

The evolution of type theory in logic and mathematics

Citation for published version (APA):
Laan, T. D. L. (1997). The evolution of type theory in logic and mathematics Eindhoven: Technische Universiteit
Eindhoven DOI: 10.6100/IR498552

DOI:
10.6100/IR498552

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 22. Feb. 2019

https://doi.org/10.6100/IR498552
https://research.tue.nl/en/publications/the-evolution-of-type-theory-in-logic-and-mathematics(82c213ca-2d17-4d9e-b137-7db3809b9bab).html

Twan Laan

EVOLUTION OF TYPE THEORY

IN ~OGIC AND MATHEMATICS

The Evolution of Type Theory

in Logic and Mathematics

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr. M. Rem, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op maandag 29 september 1997 om 16.00 uur

door

Twan Dismas Laurens Laan

geboren te Etten-Leur

Dit proefschrift is goedgekeurd door de' promotoren:
prof.dr. J.C.M. Baeten
prof.dr. H.C.M. de Swart
en de copromotor:
dr. R.P. Nederpelt

This thesis has been carried out under the auspices of the Institute for Pro
gramming Research and Algorithmics (IPA) and the Cooperation Center
Tilburg and Eindhoven Universities (SOBU).

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Laan, Twan Dismas Laurens

The evolution of type theory in logic and mathematics I by
Twan Dismas Laurens Laan. - Eindhoven : Technische
Universiteit Eindhoven, 1997. - xii, 344 p.
Proefschrift. - ISBN 90-386-0531-5
NUGI 811
Subject headings: programming languages ; data types I
mathematical logic I mathematical logic ; history
1991 Mathematics Subject Classification: 03B15, 03B40,
01-02, 01A60

IP A dissertation series 1997-04
Cover design by Elske Bleeker
Printed and bound by Print Partners Ipskamp, Enschede

The Evolution of Type Theory in Logic and
Mathematics

Twan Laan

29 september 1997

Stellingen
behorende bij het proefschrift

The Evolution of Type Theory
Logic and Mathematics

van

Twan Laan

.
Ill

1. Type-theorie is zich pas gaan vertakken nadat bleek dat vertakking in
de type-theorie niet noodzakelijk is (dit proefschrift, omslag).

2. De aanduiding "simple" in "simple type theory" verwijst niet naar het
feit dat de simply typed .>..-calculus een van de eenvoudigste getypeerde
.>..-calculi is, maar duidt op een type-systeem dat geen vertakte types
("ramified types") kent. Daarom zijn aile getypeerde .>..-calculi in de
kubus van Barendregt voorbeelden van "simple type theories".

3. Het toevoegen van een parameter-mechanisme aan Pure Type Systems
is geen uitbreiding van dit framework maar een verfijning ervan (dit
proefschrift, Hoofdstuk 6).

4. Het schrijven van een proefschrift is als het reduceren van een term
in een termherschrijfsysteem dat niet noodzakelijk confluent of sterk
normaliserend, maar (door de eindige levensduur van promovendi) wel
zwak normaliserend is.

5. Een belangrijke eis aan een wetenschappelijk experiment is de herhaal
baarheid ervan. Daarom is het discutabel om informatica een weten
schap te noemen zolang een van de meest gegeven adviezen bij compu
ternukken luidt: "uitzetten, aanzetten, en kijken of-ie dan wel werkt".

6. Het verkrijgen van een reisadvies voor een reis per openbaar vervoer is
te vergelijken met het passen van kleding in een kledingwinkel en moet
dus (net als het passen van kleding) gratis zijn.

7. Om "de automobilist in het openbaar vervoer te krijgen" is tariefinte
gratie tussen openbaar vervoer en personenauto minstens zo bela.ngrijk
als tariefintegratie tussen de verschillende vormen van openbaar vervoer
onderling.

8. Het feit dat er beambten zijn die belast zijn met de controle en afgifte
van vervoerbewijzen van het openbaar vervoer en die ten onrechte som
mige zwembadabonnementen accepteren als geldig vervoerbewijs in be
paalde bussen, geeft aan dat er iets grondig mis is met de helderheid
van de tariefstructuur (en daarmee: met de klantvriendelijkheid) van
het Nederlandse openbaar vervoer.

9. Het verkrijgen van handtekeningen die noodzakelijk zijn voor het suc
cesvol afleggen van het bureaucratische. traject voorafgaande aan een
promotieplechtigheid wordt aanmerkelijk vergemakkelijkt indien de eer
ste promotor tevens decaan van de betrokken faculteit is.

10. Engels en Frans zijn twee talen die niet vloeiend uit een mond kunnen
komen.

,

Acknow ledgernents

This thesis is the main result of the project "De ontwikkeling van het
Typebegrip", which was financially supported by the Co-operation Centre
Tilburg and Eindhoven Universities (SOBU). NWO and Glasgow Univer
sity provided funding for my trips to Glasgow in spring 1995 and winter
1996.

But a thesis cannot be written with money alone. Invaluable support
was obtained from many persons in several ways.

Rob Nederpelt and Harrie de Swart came with the idea for the project.
They wrote the research proposal, and in this way they made things gen
erally happen.

It was a pleasure to work in the "types group" of Eindhoven University.
Many suggestions and ideas of the people of this group found their way
into this thesis. The results of the cooperation with Michael Franssen,
Paula Severi and Jan Zwanenburg on Pure Type Systems with Parameters
are reflected in Chapter 6. Bert van Benthem Jutting explained me some
essentials of Automath, and Stuart Allan did the same with some details
of the Russell paradox in Frege's Grundgesetze der Arithmetik.

Most ideas for Chapter 3, and many for Chapter 4, were born when
I worked together with Fairouz Kamareddine at Glasgow University. To
those who do not know Fairouz it may sound strange that the basics for
almost two full chapters arose within three months. To others, who know
her energy and the way in which she can motivate people, this will not
come as a surprise.

Araminte Bleeker, Tijn Borghuis, Herman Geuvers, and Jan Zwanen
burg read a manuscript of the manuscript and made it considerably less
inconsistent than it initially was.

The less inconsistent manuscript was carefully read by the manuscript

Vl Acknowledgements

committee, consisting of my promotors prof.dr. J.C.M. Baeten and prof.dr.
H.C.M. de Swart, my co-promotor Rob Nederpelt, and prof.dr. H.P. Baren
dregt, and prof.dr. D. van Dalen.

Elske Bleeker took care that the overall result got packed in a nice cover.
Roel Bloo managed to be my room-mate for the last four years. He was

perfect company, and always open to discuss my work with me.
My colleagues of the Formal Methods group in Eindhoven and the Logic

group in Tilburg provided a pleasant atmosphere, and even survived my
railway-enthousiasm.

Sitting in front of my over-developed Turing-machine and watching all
the pages that now form this thesis, writing a thesis seems to be a cool thing.
In spring 1996 (when not even one character for this thesis was written)
my opinion on writing thesises was quite a different one. It seemed to
be something impossible. At that time, many people explained me that
writing a thesis is one of the less important things in life. Strange enough,
this gave me ample motivation to write and finish it. On this point I
am particularly indebted to Rob Nederpelt, Annemarie Broekhuysen, my
paranymphs Dion-ben Hendriks and Araminte Bleeker, and my parents Jan
and Stefanie Laan for their open ears, clear explanation, and unconditional
support.

Twan Laan,
Eindhoven,

29 September 1997

Contents

Introduction
The approach
The heart of type theory .

Functionalisation
Instantiation
Special forms of functionalisation

Preliminaries
Overview of this thesis

1 Prehistory
1a Paradox threats
1 b Paradox threats in formal systems

1b1 Functions and their course of values
1b2 The Russell Paradox in the Grundgesetze .
1b3 How wrong was Frege?
1b4 The importance of Russell's Paradox

2 Type theory in Principia Mathematica
2a Propositional functions

2a1 Definition
2a2 Propositional functions as .:\-terms .
2a3 Related notions
2a4 Substitution

2b The Ramified Theory of Types .
2b1 Types

2bl.l Simple types

1
1
3
3
7

9
10

11

14
15
17
18
21
23
25

27
30
30
33
41
43
47
47
47

vm Contents

2bl.2 Ramified types 51
2b2 Formalisation of the Ramified Theory of Types 53
2b3 Discussion and examples 56

2c Properties of RTT 63
2cl Types and free variables 63
2c2 Strong normalisation . 66
2c3 Subterm property . . . 73

2d Legal propositional functions 75
Conclusions 82

3 Deramification 84
3a History of the deramification 85

3al The problematic character of RTT . 85
3a2 The Axiom of Reducibility 87
3a3 Deramification 90

3b The Simple Theory of Types 92
3bl Constructing the Simple Theory of Types from RTT 92
3b2 Comparison of STT with Church's A-> . 93

3c Are the orders to be blamed? 95
3cl Kripke's Theory of Truth KTT 97
3c2 RTT in KTT 101

3c2.1 Logical truth for RTT in Tarski's style. 101
3c2.2 RTT embedded in KTT 102
3c2.3 The restrictiveness of Russell's theory . 113

3c3 Orders and types 116
Conclusions . 117

4 Propositions as Types and Proofs as Terms 119
4a The discovery of PAT . 119

4al Intuitionistic logic 120
4a2 Curry . . . 121
4a3 Howard . . . 124
4a4 De Bruijn . 126

4b RTT in PAT style . 128
4bl An introduction to ARTT 129

4bl.l The translations of the ramified types 133
4bl.2 The translation of the logical implication . 134

4bl.3 The translation of the universal quantifier
4b2 The system ARTT
4b3 Meta-properties of ARTT .
4b4 Interpreting RTT in ARTT .
4b5 Logic in RTT and ARTT ..
4b6 Various implementations of PAT

4c STT in PAT style
Conclusions

5 Automath
5a Description of AUTOMATH

5a1 Books, lines and expressions
5a2 Correct books
5a3 Definitional equality
5a4 Some elementary properties

5b From AuT-68 towards a PTS ...
5b1 The choice of the correct formation (II) rules .
5b2 The different treatment of constants and variables
5b3 The definition system

5c .\68
5cl Definition and elementary properties
5c2 Reduction and conversion .
5c3 Subject reduction
5c4 Strong normalisation ·. . . .
5c5 The formal relation between AuT-68 and .\68

5d Related work .
5d1 AUT-QE
5d2 Comparison with the DPTSs of Severi and Poll
5d3 Comparison with systems of Bloo, Kamareddine and

Nederpelt.
Conclusions

6 Pure Type Systems with Parameters
6a Parametric constants and definitions .
6b Properties of terms . .

6b1 Basic properties .
6b2 Church-Rosser for

ix

135
136
141
145
150
153
158
159

160
163
164
171
173
176
177
178
181
182
184
184
190
198
202
207
211
212
214

217
218

220
227
243
244
247

X

6b3 Strong normalisation for -t0

6c Properties of legal terms . . .
6d Restrictive use of parameters . . .

6dl CD-PTSs with restricted parameters
6d2 Imitating parameters by A-abstractions
6d3 Refined Barendregt Cubes

6e Systems in the refined Barendregt Cube.
6el ML
6e2 LF
6e3 A68 and AUT-68 .
6e4 AQE and AUT-QE
6e5 PAL

6f First-order predicate logic
Conclusions: Yet another extension of PTSs?

Practical motivation . . .
The heart of type theory
Future work

Contents

253
256
266
268
271
275
277
277
279
280
281
282
282
287
288
289
290

A Preliminaries 291
Aa Lambda calculus . 292
Ab Simply typed A-calculus . 296
Ac Pure type systems 298
Ad Metaproperties of PTSs . 301

B Type systems in this thesis 304
Ba The Ramified Theory of Types . 304

Ba1 RTT. . 304
B~ A~T . W7

Bb AUTOMATH. 308
Bbl AUT-68 308
Bh2 >..68 . . 310

Be CD-PTSs and their subsystems 312
Bel PTSs with parameters and definitions . 312
Bc2 PTSs with restricted parameters and definitions 314

Bibliography 315

Xl

Subject Index 327

Name Index 334

List of Figures 337

Summary 338

Samenvatting 340

Curriculum Vitae 342

Introduction

Nowadays, type theory has many applications and is used in a lot of different
disciplines. Even within logic and mathematics, there are a lot of different
type systems. They serve several purposes, and are formulated in various
ways. In this thesis we present a formal framework in which various type
theories can be described. This framework is an extension of an already
existing framework.

For the development of this framework, we follow the evolution of type
theory throughout the past century. However, we do not only give a mere
historical description. On the contrary: our goal is not to describe the
various type systems that have been developed in their historical setting,
but to present them in a modern framework. In this way it becomes clear
how the various type systems are related to each other, even if originally
those systems are described in very different ways. Moreover, we can make
clear what is the essence, or the common basis, of the various modern type
theories.

The historical line in this thesis is, therefore, only part of our method
of research, and definitely not a goal of our research.

The approach

Following the historical line from Frege (1879) to today, we are confronted
with various type systems. Often, such a system has already been described
in a modern framework, but the relation between the modern description
and the original system has not always been made clear. This is particularly
the case when the original system is quite far from the modern framework
with respect to notation, level of formality and/or purpose. We will focus

2 Introduction

on such type systems. We describe them within the framework in such a
way that:

• We respect the ideas and the philosophy underlying the original sys
tem;

• We meet contemporary requirements on formality and accuracy.

As basis for our framework we choose typed A-calculus, more specific
the framework of Pure Type Systems. There are several reasons for this
choice:

• Many type systems have already been placed in this framework (see
Example 5.2.4 of [5]);

• PTSs meet contemporary requirements on formality and accuracy;

• PTSs focus on the heart of type theory: functionalisation and instan
tiation (see below). This makes it possible to compare type systems
in a very fundamental way, without being hindered by things that do
not touch the heart of the matter;

• Though PTSs focus on the heart of type theory, they are easily ex
tendible in several ways. There are already many extensions described
in the literature:

- PTSs with definitions, introduced in [114];

- PTSs with modalities, introduced in [18];

- PTSs with sum types, see [6];

- PTSs with quotient types, see [68], [6];

- PTSs with subset types, see [6].

Another extension (PTSs with parameters and parametric definitions)
is studied in this thesis (see Chapter 6);

• The meta-theory that has been developed for PTSs makes it easier to
access, develop and compare meta-theoretic properties of the various
original type systems.

The heart of type theory 3

By placing several systems in the PTS framework, we also find some
omissions in this framework. In particular, there is no extension of PTSs
with parameters, while parameters play an important role in the type sys
tems underlying the proof checker AUTOMATH [95]. Extending PTSs with
parameters not only opens the possibility of placing AUTOMATH more ac
curately in the framework of PTSs, it makes it also possible to give a better
classification of more modern type systems and their applications.

In the above, we claimed that PTSs focus on the heart of type theory:
functionalisation and instantiation. We now describe what we mean by
functionalisation and instantiation, and why these two notions are in our
opinion the heart of the matter.

The heart of type theory

The explicit and formal use of types (and thus an early form of what is
presently called "type theory") was originally intended to prevent the para
doxes that occurred in logic and mathematics at the end of the 19th and
the beginning of the 20th century. But it was not the only method devel
oped for this purpose. Another tool was the fine-tuning of Cantor's Set
Theory [25, 26] by Zermelo [123]. The approach of type theory however,
is completely different from the set-theoretical approach. Type theory fo
cuses on the notion of function in logic and mathematics, and throughout
the history of type theory, functions have remained one of the main objects
of study for type theorists.

In the abstract theory of functions, there are only two important con
structions: functionalisation and instantiation. We now discuss both con
struction principles.

Functionalisation

Consider the mathematical expression 2 + 3. This expression indicates
the addition of the number 2 to the number 3. Both 2 and 3 are fixed
objects. But we cannot only think of the addition of 2 to 3, but also of
the addition of any other number to 3. This means that we replace the
object 2 by a symbol that denotes "any natural number": a variable (say:
x). This results in the expression x + 3. This expression does not denote
one specific natural number, but if we replace x by a natural number, then

4 Introduction

the resulting expression represents a natural number. This replacement
activity is similar for the various possibilities for x, and gives rise to an
algorithm: We feed a natural number to the algorithm, the algorithm adds
3 to that natural number, and returns the result to us. This algorithm is
called a function.

Notice that the function that returns x+3 whenever we assign a natural
number to x is more than just the expression x + 3: The expression x +
3 denotes some natural number, but the function denotes an algorithm.
Moreover, the expression y + 3 is an expression that is different from x + 3. ·
We can have two different natural numbers in mind for x andy. But if we
construct functions from x + 3 and y + 3 by the method described above,
we obtain the same algorithm.

There are various ways to denote the algorithm in the example above:

• Frege ([45], 1879) simply wrote x+ 3, and did not make any difference
between the algorithm and the expression x + 3; 1

• Russell ([121], 1910) was more clear on this point, and wrote x + 3 to
distinguish the algorithm from the expression x + 3;

• Church ([28], 1932) used .\x.x + 3 where Russell wrote x + 3;

• In the proof checker AUTOMATH ([95], 1968), the notation [x:N]x + 3
is used;

• In explicitly typed .\-calculi (also known as .\-calculi "in Church
style") one usually writes .\x:N.x + 3. The x:N behind the ,\ denotes
that the algorithm requires "special food". We cannot just feed it
anything we want, it only eats natural numbers;

• In many mathematical texts, we find the notation x r-+ x + 3.

Thus, the process of constructing a function can be split up into two
parts:

1. Abstraction from a subexpression. First, we replace an subexpression
k in an expression f by a variable x, at one or more places where k
occurs in f. Thus we obtain a new expression, f';

1 Frege'used the notation x(x+3) for what is called the course-of-value of the algorithm
above, but not for the algorithm itself. See Section lbl.

The heart of type theory 5

2. Function construction. Then we construct the function >-.x.f' that
assigns f'[x:=a] to a value a that we feed it. Here, f'[x:=a] denotes
J', in which a has been substituted for x. Sometimes, "substituted"
denotes: "replaced" (as in >-.-calculus). In other systems, like Rus
sell's Ramified Theory of Types, substitution is a more complicated
operation (see Section 2a4).

We call this process: Functionalisation.
The first part of the functionalisation process, abstraction from a subex

pression, is already present in Frege's Begriffsschrift:

"If in an expression, [...] a simple or a compound sign has one
or more occurrences and if we regard that sign as replaceable in
all or some of these occurrences by something else (but every
where by the same thing), then we call the part that remains
invariant in the expression a function, and the replaceable part
the argument of the function."

(Begriffsschrift, Section 9)

Frege, however, did not introduce separate notations for for example, the
expression x + 3 and the function >-.x.x + 3. Hence, Frege did not employ
the second part of functionalisation, the function construction.

However, both parts of the functionalisation process are present in Prin
cipia Mathematica by Whitehead and Russell [121]. The first part is rep
resented by the "vice versa" part of *9·14 below, and the combination of
the first and the second part is represented by *9·15 below:

"*9·14. If 'cpx' is significant, then if xis of the same type as a,
'cpa' is significant, and vice versa.

*9·15. If, for some a, there is a proposition cpa, then there is
a function cpx, and vice versa"

(Principia Mathematica, p. 133)

Here, cpx denotes an expression in which a variable x occurs. Similarly, cpa
denotes an expression in which a sub-expression a occurs, and cpx denotes
the function (algorithm) that assigns the value cpa to an argument a.

