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Abstract 

Program analyses are often presented as one of two brands: forwards or backwards. 
In this paper we explore the significance of the direction of analysis, and show how 
arbitrary abstract interpretations may be reversed. 

1. Introduction 

Many semantic analyses of functional languages have been developed using 
the Cousots’ abstract interpretation framework [ 31. Some, such as Mycroft’s 
pioneering strictness analysis [ 141 and Burn, Hankin and Abramsky’s exten- 
sion of it to higher order [ 11, operate on abstract values representing the 
past history of the computation, and are therefore called forwards analy- 
ses. Others, such as Wadler and Hughes’ projection-based strictness analysis 
[ 171, or Hall’s analysis of strictness patterns [ 51 propagate abstract con- 
texts representing the future of the computation, and are called backwards 
analyses. However, although the type of abstract information may suggest a 
“natural” direction, it is in fact possible to perform any analysis in either 
direction. The goal of this paper is to show how to reverse any given analy- 
sis. 

Why might one prefer one direction of analysis over another? We shall draw 
an analogy with solving a differential equation on an interval. Solutions may 
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be found by iterating from one end of the interval to the other, with the two 
possible directions corresponding to backwards and forwards analysis. But the 
purpose of an analysis is to answer a question, and such questions correspond 
to giving the boundary conditions at one end of the interval and asking for 
the function’s value at the other. In such a case it’s clearly preferable to start 
solving the equation at the end where the boundary conditions are known. 
Note that it’s not impossible to work in the other direction-one can always 
use trial and error to find boundary conditions at the beginning that produce 
the right values at the end-but in general working in the “wrong” direction 
will require many solutions to be calculated where one would suffice in the 
other direction. We will see exactly this effect arising in the case of strictness 
analysis. 

Every analysis associates with each function in the source program a corre- 
sponding abstract function. To reverse an analysis we have to “invert” these 
abstract functions. We begin by considering the conditions under which one 
function can be said to safely approximate the inverse of another. We show 
that there is a best reversal of each abstract function; and how best reversals 
interact with the combining forms of a programming language. 

Sometimes the best reversal of an abstract function carries less informa- 
tion than the original. This raises the question “How much less?” One way 
to compare abstract functions with their reversals is to reverse the reversal 
again, but this may lose still more information. However, there is a class of 
functions whose reversal carries exactly the same information, and which may 
therefore be reversed any number of times with no loss. These turn out to be 
Galuis connections. There is a best approximating Galois connection to each 
abstract function, which provides an upper bound on the information lost by 
reversal. 

The application we consider in this paper is the reversal of Burn, Hankin and 
Abramsky’s (BHA) strictness analysis. The analysis of the conditional proves 
hard to reverse; we therefore derive a rule for backwards analysis directly from 
the concrete semantics. The power of this backwards rule is incomparable with 
that of the forwards rule, disproving the old chestnut that conditionals are bet- 
ter analysed forwards. The analysis derived is a previously known backwards 
analysis, but it’s relation to BHA and the corresponding proof of correctness 
were previously unknown. 

We go on to consider Wadler’s four-point abstract domain for lists [ 161. 
The reversal of his analysis turns out to be simpler than the original. In 
fact, Wadler’s forwards analysis of case expressions contains a complication 
which can be seen as necessary to obtain a good reversal of a backwards 
form! 

Finally, we derive a backwards analysis of higher-order programs from the 
BHA forwards analysis. Perhaps not surprisingly, we fail to obtain a particularly 
accurate analysis. 
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2. Background 

2.1. The object language 

We will discuss analyses in the context of a simple typed functional language 
based on categorical notation. Types are base types (such as Int ), and types 
built from them using x, List (in Section 5) and -+ (in Section 6). Terms 
denote continuous functions, and are built from an unspecified collection of 
primitive functions using combining forms. The basic term syntax is 

term ::= ide 1 term o term 1 (term, term) 1 yide. term 

Here o denotes composition, (f, g) denotes the function (f, g) x = (f x, gx) 

and pf.H(f ) is the recursive function satisfying ,uf.H(f ) = H(pf.H(f ) ). The 
primitives include at least the projection functions ~1, ~2, and the constant 
functions KC x = c. Although our language is monomorphic, for notational 
convenience we will allow polymorphic primitives such as u : V’x. X x X t X. 

