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Abstract 

Burosch, G. and J.-M. Laborde, Characterization of grid graphs, Discrete Mathematics 87 
(1991) 85-88. 

In this paper we are mainly interested in the characterization of grid graphs i.e. products of 
paths. 

Introduction 

A graph is called an (n-dimensional) p,-p2- . . - -p,-grid if it is the product of 
n paths Pp,, P,,, . * * , P,.. Those graphs are of special interest because they can 
be used for practical implementation of parallel algorithms. Fig. 1 shows the 3-4 
grid P@P,. 

A cycle C s G is called a gap iff it is an isometric subgraph of G, i.e. for any 
two of its vertices x, y their distances d,(x, y) and d&x, y) are equal. 

Let .9n(G) denote the set of the different subgraphs induced (up to isomorph- 
ism) in G by intervals of length sn. 

2-dimensional grids 

Theorem 1. A simple connected graph G is a 2-dimensional grid or a tree iff 

I. 
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P3OP4 = 

Fig. 1. 

(ii) Any edge in G belongs to at most two 4-cycles in G, 
(iii) In G are no other gaps G than 4-cycles. 

Sketch of the proof. It starts with easy observations and a lemma: 

(a) ’ 
!X 

U 
sGjdo(u,v)=3and 

B 
s G as induced subgraph ; 

(b) Z&,3; G; 

Y 

(c) every edge of G is contained in at least one 4-cycle; 
(d) Vx E V(G) do(x) s 4. 

Lemma. Zf G is a connected graph satisfying (i), (ii) and (iii) then for any cycle 
C c G there exist adjacent edges e, e’ c C and edges err, e”’ E E(G) such that e, e’, 
en, en’ form a 4-cycle in G. 

The proof of this lemma is rather long, since many cases have to be considered. 
Now suppose G fulfills the conditions of the theorem and consider a maximal tree 
T such that there are no adjacent edges e, e’ from the tree contained in the same 
4-cycle. We prove that either G = T or there are pairwise disjoint isomorphic 
trees T = T,, T2, . - - , T, in G with V(G) = LJV(TJ and G = TOP,, where P,, is a 
path. From (ii) T must be a path too and we are done. 

Theorem 2. 2-dimensional grids can be recognized in linear time. 

Proof. Assume the graph is given as a list of n records representing the neighbors 
of successively all vertices. When reading those data we check that there are just 
2, 3 or 4 neighbors in each record, making the input time at most 4n. If no record 
corresponds to a degree 2 we are done and G cannot be a grid. The procedure 
consists in a progressive embedding of G in a grid E N x N. We start with a 
vertex s of degree 2, which we assign coordinates (0,O). We now determine the 
unique square a, containing s, assigning its other vertices, on a standard way, the 
coordinates (1, 0), (0,l) and (l,l). If such a square does not exist or is not 
uniquely determined we return the answer NO, unless G turns out to be a path 
(this of course can be checked in linear time). This leads us to distinguish a 
horizontal direction along (0,O) --, (1,0) an d a vertical one along (O,O)+ (0,l). 
We can now ‘translate’ a, horizontally-as long as it is possible-and obtain a 
ladder il0 having p ‘steps’. In such a translation we assign at each step coordinates 
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to two new involved vertices of G and check their degrees and adjacency relations 
with the already embedded vertices. The computation time for &, is bounded by 
some klp + k;. We now translate the ladder vertically-as long as possible- 
and obtain a p-q-grid. Here coordinates are assigned to p + 1 new involved 
vertices and the corresponding degrees and adjacency relations are to be checked. 
The computation time is k2q + k; where k2 = kp + k’. For the whole computation 
we do not need more than (kp+k’)q+k;=kpq+k’q+k;<Cn+C’. For 
connectedness we verify n = (p + l)(q + 1). 0 

n-dimensional grids 

The preceding result can be quite easily extended to 3-dimensional case, giving 

Theorem 1’. A connected simple bipartite graph G is a 3-dimensional grid iff: 

6’) E 3dG), 

(ii) Any induced square in G ‘belongs’ to at most two cubes in G, 

(iii) In G are no other gaps than 4-cycles and 6-cycles. 

Various considerations support however the following: 

Conjecture. For n 2 1 connected simple bipartite graph G is a n-dimensional 
grid iff 

(i) {n-cube} 5 9,+,(G) _ { c gri d s of diameter c n + 1 excluding the (n + l)- 
cube}, 

(ii) any (n - 1)-d imensional induced hypercube in G ‘belongs’ to at most two 
n-dimensional hypercubes in G, 

(iii) in G are no other gaps than p-cycles for p E [4, 2n]. 

As suggested by Horst Sachs (ii) may be replaced in the last conjecture by: 
(ii’) Any edge in G belongs to p 4-cycles where 2”-* up s 2”-‘. 

Remark 1. ‘Grids of diameter Sn + 1’ can be obtained from ‘grids of diameter s 

n’ in adding them to the grids corresponding to the partitions of n + 1: 
when upgrading from 2 to 3 we have to add to the grid 
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the grid @ corresponding to 1+1+1=3 

and those corresponding to 4 = 4 + 0 = 3 + 1 = 2 + 2 = 2 + 1 + 1 but not to 1 + 1 + 
1+1+1: 

Remark 2. The conjecture holds for it = 1, 2, 3. 

Remark 3. The procedure presented by the proof of Theorem 2 extends 
obviously to the n-dimensional case: 

Theorem 2’. For a given n, there exists a linear algorithm for deciding if a graph is 
an (at most) n-dimensional grid. 