6 Introduction

Both the Begriffsschrift and Principia Mathematica exclude so-called
constant functions. A function like .\x.3 cannot be constructed in these
theories, because the expression 3 does not contain a variable x. This class
of functions can be obtained by weakening the procedure of abstraction of
subexpressions of the functionalisation procedure: We can replace an object
in an expression f by a variable x at zero places where this object occurs
in f (the object does not even have to occur in f). If we then apply the
second part of the functionalisation procedure, we can obtain a constant
function like .\x.3.

Functions of more variables can be constructed by repeatedly applying
functionalisation. This repetition process is often called "currying" after
H.B. Curry, and is usually accredited to Schonfinkel ([109], 1924), but some
of the ideas behind it are already present in Frege's Begriffsschrift (1879):

"If, given a function, we think of a sign2 that was hitherto re
garded as not replaceable as being replaceable at some or all of
its occurrences, then by adopting this conception we obtain a
function that has a new argument in addition to those it had
before."

(Begriffsschrift, Section 9)

For Frege, this procedure of introducing several variables one by one results
in the functions of more than one variable as used in ordinary mathematics.
SchonfinkePs procedure results in curried functions as we know them from
.\-calculus.

In >.-calculus, functionalisation focuses on the function construction.
The abstraction from subexpressions can be omitted, as variables form the
basic terms of the >.-calculus.

The notion of functionalisation in the works of Frege and Russell is inac
curate according to modern standards. There are many unexpected choices
for the expression that is replaced by a variable in the first step of function
construction. Examples will be given in Remark 2.10. In modern systems,
which usually use >.-calculus, the second step of function construction is
very clear: From a term f we can construct a term >.x.f. But also the

2 We can now regard a sign that ·previously was considered replaceable as replaceable
also in those places in which up to this point it was considered fixed. [footnote by Frege]

The heart of type theory 7

first step can be made clear. Take again the expression 2 + 3. This term
is ,6-equivalent to the ..\-term (..\x.x + 3)2, which can be regarded as the
term ..\x.x + 3 (a function) applied to an argument, viz. 2. More precise,
(..\x.x + 3)2 is a ,6-expansion of 2 + 3. In this ,6-expansion, both the newly
introduced variable, x, and the object that is replaced by x, namely 2, are
present. They are linked via the ..\-abstractor. The term ..\x.x + 3 is a
function which is applied to the argument 2. By removing the argument 2
from (..\x.x + 3)2, we obtain the function ..\x.x + 3. More generally, we can
construct a function from a ..\-term f by first taking a ,6-expansion (..\x.f')a
of f, and then removing the argument a. This is a much more precise
description of functionalisation than the one that is given in the work of
Frege.

This does not mean that the work on functionalisation has finished
now. There are several variants of functionalisation that have not yet been
studied completely. See the section on special forms of functionalisation
below.

Instantiation

Instantiation is the inverse process of functionalisation. It consists of apply
ing a function to an argument, and calculating the result of this application.
As the function is an algorithm, it is prescribed how this calculation should
be made. For example, if we instantiate the function ..\x.x + 3 with the ar
gument 2, we first apply this function to 2, obtaining (..\x.x + 3)2, and then
calculate the result via ,6-reduction: 2 + 3. Just like the functionalisation
process, the instantiation process has two phases:

1. Application construction. Juxtaposing the function f to an argument
a; the result is usually written as f (a) or fa and denotes an intended
function application;

2. Concretisation to a subexpression. Calculating the result of this in
tended application. f is a function, and therefore has been con
structed from an expression f' with a free variable (say x). The
calculation usually consists of a substitution of a for the free variable
X.

These phases are clearly visible in the ..\-calculus above. The calculation
consists of removing the ..\-abstraction from ..\x.x + 3, and substituting the

8

2+3

Introduction

functionalisa tion
abstraction from
a subexpression

concretisation to
a subexpression

(Ax.x + 3)2

initialisation

function
construction

-+------- Ax.x+3
application

construction

Figure 1: Functionalisation and instantiation are each others inverse

argument 2 for the free variable that appears when the A-abstraction is
removed. Moreover, it becomes clear that function construction is the in
verse procedure of application construction, and that abstraction from a
subexpression is the inverse procedure of concretisation to a subexpression.
See Figure 1.

It is not always that simple. Sometimes, the function f to which we
apply an argument a is not a concrete object, but only a variable. For
example, look at the function Ay.zy that is applied to an argument 2. In
that case, the instantiation cannot be carried out completely. We can apply
the function to the argument, obtaining (Ay.zy)2, and this term ,8-reduces
to z2. As we do not have a concrete object as function, but only the variable
z, we cannot proceed with this calculation. If we substitute a function for
z (say: Ax.x + 3), we obtain (Ax.x + 3)2. Then we continue the calculation
by substituting 2 for x in x + 3, obtaining 2 + 3.

As with functionalisation, instantiation can now be precisely defined
in terms of A-calculus. In the works of Frege and Russell, we do not find
such a precise description of instantiation. The application construction is
well-described (for instance in the "vice-versa" part of *9·15 in Principia
Mathematica- see the quotation at page 5), but there is no precise defini
tion of the concretisation to subexpressions by means of substitution. This
is not so very important as long as it is straightforward how the substitu
tion should be carried out. However, we will see that substitution is not a
straightforward procedure in Principia Mathematica.

The precise definition of substitution in A-calculus is due to Curry and
Feys [38] (1958). However, we must remark that "precise" is a relative
notion here. The presentations of functionalisation and instantiation that
were given by Frege and Russell were very precise for those days. And the

Tl1e heart of type theory 9

definition of substitution by Curry and Feys in 1958 is not the last word
to be said on the notion of substitution. Currently, there is quite some
research on so-called explicit substitutions, which are refinements of the
notion of substitution of Curry and Feys. See [15], [1], [71], [8].

Special forms of functionalisation

The mechanisms of functionalisation and instantiation that are used in >.
calculus are quite powerful, but have some disadvantages:

• In >.-calculus, the first step in the functionalisation process is not
carried out. In particular, the functionalisation process in >.-calculus
does not show from which term (object) has been abstracted. This is
contrary to the systems of Frege and Russell, where it is clear from
the functionalisation process from which object has been abstracted.

However, there are also modern functionalisation processes in which
it is essential to remind the original term from which has been ab
stracted. A good example is the use of definitions. If an subexpression
k occurs in an expression f, it is sometimes practical to introduce an
abbreviation for k, for several reasons:

The syntactical representation of the object k may be long. This
makes manipulations with f a time-consuming and memory
consuming task, in particular when k occurs several times in
f. Abbreviating k can make manipulations with f easier;

The object k may represent a structure that is particularly in
teresting. Abbreviating k opens the possibility to introduce a
significant name for k. This makes the expression easier to un
derstand for human beings.

Abbreviating k can be seen as an functionalisation process: we replace
all the occurrences of k by its definiendum (its name), and then have
an unfolding algorithm that can be used to replace the definiendum by
its definiens (that is: k) when the internal structure of k is needed in
the term f. For example, if we develop the theory of natural numbers
using the axioms of Peano, we have terms 0 (zero), SO (the successor
of zero, or: one), S(SO) (two), S(S(SO)), etc. In this notation, the
expression 2+3looks like S(SO)+S(S(SO)). Introducing abbreviations

10 Introduction

(1 for SO, 2 for S(SO), etc.) makes the term shorter and more clear.
The definiens of 2 can be stored in some context, but it can also be
stored directly in front of the term 2 + 3 like a .\-abstraction. We
then obtain a new term

2=S(SO) IN 2+3.

Storing the definition in a context is usually done for definitions that
are used at several places, in several expressions; storing the definition
in front of a term usually takes place when the definition is important
for that term only;

• It is not always necessary to make "full functionalisation". For in
stance, have a look at the axiom for natural induction. This axiom
can be written as a function:

.\P.PO -t Vn[Pn -t P(Sn)] -t Vn[Pn].

This function takes one argument: a predicate on natural numbers
P. A mathematician usually is not interested in the axiom presented
in the above formulation. Often he is interested in instantiations of
the axiom only. Therefore, a mathematician may prefer the induction
axiom in the form of an axiom scheme, depending on a parameter for
the predicate P. The scheme itself is not part of the formal language,
but all the instantiations of the scheme do. As the scheme itself
is not part of the language, this "parametric" presentation of the
induction axiom is not as strong as the presentation with the .\-term:
The latter is part of the formal language, so it is possible to discuss
the axiom within the formal language. Nevertheless, the parametric
presentation occurs very often in practice (for instance, in applications
and implementations of mathematics), and therefore deserves a closer
study (see Chapter 6 of this thesis).

Preliminaries

We assume that the reader is more or less familiar with the basics of typed
.\-calculus and type theory. We give a survey of the most important topics

Overview of this thesis 11

concerning typed >.-calculus in Appendix A. General introductions to type
theory are also available in the literature (e.g. [93], [99]).

Pure Type Systems play an important role in the thesis, especially in
the chapters 4-6. At the point where PTSs enter the work, in Section 4b,
we give a short explanation of the various PTS-rules. Again, we refer to
Appendix A for a short summary of the theory regarding PTSs.

Overview of this thesis

The thesis is divided into six chapters.
In the first chapter we discuss the prehistory of type theory. That is, we

study the way in which types implicitly occurred in logic and mathematics
before ther.e was an explicit theory of types. We pay special attention to
the formalisation of logic that is made in Frege's Begriffsschrift [45] and
Grundgesetze der Arithmetik [48, 52], as in this system many basic ideas
are presented that are later used in type theory. Moreover, the system of
Grundgesetze der Arithmetik is the one for which Russell derives his famous
paradox, and this paradox has been the reason for Russell to introduce the
first theory of types.

This first type theory is the subject of the second chapter. Whitehead
and Russell present their theory, the Ramified Type Theory (RTT), in an
informal way. Several rough descriptions of this theory have been given
in the literature (see for instance [101], [64], [30] and [32]) but we present
a formalisation of RTT that is directly based on the presentation of RTT

in Whitehead and Russell's Principia Mathematica ([121], 1910-12). The
construction of this formalisation is not a simple task. Whitehead and Rus
sell do not present a clear syntax for their so-called propositional functions
in [121], neither do they make a clear difference between syntax and se
mantics. We present a formal definition of propositional function that is
faithful to the original ideas exposed in Principia Mathematica. A second
technical problem is the notion of substitution, which is totally undefined
in Principia Mathematica. The formalisation of the notion of propositional
function makes it possible to express the notion of substitution of Prin
cipia Mathematica in terms of >.-calculus. We use techniques from typed
and untyped >.-calculus to give a precise description of substitution, and
to show that substitution is well-defined as long as we restrict ourselves to

12 Introduction

well-typed propositional functions of RTT.
In 1926, Ramsey [101] proposes an important simplification of RTT,

the simple theory of types. This simple type theory has become the basis
for many modern type systems, and for the simply typed A-calculus of
Church [30]. The simplification consisted of the removal of one of the two
hierarchies from the RTT. The hierarchy of types is maintained, while the
hierarchy of orders is removed. In Chapter 3 we discuss this process of
so-called deramification. An important observation of this Chapter is that
though the orders do not occur in the mainstream of type theories, they
still provide an important intuition for logicians. We show that there is
a close link between the hierarchy of orders in RTT and the hierarchy of
truths that was introduced by Kripke [78]. We also show that Kripke's use
of orders is more flexible than Russell's, and that this is due to the fact that
orders occur at the semanticallevel in Kripke's theory, while they occur at
the level of syntax in RTT.

Though type theory clearly served as a method to prevent certain logical
paradoxes, the logical system stood apart from the type system until the
1950s. In Chapter 4 we study the ways in which logic can be included in a
type system. The various methods are all based on the idea that the proof
of a logical implication can be seen as a function. More precisely: A proof of
the proposition A ---+ B is implemented as a function that takes a proof of A
as argument, and returns a proof of B. In this way, the proposition A ---+ B
can be seen as the type of all functions from (proofs of) A to (proofs of) B.
Similarly, a proof of A ---+ B becomes a term of type A ---+ B. One callsthis
principle: propositions as types, or: proofs as terms. Both expressions are
abbreviated by PAT. We illustrate the principle by giving a description of
RTT in a PAT style.

One of the important applications of PAT is the mechanical verifica
tion of mathematical proofs. The first tool for such a verification was
AUTOMATH. It was developed in 1968. The languages of the various Au
TOMATH systems have been studied intensively. In [5], a description of two
of the most important systems within the framework of Pure Type Systems
is given, but without any explanation. In Chapter 5 we study the original
language of AUTOMATH and translate it to a PTS format. In doing so, we
obtain descriptions similar to the ones in [5].

The description in Chapter 5 is precise, but does not take into account
two important mechanisms of AUTOMATH: the definition mechanism and

Overview of this thesis 13

the parameter mechanism. Many other type systems use these mechanisms
as well. This motivates us to extend the framework of PTSs with defini
tions and parameters in Chapter 6. As far as definitions are concerned, this
extension is based on the PTSs with definitions that were introduced by
Severi and Poll [114]. This extension results in a refinement of the frame
work of PTSs. In this refined framework, various modern type systems
(like LF and ML) can be described in a more precise way than in the PTS
framework without definitions and parameters.

Chapter 1

Prehistory

In this chapter, we discuss the development of type theory before it was
actually baptised. This may sound like a contradiction. But types have
played an important (though not very apparent) role in mathematics even
before the theory of types was explicitly introduced by Russell in 1908
[108]. Moreover, knowledge of the development of logic and mathematics
before 1908, and especially of the occurrence of the logical paradoxes at the
turn of the century, provides insight in the way in which Russell and others
formulated their theories of types.

When the first formalisations of parts of mathematics and logic ap
peared, the types were left implicit. Cantor's Set Theory [25, 26], Peano's
formalisation of the theory of natural numbers in [97], and Frege's Be
griffsschrift [45] and Grundgesetze der Arithmetik [48, 52] did not have a
formal type system. The type of an object is indicated by means of natural
language ("Let a be a proposition") or is taken for granted. Types were
informally present in the background of these theories, but a formal repre
sentation of the types was not incorporated: one could say that they were
separated from logic and mathematics.

However, even without a formalisation of the notion of types, the intro
duction of formal language had considerable advantages in the description
of mathematical notions. The formalisation made it easier to give a precise
definition of important abstract concepts, like the concept of function. The
precise formulation allowed for a generalisation of the notion of function
to include not only functions that take numbers as an argument, and re-

la Paradox threats 15

turn a number, but also functions that can take and return other sorts of
arguments (like propositions, but also functions). Unfortunately, this also
allowed logical paradoxes to enter the formal theory, without the (informal)
type mechanism being able to prevent that.

In this chapter we first argue that types have always been present in
mathematics, though probably nobody was aware of it before the end of
the 19th century (Section la). We proceed by describing how the logical
paradoxes entered the formal systems of Frege, Cantor and Peano in Section
lb.

The historical remarks in this chapter have been taken from various
resources. The most important ones are [14], [37], [61], [76], [99], [104] and
[122].

la Paradox threats

The most fundamental idea behind type theory is being able to distinguish
between different classes of objects (types). Until the end of the 19th cen
tury it had hardly ever been necessary to make this ability explicit. The
mathematical language itself was predominantly informal, and so was the
use of classes of objects.

It is, however, difficult to argue that there were no types before Rus
sell "invented" them in 1908. Already around 325 B.C., Euclid began his
Elements [43] with the following primitive definitions:

1. A point is that which has no part;

2. A line is breadthless length.

From these two basic notions of "point" and "line", Euclid defined more
complex notions, like the notion of "circle":

15. A circle is a plane figure contained by one line such that all the
straight lines falling upon it from one point among those lying within
the figure are equal to one another.

At first sight, these three observations are mere definitions. But these
three pieces of text do not only define the notions of point, line and circle,
they also show that Euclid distinguished between points, lines and circles.

16 1 Prehistory

Throughout the Elements, Euclid always mentioned to which class an ob
ject belonged (the class of points, the class of lines, etc.). In doing so, he
prevented undesired situations, like the intersection of two points (instead
of two lines).

Undesired results? Euclid himself would probably have said: impossible
results. When talking of an intersection, intuition implicitly forced him
to think about the type of the objects of which he wanted to construct the
intersection. As the intersection of two points is not supported by intuition,
he did not even try to undertake such a construction.

Euclid's attitude to, and implicit use of type theory was maintained by
the mathematicians and logicians of the next twenty-one centuries. From
the 19th century on, mathematical systems became less intuitive, for several
reasons:

1. The system itself is complex, or abstract. An example is the theory
of convergence in real analysis;

2. The system is a formal system, for example, the formalisation of logic
in Frege's Begriffsschrijt;

3. (In the second half of the 20th century:) It is not a human being work
ing with the system, but something with less intuition, in particular:
a computer.

We will call these three situations paradox threats. In all these cases, there
is not enough intuition to activate the (implicitly present) type theory to
warn against an impossible situation. One proceeds to reason within the
impossible situation and then obtains a result that may be wrong or para
doxical: an undesired situation. We mention examples related to the three
situations above:

ad 1. The controversial results on convergence of series in analysis obtained
in the 17th and 18th century, due to lack of knowledge on what real
numbers actually are;

ad 2. The logical paradoxes that arose from self-application of functions.
Self-application is intuitively impossible, but this is easily forgotten
when working in a formal system in which such self-application can
be expressed. The result is undesirable: a logical paradox;

1 b Paradox threats in formal systems 17

ad 3. An untyped computer program may receive instructions from a not
too watchful user to add the number 3 to the string four (instead of
the number 4). The computer, unaware of the fact that four is not
a number, starts his calculation. It is not programmed to handle the
calculation of 3+four. The result of this calculation is unpredictable.
The computer may

• give an answer that is clearly wrong (for example, **);

• give no answer at all;

• give an answer that is not so clearly wrong (for example, 6).

Especially the last situation is highly undesirable.

The example ad 2 is the main subject of the next section.

1 b Paradox threats in formal systems

In the 19th century, the need for a more precise style in mathematics arose.
Controversial results had appeared in analysis. Many of these controversies
were solved by the work of Cauchy. For instance, he introduced a precise
definition of convergence in his Cours d'Analyse [27]. Due to the more exact
definition of real numbers given by Dedekind [41], the rules for reasoning
with real numbers became even more precise.

In 1879, Frege published his Begriffsschrijt [45], in which he presented
the first formalisation of logic. Frege's reasoning was uncommonly precise
for those days. Until then, it had been possible to make mathematical and
logical concepts more clear by textual refinement in the natural language
in which they were described. Frege was not satisfied with this:

" . . . I found the inadequacy of language to be an obstacle; no
matter how unwieldy the expressions I was ready to accept, I
was less and less able, as the relations became more and more
complex, to attain the precision that my purpose required."

(B egriffsschrijt, Preface)

18 1 Prehistory

Frege therefore presented a completely formal system, whose

"first purpose is to provide us with the most reliable test of the
validity of a chain of inferences and to point out every presup
position that tries to sneak in unnoticed, so that its origin can
be investigated."

(Begriffsschrift, Preface)

lbl Functions and their course of values

The introduction of a very general definition of function was the key to
the formalisation of logic. Frege defined what we will call the Abstraction
Principle:

Abstraction Principle 1.1

"If in an expression, f . . . j a simple or a compound sign has
one or more occurrences and if we regard that sign as replaceable
in all or some of these occurrences by something else {but ev
erywhere by the same thing), then we call the part that remains
invariant in the expression a function, and the replaceable part
the argument of the function."