Occurrences of such primitives should be read as the appropriate member of 
a family of monomorphic functions. 

We will consider extensions of the language with other combining forms such 
as the conditional (p + f; g) (see Section 3.4). In particular, we can extend 
this first-order language to a higher-order one by adding the combining form 
A (curry) and the polymorphic primitive ap, where (/lf) x = ily.f (x,~) and 

ap (f,x) = fx. 

2.2. Abstract interpretation 

We’ll use the same language to express abstract functions, which we dis- 
tinguish notationally using italics. We restrict the types over which abstract 
functions are defined to be finite lattices. This is consistent with [ 1 ] and [ 171 
for example, where the restriction is used to guarantee termination of analy- 
sis. ’ Finiteness is important here for a different reason: it means continuity 
reduces to monotonicity in the proofs which follow, and indeed some of the 
functions we construct need not be continuous in the infinite case. 

Abstract functions come with a notion of safe approximation: we say it is 
safe to approximate upwards if an abstract function f can be replaced by any 
f’ 1 f without compromising the correctness of conclusions drawn from the 
analysis. Less commonly, it may be safe to approximate downwards. When an 
analyser cannot predict which of two abstract functions f or g applies (for 
example, in the analysis of a conditional) it may safely approximate by f u g if 
the direction of safe approximation is upwards, or by f n g if it is downwards. 

1 Although finiteness is commonly required there are other ways of ensuring termination-see 
[31. 
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To define an analysis we associate each type A with a corresponding abstract 

type 4 and give a safety condition relating concrete functions f : A -+ B 
to abstract functions f : 4 + Bfl for a forwards analysis, or f : Bd --+ Al 
for a backwards one. The safety condition tells us when an abstract function 
faithfully reflects the behaviour of the concrete one, and must be consistent with 
the notion of safe approximation for abstract functions. Since this condition 
relates the semantics of a concrete function to an abstract function it is not 
immediately useful in a compiler, but we can compute safe abstract functions 
for any term given abstract functions for the primitives and ways of deriving 
abstract functions for compound terms from those for their subterms. This 
process is called abstract interpretation. 

2.3. The Burn, Hankin and Abramsky framework 

In the BHA approach, concrete and abstract types are related by a family of 
abstraction functions absA : A --+ An and the safety condition relating f : A -+ B 
to f : An + Bfi is 

absB o f & f o absA 

Abstract values are associated with Scott-closed2 sets of concrete values via 
concretisation functions, concA a = {x 1 absA x & a}. The safety condition can 
be reformulated as 

Vx,a.xEconca*fxEconc(fa) 

There is a best abstract function for each concrete function f : A --f B given 

by 

u o @H (absB o f ) o ConcA 

where (PHf) X = {f x 1 x E X}* and X* denotes the Scott-closure of X. 
Products are abstracted as products, so (A x B )fl = Al x Bfl and absAxB (x, y ) = 

(ab.sA x, ab.sB y). 
The following theorems justify a very simple abstract interpretation of terms: 

Theorem 1. If f and g are safe for f and g respectively, then 
(i) f 0 g is safe for f 0 g, 

(ii) (f, g) is safe for (f, g) 

Theorem 2. Let H and be functionals that whenever is safe f, then 
f is for Hf. pf.H f safe for 

2 A S is if it downwards closed, whenever all elements of chain lie 
S, so the limit. 
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Similar theorems must be proved for each proposed analysis. This approach 
extends very naturally to the higher-order case. We define (A + B )fi = Ad + Bfl 
and 

UbsA,B f = u O@H (abseof )oCOnC~ 

with abstract interpretation justified by: 

Theorem 3. Zf f is safe for f, then (i ) /1 f is safe for Af, and 

=p. 

Strictness analysis is cast in this framework by abstracting 
tow-point domain 2 = (0 L I}, with abstraction defined by 

(ii) ap is safe for 

base types as the 

abSB,, X = 
0 ifx=I, 
I otherwise 

It follows that all abstraction functions are strict and I-reflecting: in other 
words 

absx = _L H x = I 

From this and the safety condition abs o f C f o abs we see that if f is strict, 
f must be too. We can test for strictness off by testing whether f 0 = 0. 

2.4. Galois connections 

Definition 4. A Galois connection between lattices A and B is a pair of mono- 
tonic functions f : A +Bandg:B--+Asuchthat fogaidandgof Lid, 
or equivalently Vx, y. gy E x H y E f x. f is called the upper component 
and g is called the lower component. 

