Communication

Characterization of grid graphs

Gustav Burosch
Fachbereich Mathematik Universität Rostock, 2500 Rostock, Germany
Jean-Marie Laborde
Laboratoire de Structures Discrètes et de Didactique, (IMAG) BP 53x 38041 Grenoble Cedex, France
Communicated by C. Benzaken
Received 13 June 1990

Abstract

Burosch, G. and J.-M. Laborde, Characterization of grid graphs, Discrete Mathematics 87 (1991) 85-88.

In this paper we are mainly interested in the characterization of grid graphs i.e. products of paths.

Introduction

A graph is called an (n-dimensional) $p_{1}-p_{2} \cdots-p_{n}$-grid if it is the product of n paths $P_{p_{1}}, P_{p_{2}}, \cdots, P_{p_{n}}$. Those graphs are of special interest because they can be used for practical implementation of parallel algorithms. Fig. 1 shows the 3-4 grid $P_{3} \square P_{4}$.

A cycle $C \leqslant G$ is called a gap iff it is an isometric subgraph of G, i.e. for any two of its vertices x, y their distances $d_{C}(x, y)$ and $d_{G}(x, y)$ are equal.

Let $\mathscr{I}_{n}(G)$ denote the set of the different subgraphs induced (up to isomorphism) in G by intervals of length $\leqslant n$.

2-dimensional grids

Theorem 1. A simple connected graph G is a 2-dimensional grid or a tree iff
(i) $\mathscr{I}_{3}(G) \subseteq$

Fig. 1.
(ii) Any edge in G belongs to at most two 4-cycles in G,
(iii) In G are no other gaps G than 4 -cycles.

Sketch of the proof. It starts with easy observations and a lemma:

(b) $K_{2,3} \nsubseteq G$;
(c) every edge of G is contained in at least one 4-cycle;
(d) $\forall x \in V(G) \quad d_{G}(x) \leqslant 4$.

Lemma. If G is a connected graph satisfying (i), (ii) and (iii) then for any cycle $C \subseteq G$ there exist adjacent edges $e, e^{\prime} \subseteq C$ and edges $e^{\prime \prime}, e^{\prime \prime \prime} \in E(G)$ such that e, e^{\prime}, $e^{\prime \prime}, e^{\prime \prime \prime}$ form a 4-cycle in G.

The proof of this lemma is rather long, since many cases have to be considered. Now suppose G fulfills the conditions of the theorem and consider a maximal tree T such that there are no adjacent edges e, e^{\prime} from the tree contained in the same 4 -cycle. We prove that either $G=T$ or there are pairwise disjoint isomorphic trees $T=T_{1}, T_{2}, \cdots, T_{r}$ in G with $V(G)=\bigcup V\left(T_{i}\right)$ and $G=T \square P_{n}$ where P_{n} is a path. From (ii) T must be a path too and we are done.

Theorem 2. 2-dimensional grids can be recognized in linear time.
Proof. Assume the graph is given as a list of n records representing the neighbors of successively all vertices. When reading those data we check that there are just 2,3 or 4 neighbors in each record, making the input time at most $4 n$. If no record corresponds to a degree 2 we are done and G cannot be a grid. The procedure consists in a progressive embedding of G in a grid $\subseteq \mathbb{N} \times \mathbb{N}$. We start with a vertex s of degree 2 , which we assign coordinates $(0,0)$. We now determine the unique square σ_{0} containing s, assigning its other vertices, on a standard way, the coordinates $(1,0),(0,1)$ and $(1,1)$. If such a square does not exist or is not uniquely determined we return the answer NO, unless G turns out to be a path (this of course can be checked in linear time). This leads us to distinguish a horizontal direction along $(0,0) \rightarrow(1,0)$ and a vertical one along $(0,0) \rightarrow(0,1)$. We can now 'translate' σ_{0} horizontally-as long as it is possible-and obtain a ladder λ_{0} having p 'steps'. In such a translation we assign at each step coordinates
to two new involved vertices of G and check their degrees and adjacency relations with the already embedded vertices. The computation time for λ_{0} is bounded by some $k_{1} p+k_{1}^{\prime}$. We now translate the ladder vertically-as long as possibleand obtain a $p-q$-grid. Here coordinates are assigned to $p+1$ new involved vertices and the corresponding degrees and adjacency relations are to be checked. The computation time is $k_{2} q+k_{2}^{\prime}$ where $k_{2}=k p+k^{\prime}$. For the whole computation we do not need more than $\left(k p+k^{\prime}\right) q+k_{2}^{\prime}=k p q+k^{\prime} q+k_{2}^{\prime}<C n+C^{\prime}$. For connectedness we verify $n=(p+1)(q+1)$.

\boldsymbol{n}-dimensional grids

The preceding result can be quite easily extended to 3-dimensional case, giving
Theorem 1^{\prime}. A connected simple bipartite graph G is a 3-dimensional grid iff:
(i)

(i')

$$
\text { fogi } \in \mathscr{I}_{4}(G) \text {, }
$$

(ii) Any induced square in G 'belongs' to at most two cubes in G,
(iii) In G are no other gaps than 4-cycles and 6-cycles.

Various considerations support however the following:
Conjecture. For $n \geqslant 1$ connected simple bipartite graph G is a n-dimensional grid iff
(i) $\{n$-cube $\} \subseteq \mathscr{I}_{n+1}(G) \subseteq\{$ grids of diameter $\leqslant n+1$ excluding the $(n+1)$ cube $\}$,
(ii) any ($n-1$)-dimensional induced hypercube in G 'belongs' to at most two n-dimensional hypercubes in G,
(iii) in G are no other gaps than p-cycles for $p \in[4,2 n]$.

As suggested by Horst Sachs (ii) may be replaced in the last conjecture by:
(ii') Any edge in G belongs to $p 4$-cycles where $2^{n-2} \leqslant p \leqslant 2^{n-1}$.
Remark 1. 'Grids of diameter $\leqslant n+1$ ' can be obtained from 'grids of diameter \leqslant n ' in adding them to the grids corresponding to the partitions of $n+1$: when upgrading from 2 to 3 we have to add to the grid
set

and those corresponding to $4=4+0=3+1=2+2=2+1+1$ but not to $1+1+$ $1+1+1$:

Remark 2. The conjecture holds for $n=1,2,3$.
Remark 3. The procedure presented by the proof of Theorem 2 extends obviously to the n-dimensional case:

Theorem 2'. For a given n, there exists a linear algorithm for deciding if a graph is an (at most) n-dimensional grid.