(Begriffsschrift, Section 9)

Frege put no restrictions on what could play the role of an argument. An
argument could be a number (as was the situation in analysis), but also a
proposition, or a function. Similarly, the result of applying a function to
an argument did not necessarily have to be a number. Functions of more
than one argument were constructed by a method that is very close to the
method presented by Schonfinkel [109] in 1924:

Abstraction Principle 1.2

"If, given a function, we think of a sign1 that was hitherto re
garded as not replaceable as being replaceable at some or all of

1 We can now regard a sign that previously was considered replaceable as replaceable
also in those places in which up to this point it was considered fixed. [footnote by Frege]

lb Paradox threats in formal systems .19

it.s occurrences, then by adopting thi.s conception we obtain a
function that ha.s a new argument in addition to tho.se it had
before."

(Begriff.s.schrift, Section 9)

With this definition of function, two of the three possible paradox threats
mentioned on p. 16 occurred:

1. The generalisation of the concept of function made the system more
abstract and less intuitive. The fact that functions could have differ
ent types of arguments is at the basis of the Russell Paradox;

2. Frege introduced a formal system instead of the informal systems that
were used up till then. Type theory, that would be helpful in distin
guishing between the different types of arguments that a function
might take, was left informal.

So, Frege had to proceed with caution. And so he did, at this stage. He
remarked that

"if the [...]letter [sign] occurs as a function sign, this circum
stance [should] be taken into account."

(Begriff.s.schrift, Section 11)

This could be interpreted as if Frege was aware of some typing rule that
does not allow to substitute functions for object variables or objects for
function variables. In his paper Function and Concept [4 7], Frege more
explicitly stated:

" Now just as functions are fundamentally different from ob
jects, so also functions whose arguments are and must be func
tions are fundamentally different from functions whose argu
ments are objects and cannot be anything else. I call the latter
first-level, the former second-level."

(Function and Concept, pp. 26-27)

20 1 Prehistory

A few pages later he proceeded:

"In regard to second-level functions with one argument, we must
make a distinction, according as the role of this argument can
be played by a function of one or of two arguments."

(Function and Concept, p. 29)

Therefore, we may safely conclude that Frege avoided the two paradox
threats in the Begriffsschrift. In Function and Concept we even see that
he was aware of the fact that making a difference between first-level and
second-level objects is essential in preventing certain paradoxes:

"The ontological proof of God's existence suffers from the fallacy
of treating existence as a first-level concept."

(Function and Concept, p. 27, footnote)

The Begriffsschrijt, however, was only a prelude to Frege's writings. In
Grundlagen der Arithmetik [46] he argued that mathematics can be seen
as a branch of logic. In Grundgesetze der Arithmetik [48, 52] he actually
described the elementary parts of arithmetics within an extension of the
logical framework that was presented in the Begriffsschrift.

Frege approached the paradox threats 'for a second time at the end
of Section 2 of his Grundgesetze. There he defined the expression "the
function <I>(x) has the same course-of-values as the function w(x)" by

"the functions <I> (x) and \}! (x) always have the same value for
the same argument."

(Grundgesetze, p. 7)

Note that functions <I>(x) and w(x) may have equal courses-of-values even
if they have different definitions. For instance, let <I>(x) be X A -,x, and w(x)
be X ,..._,. -,x, for all propositions x. Then <I>(x) = w(x) for all x. So <I>(x)
and w(x) are different functions, but have the same course-of-values.

1 b Paradox threats in formal systems 21

Frege denoted the course-of-values of a function <I>(x) by .?<I>(c). 2 The
definition of equal courses-of-values could therefore be expressed as

.?j(E) = .?g(E) i---t Va[J(a) = g(a)]. (1)

In modern terminology, we could say that the functions <I>(x) and w(x)
have the same course-of-values if they have the same graph.

Frege did not provide a satisfying intuition for the formal notion of
course-of-values of a function. He treated courses-of-values as ordinary
objects. As a consequence, a function that takes objects as arguments could
have its own course-of-values as an argument. In modern terminology: a
function that takes objects as arguments can have its own graph as an
argument. All essential information of a function is contained in its graph.
So intuitively, a system in which a function can be applied to its own graph
should have similar possibilities as a system in which a function can be
applied to itself. Frege excluded the paradox threats from his system by
forbidding self-application, but due to his treatment of courses-of-values
these threats were able to enter his system through a back door.

1 b2 The Russell Paradox in the Grundgesetze

In 1902, Russell wrote a letter to Frege [106], in which he informed Frege
that he had discovered a paradox in Frege's Begriffsschrift. Russell gave his
well-known argument, defining the propositional function j(x) by •x(x) (in
Russell's words: "to be a predicate that cannot be predicated of itself"). He
assumed J(f). Then by definition of j, •J(f), a contradiction. Therefore:
•J(f) holds. But then (again by definition of j), J(f) holds. Russell
concluded that both j(f) and •J(f) hold, a contradiction.

2This may be the origin of Russell's notation x<I>(x) for the class of objects that have
the property <I>. According to a paper by J. B. Rosser (105], the notation x<I>(x) has
been at the basis of the current notation >.x.<I> in >.-calculus. Church is supposed to have
written J\x<I>(x) for the function x ,__., <I>(x), writing the hat in front of the x in order
to distinguish this function from the class x<I>(x). For typographical reasons, the J\ is
supposed to have changed into a,\, On the other hand, J. P. Seldin informed us [111]
that he had asked Church about it in 1982, and that Church had answered that there
was no particular reason for choosing >., that some letter was needed and ,\ happened
to have been chosen. Moreover, Curry had told him that Church had a manuscript in
which there were many occurrences of ,\ already in 1929, so three years before the paper
(28] appeared.

22 1 Prehistory

Only six days later, Frege answered Russell that Russell's derivation
of the paradox was incorrect [51]. He explained that the self-application
f(f) is not possible in the Begriffsschrift. f(x) is a function, which re
quires an object as an argument, and a function cannot be an object in the
Begriffsschrift (see lbl).

In the same letter, however, Frege explained that Russell's argument
could be amended to a paradox in the system of his Grundgesetze, using
the course-of-values of functions. Frege's amendment was shortly explained
in that letter, but he added an appendix of eleven pages to the second
volume of his Grundgesetze in which he provided a very detailed and correct
description of the paradox.

The derivation goes as follows (using the same argument as Frege,
though replacing Frege's two-dimensional notation by the nowadays more
usual one-dimensional notation). First, define the function f(x) by:

-.\lcp[(acp(a) = x) _____. cp(x)].

Write K = €j(E). By (1) we have, for any function g(x),

€g(E) = €j(E) -----> g(K) = j(K)

and this implies

f(K) -----> ((€g(E) = K) -----> g(K)). (2)

As this holds for any function g(x), we have

f(K) -----> \lcp[€cp(E) = K--+ cp(K)]. (3)

On the other hand, for any function g,

\lcp[€cp(E) = K--+ cp(K)] -----> ((€g(E) = K)--+ g(K)).

Substituting f(x) for g(x) results in:

\lcp[€cp(E) = K--+ cp(K)] -----> ((€f(E) = K)--+ f(K))

and as €j(E) = K by definition of K,

\lcp[€cp(E) = K--+ cp(K)] -----> f(K).

1 b Paradox threats in formal systems 23

Using the definition off, we obtain

\icp[ecp(c) = K--+ cp(K)J -----+ -Ncp[ecp(c) = K--+ cp(K)],

hence by reductio ad absurdum,

-Ncp[acp(a) = K --t cp(K)],

or shorthand:

f(K). (4)

Applying (3) results in

\icp[acp(a) = K--+ cp(K)],

which implies
-.-Ncp[acp(a) = K--+ cp(K)],

or shorthand:

-.J(K). (5)

(4) and (5) contradict each other.

1 b3 How wrong was Frege?

In the history of the Russell Paradox, Frege is often depicted as the pitiful
person whose system was inconsistent. This suggests that Frege's system
was the only one that was inconsistent, and that Frege was very inaccurate
in his writings. On these points, history does Frege an injustice.

In fact, Frege's system was much more accurate than other systems of
those days. Peano's work, for instance, was less precise on several points:

• Peano hardly paid any attention to logic, especially not to quantifi
cation theory;

• Peano did not make a strict distinction between his symbolism and
the objects underlying this symbolism. Frege was much more accurate
on this point (see also his paper Uber Sinn und Bedeutung [49]);

24 1 Prehistory

• Frege made a strict distinction between a proposition (as an object
of interest or discussion) and the assertion of a proposition. Frege
denoted a proposition, in general, by -A, and the assertion of the
proposition by f- A. The symbol f- is still widely used in logic and
type theory. Peano did not make this distinction and simply wrote
A.

Nevertheless, Peano's work was very popular, for several reasons:

• Peano had able collaborators, and in general had a better eye for pre
sentation and publicity. For instance, he bought his own press, so that
he could supervise the printing of his journal Rivista di Matematica
and Formulaire [98];

• Peano used a symbolism much more familiar to the notations that
were used in those days by mathematicians (and many of his nota
tions, like E for "is an element of", and :J for logical implication, are
also used in Russell's Principia Mathematica, and are actually still in
use).

Frege's work did not have these advantages and was hardly read before
19023 . In the last paragraph of [50], Frege concluded:

" ... I observe merely that the Peano notation is unquestionably
more convenient for the typesetter, and in many cases takes up
less room than mine, but that these advantages seem to me,
due to the inferior perspicuity and logical defectiveness, to have

3 When Peano published his formalisation of mathematics in 1889 [97] he clearly did
not know Frege's Begriffsschrift, as he did not mention the work, and was not aware of
Frege's formalisation of quantification theory. Peano considered quantification theory to
be "abstruse" in [98], on which Frege proudly reacted:

"In this respect my conceptual notion of 1879 is superior to the Peano one.
Already, at that time, I specified all the laws necessary for my designation
of generality, so that nothing fundamental remains to be examined. These
laws are few in number, and I do not know why they should be said to be
abstruse. If it is otherwise with the Peano conceptual notation, then this
is due to the unsuitable notation."

([50], p. 376)

1 b Paradox threats in formal systems

been paid for too dearly - at any rate for the purposes I want
to pursue."

(Ueber die Begriffschrift des Herrn Peano und meine eigene,
p. 378)

25

Frege's system was not the only paradoxical one. The Russell Paradox
can be derived in Peano's system as well, by defining the class

and deriving K E K i------+ K rf. K. In Cantor's Set Theory one can derive
the paradox via the same class (or set, in Cantor's terminology).

lb4 The importance of Russell's Paradox

Russell's paradox was certainly not the first or only paradox in history.
Paradoxes were already widely known in antiquity. The first known para
dox is the Achilles paradox of Zeno of Elea. It is a purely mathematical
paradox. Due to a precise formulation of mathematics and especially the
concept of real numbers, the paradox can now be satisfactorily solved.

The oldest logical paradox is probably the Liar's Paradox, also known
as the Paradox of Epimenides. It can be very shortly formulated by the
sentence "This sentence is not true". The paradox was widely known in
antiquity. For instance, it is referred to in the Bible (Titus 1:12). It is
based on the confusion between language and meta-language.

The Burali-Forti paradox ([24], 1897) is the first of the modern para
doxes. It is a paradox within Cantor's theory on ordinal numbers. Cantor's
paradox on the largest cardinal number occurs in the same field. It must
have been discovered by Cantor around 1895, but was not published before
1932.

The logicians considered these paradoxes to be out of the scope of logic:
the paradoxes based on the Liar's Paradox could be regarded as a problem
of linguistics, and the paradoxes of Cantor and Burali-Forti occurred
in a in those days highly questionable part of mathematics: Cantor's Set
Theory.

The Russell Paradox, however, was a paradox that could be formulated
in all the systems that were presented at the end of the 19th century (except

26 1 Prehistory

for Frege's Begriffsschrift). It was at the very basics of logic. It could not
be disregarded, and a solution to it had to be found.

Chapter 2

Type theory in Principia
Mathematica

When Russell proved Frege's Grundgesetze to be inconsistent, Frege was
not the only person in trouble. In Russell's letter to Frege (1902), we read:

"I am on the point of finishing a book on the principles of math
ematics"

(Letter to Frege, [106])

Therefore, Russell had to find a solution to the paradoxes, before he could
finish his book.

His paper Mathematical logic as based on the theory of types [108]
(1908), in which a first step is made towards the Ramified Theory of Types,
started with a description of the most important contradictions that were
known up till then, including Russell's own paradox. He then concluded:

"In all the above contradictions there is a common character
istic, which we may describe as self-reference or reflexiveness.
[...] In each contradiction something is said about all cases of
some kind, and from what is said a new case seems to be gen
erated, which both is and is not of the same kind as the cases
of which all were concerned in what was said."

(Ibid.)

28 2 Type theory in Principia Mathematica

Russell's plan was, therefore, to avoid the paradoxes by avoiding all
possible self-references. He postulated the "vicious circle principle":

Vicious Circle Principle 2.1

"Whatever involves all of a collection must not be one of the
collection."

([81], p. 28)

Russell applies this principle very strictly. He implemented it using types,
in particular the so-called ramified types. The theory presented in Mathe
matical logic as based on the theory of types was elaborated in Chapter II of
the Introduction to the famous Principia Mathematica [121] (1910-1912).
In the Principia, Whitehead and Russell founded mathematics on logic,
as far as possible. The result was a very formal and accurate build-up of
mathematics, avoiding the logical paradoxes.

The logical part of the Principia was based on the works of Frege. This
was acknowledged by Whitehead and Russell in the preface, and can also
be seen throughout the description of Type Theory. The notion of function
is based on Frege's Abstraction Principles 1.1 and 1.2, and the Principia
notation xf(x) for a class looks very similar to Frege's €f(c) for course-of
values.

An important difference is that Whitehead and Russell treated functions
as first-class citizens. Frege used courses-of-values as a way of speaking
about functions (and was confronted with a paradox); in the Principia a
direct approach was possible. Equality, for instance, was defined for objects
as well as for functions by means of Leibniz equality (x = y if and only if
f(x) ._.. f(y) for all propositional functions f see [121], *13·11).

The description of the Ramified Theory of Types (RTT) in the Principia
was, though extensive, still informal. It is clear that Type Theory had not
yet become an independent subject. The theory

"only recommended itself to us in the first instance by its ability
to solve certain contradictions"

(Principia Mathematica, p. 37)

And though

"it has also a certain consonance with common sense which
makes it inherently credible"

(Principia Mathematica, p. 37)

29

(probably, Whitehead and Russell refer to the implicit, intuitive use of
types by mathematicians. See Section 1a), Type Theory was not introduced
because it was interesting on its own, but because it had to serve as a tool
for logic and mathematics. A formalisation of Type Theory, therefore, was
not considered in those days.

Though the description of RTT in the Principia was still informal, it
was clearly present throughout the work. It was not mentioned very often,
but when necessary, Russell made a remark on RTT. This is an important
difference with the earlier writings of Frege, Peano and Cantor.

If we want to compare RTT with contemporary type systems, we have to
make a formalisation of RTT. Though there are many descriptions of RTT

available in the literature (like [30], [32], [64], [101] and Section 27 of [110]),
none of these descriptions presents a formalisation that is both accurate
and as close as possible to the ideas of the Principia. We will fill up this
gap in the literature in the first part of this chapter.

Making such a formalisation is by no means easy:

• Important formal notions, especially the notion of substitution, re
mained completely unexplained in the Principia;

• The accuracy of Frege's work was not present in Russell's. This was
already observed by Godel, who said that the precision of Frege was
lost in the writings of Russell, and who, due to the informality of
some basic notions of the Principia, had to give his paper [57] the
title Uber formal unentscheidbare Satze der Principia Mathematica
1.md verwandter Systeme.

In 1b1 we saw that Frege generalised the notion of function from analy
sis. For Russell's formalisation of mathematics within logic, a special kind
of these functions was needed: the so-called propositional functions. A
propositional function (pf) always returns a proposition when it is applied

30 2 Type theory in Principia Mathematica

to suitable arguments. In Section 2a, we introduce a formalised version of
these pfs. This makes it possible to compare pfs with other formal systems,
like >.-calculus, and to give a precise definition of substitution.

In Section 2b we give a formalisation of Russell's notion of ramified
type (2bl), followed by a formal definition of the notion the pf f is of type
t (2b2). We motivate this definition (2b3) by referring to passages in the
Principia. As the formalisation of pf is precise enough to be translated
to >.-calculus, we can make a comparison between RTT and current type
systems.

Thanks to our formal notation and its relation with >.-calculus, we are
able to prove properties of RTT in an easy way, using properties of modern
type systems. This will be done in Section 2c. Due to the new notation it
is relatively easy to see that we have proved variants of well-known theo
rems from Type Theory, like Strong Normalisation, Free Variable Lemma,
Strengthening Lemma, Unicity of Types and Subterm Lemma.

In Section 2d we answer in full detail the question which pfs are typable.
We also make a comparison between our notion of typable pf, and the
corresponding notion in the Principia, and conclude that these two notions
of typable pf coincide.

Parts of this chapter have been taken from earlier publications: [79],
[80] and [82].

2a Propositional functions

In this section we present a formalisation of the propositional functions (pfs)
of the Principia. In Section 2al we give a syntax that is as close as possible
to the ideas of the Principia. Intuition about this syntax is provided in
Section 2a2 by translating pfs into >.-terms. In Section 2a3 we define some
related notions that are needed in the rest of the Chapter. We devote a
special section 2a4 to the notion of substitution. This notion is clearly
present in the Principia, but not formally defined. Due to the translation
to >.-calculus of Section 2a2, we are able to give a precise definition.

2al Definition

The definition of propositional function in the Principia is as follows:

2a Propositional functions

"By a "propositional function" we mean something which con
tains a variable x, and expresses a proposition as soon as a value
is assigned to x."

(Principia Mathematica, p. 38)

31

Pfs are, however, constructed from propositions with the use of the A bstrac
tion Principles: they arise when in a proposition one or more occurrences
of .a sign are replaced by a variable. Therefore we have to begin our formal
isation with certain basic propositions, certain basic signs, and signs that
indicate a replaceable object. For this purpose we use

• A set A of individual symbols (the basic signs);

• A set V of variables (the signs that indicate replaceable objects);

• A set R of relation symbols together with a map a : R ____, N+ indi
cating the arity of each relation-symbol (these are used to form the
basic propositions).

We want to have a sufficient supply of individual symbols, variables and
relation symbols and therefore assume that A and V are infinite (but count
able), and that {R E R I a(R) = n} is infinite (but countable) for each
n EN+. We assume that {a1 ,a2 , ... } ~A, {x,y,z,x1 , ... } ~ V and
{R,S, ... } ~ R. We use a1,a2, ... as metavariables over A; x,y,z,xl,···
as metavariables over V and R, S, . . . as metavariables over R. For techni
cal reasons we assume that there is an order (e.g. alphabetical) on V. We
write x < y if xis ordered before y, and not equal toy (so: < is strict). In
particular, we assume that

x < x1 < ... y < y 1 < ... z < z 1 ...

and: for each x there is a y with x < y.

Definition 2.2 (Atomic propositions) A list of symbols of the form
R(al,··. ,aa(R)) is called an atomic proposition.

Other names used for these atomic propositions in the Principia are ele
mentary judgements and elementary propositions (cf. [121], pp. xv, 43-45,
and 91).