Theorem 5. Let (f, g) be a Galois connection. Then 
(i) f T = T and gl = I, 

(ii) f distrib u es over n, g distributes over U, and t 
(iii) gy is th e eas x such that y C f x and f x is the greatest y such that I t 

Corollary 6. Each component of a 
other. 

Galois connection uniquely determines the 

In view of the corollary we will sometimes be sloppy and say “the Galois 
connection f” instead of “the upper component of a Galois connection f “. 

Galois connections were used by the Cousots to relate abstraction and con- 
cretisation, and consequently often appear in papers on abstract interpretation. 
The use we are making of them is quite different: we use Galois connections 
as abstract functions, the Cousots used them as abstraction functions. 
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3. Reversing an analysis 

3.1. Safe reversals 

Suppose we’re given an abstract function f : A -+ B to reverse. In general, f 
will not have an exact inverse and we will need to approximate. We therefore 
need to know in which direction approximation is safe: suppose the safe 
direction is upwards so that any f’ 2 f may safely be used instead of f. 
Furthermore, suppose the questions we want to answer are of the form 

DoesyEfx? 

Since it’s safe to approximate f upwards, such questions can safely be answered 
“yes” when the correct answer is “no”, but must never be answered “no” when 
the correct answer is “yes”. Thus, “no” means “no”, whereas “yes” means 
“maybe”. 

When can a reversed function f r : B + A be used to answer such questions? 
Since f r is a kind of inverse, we’ll ask instead 

Does fry L x? 

We can use the answer to this question as an answer to the previous one 
provided 

since then we can never answer “no” by mistake (negate both sides to obtain 
the more intuitive implication). 

Definition 7. f’ is a safe reversal of f if ‘v’x, y. y C f x + fry g x, or 
equivalently, if f r o f _C id. 

Note that safe reversals are always strict, and that any f r' C fr is also a safe 
reversal of f. In other words, safe reversals can be safely approximated in the 
opposite direction from abstract functions. 

3.1.1. Example 
In the case of BHA strictness analysis the test for strictness is usually 

phrased slightly differently. For example, if f is an integer-valued function of 
three integer parameters and f is its abstract function, then strictness is tested 
in each argument separately by asking the questions 

Does f (0, 1,l) = O? 
Does f (l,O,l) = O? 
Does f (l,I,O) = O? 

Of course, we can instead ask 
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Does I & f (&I, I)? 
Does 1 Cf (1,&l)? 
Does I&f(Z,Z,CI)? 

whose answers are the negations of those above. But suppose f’ is a safe 
reversal off, and f’l = (I, I, 0). Now we can answer the three questions by 
answering 

Does f’l E (&I, I)? 
Does f’l & (1,&Z)? 
Does f ‘I 5 (I, I, 0) ? 

So with a single call of f’, we discover that f is strict in its first and second 
arguments, but not necessarily in its third. 

Forwards analysis may require many abstract evaluations to find all the 
strictness of a function, especially if its arguments are of complex types. The 
reversed analysis finds all the strictness in one abstract evaluation. Recalling our 
discussion of differential equations, this suggests that the boundary conditions 
for strictness analysis make it “naturally” a backwards analysis. 

3.1.2. Computing safe reversals 
Safe reversals of abstract functions can be computed efficiently if we know 

safe reversals for the primitives, and if we can derive safe reversals of compound 
terms from safe reversals of their subterms. We’ll discuss primitives in the next 
subsection; the following theorem helps us do the latter. 

Theorem 8. If f r and g’ are safe reversals 

g). 

Proof. 
(i) (g’of’)o(f og) =g’of’of og&g’ogCid. 

(ii) (f’ozl L. g’onz) o(f,g) =f’of u g’oggid. •I 

To find a safe reversal of recursive functions we need a safe reversal of KL, 
the constant undefined function. One such is 

K;y = 
I ify=_L 
T otherwise 

Now we can reverse recursive functions using the following theorem. 

