J.M. Pla; by keeping the same terminology as in graph theory, we were trying 
to obtain for H similar theorems which give direct/J some famous graph results when 
the Ets are all of cardinality 2. In 1972, during the hypergraph seminar that we 
organized with Ray-Chaudhuri at Colombus (Ohio), we failed to find an extension of 
Vizing’s theorem in the spirit of the seminar (because hypergraphs are of a too general 
structure, and we found later that ‘linear hypergraphs’ are more appropriate to 
generalize graphs in this respect). For a hypergraph H, we studied the following 
parameters: 

The mu.Wrum degree d(H): the maximum number of edges having one point in 
common, i.e. the maximum size of a ‘star’; 

d,(H): the maximum size of a family of edges which are pairwise intersecting: 
the chromatic index q(H): the smallest number of colors needed to color the edges so 

that no two edges of the same color intersect. 
Clearly, we have d(H) < d,(H) d q(H). The hereditary closure of H, denoted H“. is 

the collection of all the different nonempty subsets of the edges of H; the hypergraph 
H is linear if no two edges intersect in more than one point. Thus, a graph G is a linear 
hypergraph, and Vizing’s theorem is equivalent to: q(GC) = A(G’). Consequently, 
during the third international conference sponsored by the New York Academy of 
Science. lo--l4 June 1985, I posed the following conjecture: 

The first Vizing type conjecture: Every linear hypergraph H satisfies q(HC) = A (H “). 

(for the proceedings of the conference, see [14].) For example, the lines of a finite 
projective plane with seven points a, b, c. . , g constitute a linear hypergraph H with 
A(HC) = 10. and the edges of HC can be colored with 10 colors as follows: 

(1) ubc, de,,/; g; (2) adg, ei bc; (3) aeA cd, bg; (4) b& cg, ue; (5) beg. UC, L& (6) cde. ah. f$; 
(7) ~$1, ad, be; (8) ug, cf; bd, e; (9) uf, ce, dg, b; (10) eg, /$ u, c. d. 

More generally, Gionfriddo and Tuza [33] proved that the conjecture is valid for all 
resolvable Steiner systems of type S(2, k, n). For several other hypergraphs the same 
result is obtained from known combinatorial theorems (see [lo, 151). 

It is important to mention that the first conjecture is narrowly related to a famous 
conjecture that Chvatal posed in 1972 during the hypergraph seminar [23]: 

Chvital’s conjecture: Every hypergraph H satisfies d,(H’) = d(H’). 

This conjecture also remains open (see e.g. [ 16, 561). If the first conjecture is valid. 
then every linear hypergraph H satisfies A(H’) < A,(HC) < q(H’) = d(HC), so the 
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Chvatal conjecture is true for linear hypergraphs. This weaker statement has been 
proved first by Sterboul [54] if H is linear and uniform (every edge has the same 
cardinality), then by Stein [53] if H is linear and not uniform. 

4. The second conjecture to extend Vizing’s theorem 

At the third international conference of the New York Academy of Science (1985), 
I also presented as an open problem the following conjecture: 

The second Vizing-type conjecture: Every linear hypergraph H with no repeated loop 
(edge of cardinality 1) satisfies 

q(H) d d (Hc2’), 

where HC2) denotes the 2-section of H, i.e. the collection of all the nonempty subsets of 
an edge of H which have a cardinality 62. 

(See [14].) If H reduces to a simple graph G, then d(G@‘) = d(G) + 1, so the above 
inequality becomes equivalent to the Vizing inequality: q(G) < d(G) + 1. If H is the 
hypergraph dual of a Steiner triple system, the same bound for q(H) was also 
conjectured by J. Colbourn and M. Colbourn [24]. Independently, Meyniel [46] 
conjectured that the inequality holds for every linear hypergraph H. Also, on the way 
to a RUTCOR combinatorial conference in 1986, I had the opportunity to mention 
this problem to Lovasz, and we were surprised to see that Fiiredi presented the same 
conjecture as an open problem during the conference (see [28]). Thus, one can say 
that this conjecture had in fact four fathers! 

Very few results have been obtained so far, but if the ‘big’ edges are pairwise disjoint, 
we know that the conjecture is valid [20]. 

The most interesting fact is that the validity for every H implies the validity of 
a famous conjecture that Erdiis, Faber and Lo&z proposed during the hypergraph 
seminar in Colombus (Ohio): 

The ErdbFaher-Lovisz conjecture. If a graph G is the union of m cliques of size m, 
no two of them having more than one vertex in common, then the chromatic number 
of G is equal to m. 

Clearly, the clique-hypergraph of G is linear, uniform of rank m and with only 
m edges; its dual is a linear hypergraph, regular of degree m, with only m vertices. 
Consequently, an equivalent formulation of the Erdas-Faber-Lo&z conjecture is: 
Let H be an m-regular linear hypergraph with only m vertices, then q(H) is equal to 
A(HC2)) = m. 

The Erdos-FaberLovasz conjecture was proved up to m = 10 by computer search 
[36], and asymptotic results have been obtained in [38]. 
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