Propositional functions in Principia Mathematica are generated from
atomic propositions by two means:

32 2 Type theory in Principia Mathematica

• The use of logical connectives and quantifiers;

• Abstraction from (earlier generated) propositional functions, using
the abstraction principles.

This leads to the following formal definition of propositional function.
Examples are given in 2.5 and intuition is provided in Section 2a2.

Definition 2.3 (Propositional functions) We define a collection P of
propositional functions (pfs), and for each element f of P we simultaneously
define the collection Fv(j) of free variables off:

1. If i1, ... , ia(R) E AU V then R(i1, ... , ia(R)) E P.

Fv(R(il, ... 'ia(R))) ~f {il, ... 'ia(R)} n V;

2. Iff, g E P then f V g E P and •f E P.
FV(j V g)~ FV(j) U FV(g); FV(•f) ~ FV(j);

3. Iff E P and x E FV(j) then Vx[j] E P.

FV(Vx[j]) ~f FV(j) \ {x};

4. If n EN and k1, ... , kn E AU V UP, then z(kl, ... , kn) E P.

FV(z(kl, ... , kn)) ~f {z, k1, ... , kn} n V.
If n = 0 then we write z() in order to distinguish the pf z() from the
variable z1 ;

5. All pfs can be constructed by using the construction-rules 1, 2, 3 and
4 above.

We use the letters f, g, h as meta-variables over P.

Definition 2.4 (Propositions) A propositional function f is a proposi
tion if Fv(j) = 0.

Example 2.5 We give some examples of (higher-order) pfs of the form
z(kl, ... , kn) in ordinary mathematics. To keep the link with mathematics
clear, we use some extra logical connectives like +--+ and

1 It is important to note that a variable is not a pf. See for instance [107], Chapter
VIII: "The variable", p. 94 of the 7th impression.

2a Propositional functions 33

1. The pfs z(x) and z(y) in the definition of equality according to Leib
niz: By definition x = y if and only if

Vz[z(x) +-+ z(y)];

2. The pfs z(O), z(x) and z(y) in the formulation of the principle of
mathematical induction:

Vz[z(O) ---. (VxVy[z(x)---. (S(x, y) ---. z(y))])

---. Vx[z(x)]]

(we suppose that the relation symbolS represents the successor func
tion: S(x, y) holds if and only if y is the successor of x);

3. z() in the formulation of the law of the excluded middle:

Vz[z() V •z()].

2a2 Propositional functions as .A-terms

The binding structure and the notion of free variable of pfs become more
clear if we translate pfs to ,\-terms. Moreover, such a translation will be use
ful at several places in this Chapter, for instance when we give a definition
of substitution.

We first translate one of the examples of Example 2.5. Then we give
a formal definition of the translation that we have in mind. After that we
provide additional remarks and intuition on pfs.

Example 2.6 Consider the pf f = Vz[z(x) +-+ z(y)] of Example 2.5.1. Two
objects x andy are Leibniz-equal if and only if they share the same proper
ties. These objects are represented by the variables x and y. The variable
z is a variable for properties of objects, in other words: predicates over ob
jects. Such a predicate is a function that takes the object as argument, and
returns a truth value. The expression z(x) indicates that the predicate that
is taken for z must be applied to the object that is taken for x. Therefore,
we translate z(x) by an application of z to x in ,\-calculus: zx. Similarly
we translate the expression z(y) by zy.

34 2 Type theory in Principia Mathematica

Just as in [30], we can interpret logical connectives as functions. There
fore we can translate z(x) t-t z(y) by the >.-term t-t(zx)(zy). We handle the
translation of universal quantification also as in [30], hence Vz[...] trans
lates to V(>.z). As an effect we get a >.-term V(>.z.t-t(zx)(zy)) with
two free variables, x and y. But we want to have a function taking two
arguments. This can be solved by a double >.-abstraction. The final result
is >.x.>.y.V(>.z.(t-t(zx)(zy))).

We remark that the pf f has two free variables, x andy. These two free
variables correspond to the two arguments that the propositional function
takes, and therefore to the two >.-abstractions that are at the front of the
translation of f.

In the following definition, we translate the propositional functions to
>.-terms in a similar way as we did in Example 2.6. Let f E P and let
XI < · · · < Xm be the free variables of f. We define a >.-term]. We do
this in such a way that 7 =>.xi.··· >.xm.F, where F is a >.-term that is not
of the form >.x.F'. To keep notations uniform, we also give translations a
for a E A and x for x E V. To keep notations short, we use >.~I Xi.F as
shorthand for >.xi.··· AXm.F.

Definition 2. 7

_ def f A • a = a or a E ;

_ def f V • X =X or X E ;

• Now assume f E P has free variables XI < · · · < Xm· Use induction
on the structure off:

f - R(. .) Th -f def 'm R. . - = ZI, ... , Za(R) . en = ""i=I Xi. ZI · · · Za(R);

- f = h V f2. We can assume that for j = 1, 2, fj = >.~I y{Fj,
where y{ < · · · < y/ni are the free variables of fj.

- def
Then f = >.~I Xi.v HF2.
Iff = --,f' then we can assume that f' = >.~I Xi.F, because

- def
XI < · · · < Xm are the free variables of f'. Let f = >.~I Xi. ---.F;

- f = z(ki, ... , kn). Let 7 =>.~I Xi.Zki · · · kn;

2a Propositional functions 35

- f = Vx[f'J. We can assume that 1 = .A{~{ Xi.AX.).~j Xi.F, be-
cause x1, ... ,xm,X are the free variables off'. ·
Define 1 = .:\~ 1 Xi.\1(.:\x.F).

Example 2.8

f
R(x)

z(R(x), S(a))
z1(a) V z2()
z(y(R(x)))
Vx[R(x)]

1
.Ax.Rx

.Az.z(.Ax.Rx) (Sa)
.Az1 . .:\z2. V(Z1 a)z2
.Az.z(.Ay.y(.Ax.Rx))

V(.Ax.Rx)

By induction on the structure off one can prove the following properties
off:

Lemma 2.9 (Properties of-) Let f E P.

1. Fv(1) = 0;

2. 1 is in (3-normal form;

3. f is a .:\!-term;

4. If x1 < · · · < Xm are the free variables off, then f =).~ 1 Xi.F, where
F is not of the form .Ax.F'.

Observe that we use FV for indicating both the free variables of a pf
and the free variables of a .A-term. We take care that it will always be clear
in which meaning we use FV.

We make some remarks on the definition of propositional function 2.3.

Remark 2.10 We show that the propositional functions of Definition 2.3
are indeed objects that exist in the theory of Russell.

1. In Rule 1 we describe the atomic propositions, and the atomic propo
sitions in which one or more individuals have been replaced by vari
ables due to one or more applications of the abstraction principles.
The abstraction principles are not only present in the works of Frege,
but also in the Principia (cf. for instance *9·14 and *9·15);

36 2 Type theory in Principia Mathematica

2. Rule 2 describes the use of the logical connectives V and ...,_ These
logical connectives are also used in the Principia. Implication2 , con
junction3 and logical equivalence4 are defined in terms of negation and
disjunction. In examples, we sometimes use symbols for implication,
conjunction and logical equivalence as abbreviations;

3. Rule 3 describes the use of the universal quantifier. It is explicitly
stated in the Principia (cf. pp. 14-16) that the pf Vx[f] can only
be constructed if f is a pf that contains x as a variable. Existential
quantification5 is defined in terms of negation and universal quantifi
cation;

4. Rule 4 is also an instantiation of the abstraction principle. The pfs
that can be constructed by using the construction-rules 1-3 only are
exactly the pfs of what in these days would be called first-order pred
icate logic. With rule 4, higher-order pfs can be constructed. This is
based on the following idea. Let f be a (fixed) pf in which k1, ... , kn

occur. We can interpret f as an instantiation of a function that has
taken arguments k1, ... , kn. We now generalise this to z(k1 , ... , kn),

representing any function z taking these arguments. Such a construc
tion is also explicitly present in the Principia:

"the first matrices6 that occur are those whose values are
of the forms <px,'lj;(x,y),x(x,y,z, ...), i.e. where the ar
guments, however many there may be, are all individuals.
Such [propositional] functions we will call 'first-order func
tions.' We may now introduce a notation to express 'any
first-order function.' "

(Principia Mathematica, p. 51)

Remark 2.11 The definition of free variable needs some special attention.
We must notice that, for instance,

FV(z(R(x), S(a))) = {z}
2 cf. Principia, *1·01, p. 94
3 cf. Principia, *3·01, p. 107
4 cf. Principia, *4·01, p. 117
5 cf. Principia, *10·01, p. 140
6 see Remark 2.13 [footnote of the author].

2a Propositional functions 37

and not { x, z}. The reason for this is that the notion of free variable
should harmonise with the intuitive notion of "argument place" of Frege
and Russell. As was indicated in Remark 2.10.4, z represents an arbitrary
function that takes R(x) and S(a) as arguments and returns a proposition.
This means that we do not have to supply an argument for x "by hand".
As soon as we feed a suitable7 argument f to z in z(R(x), S(a)), f will take
the arguments R(x) and S(a), and return a proposition.

This idea is also clearly reflected in the translation of z(R(x), S(a)) to
the A-term Az.z(Ax.Rx)(Sa). The variable x is bound in a subterm Ax.Rx
that is an argument to the variable z. The full A-term is a function of z
only.

Remark 2.12 In the Introduction we suggested that functionalisation can
be represented in A-calculus by first making a f)-expansion, and then re
moving the argument. The translation of Definition 2. 7 enables us to show
that functionalisation in the theories of Russell and Frege (using the Ab
straction Principles) is similar to functionalisation in A-calculus. We do this
by giving some examples. Consider the pf R(a) V S(a). There are several
ways to apply the abstraction possibilities to this pf:

1. The list of symbols R(a) can be seen as an instance of the pf z(a).
z(a) is a pf that takes a unary propositional function as an argu
ment and returns the value of that pf for the argument a. Apply
ing abstraction to R(a) in R(a) V S(a) results in z(a) V S(a). In A
calculus: expand the A-term V(Ra)(Sa) to v((Ax.Rx)a)(Sa), and then
to (Az.V(za)(Sa))(Ax.Rx). Remove the argument Ax.Rx and we have
the translation of z(a) V S(a);

2. But one could also consider the expression R(a)VS(a) as an instance of
the pf that takes two propositions and returns their disjunction: the pf
z1() Vz2(). In A-calculus: V(Ra)(Sa) ,8-expands to (Az2.V(Ra)z2)(Sa).
Removing the argument gives Az2. V(Ra)z2. A similar operation on
Ra results in AZ1.Az2.Vz1z2;

3. More abstract: One could consider R(a) V S(a) as an instance of the
pf z(R(a), S(a)) for the argument z1() V z 2(). The pf z(R(a), S(a))

7 At this stage, we cannot provide a formalisation of "suitable". This can only be done
after we have introduced types, and formalised the notion "the pf f is of type t"

38 2 Type theory in Principia Mathematica

takes one argument, say J, (for the variable z). Such an argument
f in its turn, needs to be a pf taking two propositions as arguments.
In >.-calculus, V(Ra)(Sa) expands to (>.z.z(Ra)(Sa))v. Removing the
argument gives >.z.z(Ra)(Sa).

Applying z(R(a),S(a)) to f results in the pf f, evaluated for the ar
guments R(a) and S(a);

4. And even more mind-bogglingly (for persevering readers only): R(a)V
S(a) is an instance of the pf z(R(x), S(a)) for the argument z 1 (a) Vz2().
The pf z(R(x), S(a)) takes one argument (for z). Such an argument
f in its turn, must be a pf that takes one pf and one proposition
as arguments. The pf-argument off must take one individual as an
argument. If we evaluate z(R(x),S(a)) for the argument J, then we
get as a result the value off for the arguments R(x) and S(a).

In >.-calculus: V(Ra)(Sa) ,8-expands to v((>.x.Rx)a)(Sa), then to

(>.z1.AZ2. V(z1a)z2)(>.x.Rx)(Sa),

and finally to

Removing the argument gives >.z.z(>.x.Rx)(Sa).

Let us check what we have done by evaluating z(R(x), S(a)) for the
argument z1 (a)Vz2 (). Above, we argued that R(a)VS(a) is an instance
of z(R(x),S(a)) for the argument z 1(a) V z2 (), so as a result we must
obtain R(a) V S(a).

According to the description of z(R(x), S(a)) above, assigning the
value z1(a) V z2() to z is equal to the value of z1 (a) V z2() for the
arguments R(x) and S(a). Substituting R(x) for z1 gives the value
of R(x) for the argument a: R(a). Substituting S(a) for z2 gives the
proposition S(a). The final result is indeed R(a) V S(a). This calcula
tion can also be carried out in >.-calculus by applying >.z.z(>.x.Rx)(Sa))
to >.z1 .>.z2 .V(z1a)z2) and reducing to ,8-normal form.

All these abstractions are in line with 1.1 and 1.2 on page 18. Via the
abstraction in the last two examples one also obtains pfs of the form

2a Propositional functions 39

z(k1, ... , kn) where some of the ki are elements of P. There is no for
mal definition of abstraction in the works of Frege and Russell. We could
use a definition that is related ~o ,8-expansion. See Remark 2.29.

Remark 2.13 It appears that there is also an alternative way of construct
ing pfs in the Principia. Whitehead and Russell distinguish between quan
tifier-free pfs (so-called matrices, i.e. the pfs that can be constructed using
construction-rules 1, 2 and 4). Then they form pfs by defining that

• Any matrix is a pf;

• If f is a pf and x E Fv(j) then Vx[f] is a pf with free variables
FV(j) \ {x }.

This definition is a little different from our Definition 2.3, as a pf of the form
z(Vx[f]) is not a matrix and therefore not a pf according to this alternative
definition. Nevertheless we feel that Whitehead and Russell intended to
give our Definition 2.3. In the Principia ([121], *54) they define the natural
number 0 as the propositional function Vx[•z(x)] 8 . In defining the principle
of induction on natural numbers, one needs to express the property "0 has
the property y", or: y(O). But y(O) is not a pf according to this alternative
definition, as 0 contains quantifiers.

Therefore we feel that our Definition 2.3, which is also based on the def
inition of function by Frege and on the definition of propositional function
on p. 38 of the Principia, is the definition that was meant by Whitehead
and Russell.

Remark 2.14 Note that pfs as such do not yet obey to the vicious circle
principle 2.1! For example, •z(z) (the pf that is at the basis of the Russell
paradox) is a pf. In Section 2b we will assign types to some pfs, and it will
be shown (Remark 2.66) that no type can be assigned to the pf •z(z).

8 This definition is based on Frege's definition in Grundlagen der Arithmetik [46]
(1884). See [121], vol. II, p. 4. In [46], the natural number n is defined as the class
of predicates f for which there are exactly n objects a for which f(a) holds. Hence 0
is the class of predicates f for which f(a) does not hold for any object a. So 0 can be
described by the pf 'v'x[•z(x)]

40 2 Type theory in Principia Mathematica

Remark 2.15 Before we make further developments of the theory based
on pfs, we must decide which of the two syntaxes introduced above shall
be used in the sequel. It looks attractive to use the syntax of >.-calculus:

• This syntax is well-known;

• It is used for many other type systems, so it makes the comparison
of ramified type theory with modern type systems easier;

• There is a lot of meta-theory on typed and untyped >.-calculus. This
can be useful when proving certain properties of the formalisation
of the ramified theory of types that is to be introduced in the next
sections;

• The syntax of >.-calculus gives a better look on the notion of free
variable than the syntax of pfs.

Nevertheless, we shall only indirectly use >.-calculus for our further
study of the ramified type theory in this Chapter. We have several rea
sons for that:

• There are much more >.-terms than there are pfs. More precise, the
mapping - is not surjective. As we want to study the theory of Prin
cipia Mathematica as precise as possible, we only want to study the
propositional functions, v.:hich are directly related to the syntax used
by Russell and Whitehead. Not using pf-syntax may result in a sys
tem in which it is not clear which term belongs to the original ramified
type theory and which term does not;

• The syntax of >.-calculus is strongly curried. This would give prob
lems in the definition of substitution. In a pf R(x, y) we may want
to substitute some object a for y without substituting anything for
x. In >.-calculus, substitution should be translated to application fol
lowed by ,8-reduction to ,8-normal form. If we want to substitute
something for y in the translation >.x.>.y.Rxy of R(x, y), we have to
substitute something for x first. Choosing a different representation
of propositional functions does not help: the representation >.y.>.x.Ryx
would have given problems if we wanted to substitute something for
x without substituting something for y;

2a Propositional functions 41

• The translation of pfs to ,\-calculus makes it possible to use the meta
theory and the intuition of ,\-calculus when we need it without losing
control over the original system.

2a3 Related notions

We proceed our discussion of pfs by defining a number of related no
tions. If a pf z(k1, ... , kn) takes an argument f for the variable z, the
list k1 , ... , kn indicates what should be substituted for the free variables of
f (cf. also Remark 2.10.4). We therefore call this list the list of parameters
of z(k1, ... , kn). A formal definition:

Definition 2.16 {Parameters) Assume f is a pf, and k E AU V UP. We
define, inductively, the notion k is a parameter of f, and write PAR(j) for
the set of parameters of f.

• PAR(]I V h) ~f PAR(fi) U PAR(h) and PAR(•!) ~f PAR(j);

• PAR(Vx[j]) ~f PAR(j);

• PAR(z(kl, ... , kn)) ~f {k1, ... , kn}·

Note that xis not a parameter of z(R(x), S(a)), but it is a recursive param
eter according to the following definition:

Definition 2.17 {Recursive parameters) Assume f is a pf. We define,
inductively, the set of recursive parameters off, RP(j):

• RP(•J) ~f RP(j); RP(fi V h) ~f RP(]I) U RP(h);

• RP(Vx[j]) ~f RP(j);

• RP(z(kl, ... , kn)) ~f {k1, ... , kn} U Uk;E'P RP(ki)·

42 2 Type theory in Principia Mathematica

Another important notion is the notion of a-equality9 . We want the
pfs R(x) and R(y) to be the same. However, we want the pfs S(x, y) and
S(y, x) to be different. The reason for this is the alphabetical order of the
variables x, y. As x < y, we will consider x to be the "first" variable of the
pfs S(x, y) and S(y, x), andy the "second" variable . The place of the "first"
variable in S(x, y), however, is different from the place of the "first" variable
in S(y, x). 10 We therefore present the following definition of a-equality:

Definition 2.18 {a-equality) Let f and g be pfs. We say that f and g
are a-equal, notation f =a g, if there is a bijection rp: V -t V such that

• g can be obtained from f by replacing each variable that occurs in f
by its rp-image;

• x < y iff rp(x) < rp(y).

This definition corresponds to the definition of a-equality in .\-calculus
in the following way:

Lemma 2.19 Let f,g E P. f =a g if and only iff =a g. ~

Sometimes, we are not that precise, and want the pfs S(x, y) and S(y, x)
to be a-equal. This can be a consideration especially if we are not interested
in which free variable is "first" and which is "second". We call this weakened
notion of a-equality: ap-equality (a-equality modulo permutation):

Definition 2.20 (a-equality modulo permutation) Let f and g be pfs.
We say that f and g are ap-equal, notation f =ap g, if there is a bijection
rp : V -t V such that g can be obtained from f by replacing each variable
that occurs in f by its rp-image.