Theorem 9. Let H and H’ be functionals such that for all f, H’ maps safe 
reversals of f to safe reversals of H (f ). Then nF=, (H’ )” (K$_ ) is a safe 
reversal of ,uf .H(f ). 
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Proof. Since K; o Kl L id, we can show by induction that Vn. (H’)” (Kl) 0 
Hn (KL ) rz id. But since we are working in finite lattices all ascending and 
descending chains are eventually stationary, 3 so there is an N such that 

ny=p=o (H’Y(Ki) 0 l,J~p=o H”WL) = (H’)N(K[;)oHN(K~) E id 0 

In applications the functional H will be built up using composition, tupling, 
and so on, and a suitable H’ will be constructed using the rules above. 

3.2. Best reversals 

Since safe reversals can safely be approximated downwards, it’s natural to 
ask whether there are best, or greatest safe reversals. The following definition 
and theorem assure us that there are. 

Definition 10. Given any f, we define f-y n{x 

Theorem 11. f - is the greatest safe reversal off. 

Proof. It is clear from the definition that y L f x + f-y L x, so f - is a 
safe reversal of f. Moreover, it is the greatest safe reversal, for if f r is any 
other safe reversal of f, then y E f x + fry C: x, and so fry L n{x 1 

YLfx)=f-Y. 0 

As a corollary to this theorem, we can now show that any function f r is a 
safe reversal of f merely by showing that fr & f -. 

Best reversals of primitives are now easily calculated. For example, 

K,-y= 
{ 

I ify=I 
T otherwise 

id-y=y 

q-Y = (Y,l) 
“TY = (LY) 
n-y = (Y,Y) 
u-y = (l_,1) 

Clearly the last of these loses all information; abstract functions involving U 
are therefore hard to reverse accurately. 

One may ask whether the methods above for reversing compound terms 
produce best reversals from best reversals. Unfortunately they do not. For 
example, u o (f, f) = f and so (U o (f, f) )- = f - but applying the methods 
developed yields 

3 This theorem could be proved for infinite lattices using continuity, but its dual cannot. 
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Uo(f,f))- 7 (f,f)-ou- 
7 (f-oTc~Uf-On*) ou- 

=f-oKL 
=K,_ [since all reversals are strict] 

so all information is lost. It can therefore be worthwhile deriving special 
reversal rules for constructs defined as combinations of the primitives. 

3.3. Reversible analyses are Galois connections 

Suppose we are given a safe reversal fr of f. Can we reconstruct (a safe 
approximation to) f from it? Reversals are just like abstract functions, except 
that it’s safe to approximate them downwards rather than upwards. Clearly 
we can construct a dual theory by inverting the ordering: f” will be a safe 
reversal of f r if 

Vx,y.f'y cx a yEfrrx 

or equivalently, frr o f’ 2 id. We’ll write the best reversal of f’ in this dual 
theory as (f’)+, and where there’s no risk of confusion we’ll be sloppy and 
write (f-)+ also as f+. 

It’s easy to show that if f is an abstract function, then f C f +. In other 
words, the safe reversal of a safe reversal safely approximates the original 
abstract function. But what if f + is actually equal to f? In that case the two 
safety conditions can be combined to give 

Vx,y.f-ycx w yLf+x 

This tells us that the two directions of analysis have exactly the same power. 
Any question of the form y _C f + x can be exactly answered by a question of 
the form f - y E x, and vice versa. Interestingly, it is also the condition under 
which f + and f - form a Galois connection. Hence the slogan: reversible 
analyses are Galois connections. We can now strengthen Theorem 8 in a 
pleasing way. 

Theorem 12. If f and g are (the upper components of) Galois connections, 
then 

(i) f o g is a Galois connection, 
(ii) (f, g) is a Galois connection. 

Proof. The lower components of these Galois connections are given in Theorem 
8, and the proof is very similar to the proof given there. q 

Of the primitives discussed so far, id, 7~1, TCZ and n are all (the upper 
components of) Galois connections, and so can be analysed equally well in 
either direction. However, K_L and u are not. Their double reversals are 
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K=x= 
T ifx=T 
-I_ otherwise 

U+x =T 

It turns out that the triple reversals of these primitives are the same as their 
single reversals, so that Kf and U+ are Galois connections. Such cases are very 
important because it means that the double reversal of an abstract function is 
of exactly the same power as the single reversal. Thus the power of the single 
reversal may be directly compared with the original. In the case just above, 
for example, we can see that a backwards analysis using LI- will have the same 
power as a forwards analysis that approximates x LIY by T. It is clear that this 
is a very poor approximation. 

We can extend the same idea to show that every abstract function has a best 
approximating Galois connection. 