9 Historically, it is not correct to use this terminology when discussing Type Theory
of the Principia, which dates from the first decade of this century. The term a-equality
originates from Curry and Feys' book Combinatory Logic [38], which appeared only in
1958. In this book, conversion rules for the .\-calculus are numbered with Greek lette~s
a, (3. The rule numbered with a is now known as a-conversion; the rule numbered
with (3 is now known as (]-conversion. In earlier papers of Church, Rosser and Kleene,
these rules were numbered with Roman capitals I, II, and the terminology a-conversion,
(]-conversion, was not used.

10 Compare this with their equivalents in .\-calculus .\x . .\y.Sxy and .\x . .\y.Syx, which
are not a-equal, either. We do not want to use the .\-notation for determining which
variable is "first" and which is "second", for reasons to be explained in Remarks 2.15 and
2.32.

2a Propositional functions 43

2a4 Substitution

In the Introduction we argued that instantiation is the inverse operator of
function construction. In Remark 2.12 we saw that function construction in
Principia Mathematica can be compared to ,6-expansion plus removing an
argument in >.-calculus. This suggests that instantiation in the Principia
must be comparable to application plus ,6-reduction in >.-calculus. In [79]
we showed that this is indeed the case. There, we gave a laborious definition
o~ instantiation using the syntax of and the intuition behind pfs. We showed
that this definition is faithful to the original ideas of the Principia and that
it can be imitated in >.-calculus using a translation similar to the one in
Definition 2. 7. This allows us to give a definition of substitution for pfs
that is based on that imitation in >.-calculus.

As was argued in Remark 2.15, the mapping f ~---+ 7 is not perfectly
suited for a definition of substitution. This was due to the currying of the
>.-abstractions that are at the front of the term f. We therefore take a
slightly different notation and remove these front abstractions from 7:

Definition 2.21 Let f E P with free variables x1 < · · · < Xm· Then

-f 'm F f ' F Let f~ ~f F. = /\i=l Xi. or some A-term .

Example 2.22

f
R(x)

z(R(x), S(a))
Zt(a) V z2()
z(y(R(x)))
Vx[R(x)]

f
Rx

z(>.x.Rx)(Sa)
v(zta)z2

z(>.y.y(>.x.Rx))
V(>.x.Rx)

The mapping f ~---+ J has similar properties as f ~---+ 7 (cf. Lemma 2.9):

Lemma 2.23 (Properties of~)

1. FV(j) = FV (J);
2. f is in ,6-normal form for all f;

3. f is a >.!-term for all f;

44 2 Type theory in Principia Mathematica

Figure 2: Substitution via ,13-reduction

4- f is a closure {see A. 7} of 1,·

5. If f =a g, then f =a 9.

With the A-notation we can rely on the notions of ,13-reduction and ,13-normal
form to give the following definition of substitution:

Definition 2.24 (Substitution) Let f E P, assume x1, ... , Xn are dis
tinct variables, and 91, ... , ·9n E A U V U P. Assume that the A-term

has a ,13-normal form H. Assume h E P such that h = H (If such an h exists,

it is unique due to Lemma 2.23.5). Then f[x1, ... , Xn:=91, ... , 9n] ~f h.
We sometimes abbreviate f[x1, ... , xn:=91, ... , 9n] to f[xi:=9i]i= 1 or

f[x:=§J.

So substitution in RTT can be seen as application plus ,13-reduction to ,13-
normal form in A-calculus. Definition 2.24 is schematically reflected in
Figure 2. Notice that f[x1, ... ,xn:=91, ... ,9n] should be seen as a simul-
taneous substitution of 91, ... , 9n for x1, ... , Xn. As the 9iS are eith~r
closed A-terms, or individuals, or variables, it is no problem to define this
simultaneous substitution via a list of applications that results in a list of
consecutive substitutions.

Example 2.25

1. S(x1)[x1:=ai] = S(a1), as (Ax1.Sxl)a1 -->t Sa1;

2a Propositional functions

2. S(x1)[x2:=a2]::::::: S(xl), as (>.x2.Sx1)a2 ~pf Sx1;

3. z(S(xl), x2, a2)[x1:=ad z(S(x1), x2, a2) as
(>.x1.z(>.x1.Sx1)x2a2)a1 ~pi z(>.x1.Sxt)x2a2.

45

This illustrates that the >.-notation is more precise and convenient
with respect to free variables .. In z(S(x1), x2, a2), it is not immediately
clear whether x1 is a free variable or not and one might tend to write
z(S(x1), x2, a2)[x1:=a1] z(S(at), x2, a2). The >.-notation is more
explicit in showing that x1 !f_ FV(z(S(xl), x2, a2));

4. See Remarks 2.10.3.
z(R(a),S(a))[z:=z1() V z2()] = R(a) V S(a), as
(Az.z(Ra)(Sa))(AZ1 Z2. Vz1z2)
(.\z1z2.Vz1z2)(Ra)(Sa) ~t V(Ra)(Sa);

5. x2(x1, R(xl))[x2:=x4(x3)] = R(xt) as
(>.x2.x2x1 (>.x1.Rx1)) (AX3X4.X4X3) ~f3
(AX3X4 .x4x3)x1 (>.x1.Rx1)
(>.x1.Rxt)x1 ~~f Rx1.

Remark 2.26 j[x1, ... , Xn:=91, ... , 9n] is not always defined. For its ex
istence we need:

• The existence of the normal form H in Definition 2.24. For instance,
this normal form does not exist if we choose n = 1, f ::::::: x1 (x1)
and 91 = x1(xt): then we obtain for the calculation of j[x1:=91] the
famous >.-term (>.x1.x1x1)(>.x1.x1x1);

• The existence of a (unique) h such that h H. For instance, if we
taken = 1, f z(a) (with z E V and~a E A) and 91 = a, then
H = aa and there is no h E P such that h aa.

In Section 2c2 we will prove that, as long as we are within the type system
RTT (to be introduced in Section 2b), both Hand h always exist uniquely
(Corollary 2.73). Until then, the notation f[xb···,xn==9l,···,9n] h
implicitly assumes that the substitution exists.

Remark 2.27 If we compute a substi~tion f[x1, ... , Xn:=9b ... , 9nL we
have to reduce the >.-term (>.x1 · · · Xn.J)([l · · · 9-;t to its /3-normal form (if

46 2 Type theory in Principia Mathematica

there is any). One might wonder whether this is too restrictive: In a
reduction path to this normal form, there may be an intermediate result
H that could be interpreted as the final result of the substitution f [x:=§].
However, this never happens, ~s any term that can be interpreted as such
a result is always of the form h, and is therefore always in ,B-normal form
(Lemma 2.23.2).

Remark 2.28 The alphabetical order of the variables plays a crucial role
in the substitution process, as it determines in which order the free variables
of a pf f are curried in the translation f. For example, look at the substitu
tions z(a, b) [z:=R(x, y)] and z(a, b) [z:=R(y, x)]. The result of the first one is
obtained via the normal form of (h.zab)(Axy.Rxy), which is equal to Rab,
translated: R(a, b). The second one is calculated via (Az.zab)(Axy.Ryx),
resulting in Rba and R(b, a).

Remark 2.29 Now that substitution has been properly defined, we could
define that f is an abstraction of g if there are x1, ... , Xn E FV(j) and
h1, ... , hn E AU P such that f[x:=h] = g, or, in A-calculus notation:
(Ax 1 · · · xn.f)h1 · · · hn ----*(3 g. The set of abstractions of a pf g is therefore
comparable with the set of ,B-expansions of the A-term g.

Some elementary calculation with substitutions can be done using the
following lemma:

Lemma 2.30

1. Assume (h V h)[x:=h] exists. Then fj[x:=h] exists for j = 1, 2, and

(h v h)[x:=h] = (h[x:=h]) v (h[x:=h]);

2. Assume (•f)[x:=h] exists. Then f[x:=h] exists, and

3. Assume (Vx:ta[f])[x:=h] exists, and x rf_ x. Then f[x:=h] exists, and

2b The Ramified Theory of Types 47

4- Assume z(kl, ... ,kn)[z:=f] exists, and x1 < ··· < Xn are the free
variables off. Then f[x:=k] exists, and

z(k1, ... , kn)[z:=f] = f[x:=k];

5. Assume z(k1, ... , kn)[x:=h] exists, z = Xp, and Yl < · · · < Yn are
the free variables of kp E P. Define k~ = hj if ki = Xj, and k~ = ki

otherwise. Then kp[Y:=k'J exists, and

PROOF: Directly from the definition of substitution. l:8l

2b The Ramified Theory of Types

After we have formalised the notion of propositional function in Section
2a we now give a precise description of the type theory underlying the
Principia. First we explicitly introduce types (Section 2bl - there is no
such introduction in Principia), and then we formalise the notion "the
propositional function f has type t" (Section 2b2).

2bl Types

Types in the Principia have a double hierarchy: one of (simple) types and
one of orders. In Section 2bl.l we introduce the first hierarchy. In Section
2bl.2 we extend this hierarchy with orders, resulting in the ramified types
of the Principia.

2bl.l Simple types

As we saw in Section 1 b, Frege already distinguished between objects, func
tions that take objects as arguments, and functions that take functions as
arguments. He also made a distinction between functions that take one and
functions that take two arguments (see the quotations from Function and
Concept on p. 19). In the Principia, Whitehead and Russell use a simi
lar principle. Whilst Frege's argument for this distinction was only that

48 2 Type theory in Principia Mathematica

functions are fundamentally different from objects, and that functions tak
ing objects as arguments are fundamentally different from functions taking
functions as arguments, Whitehead and Russell are more precise:

"[The difference between objects and propositional functions]
arises from the fact that a [propositional] function is essentially
an ambiguity, and that, if it is to occur in a definite proposition,
it must occur in such a way that the ambiguity has disappeared,
and a wholly unambiguous statement has resulted."

(Principia Mathematica, p. 47)

There is no definition of "type" in the Principia, only a definition of "being
of the same type" :11

"Definition of "being of the same type." The following is a step
by-step definition, the definition for higher types presupposing
that for lower types. We say that u and v "are of the same
type" if

1. both are individuals,

2. both are elementary [propositional] functions 12 taking ar
guments of the same type,

3. u is a pf and v is its negation,

4. u is cp.i: 13 or 'lj;x, and v is cp.i: V 'lj;x, where cpx and 'lj;.i: are
elementary pfs,

5. u is (y).cp(x, y) 14 and vis (z).'lj;(x, z), where cp(x, fj), 'lj;(.i:, fj)
are of the same type,

6. both are elementary propositions,

n See Definition 2.2 for the notion of elementary proposition. In the Principia, ar
elementary pf is a pf that has elementary propositions as values, when it takes suitable
arguments.

12 The term elementary functions refers to a pf that has only elementary propositions
as value, when it takes suitable (well-typed) arguments. See Principia, p. 92.

13Whitehead and Russell use cpx to denote that cp is a pf that has, amongst others, x
as a free variable. Similarly, they use cp(x, f)) to indicate that cp has x, y amongst its free
variables.

14Whitehead and Russell write (x).cp(x) where we would write Vx[cp].

2b The Ramified Theory of Types

7. u is a proposition and v is ,.,.,u15 , or

8. u is (x).cpx and v is (y). '¢% where cpx and 1/.Jx are of the
same type."

(Principia Mathematica, *9·131, p. 133)

49

The definition has to be seen as the definition of an equivalence relation.
For instance, assume that cpx, 1/.Jx and xx are elementary pfs. By rule 4,
cpi; and cpx V 'lj.Jx are of the same type, and so are cpx and cpx v xx. By
(implicit) transitivity, cpx V 7/Jx and cpx V xx are of the same type.

The definition seems rather precise at first sight. But there are several
remarks to be made:

• The notion "being of the same type" seems to be defined for pfs taking
one argument only. On the other hand, rules 2 and 5 suggest that
such a definition should be extended to pfs taking two arguments.
How this should be done is not made explicit;

• According to this definition, z 1 () V -.z1 () is not of the same type
as z 1 (). The only rules by which could be derived that z1 () and
z 1 () V -.zt () are of the same type, are rules 2 and 4. But if we want
to use these rules, z 1 () must be an elementary pf, which it is not: It
can take the argument \fx[R(x)], which has as result the proposition
\fx[R(x)]. This is not an elementary proposition and therefore z1 () is
not an elementary pf.

So there are quite some omissions in this definition. However, the intention
of the definition is clear: pfs that take a different number of arguments, or
that take arguments of different types, cannot be of the same type.

In order to make precise what is meant by "being of the same type",
it is easier to explicate what these types "are". The notion "being of the
same type" can then be replaced by "having the same type". The notion
of simple type as defined below is due to Ramsey [101] (1926). Historically,
it is incorrect to give Ramsey's definition of simple type before Russell's
definition of ramified type, as Russell's definition is of an earlier date, and
Ramsey's definition is in fact based on Russell's ideas and not the other
way around. On the other hand, the ideas behind simple types were already

15 ~1t is Principia notation for •u.

50 2 Type theory in Principia Mathematica

explained by Frege (see the quotes from Function and Concept on page 19).
Moreover, knowledge ofthe intuition behind simple types will make it easier
to understand the ramified ones. Therefore we present Ramsey's definition
first.

Definition 2.31 (Simple types)

1. 0 is a simple type;

2. If t1, ... , tn are simple types, then also (t1, ... , tn) is a simple type.
n = 0 is allowed: then we obtain the simple type ();

3. All simple types can be constructed using the rules 1 and 2.

We use t, u, t 1 , . . . as metavariables over simple types.

Here, (t1, ... , tn) is the type of pfs that should take n arguments (have n

free variables), the ith argument having type ti. The type () stands for
the type of the propositions, and the type 0 stands for the type of the
individuals.

Remark 2.32 To formalise the notion of ith argument that a pf takes, we
use the alphabetical order on variables that was introduced in Section 2a.
The ith argument taken by a pf will be substituted for the ith free variable
of that pf, according to the alphabetical order.

Now it becomes clear why we considered the alphabetical order of vari
ables in the definition of a-equality 2.18: we want a-equal pfs to have the
same type. However, iff has type (t1, tz) and two free variables x < y,
and g is the same as f except that the roles of x and y have been switched,
then g will have type (tz, t!). Therefore we demand that the renaming of
variables must maintain the alphabetical order. See also Remark 2.47.7.

Example 2.33 The propositional function R(x) should have type (0), as
it takes one individual as argument.

The propositional function z(R(x), S(a)) (see Remark 2.10.4) takes one
argument. This argument must be a pf that can take R(x) as its first
argument (so this first argument must be of type (0)), and a proposition
(of type ()) as its second argument. We conclude that in z(R(x), S(a)), we
must substitute pfs of type ((0), ()) for z. Therefore, z(R(x), S(a)) has type
(((0), ())).

2b The Ramified Theory of Types 51

The intuition presented in Remark 2.32 and Example 2.33 will be formalised
in 2.45. Theorem 2.58 shows that this formalisation follows the intuition.

Just as propositional functions can be translated to >.-terms, simple
types can be translated to types of the simply typed .\-calculus of Church
(see [30], and Section Ab of the Appendix).

Definition 2.34 We define a type T(t) for each simple type t by induction:

1. T(O) ~f t;

2. T((t1, ... , tn)) T(tl) -Jo • • • -Jo T(tn) -Jo o.

A simple type t of Definition 2.31 has the same interpretation as its
translation T(t). Moreover, T is injective:

Lemma 2.35 If t and u are simple types, then T(t) T(u) if and only if

t = u.

PROOF: Induction on the definition of simple type. I2Sl

Notation 2.36 From now on we will use a slightly different notation for
quantification in pfs. Instead of 'v'x[f] we now explicitly mention the type
(say: t) over which is quantified: 'v'x:t[f]. We do the same with the trans
lations of pfs to >.-calculus: instead of >.x.F we write >.x:T(t).F.

2b1.2 Ramified types

Up to now, the type of a pf only depends on the types of the arguments
that it can take. In the Principia, a second hierarchy is introduced by
regarding also the types of the variables that are bound by a quantifier (see
Principia, pp. 51-55). Whitehead and Russell consider, for instance, the
propositions R(a) and 'v'z:()[z() V -.z()] to be of a different level. The first is
an atomic proposition, while the latter is based on the pf z() V -.z(). The
pf z() V -.z() involves an arbitrary proposition z, therefore 'v'z:()[z() V -.z()]
quantifies over all propositions z. According to the vicious circle principle
2.1, 'v'z:()[z() V -.z()] cannot belong to this collection of propositions.

This problem is solved by dividing types into orders (not to be confused
with the alphabetical order on the variables). An order is simply a natural

52 2 Type theory in Principia Mathematica

number. Basic propositions are of order 0, and in 'v'z:()[z() V •z()] we must
mention the order of the propositions over which is quantified. The pf
'v'z:(t[z() V •z()] quantifies over all propositions of order n, and has order
n+l.

The division of types into orders gives ramified types.

Definition 2.37 (Ramified types)

1. 0° is a ramified type;

2. If t~ 1 , ••• , t~n are ramified types, and a E N, a > max(a1, ... , an),
then (t~ 1 , ••• , t~n t is a ramified type (if n = 0 then take a ~ 0);

3. All ramified types can be constructed using the rules 1 and 2.

If ta is a ramified type, then a is called the order of ta.

Remark 2.38 In (t~ 1 , ••• , t~n t, we demand that a > ai for all i. This
is because a pf of this type presupposes all the elements of type tia•, and
therefore must be of an order that is higher than ai.

Example 2.39 We give some examples of ramified types:

• (oo)t;

• ((oo)1,(oo)4r;

Ramified types can also be translated to types of the simply typed >.
calculus. However, we lose the orders if we do so.

Definition 2.40 We define a type T(t) for each ramified type t by induc
tion:

2b The Ramified Theory of Types 53

1. T(0°) ~f t;

2. T ((t~1 , .•. , t~n t) ~f T(t1) --+ · · · --+ T(tn) --+ o.

In the rest of this Chapter we simply speak of types when we mean
ramified types, as long as no confusion arises.

In the type (0°) 1
, all orders are "minimal", i.e., not higher than strictly

necessary. This is, for instance, not the case in the type (0°) 2 . Types in
which all orders are minimal are called predicative and play a special role
in the Ramified Theory of Types. A formal definition:

Definition 2.41 (Predicative types)

1. 0° is a predicative type;

2. If t1 Ul 1 ••• 1 tn an are predicative typeS, and a = 1 + max(a1 1 • • • 1 an)
(take a= 0 if n = 0), then (t~1 , ••• , t~n t is a predicative type;

3. All predicative types can be constructed using the rules 1 and 2 above.

The mapping T is injective when restricted to predicative types:

Lemma 2.42 Ifta and ub are predicative types, then T(ta) = T(ub) if and
only if ta = ub.

PROOF: Induction on the definition of predicative type. r:8l

2b2 Formalisation of the Ramified Theory of Types

In this section we formalise the intuition on types presented in Example
2.33 and Definition 2.34 together with the intuition on orders that was
given at the beginning of Section 2bl.2. Before we can do this we must
introduce some additional terminology.

In the pf R(x) we implicitly assume that xis a variable for which objects
of type 0 must be substituted. For our formalisation we want to make
the information on the type of a variable explicit. We do this by storing
this information in so-called contexts. Contexts, common in modern type
systems, are not used in the Principia.

54 2 Type theory in Principia Mathematica

Definition 2.43 (Contexts) Let x1, ... , Xn E V be distinct variables, and
assume t~ 1 , .•• , t~n are ramified types. Then { x1 :t~1 , ... , Xn :t~"} is a con
text. The set { x1, ... , Xn} is called the domain of the context and is denoted
by dom({ x1 :t~

1 , ••• , xn:t~n}). We will use Greek capitals r, ~ as meta
variables over contexts.