Theorem 13. For every abstract function f, there is a least g 2 f such that g 
is the upper component of a Galois connection. 

Proof. We construct g as follows. We know that the double reversal of f 
satisfies f L f +, and therefore f C f+ C (f+)+ & . . . . Because we are 
working in finite lattices, this increasing chain must eventually be stationary: 
call the limit g. Clearly f L g. Moreover, since g+ = g, g is a Galois 
connection. 

It remains to show that if h is a Galois connection with f E h, then g L h 
also. But, we know that best reversal is anti-monotonic, and so double reversal 
is monotonic. From f C h we may therefore conclude f + E h + = h. By 
induction f +” E h for all n, and so g C h. 0 

The only combining form we have not yet discussed is recursion. Since Kl 
is not a Galois connection, it’s hardly surprising that recursive functions are 
not necessarily Galois connections either. However, we can prove an analogue 
of Theorem 9. 

Theorem 14. Let H be a functional which maps Galois connections to Galois 
connections. Then UT=0 H” (K_i’ ) is a Galois connection, with lower component 
nT’_p=o (H-)n(K;) where H-(g-) = (H(g+))-. 

Proof. Similar to Theorem 9. LJ 

Thus backwards analysis of a recursive function has the same power as 
forwards analysis using a variant of recursion which starts from Kl rather 
than KI. By inspection, KT is the hyper-strict function, and so at least for 
the purpose of strictness analysis it seems that little useful information will be 
lost. 
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3.4. Example: reversing conditionals 

In this section we apply the theory developed so far to the analysis of 
conditionals. The conditional construct we analyse works at the function level: 

{ 

fx ifpx = true 
(p + f;g)x = gx if px = false 

I otherwise 

To give the BHA abstract interpretation we need a new operator: 

xDy= 
I ifx=O 
y otherwise 

Promoting D to operate on functions, we can write the abstract interpretation 
of a conditional as p D (f U g ) . 

How can we reverse this abstract function? It turns out that D is a Galois 
connection with lower component 

(0,l) ify = I 
(1,~) otherwise 

from which we can infer 

(P D h)-Y 2 ;- I u h_y 

ify = I 
otherwise 

Intuitively, for the result of a conditional to be defined, the condition must be 
defined and the branches must be sufficiently defined. 

We still need to reverse (f L. g ), which we can do as follows: 

(f u g)- = (u 0 (f,s))- 
2 (f, g)- O u- 
:K,“‘- O K_L 

_L 

Using this reversal we find 

(P D (f U 8))- 2 (P,f u g)-0 D- 
2 (p-arc, U (fug)-on2)oD- 

=P - 0 nlo D- 

That is, 

(P D (fug))-y 11 $ 1 zlekite 
{ 

If p is a Galois connection, then this is the lower component of a Galois 
connection whose upper component is p D T. Thus backwards analysis of a 
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conditional is equivalent to forwards analysis where we ignore the branches 
and simply use the strictness in the condition. 

In some cases this is the best we can do. For example, consider the function 
cond defined by cond = nl + x2;7c3. The best reversal of 712 u rc3 really is 
KL, and so all we can say about cond is that it is strict in its first argument. 
However, if f and g have some strictness in common then we may be able to 
find a much better reversal of f u g: 

(f u s1-Y=rl{xlYcfx u sx> 
=rbIY~YdJY2 AYlLfx AY2LgxI 

mcxIY~Yl~Y2 A .rY15X A KYZLX) 

= l-WY1 I- kc--Y2 IY LYl MY21 

Although we’ve now expressed a safe reversal off u g in terms off- and g- 
the need to consider all U-factorisations of y makes this formula unsuitable for 
use in practice: in general there are too many of them. In the particular case 
when y is an element of the two-point domain, however, it can be simplified 
to 

(fugl-Y 2 f-yng-y 

In the next section we’ll show that, in fact, this form can always be used. 

4. Relating backwards analysis to the concrete semantics 

So far we have studied reversal of abstract functions, using only the notion 
of safe approximation of one abstract function by another and, except for 
examples, have made no reference to the concrete semantics. The theory 
is therefore applicable to any analysis, including those such as Wadler and 
Hughes’ projection analysis which do not tit the BHA framework. Now we 
restrict ourselves to this framework: not surprisingly, we can derive better 
results in this special case. 

BHA abstract functions satisfy the following safety condition: an abstract 
function f is safe for a concrete function f if abs o f c f o abs. If f’ is a safe 
reversal off, then we have f’ o abs o f E f r o f o abs 5 abs. We can take this 
relationship between f r and f as a definition of safety for backwards abstract 
functions. 

Definition 15. An abstract function f r is safe backwards for a concrete function 
f if f r o abs o f c abs, or equivalently Vx, a. a L abs (f x) + fr a C absx. 

That is, if f’s result is at least as defined as a, then f’s argument must be 
at least as defined as f r a. Clearly, this safety condition justifies the test for 
strictness developed in Section 3.1. 
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But 

{ 

10 ifIES 

(p + f;g)-'S = (p-'{true} flf-'S)U 

(p-'{false} ng-'S) otherwise 

where {I}f is the upwards closure of {I}. Using this, and the fact that abs 
(and therefore cone) are strict and I-reflecting we obtain, 

and so (p + f;g)n 7 Uo (pfl x (fflTlgfl))o D-. 

There are functions that can be shown strict using this rule that can- 
not be shown strict by the forwards analysis. An example is + o (~1 -+ 
(Ki, nz); (~2, Ki) ). Backwards analysis shows 

(+ 0 (n1 --+ (K1,nz); (~2A))Y 1 

= (Xl -+ (K1,nz); (~2,m)d (I,]) 

and so the function is strict in both arguments. Forwards analysis cannot 
discover strictness in the second argument, because when it has abstract value 
0 then the values of the two branches of the conditional are (1,O) and (0, 1 ), 
and taking the least upper bound loses the information that the argument was 
0. This example has also been noticed by Hunt [ IO]. 

It is not true, therefore, that conditionals are “good” forwards and “bad” 
backwards. They are bad in both directions, but in different ways! An analyser 
which repeatedly worked backwards and forwards, using the results of each 
stage to improve the next, could discover more information than an analyser 
working in either direction alone. 

The backwards analysis we have derived in this section is essentially the 
same as Johnsson’s [ 111 or the simplest strictness analysis discussed in [ 61. 
It can also be thought of as an abstraction of Dybjer’s inverse image analysis 
[4], which also used inverse images of Scott-open sets. 

5. Wadler’s four-point domain 

In this section we consider the abstraction of lists of atomic values by 
elements of Wadler’s four-point domain [ 161. The abstract domain is 
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1E 

I abstracts just the undefined list; cc abstracts lists whose last tail is i and 
their limits, infinite lists; 0 E abstracts lists ending in nil and containing an 
undefined element; I E abstracts lists ending in nil all of whose elements are 
defined. For example, 

ab.s (cons 1 (cons 2 1)) = 03 

absC1,2, II = OE 
absC1,21 = ZE 

If f’s abstract function maps cc to I we may conclude that f is tail-strict; if it 
maps OE to I we may conclude that f is head-and-tail-strict. 

Lists are built using cons and nil and taken apart by pattern matching. 
Wadler gives a special rule for analysing case expressions, but we will instead 
simulate pattern matching with the functions null and uncons: 

(x, xs’) if xs = consxxS’ 
unconsxs = 

I otherwise 

The abstract value of nil is 1 E, and the abstraction of cons is given below. 

For our analysis of conditionals of the form (null ---f f; g) to match Wadler’s 
rule for case in accuracy, we have to abstract null’s boolean result by an 
element of the four-point domain {I, true, false, T}. With this abstraction of 
booleans better forwards and backwards analyses of conditionals can be de- 
rived: the new backwards rule is 

(p-‘f;g)!Y 2 C A_ ify = -L 
(pl true U fny) n (p#false LI g’y) otherwise 

The abstractions of null and uncons are now: 

uncons 

I 
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But there is a problem--uncons does not distinguish OE from I E! The reason 
is that OE = COHS 10 E = cons 0 1 E, and uylcoyls must approximate both possi- 
bilities by their least upper bound. The resulting analysis has very little power, 
which is why Wadler gave a special rule for entire case expressions. 

But now consider a backwards analysis. Knil, cons, and null are all Galois 
connections and so may be reversed at once. Reversing ZMZCO~S is pointless-it 
would produce an equally uninformative backwards abstract function-but we 
can instead determine the best backwards abstract function for uncons. It is: 

(To interpret this table intuitively, think of the first argument as the demand 
for the head of a cons-cell, and the second argument as the demand for the 
tail. The result is then the demand for the whole cons-cell. 1 E should be 
interpreted as a head-and-tail-strict demand, and OE as a tail-strict demand.) 