The pfs z 1 (y1) and z2 (y2) are a-equal, according to Definition 2.18. But

in a context r = {y1:0°,zd0°)1,y2:(0°)\z2:((o0
)

1f} one does not want

to see z1(y1) and z2 (y2) as equal, as the types of y1 and y2 differ, and the
types of z 1 and z 2 differ as welL Therefore, we introduce a more restricted
version of a-equality:

Definition 2.44 Let r be a context and f and g pfs. We say that f and g
are ar-equal, notation f =a,r g, if there is a bijection <p: V ~ V such that

• g can be obtained from f by replacing each variable that occurs in f
by its <p-image;

e X < y iff <p(X) < cp(y) j

• x:t E f iff cp(x):t E f.

We will now define what we mean by r 1- f : ta, or, in words: f is of
type ta in the context f .16 In this definition we will try to follow the line
of the Principia as much as possible. If r = 0 then we will write 1- f : ta.

We explain some aspects of the following definition in Section 2b3.

Definition 2.45 (Ramified Theory of Types: RTT) The judgements
r 1- f : ta is inductively defined as follows:

1. (start) For all a:

For all atomic pfs f:

16The symbol!- in I' 1- f : ta is the same symbol that Frege used to assert a proposition.
It enters Type Theory in 1934 [36], via Curry's combinatory logic. Curry defines a
functionality combinator F in such a way that F XY f holds, exactly if f is a function
from X toY. To denote the assertion of FXY/, Curry uses Frege's symbol!-.

2b The Ramified Theory of Types 55

2. (connectives) Assume r 1- f:(t~J, ... ,t~n)a, .6.1- g:(u~1 , •.• ,u!i:'/,
and x < y for all x E dom(r) and y E dom(.6.). Then

(
b b)max(a,b)

r u .6. 1- f v g : t~1 ' ••• 't~n' ull, ... 'u,;;: ;

3. (abstraction from parameters) If r 1- f : (t~1 ' • •• 'tr:nm)a' t~+·v
is a predicative type17 , g E AU P is a parameter of f, r 1- g : t~"1i1

,

and x < y for all x E dom(r), then

r/ 1- h . (tal tam+l)max(a,am+l +1)
· 1 '· · ·' m+l ·

Here, h is a pf obtained by replacing all parameters g' of f which
are o:r-equal to g by y. Moreover, r' is the subset of the context
r U {y : t':n=;11

} such that dom(r') contains exactly all the variables
that occur in h18 ;

4. (abstraction from pfs) If (t~ 1 , •.. , t~)a is a predicative type17 ,

r 1- f : (t~1 ' .•• ' tr:nm t' X < z for all X E dom(r)' and Yl < ... < Yn
are the free variables of f, then

r / 1- () (tal tam (tal tam)a)a+l
Z Y1' · · · ' Yn : 1 ' · · · ' m ' 1 ' · · · ' m '

where r' is the subset of r u {z:(t~ 1 ' ••• 'tr:nm t} such that dom(r') =
{y1, · · ·, Yn, z P8;

5. (weakening) If r, .6. are contexts, r ~ .6., and r 1- f: ta, then also
.6, 1- J : ta;

6. (substitution) If y is the ith free variable in f (according to the order
on variables), and r u {y : tfi} 1- f : (t~1 ' ••• 't~n t, and r 1- k : tfi
then

r l 1- J [·-k] . (tal tai-l tai+l tan)b
Y·- · 1 '· · ·' i-1 ' i+1 '· · ·' n ·

17The restriction to predicative types only is based on Principia, pp. 53-54.
18In Lemma 2.56 we prove that this context always exists.

56 2 Type theory in Principia Mathematica

Here, b = 1 + max(a1, ... , ai-l, ai+I, ... , an, c), and

c = max{j I Vx:t1 occurs in f[y:=k]}

(if n = 1 and {j I Vx:t1 occurs in f[y:=k]} = 0 then take b = 0) and
once more, r' is the subset of r U {y : tf'} such that dom(f') contains
exactly all the variables that occur in f[y:=kjl8;

7. (permutation) If y is the ith free variable in f (according to the
order on variables), and ru {y:tfi} 1- f: (t~I, ... ,t~nt, and x < y'
for all x E dom(r), then

r / L_ J[·- '] . (tal tai-l tai+l tan ta;)a
' Y·-Y · 1 '· · ·' i-1 ' i+l '· · ·' n ' i ·

r' is the subset of r U {y:tfi, y':tfi} such that domr' contains exactly
all the variables that occur in f[y:=y'] 18 ;

8. (quantification) If y is the ith free variable in f (according to the
order on variables), and r U {y:tfi} 1- f : (t~1 , ••• , t~n t, then

r t_ w ·tai [J] . (tal tai-l tai+l tan)a
' vy. i · 1 '· · · ' i-1 ' i+l '· · · ' n ·

Definition 2.46 A pf f is called legal, if there is a context r and a ramified
type ta such that r 1- f : ta.

2b3 Discussion and examples

We will make some remarks on Definition 2.45. First of all, we motivate the
eight rules of 2.45 by referring to passages in the Principia. Then we make
some technical remarks, and give some examples of how the rules work.
It will be made clear that the substitution rule is problematic, because
substitution is not clearly defined in the Principia.

Remark 2.4 7 We will motivate RTT (Definition 2.45) by referring to the
Principia:

1. Individuals and elementary judgements (atomic propositions) are,
also in the Principia, the basic ingredients for creating legal pfs; 19

19 As for individuals: see Principia, *9, p. 132, where "Individual" is presented as a
primitive idea. As for elementary judgements: See Principia, Introduction, pp. 43-45.

2b The Ramified Theory of Types 57

2. We can see rule 2 "at work" in *12, p. 163 of the Principia 20 :

"We can build up a number of new formulas, such a.s [...]
I V I I V .t.! I V .t.r [j d · " !.p.X !.p.y, !.p.X <p.X, !.p.X o/·Y, . . . an SO on.

(Principia Mathematica, *12, p. 163))

The restriction about contexts that we make in rule 2 has technical
reasons and is not made in the Principia. It will be discussed in 2.49;

3. Rule 3 is justified by *9·14 and *9·15 in the Principia. It is an instan
tiation of the abstraction principles 1.1 and 1.2 for functions that was
already proposed by Frege. In Frege's definition one does not have
to replace all parameters g' that are o:r-equal to g, but one can also
take some of these parameters. In Section 2d we show that this is not
a serious restriction.

The restriction to predicative types is in line with the Principia (cf.
Principia, pp. 53-54);

4. Rule 4 is based on the Introduction of the Principia. There, pfs are
constructed, and

"the first matrices that occur are those whose values are
of the forms 'fJX,tjJ(x,y),x(x,y,z, ...), i.e. where the ar
guments, however many there may be, are all individuals.
Such [propositional] functions we will call 'first-order func
tions.' We may now introduce a notation to express 'any
first-order function.' "

(Principia Mathematica, p. 51)

This quote from the Principia is an instance of Frege's abstraction
principles, and so is rule 4 of our formalisation. It results in second
order pfs, and the process can be iterated to obtain pfs of higher
orders.

Rule 4 makes it possible to introduce variables of higher order. In
fact, leaving out rule 4 would lead to first-order predicate logic, as

20 In the Principia, Whitehead and Russell write <plx instead of <px to indicate that <px

is not only (what we would call) a pf, but even a legal pf.

58 2 Type theory in Principia Mathematica

without rule 4 it is impossible to introduce variables of types that
differ from 0°.

The use of predicative types only is inspired by the Principia, again;

5. The weakening rule cannot be found in the Principia, because no
formal contexts are used there. It is implicitly present, however: the
addition of an extra variable to the set of variables does not affect the
well-typedness of pfs that were already constructed;

6. The rule of substitution is based on *9·14 and *9·15 of the Principia,
and can be seen as an inverse of the abstraction operators in rule
3 and 4. Notice that we do not know yet whether the substitution
f[y:=k] exists or not. Therefore, we limit the use of rule 6 to the
cases in which the substitution exists. In Section 2c2 we show that it
always exists if the premises of rule 6 are fulfilled;

7. In the system above, the (sequential) order of the tis is related to
the alphabetic order of the free variables of the pf f that has type
(t1, ... , tn) (see the remark before Definition 2.18, Remark 2.32, and
Theorem 2.58). This alphabetic order plays a role in the clear pre
sentation of results like Theorem 2.58, and in the definition of substi
tution (see Remark 2.28).

With rule 7 we want to express that the order of the tis in (t1 , ... , tn)
and the alphabetic order of the variables are not characteristics of the
Principia, but are only introduced for the technical reasons explained
in this remark. This is worked out in Corollary 2.59;

8. Notice that in the quantification rule, both f and Vx:tf; .f have order
a. The intuition is that the order of a propositional function f equals
one plus the maximum of the orders of all the variables (either free
or bound by a quantifier) in f. This is in line with the Principia: see
[121], page 53. See also the introduction to Definition 2.37, and the
proof of Lemma 2.60 below.

Remark 2.48 Rules 3 and 4 are a restricted version of the abstraction
principles of Frege, with less power. It is, for instance, not possible to
imitate all the abstractions of Remark 2.10 by using rules 3 and 4 only.
But in combination with the other rules, rule 3 and 4 are sufficient (see

2b The Ramified Theory of Types 59

Example 2.54 for the cases of Remark 2.10, and Section 2d, especially
Theorem 2.84).

Remark 2.49 In rule 2 of RTT, we make the assumption that the variables
of r must all come before the variables of~- The reason for this is that we
want to prevent undesired results like

x1:0° f- R1 (x1) V R2(x1) : (0°, 0°(

In fact, R1(xl)VR2(xl) has only one free variable, so its type should be (0°)1

and not (0°, 0°)1 (see Example 2.53, second part). For technical reasons
(the order of the tfis; see also Theorem 2.58) we strengthen the assumption
such that for x E dom(f) andy E dom(~), x < y must hold.

As Whitehead and Russell do not have a formal notation for types, they
do not forbid this kind of constructions in the Principia. In 2.82 we show
that our limitation to contexts with disjoint domains as made in rule 2 is
not a real limitation: all the desired judgements can still be derived for
contexts with non-disjoint domains.

Remark 2.50 In both rules 3 and 4 we see that it is necessary to introduce
at least one new variable. It is, for instance, not possible to interpret the
proposition R(a) as a (constant) pf of type (0°(This is in line with the
abstraction principles of Frege and Russell. In Frege's definition 1.1, for
example, it is explicitly mentioned that the object that is to be replaced
occurs at least once in the expression.

Translated to >.-calculus this means that the Principia have >.!-terms,
only. See also Lemma 2.9.3 and Lemma 2.23.3.

Remark 2.51 Contexts as used in RTT contain, in a sense, too much in
formation: not only information on all free variables, but also information
on non-free variables (Cf. rules 3, 6 and 7. The set of non-free variables
contains more than only the variables that are bound by a quantifier. For
example, in the pf z(R(x)), xis neither free, nor bound by a quantifier).

Remark 2.52 The system is based on the abstraction principles of Frege.
In a context r, one cannot introduce a variable of a certain type t unless
one has a pf (or an individual) f that has type t in r. This is different from
modern, >.-calculus based systems, where one can introduce a variable of a
type u without knowing whether or not there are terms of this type u.

60 2 Type theory in Principia Mathematica

We give some examples, in order to illustrate how our system works.
Example 2.53 shows applications of the rules. Example 2.54 makes a link
between the intuitive notion of abstraction that was explained in Remark
2.10 and the abstraction rules 3 and 4 of our system.

We will use a notation of the form X 1 -~· Xn N, indicating that from the

judgements X1, ... , Xn, we can infer the judgement Y by using the RTT-rule
of Definition 2.45 with number N. As usual, this is called a derivation step.
Subsequent derivation steps give a derivation. A derivation of a judgements
Y is a derivation tree withY as root (the final conclusion). The types in
the examples below are all predicative (as a pf of impredicative type must
have a quantifier, and the examples below are quantifier-free). To avoid too
much notation, we omit the orders.

Example 2.53

• f- S(a1, a2): ();

• f- R1(al): () f- R2(al): ()
2

f- R1(al) V R2(al): ()

•

but not:

x1 : 0 f- R1(xl): (o) x1: 0 f- R2(xl): (o)
2

x1 : 0 f- R1(xl) V R2(xl) : (0, 0)

(x1 f. x1 because< is strict). To obtain R1(xl)VR2(xl) we must make
a different start:

As R(xl) is a-equal to R(x2) in the context, both R(xl) and R(x2) are
replaced by the newly introduced variable z2 ;

x1 : 0, x2 : 0 f- S(x1, x2) : (0, 0)
• 4·

x1 : 0, x2 : 0, z: (0, 0) f- z(x1, x2) : (0, 0, (0, 0)) '

2b The Ramified Theory of Types 61

x1: 0 I- R1(xl) VR2(xl): (0) I- a1: 0
• 6·

I- R1(al) V R2(al): ()
5

'

•

x1 : 0 I- R1(al) V R2(al) : ()

X!: O,x2: O,x3: (0,0) I- R(xl) v-,x3(x1,x2): (0,0,(0,0))
x1 : O,x2 : 0 I- T(x1,x1,x2): (0,0)

----------------~~~--~------~~~-------6
x1 : 0, x2 : 0 I- R(x1) V ...,T(x1, x1, x2) : (0, 0)

Example 2.54 We give a formal derivation of the examples of the abstrac
tion rules that were given in Remark 2.10. Again, we omit the orders.

• Constructing z(a) V S(a) from R(a) V S(a) cannot be done with the
use of rule 4 only. The following derivation is correct:

I- a:O I- R(a):()
3

I- a:O
5

x:O I- R(x):(O)
4

z:(O) I- a:O x:O, z:(O) I- z(x):(O, (0))
6

z:(O) I- z(a):((O)) I- S(a):()
----------~~~~~~~~~~-----------2.

z:(O) I- z(a) V S(a) : ((0))

To obtain z(a) instead of z(), we must transform R(a) into a pfR(x) by
abstracting from a. Then we can construct z(x) by abstraction from
pfs (rule 4). In this way, the "frame" for z(a) is of the right form.
Substituting a for x gives z(a) (and "neutralises" the application of
rule 3 at the top of the derivation). Simply applying rule 4 on the
judgement I- R(a) : () does not work: it results in z() I- z() : (());

• Constructing z 1 () V z 2 () is easier: z1 () can be obtained by abstracting
from R(a), and z 2() similarly from S(a). Result:

I- R(a):()
4

I- S(a):()
4

zd) I- z1():(()) zd) I- z2():(())
2

_

zd), z2:() I- z1() V z2() : ((), ())

We see that in fact two abstractions are needed to construct this pf:
we must abstract from R(a) as an instance of the pf z1 (), and from
S(a) as an instance of the pf z 2(). As rule 4 does not work on parts of
pfs, these abstractions have to be made before we use rule 2. Applying
rule 4 on I- R(a) V S(a): () 0 would result in z: ()I- z(): (());

62 2 Type theory in Principia Mathematica

• We can extend the derivation of zt=(), z 2:() f- z1() V z2() : ((), ()) to
obtain a type for z(R(a), S(a)):

xt=(), x2:() f- x1() V x2() : ((), ())
4

xt=(), x2:(), z:((), ()) f- z(x1, x2):((), (), ((), ()))
6

x2:(),z:((),()) f- z(R(a),x2): ((),((),()))
----~~~~~~~~~~~~~--6

z:((), ()) f- z(R(a), S(a)): (((), ()))

(for reasons of space, we omitted the premises z:((), ()),x2:() f- R(a):()
and z:((), ()) f- S(a):() of the first and second application of the sub
stitution rule);

• For the derivation of the type ofz(R(x),S(a)) we first make a deriva
tion of the "frame" z(y1, y2) of this pf:

f- a:O f- R(a):()
3

f- a:O
5

x:O f- R(x):(O)
4

yt=(O) f- a:O x:O, yt=(O) f- Y1(x):(O, (0))
6

f- R(a):()
4

yt=(O) f- Y1(a):((O)) Y2:()f-y2():(())
2

yt=(O), Y2:() f- Y1(a) Vy2(): ((0), ())
yt=(o), Y2:(), z:((o), ()) f- z(y1, y2): ((o), (), ((o), ()))

4
·

Then we derive x:O f- R(x):(O) and f- S(a):(), and after applying the
weakening rule, we can substitute R(x) for y1 and S(a) for y2. As a
result, we get

z:((O), ()),x:O f- z(R(x), S(a)): (((0), ())).

Example .2.55 In the example below, the orders are important:

z:()0 f- z() V --,z : (() 0
)
1

--------"'----c"'o;-:-'-'-.,-----....,.:-:.:--'-:---.-1 ----8 ·
f- Vz:() [z() V -.z()] : ()

f- R(a) : ()o 2
f- R(a): () 0 f- -.R(a): () 0

2
f-R(a)v-.R(a):() 0

4

We see that Vz:() 0 [z() 0 V -.z()] does not have a predicative type. This is
the case because this pf has a bound variable z that is of a higher order
than the order of any free variable (as there are no free variables here).
Therefore, the order of this pf is determined by the order bound variable z.

2c Properties of RTT 63

We still need to prove that the contexts in the conclusions of rules 3, 4
and 6 exist. This follows from the following Lemma:

Lemma 2.56 Assume r I- J: ta. Then

1. (Free variable lemma) All variables off that are not bound by a
quantifier are in dom(r);

2. (Strengthening lemma) If~ is the (unique) subset of r such that
dom(~) contains exactly all the variables off that are not bound by
a quantifier, then ~ I- f : ta.

PROOF: An easy induction on the definition of r I- f : ta. C8l

2c Properties of RTT

2cl Types and free variables

In this section we treat some meta-properties of RTT. Using the A-notation
for pfs, we can often refer to known results in typed A-calculus21 .

Theorem 2.57 (First Free Variable Theorem)
Let f E P; k1, ... , kn E AU V UP.

PROOF: Write h = f[xi, ... , Xn:=k1, ... , kn]· We know that h is the
p-normal form of the A-term ().i=I xi.f)kl · · kw By Lemma 2.23.3 and
Lemma 2.9.4 we know that f, k1, ... , kn are all).!-terms. We conclude that
lfx1 · · · [xn:=kn] is also a).!-term. As

21 The meta-properties can also be proved directly, without >.-calculus: see [79).

64 2 Type theory in Principia Mathematica

we have by the Church-Rosser Theorem that J[x1:=k1]· · · [xn:=kn] -/3 h,
and therefore:

FV(h) (2 .~. 1)

Q)

(2.~.1)

FV(h)

Fv(J[x1:=k1]· · · [xn:=kn])

(Fv(l) \ {x1, ... ,xn}) uU{Fv(ki) I Xi E Fv(l)}

(Fv(l) \ {x1, ... ,xn}) U {kiEV I Xi E Fv(l)}

(Fv(j) \ {x1, ... ,xn}) U {kiEV I Xi E FV(j)}.

At (1) we use that J[x1:=k1]· · · [xn:=kn] is a .XI-term that ,8-reduces to h;
at (2) we use the fact that Fv~) = 0 whenever ki E AU P (by definition
of ki). fZI

Theorem 2.58 (Second Free Variable Theorem) Assume that we can
derive r f- f : (t~1 , .•• , t~n t, and x1 < · · · < Xm are the free variables off.
Then m = n and Xi : tf• E r for all i ~ n.