Now all four values of the second argument are properly distinguished, and 
indeed an accurate backwards analysis can be based on these functions. 5 It 
corresponds to projection-based strictness analysis with the projections for 
head-strictness discarded [ 17,2]. But uncoy1.s’ is not the lower component of 
a Galois connection since there is no greatest argument mapped to 0 E, and 
hence no equally powerful forwards function exists. 

We can compare this to the example in Section 4 of a function where 
backwards analysis is more accurate than forwards: the need for forwards 
analysis to approximate (0, I) and ( 1,O) by ( 1, I) in that example is analogous 
to the need to approximate COGS 0 1 E and colzs I 0 E by coyls 1 I E here. 

What if we reverse this backwards analysis to derive a more accurate forwards 
one? We model case constructs by case (n, f > = null + K,, ; f 0 uncons. The 
interesting term here is f o uncons. Given a forwards abstract function f for 
f, a safe backwards abstract function for this term is ~nc011.s’ o f-. So a safe 
forwards abstract function for the composition is 

(UY1CO?zS’of-)+X = L]{y 1 (UnCO?zS’of-)y Lx) 

Taking x to be OE for example, the right-hand side is 

5 Choosing hd and tl as primitives instead of UKOM does not lead to a good analysis. The best 
backwards abstract function for tl is tl’ y = unconf (0, y ) corresponding to the first row of the 
table, which again fails to distinguish 0~ from 1 E. 
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The other cases are similar, but simpler since there is a unique largest value 
mapped below x by uncons’. Using this abstract function and interpreting the 
other parts of case (~1, f ) in the standard way leads us to 

case(n,f) = I n LJ j-+ (I,lE) otherwise 

which is almost exactly Wadler’s rule. The difference is that Wadler omitted 
the double reversal of f that appears here. Of course the double reversal is 
unnecessary, but to derive this via reversal we need theory developed in [ 8 1. 

6. Higher-order functions 

Since one of the strengths of BHA analysis is its ability to handle higher-order 
functions, it’s natural to ask what happens when we reverse the corresponding 
abstract functions. Unfortunately, the reversals are not very informative. This 
is not surprising since backwards analyses in general have difficulty with 
higher-order functions. 

Consider first up, with type (X + Y) x X + Y. Its best reversal is 

UP-Y = rK(Lx) IY L./-x> 
= rl{(b~Yl,X) 1XE-q 
= cncb+Yl I-=Jw-l{xIx~-w 
= ([T HYI,~) 

where [x H y] is the step function that maps any x’ 2 x to y and all 
other arguments to 1. This is the lower component of a Galois connection 
whose upper component is ap+ (f, x) = f T. Thus all of the information 
about strictness in the argument is lost: backwards analysis can only discover 
strictness in the function. 

In the case of currying, 

(Af)-g = r-lea I g c Uf)a) 
= t-b I ~x.gx9-~u,x~~ 
2 mu I vx.mgx) L (u,x)) 
= mu I vx.nl(fr(gx)) LU A tlx.n2(fr(gx)) cx) 
= n{U I df’(gT)) La A WfrogLid) 

nl(f’(gT)) ifn2of’ogLid = 
1 T otherwise 

where f r is a safe reversal of f. If f is a Galois connection then this is the 
lower component of a Galois connection with upper component 



324 J. Hughes, J. Launchbury /Science of Computer Programming 22 (1994) 307-326 

from which we see that backwards analysis cannot discover strictness in the 
second argument of a curried function, since this is equivalent to testing 
whether (/lf)+ TJ_ = 1. 

7. Relational reversal 

As we’ve seen, the reversal of an analysis is usually less accurate than the 
original. However, by working with sets of abstract values it’s possible to 
derive an analysis in the opposite direction with equaZ power. Such an analysis 
is called relational. 

The basic idea is to promote each abstract function f to pof, operating on 
upwards-closed sets of abstract values. Whatever f is, it turns out that aof is 
the upper component of a Galois connection, with lower component f-l. So 
backwards abstract functions of the form f-r carry just as much information 
as the original functions f. Unfortunately, relational analyses seem to be far 
too costly to use in practice. 