PROOF: An easy induction on r f- f : (t~t, ... , t~n t. For rules 6 and 7, use
Theorem 2.57. fZI

We can now prove a corollary that we promised in Remark 2.47.7:

Corollary 2.59 If r f- f : (t~ 1 , • •• , t~n)a and r.p is a bijection { 1, ... , n} ---+

{1, ... , n} then there is a context f 1 and a pf f 1 which is ap-equal to f such
that

I 1 (a<p(l) a<p(n)) a r f- f : t<p(1) ' ... 't<p(n) .

PROOF: By the second Free Variable Theorem, we can assume that f has
n free variables x1 < ··· < Xn, and that Xi:tf• E r for all i E {1, ... ,n}.
Taken new free variables z1 < · · · < Zn such that Zi > y for ally E dom(f).
Now apply rule 7 of RTT n times. fZI

We can also prove unicity of types and unicity of orders. Orders are unique
in the following sense:

2c Properties of RTT 65

Lemma 2.60 Assume r f- f: ta. If X occurs in f and X: ub E r, then ub
is predicative. Moreover, if also r f- f : t'a', then a a'.

PROOF: By induction on the derivation of r f- f : ta one shows that a
variable x that occurs in f always has a predicative type in r, and that
both a and a' equal one plus the maximum of the orders of all the (free and
non-free) variables that occur in f. IZI

C.orollary 2.61 (Unicity of types for pfs) Assume r is a context, f
is a pf, r f- f : ta and r f- f : ub. Then ta ::::o ub.

PROOF: t ::::o u follows from Theorem 2.58; a = b from Lemma 2.60. IZI

Remark 2.62 We cannot omit the context r in Corollary 2.61. For ex
ample, the pf z(x) can have different types in different contexts, as is illus
trated by the following derivations (we have omitted the orders as they can
be calculated via Lemma 2.60):

f- R(a1) : () f- a1 : 0
3

X : 0 f- R(X) : (0)
4

x: 0, z: (0) f- z(x) : (0, (0))

versus
f- R(a!): () 4

x : () f- x() : (())
4

x: (), z: (()) f- z(x) : ((), (())) ·

Theorem 2.58 and Corollary 2.61 show that our system RTT makes sense,
in a certain way: The type of a pf only depends on the context and does
not depend on the way in which we derived the type of that pf.

As a corollary of 2.61 we find:

Corollary 2.63 Iff f- f : ta, f f- k : ub, x:ub E f and f f- f[x:=k] : t'a'
then a;,::: a'.

·PROOF: If x </. FV(j) then f :=::o f[x:=k] and the corollary follows from
Unicity of Types 2.61. If x E FV(j) then the variables that occur in f[x:=k],
occur either in f or in k, and as the order of k is smaller than the order
off (x E Fv(j), so b < a), the corollary follows from the proof of Lemma
2.60. IZI

66 2 Type theory in Principia Mathematica

2c2 Strong normalisation

We investigate the problem whether there exists (in the situation of Defi
nition 2.45.6) a pf h such that h = f[y:=k]. We show that this is the case,
in Corollary 2. 73.

The nonexistence of f[x:=k] can have two reasons:

• The .A-term (.Af=1 xi.f)kl · · · has no ,8-normal form;

• The .A-term (.Af=Lxi.J)kl · · · kn has ,8-normal form H, but there is no
hE P such that h H.

However, these two things do not occur if we use substitution under the
restrictions of Definition 2.45.6. For a proof of this we use the simply typed
.A-calculus of Church [30]. This is not only of help for the existence-proof
of h, but also shows that RTT can be seen as a subsystem of A-+. However,
we remark that the orders of RTT are lost in the embedding to .A-+. A
definition of Church's calculus is given in Section Ab of the Appendix. We
translated the propositional functions and the ramified types of RTT to
terms and types of A-+ in Definitions 2.7, 2.21, and 2.40. We now extend
the mapping T of 2.40 to contexts:

Definition 2.64 We define a standard context ro in A-+, in which type
information on V, ...,, V and elements of A and R is stored:

ro {-..,:o-+o,V:o-+o-+o}U

{a:tlaEA}u
{'rita : T(ta) -+ o I ta is a ramified type} U

{R: t-+ ... -+ t-+ o IRE R,a(R) = m}.

m times t

If r is a context in RTT then T(r) ~ ro u {x: T(ta) I x:ta E r}.

In particular, T(0) = ro.

Theorem 2.65 If r f- f : ta then

1. T(r) f-A_. f: o;

2. T(0) f-A_. f: T(ta).

2c Properties of RTT 67

PROOF: A straightforward induction on r 1- f : ta with the use of Theorem
2.58 and the Subject Reduction property for ..\-Church (A.30). [g)

Remark 2.66 Observe that the above theorem immediately excludes the
pf that leads to the Russell Paradox from the well-typed pfs: If -.z(z) were
legal then the ..\-term -.(zz) would be typable in ..\-Church, which is not the
case (see [5]).

Using the strong normalisation of ..\-Church (A.36), it is easy to solve the
first problem:

Theorem 2.67 Take i :::; n. Assume r U {y:t~i} 1- f : (t~I, ... , t~")a and
r 1- k : t~; (so: the preconditions of rule 6 of RTT are fulfilled). Then

(..\y:T(t~')Jfii is strongly normalising.

PROOF: The theorem is easy for k E A, so assume k E P. By Theorem
2.65.2 we know that T(0) 1- k: T(t~i), hence T(r) 1- k: T(tf') by weak

ening. As, by Theorem 2.65.1, T(r) U {y:T(t~;)} 1- 1: o and therefore
T(r) 1- ..\y:T(t~')J: T(tfi) _, o, we have T(r) 1- (..\y:T(t~').f)k: o; so the

term (..\y:T(tf;).j)"k, being a typable term in.._,, is strongly normalising.
r:8l

The second problem is harder to tackle: substitution (Definition 2.24)
is defined in !_,erms of ..\-calculus, and not every ..\-term H has an equivalent
h in P with h = H. This makes it hard to see what happens, especially in
case of a substitution

For this substitution we must calculate the ,8-normal form of

This term reduces to kH1 · · · Hm for some ,8-normal Hjs. If k E P then
this new term may not be in ,8-normal form, and it is not clear what will
be the final result (cf. Examples 2.25.4 and 2.25.5.).

The problem clearly has to do with the special structure of ..\-terms
H for which there is a (legal) h E P with h H. Such terms h have

68 2 Type theory in Principia Mathematica

one important property: All variables are either arguments of functions,
or they are applied to the maximal number of arguments that i_s possible
according to the type of that variable. For instance: if a term h is of the
form zH1 · · · Hm, then the type of z will be of the form T1 -+ · · ·-+ Tm-+ o.

We call such terms fully applied and give the following formal definition:

Definition 2.68 (Fully applied .\-terms) Let r be a .\-+-context, and
let M be a f-legal term of type t. Write M = MoM1 · · · Mm, where Mo is
either a variable or a term of the form .\x:r.M~. We define the notion M
is r -fully applied by induction on the length of M:

• If Mo is a variable then M is f-fully applied if M has type o in r,
and for 1 ~ i ~ m, either Mi is f-fully applied, or Mi is a variable;

• If Mo = .\x:r.M~ then M is f-fully applied if M~ is (r, x:r)-fully
applied, and for 1 ~ i ~ m, either Mi is f-fully applied, or Mi is a
variable.

If it is clear which context r is used, we just write fully applied instead of
r -fully applied.

It will be shown that for each legal propositional function f, f and
7 are fully applied. This can be done by induction on the derivation of
r f- f : ta. For the substitution case, we need some additional properties of
fully applied terms.

Lemma 2.69 If M is (r, y:r, il)-fully applied, and N is (r, il)-fully ap
plied, then M[y:=N] is (r, il)-fully applied.

PROOF: Induction on the structure of M.

• M =:xM1···Mm.

- x = y. Then M[y:=N] = N Ml[y:=N]· · · Mm[y:=N]. Distin
guish:

* N = zN1 · · · Nn. Notice that r, il f- N : o. This means that
r, y:r, il f- y : o, and therefore m = 0 and M[y:=N] := N,
thus: M[y:=N] is fully applied;

2c Properties of RTT 69

* N = (:>...x:v.N')Nl · · · Nn. As N is fully applied, N' is fully
applied, and the Njs are either variables or they are fully
applied. By induction, Mi [y:=NJ is either a variable or fully
applied for 1 ::; i ::; m. This means that

is fully applied;

x =/= y. By induction, Mi[y:=N] is either a variable or fully
applied for 1 ::; i ::; m. By the Substitution Lemma (A.26),
xMl[y:=N] · · · Mm[y:=NJ has type o in (r, A). This means that
xM1 [y:=NJ · · · Mm[y:=N] is fully applied;

• M = (:>...x:v.M')M1 · • · Mm. By induction, M'[y:=N] is (r, A,x:v)
fully applied, and Mi[y:=N] is either a variable, or fully applied.
Therefore M[y:=N] is fully applied.

Lemma 2. 70 If M is r -fully applied and M -+ f3 M', then M' is r -fully
applied.

PROOF: Induction on the structure of M.

• M = xM1 · · · Mm. The reduction must occur in a term Mi, say:
Mi M1. As Mi cannot be a variable, Mi is fully applied. By the
induction hypothesis, Mf is fully applied. M has type o, so by Subject
Reduction A.30, M' has type o. Hence M' is fully applied;

• M = (:>...x:v.Mo)A£1 · · · Mm. If the reduction occurs within M1, ... ,
Mm or Mo then we can give a similar argument as in (1). Now assume
M' M0 [x:=M1]M2 · · · Mm. Observe: Mo is (r, x:v)-fully applied.
If M1 is a variable, then clearly M0 [x:=M1] is r-fully applied. If
M1 is not a variable then M1 is r-fully applied, so by Lemma 2.69,
Mo[x:=Ml] is r-fully applied. Distinguish:

Mo[x:=Ml] = yN1 · · · Nn. As Mo[x:=M1] is fully applied, it has
type o. This means that m = 1, and that M' = Mo[x:=Ml] is
fully applied;

70 2 Type theory in Principia Mathematica

Mo[x:=MI] = (Ay:T.N)Nl · · · Nn. As Mo[x:=Ml] is fully applied,
N is fully applied, and the Njs are either variables or fully ap
plied terms. Therefore M' = (Ay:T.N)Nl · · · NnM2 · · · Mm is fully
applied.

Now we can prove:

Lemma 2. 71 Let f E P. If r f- f : ta then J is T(f) -fully applied, and 7
is T(0)-fully applied.

PROOF: We prove that J is T(f)-fully applied. Then it easily follows that
7 is T(0)-fully applied. We use induction on the derivation of r f- ta. All
cases are easy to check, except for the abstraction-from-parameters and the
substitution cases:

3. (abstraction from parameters) We use notations as in Definition 2.45.3.
By induction ~n the structure off it is shown that if J and ?fare fully
applied, then h is fully applied;

6. (substitution) We use notations as in Definition 2.45.6. Let h
f[y:=k]. If k E A then h is just f in which all free O£Currences of
y have been replaced by k. It is then easy to see that h is f~1ly ap
plied. Now suppose k E P. By the induction hypothesis, f and ?f
are fully appli_ed. This means tha_t (AyJ)g is fully applied. This term
,8-reduces to h. By Lemma 2. 70, h is fully applied.

We now know that each legal pf f gives rise to fully applied A-terms J
and f. This is of great help in showing that substitutions always exist in
case of the application of rule 6 of Definition 2.45. We first show that each
substitution in RTT that gives rise to a ,8-reduction path starting with a
fully applied A-term, really exists. Then it is easy to show that substitutions
always exist in the situation of Definition 2.45.6.

Lemma 2.72 Let f E P, let k1, ... , kn E AU V UP, and assume that
(Ai;:l Xi:ti.j)""£"; · · · kn is T(f)-fully applied, where f is a RTT-context. Then
there ish E P such that h = f[xl, ... ,xn:=k1, ... , kn]·

2c Properties of RTT 71

PROOF: Notice that (Ai=l Xi:ti.f)kl · · · kn is a legal term of A-t, and there
fore strongly normalising. Let q be the length of the longest reduction path
of this term. Use induction on q, so assume that the lemma has been proved
for all q' < q (write IH1 for the induction hypothesis). We use induction
on the structure off (and write IH2 for this induction hypothesis). Some
cases can be handled directly, for other cases we need help of Lemma 2.70.

Observe that ij E A U V: otherwise there would have been k£ E P
such that ij = X£. But as R has type t --t ... --t t --t o, X£ must have
type t, and therefore k£ has type t, which means that k£ cannot be a
pf (Theorem 2.58, Theorem 2.65).

Let f' = R(i~, ... , i:(R)). As none of the ijs is a pf, we have f' E P.
Observe:

(
n -) -_A Xdi-J k1 · · · kn ---'ff(3 f',

t=l

so f[xl, ... ,xn:=kl,···,kn] exists and is equal to J';
2. f = h V h- Notice: f is fully applied and f = V hh, so h and h

are fully applied. Therefore, (Ai= 1 Xi:ti.h)kl · · · kn is fully applied for
j = 1, 2. By the induction hypothesis22 , there are h1, h2 E P such
that

Jj[Xl, ... , Xn:=k1, ... , kn] := hj

for j = 1, 2. This means that

and therefore j[x1, ... , Xn:=k1, ... , kn] = h1 V h2.

A similar proof can be given for f = -.J';

22 0bserve that the longest reduction path of (.\x1 :t1 · · · Xn:tn.J;)"k"; · · · kn has a length
:::; q. If the length is equal to q then use IH2; otherwise use IHl.

72 2 Type theory in Principia Mathematica

3. f = Vx:ta[f'J. Notice that 1 = Vta(>.x:T(ta).f'). As 1 is fully applied,
[' is fully applied as well. This means that (>-.i=l Xi:kf')kl · · · kn is
fully applied. By the induction hypothesis22 , there is h E P such that
J'[x1, ... , Xn:=k1, ... , kn] =h. This means that

(} Xi:ti.J) k1 · · · kn -{3 'ftaAX:ta}{,
z=l

and therefore j[x1, ... , xn:=k1, ... , kn] = Vx:ta[h]. As 1, k;_, ... , kn are
all >.!-terms, x E Fv(h), so x E FV(h), which means that Vx:ta[h] is
indeed a pf;

4. f = z(h1, ... , hm). If z ~ { x1, ... , Xn} then we can give a proof similar
to the case f = R(i1, ... ,ia(R)). Now assume z = Xp. Define

h'- = { ke if hj = xe;
J- hj if hj ~ {x1, ... ,xn}·

Notice that 1 is fully applied. As 1 starts with a variable (this is due
to the definition of 1), it has type o. Therefore,

has type o as well. Observe:

(.~ Xi:ti.f) k1 · · · kn -{3 kph~ · · · h'm.
z=l

Write K = kph~ · · · h'm. K is fully applied (Lemma 2. 70), and has type

~(Subject Reduction A.30). Observe t~at ':J' =)..~=l YJ=Vj.f;,. Hence

kp is fully :pplied. By definition of kp, kp starts with a variable.
Therefore, kp has type o. As K has type o as well, we have that
q = m, and that K represents the substitution

The longest reduction path of K is shorter than the longest reduction
path of

2c Properties of RTT 73

so we can apply the induction hypothesis IHl and conclude that there
is h E P such that kp[YI, ... , Ym:=h~, ... , h~] = h. But then also
f[xi, · · ·, Xn:=kl, ... , kn] =h.

With this lemma it is easy to show that substitution always exists in
the case of RTT-rule 2.45.6.

Theorem 2. 73 (Existence of substitution) Iff E P, y is the ith free
variable in f' r u {y : tfi} 1- f : (t~I, ... , t~n)a' and r 1- k : tfi' then f[y:=k]
exists.

PROOF: Notice that J and k are fully applied. Therefore (>..y:T(tf;)})k is
fully applied. By Lemma 2. 72, f[y:=k] exists. l:8l

2c3 Subterm property

The technique of fully applied >..-terms that was used in Section 2c2 to prove
the existence of substitution can also be used to prove another important
property of type systems for RTT: the Subterm Property. This property
states that if a propositional function is typable, then its recursive param
eters (see Definition 2.17) are typable as well. If all recursive parameters
of a legal pf f are typable, we say that f has the subterm property:

Definition 2. 7 4 Assume r 1- f : ta. If for all h E RP(j) n P there is ~ ~ r
and a predicative type ub such that ~ 1- h : ub, then f has the sub term
property. Notation: SP(j).

Just as in Section 2c2, we prove by induction on the derivation r 1- f : ta
that all legal pfs have the subterm property. Again, all cases are easy,
except for the substitution rule 2.45.6. This case can be solved using similar
techniques as in Section 2c2.

Lemma 2.75 Let f E P, let k1, ... , kn E AU V UP, and assume that
(>..i=I xi:ti})ki · · · kn is fully applied with respect to T(r), where r is a
RTT-context. If SP(j) and SP(ki) for all ki E P, then

74 2 Type theory in Principia Mathematica

PROOF: Clearly, (2) follows from (1). We prove (1) by induction on the
length of the reduction path of (>.f=1 xi:ti.f)kl · · · kn. We use induction on
the structure of j, and only treat the interesting case: f = z(h1 , ... ,hm),
and z = Xp. As in the proof of Lemma 2. 72, we define

and prove that f[xl, ... , Xn:=kl, ... , kn] = kp[Yl, ... , Ym:=h~, ... , h~]. As
the reduction path of (>.j=1 yj:Uj-~)h~ · · · h'm is shorter than the reduction

path of (>.f=1 Xi:ti.f)kl · · · kn, we can use the induction hypothesis: 23

RP (f[x:=k]) RP(kp[f=hJ)

C RP(kp) U {hj 11 :5: j :5: m} U u RP(hj)
hjEP

C RP(j) U {ki 11 :5: i :5: n} U u RP(ki)·
k;EP

As a corollary we get:

Corollary 2. 76 (Subterm Lemma) Iff f- f: ta then SP(j).

PROOF: Induction on r f- f: ta. All cases are easily checked except for the
substitution rule, which is proved with Lemma 2.75. ~

23 Note that RP(kp) ~ Uk;EP RP(k;), {hj 11 :S j :S m} ~ RP(/) U {k; 11 :S i :S n} and
Uh' EP RP(hj) ~ RP(/) U Uk EP RP(k;).

' '

2d Legal propositional functions 75

2d Legal propositional functions

We recall Definition 2.46: a pf f is called legal if r 1- f : ta for some r
and ta. We will check whether this definition of legal pf coincides with the
definition of formula that was given in the Principia. For this purpose we
prove a number of lemmas concerning the relation between legal pfs and
predicative types.

We do not distinguish between pfs that are ap-equal, nor between types
(th ... , tn) and (tcp(l)' ... , tcp(n)) for a bijection rp. This is justified by Corol
lary 2.59 and by the fact, that pfs that are ap-equal are supposed to be
the same in the Principia too.