One compromise is to combine a locally relational analysis with either 
backwards or forwards non-relational analyses; the idea being to use the rather 
expensive relational analysis just for small parts of a program that would 
be analysed badly by a non-relational method. Within those parts we can mix 
backwards and forwards abstract functions. For instance, Wadler’s rather tricky 
analysis of case expressions can be derived as a locally relational combination 
of the accurate backwards abstract function for uncons with the forwards 
abstract functions used in BHA strictness analysis. 

These results are beyond the scope of this article. They appear in a compan- 
ion paper [ 8 1, where we provide generalised backwards and forwards safety 
conditions relating relational abstract functions to the concrete semantics, and 
show that a relational analysis may be used as part of a non-relational analysis 
in the same direction. 

8. Related work and conclusions 

Strictness analysis has given rise to a rich variety of analyses, both forwards 
and backwards, and the relationship between these has not always been clear. 
Not only are the directions of analysis often different, but commonly so 
are the abstract values and their interpretations. Working towards a unified 
understanding, Burn showed the relationship between BHA strictness analysis 
and Wadler and Hughes’ projection-based strictness analysis through the use 
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of so-called “smash projections” [ 2 1. This allowed the results of each analysis 
to be related to the results of the other. 

Soon afterwards, Hunt presented a forwards strictness analysis based on 
partial equivalence relations (PERs ) [ 9 1. These were particularly interesting 
as most of the PERs used at the ground types corresponded exactly with 
projections. In particular, the ever elusive property of head-strictness was 
captured. However in order for the analysis to be able to derive head-strictness 
information a double analysis within the case construct was required. Again, 
this may be viewed as an instance of obtaining the best reversal of a backwards 
analysis by considering the case construct as a whole. 

Meanwhile-spurred by the discovery of a “naturally forwards” projection- 
based analysis 6 [ 12,13 ]-Hughes and Launchbury studied a direction-indepen- 
dent formulation of projection analysis [7], in order to assess when a view of 
the analysis from one direction may equal or be superior to a view from the 
other. The concept of Galois connections arose here as a means of demon- 
strating equality. Following this lead, Hunt reformulated much of [ 7 J in terms 
Scott-closed sets, so divesting it of its dependence on projections [ lo]. 

The present paper develops the use of Galois connections as abstract func- 
tions (i.e. within an analysis), and shows that such abstract functions may safely 
be reversed with no loss of accuracy. Furthermore, any abstract function may be 
safely reversed, though possibly losing information in the process. In the partic- 
ular case where the reversal is itself a Galois connection, its reduced power may 
be compared against the original by reversing once more to obtain an abstract 
function in the original direction having the same power as the reversal. 

These ideas and methods were then applied to BHA style abstract interpreta- 
tion, and provided a link between this and a previously unconnected backwards 
analysis. In an effort to improve the reversal of the conditional we showed 
that the best backwards abstraction of the conditional is incomparable with 
the best forwards abstraction. Consequently, neither forwards nor backwards 
analysis of the conditional may be said to be superior to the other. 

Wadler’s four-point abstract domain requires a special interpretation of the 
case construct to achieve good results. With the experience of reversals, we were 
able to see exactly where a naive abstract interpretation would lose information: 
uncons has a good backwards abstraction, but a poor forwards abstraction. 
Unfortunately the non-relational techniques of this paper are insufficiently 
powerful to derive Wadler’s rule for case directly, but they were able to 
produce a very similar version. 

Finally we applied the techniques to higher order constructs, in order to 
obtain a backwards analysis of higher order functions. We obtained a simple 
reversal which may be of some use in practice, but one whose power is 
significantly less than the forwards version. 

6 Namely binding-time analysis, as used in partial evaluation 
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Recent work by the Nieisons on complexity measures in abstract interpre- 
tation has an interesting connection with the work here [ 15 1. They show that 
finding fixed points over lattices of completely additive functions may require 
at most a quadratic number of unfoldings, whereas general fixpoint finding is 
exponential. As completely additive functions are lower components of Galois 
connections, our result that every abstract function has a best approximating 
Galois connection (obtained by repeated reversal) may be seen as a generic 
method for deriving cheap approximating analyses. 

Although the development of this paper has been with an eye on strictness 
analysis, many of the results are further reaching: strictness analysis is used 
mainly as a pedagogic tool, and the techniques may be applied to other analyses. 
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