We define the notion "up to ap-equality" formally:

Definition 2. 77 Let f E P, r a context, ta a type. f is of type ta in
the context r up to ap-equality, notation r 1- f : ta(mod ap), if there is
f' E P, a context r' and a bijection rp: V-+ V such that

• r' 1- f' : ta;

• f' and f are ap-equal via the bijection rp;

• r' {rp(x):ub I x:ub E r}.
We say that f is legal in the context r up to ap-equality if there is a type
ub such that r 1- f : ub(mod ap). We say that f is legal up to ap-equality
if there is a context r such that f is legal in r up to ap-equality.

The following lemma states that all predicative types are "inhabited":

Lemma 2. 78 If ta is predicative then there are f, r such that r 1- f . ta.

PROOF: We use induction on predicative types.

The case t = 0° is trivial.

Now assume t = (t~1 , ••• , t':n= t. By induction there are fi and ri such that
ri 1- fi : tf; for all i ~ m. Take a fixed i. We shall find a context .6.i and a
legal pf gi such that .6.i 1- gi=(tf' t;+l. Distinguish two cases:

• tf' = 0°. Then make the following derivation:

ri 1- R(/i) : () 0 ri 1- fi : oo
3

ri, Zi:0° 1- R(zi) : (0°) 1
.

76 2 Type theory in Principia Mathematica

Write ~i = fi U {zi:0°}, and gi = R(zi), then ~if- gdtf;t;+l;

-'- 0 a· (b1 b)ai B f Th 2 58 J h • ti -r 0 , say ti' = u 1 , ... , unn . ecause o eorem . , i as n
b

free variables, say x1 < · · · < Xn, such that Xj:U/ E ri. Now use rule
4 of RTT:

(1)

where r~ = { X{U~j 11 ~ j ~ n} u { Zi:tfi }. Use rule 8 n times:

{ Zi:tfi} f- 'v'x1 :u~1
[.. • 'v'xn:u~n [zi(Xl, ... , Xn)]· · ·] : (tfi t;+l.

Write ~i = { Zi:tf;} and

gi = 'v'x1:U~1
[.. • 'v'xn:u~n [zi(XI, ... , Xn)]· · ·].

For arbitrary i = 1, ... ,m we now have: ~if- gi: (tfiti+l.

We can assume that x < y for x E dom(~i), y E dom(~j) with i < j.
Write ~ = ~1 U ... U ~m· Now apply rule 2 consecutively m-1 times, to
obtain:

A f- V (V V (V)) (tal ta=)max(al, ... ,am)+l
U gl g2 · · · gm-l gm · · · : 1 '· · ·' m ·

Notice that (t~ 1 , ••• , tC:,= tis predicative, so a= max(a1, ... , am)+ 1. [gi

Remark 2. 79 From a modern point of view, this is a remarkable lemma.
Many modern type systems are based on the principle of propositions-as
types (see Chapter 4). In such systems types represent propositions, and
terms inhabiting such a type represent proofs of that proposition. In a
propositions-as-types based system in which all types are inhabited, all
propositions are provable. Such a system would be (logically) inconsistent.
RTT is not based on propositions-as-types, and there is nothing paradoxical
or inconsistent in the fact that all RTT-types are inhabited.

This lemma can be generalised to some non-predicative types:

Corollary 2.80 If (t~ 1 , ... , tC:,= t is a type such that the tfi are all pred
icative, then there are f and r such that r f- f : (t~ 1 ' ••• 'tr:,= t.

2d Legal propositional functions 77

PROOF: With Lemma 2.78 we can construct 9I and ~I such that

A L . (tal ta"")max(al, ... ,a,.,.)+I
UI I 9I · I l""" ' m .

Let ua be a predicative type of order a. Determine, again with Lemma
2. 78, 92 and ~2 such that ~2 f- 92 : ua. Assume XI < · · · < Xn are the free

b· b b a variables of 92 and Xj:U/ E ~2· Notice that ua = (ui1
, ••• , unn) (Theorem

2.58). Apply rule 8 and weakening n times to obtain:

We can assume that x < y for all x E DOM (~I) and ally E DOM (~2), so
we can use rule 2 to conclude:

We can use the same techniques as in the preceding proof to show that
z (ki, ... , km) is legal if ki, ... , km are either legal pfs or variables, and z is
"fresh".

Lemma 2.81 If ki, ... , kn E AUVUP, ta = (t~ 1 , ••• , t~n t is a predicative
type, f f- ki : tf; for all ki E AU P and ki : tf; E f for all ki E V, and
z E V \ dom(f), then z(ki, ... , kn) is legal in the context f U {z : ta} (up to
ap-equality).

PROOF: First, we make a derivation of

similarly to the derivation of (1) in the proof of Lemma 2.78. Next, find
(with Lemma 2.78) k~, ... ,k~ such that

• k~ = ki if ki E A uP;

• k~ E A UP has type tf; in a context ~i if ki E V;

e ~' the union of the contexts f and the ~iS, is a COntext;

78 2 Type theory in Principia Mathematica

• For ki E V: k~ and kj are ar-equal if and only if ki = kj. 24

Apply rule 6 n times (as in the proof of Lemma 2.78), and where necessary
the weakening rule, to obtain:

Now introduce, with rule 3, new variables for the k~ which are not equal to
ki, to obtain a legal pf that is ap-equal to z(k1, ... , km). ~

It is also not hard to show that f V g is legal iff and g are (see also Remark
2.49):

Lemma 2.82 Iff and g are legal in contexts f 1 and f2, respectively, and
rl u r2 is a context, then f v g is legal in the context rl u r2 (up to ap

equality).

PROOF: For reasons of clarity, we again leave out the orders of the ramified
types. We can not simply apply rule 2 of RTT, as the contexts f 1 and
r 2 may not obey to the condition on them in rule 2. Assume r 1 f- f :
(tl, ... ,tm), r2 f- g: (ul, ... ,un), and Xl < ... < Xm and Yl < ... < Yn
are the free variables off and g, respectively. Write t = (t1, ... , trn) and
u = (u1, ... , un). Take variables x~ < ... x~ < z1 < y~ < · · · < y~ < z2 not
occurring in the domain of rl u r2; let

~2 = {z2:u,y~:u1, ... y~:un}·

Similar to the derivation (1) in the proof of Lemma 2.78, we can derive

~2 f- z2(y~, ... , y~): (u1, ... , Un, u).

As ~1 and ~2 obey to the conditions of rule 2 of RTT, we can derive

24 0ne might wonder whether there are enough pfs of one type that are not ar-equal.
Lemma 2. 78 provides only one pf for each type. But if we have that pf, say k, then we
use rule 2 of RTT to create •k, ••k, •••k, etc. k, •k, ••k, ... are all ar-different and
of the same type as k.

2d Legal propositional functions 79

With similar techniques as in the proof of Lemma 2.8I we can now derive

for a certain type v (notice that the sets { x~, ... , x~} and { Yi, ... , y~} do
not overlap, whilst the sets {xi,··· ,xm} and {Yb··. ,yn} may overlap).
Use rule 6 twice: Substitute f for z1 and substitute g for z2. This gives a
derivation off v g in the context rl u r2 (mod ap). r81

The following lemma is easy to prove and will be used in the proof of the
main result of this section.

Lemma 2.83 If R(i1, ... , ia(R)) is a pf with free variables X! < · · · < Xm,

then it is legal in the context { Xj:O II ~ j ~ m}.

PROOF: Write f = R(i1, ... , ia(R)). Let all ... , am E A be m different
individuals that do not occur in f, and replace each variable Xj in f by
aj, calling the result f'. By the first rule of RTT, f' is legal in the empty
context. Re-introducing the variables x1, ... , Xm (by applying rule 3 of RTT

m times) for the individuals a1. ... , am, respectively, we obtain that f is
legal in the context {xj:O !I ::; j ::; m}. r81

Finally, we can give a characterisation of the legal pfs:

Theorem 2.84 Let f E P. f is legal (mod ap) if and only if:

• f = R(i1, ... , ia(R)), or

• f = z(kb ... , kn), z ::/:- kj for all kj E V and z does not occur in any
kj E P, and there is r with Fv(j) ~ DOM (r) and for all ki E P,

a· a· r f- kj:t/ for some predicative type t/' or

• f = -.j' and f' is legal (mod ap) or

• f = h V h and there are ri and tf; such that ri f- fi:tf; (mod ap)
fori= I, 2 and rl u r2 is a context, or

• f = Vx:ta.f' and f' is legal.

PROOF: Use induction on the structure off:

80 2 Type theory in Principia Mathematica

• J = R(i1, ... , ia(R)).· This is Lemma 2.83;

• f = z(k1, ... , kn). "<=" is Lemma 2.81. ":::}": f is legal, so there
is r with r 1- f : ta. As T(r) f-.>._. zk1 · · · kn : o (Theorem 2.65),
z: (u~1 , ••• , u~n)b for a predicative type (u~1 , ••• , u~n)b, and T(r) I-A_.
- b' - b
kj : T(u/). If z =: l;;,j then z =: kj and therefore z:u/ E r, which is
impossible. By Corollary 2.76, each kj E P is typable in r, and as

T(r) h-. : T(u~i) and the type of kj is predicative, r 1- kj :u~i.
Notice that bj < b, so it is impossible that z occurs in a kj E P;

• "<=" is Rule 2 of RTT (for •) and Lemma 2.82 (for V). ":::}"·(for V;

the proof for --, is similar): Let .6. be the context containing all the
variables off (also those that are bound by a quantifier; we can assume
that different quantifiers bind different variables) and their types. f is
built from several pfs of the form R(i1, ... , ia(R)) and z(k1, ... , km) (we
will call these pfs the constituents of f), and the logical connectives
•, V and 'r/. Reasoning as in the ":::}" part of the first two cases of
the proof of this lemma, we can show the preconditions for Lemma
2.83 (for constituents of the form R(ib ... , ia(R))) and Lemma 2.81
(for constituents of the form z(k1, ... , km)). Applying these Lemmas,
we find that any constituent h off is typable in .6.. Using Rule 2 of
RTT (for •), Rule 8 of RTT (for 'r/) and Lemma 2.82 (for v), we find
that h V h itself is typable;

• "<=" is Rule 8 of RTT. ":::}" is similar to in the previous case.

\:Ve can now answer the question whether our legal pfs (as defined in 2.46)
are the same as the formulas of the Principia.

First of all, we must notice that all the legal pfs from Definition 2.46
are also formulas of the Principia: This was motivated in Remark 2.47.

Moreover, we proved (in 2.84) that iff is a pf, then the only reasons
why f cannot be legal (according to Definition 2.46) are:

• There is a constituent z(k1, ... , km) off in which z occurs in one of
the ki's;

• There is a constituent z(k1, ... , km) off and a j E {1, ... , m} such
that kj is a pf, but not a legal pf;

2d Legal propositional functions 81

• f contains two non-overlapping constituents h, h that cannot be
typed in one and the same context.

Pfs of the first type cannot be legal in the Principia, because of the vicious
circle principle. The same holds for pfs of the second type, because also in
the Principia, parameters cannot be untyped. The third problem is a non
issue in the Principia. Formal contexts are not present in the Principia,
but have been introduced in this Chapter to make a precise analysis of RTT

possible. Propositional functions of the Principia are always constructed in
one, implicitly defined, context. A formula, therefore, cannot contain two
non-overlapping constituents that cannot be typed in the same context.
This excludes pfs of the third type.

We conclude that we have described the legal pfs of the Principia Math
ematica with the formal system RTT.

We present some refinements of Theorem 2.84 that will be useful in
future chapters of this thesis:

Theorem 2.85 Assume r 1- f : ta .

• Iff= R(ib ... 'ia(R)) and X E FV(f) then x:0° E r;

• Iff z(k1, ... , km) then there are u~1 , ••• , u~, b such that

PROOF:

z: (u~\ ... , u~) b E r;

r 1- ki:U~i for ki E Au P;

ki:u~i E f for ki E V.

• By Theorem 2.65, T(r) 1-A-+ Ri1 · · · ia(R) : o. This means that x:t E
T(f). Therefore, x:0° E f;

• Let u~1 , ••• , u~, b be as in the proof of Theorem 2.84. \Ve only need
to check that ki:u~i E r for kiEV. We already know that ki:T(u~i) E

T(r), and as u~i is predicative, and the type of the variable ki in r
must be predicative as well, we have ki:U~i E f.

82 2 Type theory in Principia Mathematica

in RTT in >.-calculus
Strengthening Lemma 2.56.2 A.31
Free Variable Lemma 2.56.1 A.22
Unicity of Types 2.61 A.32
Subterm Lemma 2.76 A.29
Strong Normalisation 2.73 A.36

Figure 3: Comparison of the properties of RTT and modern typed >.-calculus

Conclusions

In this chapter we gave a formalisation of the Ramified Theory of Types.
Some of the main ideas underlying this theory were already present in
Frege's Abstraction Principles 1.1 and 1.2.

RTT not only prevents the paradoxes of Frege's Grundgesetze der A rith
metik, but also guarantees the well-definedness of substitution, as we have
shown in Corollary 2. 73. This second problem was not realized in the Prin
cipia, where substitution did not even have a proper definition.

There is a close relation between substitution in Principia and /3-re
duction in >.-calculus (Definition 2.24). RTT has characteristics that are
also the basic properties of modern type systems for >.-calculus. See Figure
3. As there is no real reduction in RTT, we don't have an equivalent of
the Subject Reduction theorem. However, the fact that the Free Variable
property 2.58 is maintained under substitution can be seen as a (very weak)
form of Subject Reduction A.30.

Expressing Russell's propositional functions in >.-calculus has made it
possible to compare these pfs with >.-terms. We found that pfs can be seen
as >.-terms, but in a rather simple way:

• A pf is always a >.I-term, i.e. if >.x:A.B is a subterm of the translation
f of a pf j, then X E FV(B);

• The translation of a pf always results in a fully applied >.-term in
/3-normal form;

• Substitution in the Principia can be seen as application plus /3-
reduction to normal form.

Conclusions 83

Although the description of the Ramified Theory of Types in the Prin
cipia is very informal, it is remarkable that an accurate formalisation of this
system can be made (see Theorem 2.84 and the discussion that follows it).
The formalisation shows that Russell and Whitehead's ideas on the notion
of types, though very informal to modern standards, must have been very
thorough and to the point.

Apart from the orders, RTT is a subsystem of>.~, [30] via the embed
dings - of Section 2a2 and T of Section 2c2. There are, however, important
differences between the way in which the type of a pf is determined in RTT,

and the way in which the type of a >.-term is determined in >.-Church. The
rules of RTT, and the method of deriving the types of pfs that was pre
sented in Section 2d, have a bottom-up character: one can only introduce a
variable of a certain type in a context r, if there is a pf that has that type
in r. In >.~, one can introduce variables of any type without wondering
whether such a type is inhabited or not.

Church's >.~ is more general than RTT in the sense that Church does
not only describe (typable) propositional functions. In>.~, also functions
of type T ~ t (where t is the type of individuals) can be described, and
functions that take such functions as arguments, etc ..

A characteristic of RTT that is maintained in many modern type sys
tems is the syntactic nature of the system: type and order of a pf are
determined on purely syntactical grounds. No attention is paid to the in
terpretation of such a pf. This is remarkable, as the propositions Vx:0°[R(x)]
and Vx:0°[R(x)] vVz:()9 [z() 1\ -.z()] are logically equivalent in most logics25 ,

though they are of different type (the former pf has type () 1 and the latter
has type ()10

). In Section 3c we show that other viewpoints are possible
besides this concentration on syntax.

25 At least in all the logical systems that Russell had in mind when he wrote the
Principia

Chapter 3

Deramification

In this chapter we discuss the development of type theory in the period be
tween the appearance of Principia Mathematica (1910-1912) and Church's
formulation of the Simple Theory of Types [30] in 1940.

In Section 3a we show that RTT was not a very easy system to work
with. Ramsey [101], and Hilbert and Ackermann [64], simplified the system
by removing the orders. The result is known as the Simple Theory of Types
(STT).

Nowadays, STT is known via Church's formalisation in A.-calculus. How
ever, STT already existed (1926) before A.-calculus did (1932), and is there
fore not inextricably bound up with A.-calculus. In Section 3b we show
how we can obtain a formalisation of STT directly from the formalisation of
RTT that was presented in Chapter 2 by simply removing the orders. Most
of the properties that were proved for RTT hold for STT as well, including
Unicity of Types and Strong Normalisation. The proofs are all similar to
the proofs that were given for RTT. We also make a comparison between
Church's formalisation in A.-calculus and the formalisation of STT that is
obtained from RTT. It appears that Church's system is much more than
only a formalisation. Because of the A.-calculus it is more expressive.

The removal of orders from type theory may suggest that orders are to
be blamed for the restrictiveness of RTT, and that the concept of order is
problematic. In Section 3c we show that this is not necessarily the case.
We introduce a system KTT, based on Kripke's Hierarchy of Truths [78],
that has an approach completely opposite to STT. Whilst STT is order-free,

3a History of the deramiiication 85

and types play the main role, Kripke's Hierarchy of Truths is type-free,
and orders play an important, though not a restrictive, role. The main
difference between Kripke's and Russell's notion of order is that Russell's
classification is purely syntactical, whilst Kripke's is essentially semantical.
We show that RTT can be embedded in KTT (3c2), and that there is a
straightforward relation between the orders in RTT and the hierarchy of
truths of KTT.

3a History of the deramification

3al The problematic character of RTT

The main part of the Principia is devoted to the development of logic and
mathematics using the legal pfs of the ramified type theory. It appears
that RTT is not easy to use. The main reason for this is the implementation
of the so-called ramification: the division of simple types into orders. We
illustrate this with two examples:

Example 3.1 (Equality) One tends to define the notion of equality in the
style of Leibniz ([53]):

x =L y ~ Vz[z(x) f-+ z(y)J,

or in words: Two individuals are equal if and only if they have exactly the
same properties.

Unfortunately, in order to express this general notion in our formal
system, we have to incorporate all pfs Vz: (o0 t[z(x) f-+ z(y)J for n > 1,
and this cannot be expressed in one pf.

The ramification does not only influence definitions in logic. Some im
portant mathematical concepts cannot be defined any more:

Example 3.2 Dedekind constructed the real numbers from the rationals
using so-called Dedekind cuts. In this construction, a real number is a set
r of rationals such that

• r =I= 0;

• r=j:Q,

86 3 Deramification

• If x E r and y < x then y E r;

• If x E r then there is y E r with x < y.

For instance, the real number ~ is represented by the set { x E Q I 2x < 1},
and the real number J2 is represented by the set { x E Q I x < 0 or x2 < 2}.

If we take Q as the set of individuals A, and assume that the binary
relation < on Q is an element of R, the set of relations, we can see real
numbers as unary predicates f over Q such that

3x:0°[z(x)]l\ 3x:0°[-.z(x)]A

Vx:0°[Vy:0°[z(x)---+ y < x---+ z(y)]J 1\

Vx:0°[z(x) ---+ 3y:0°[z(y) 1\ x < y]]

(1)

holds if we substitute f for z. We will abbreviate the predicate (1) (with

the free variable z) as R It has type ((0°)
1
)

2
, and real numbers can be

seen as pfs of type (0°(We will, for shortness of notation, write JR(f) for
JR[z:= j], so lR = JR(z). A real number r is smaller than or equal to another
real number r' if for all x with r(x), also r'(x) holds. We write, shorthand,
r :::; r' if r is smaller than or equal to r'.

In traditional mathematics, the above would define a system that obeys
the traditional axioms for real numbers. In particular, the theorem of the
least upper bound holds for this system. This theorem states that each
non-empty subset of lR with an upper bound has a least upper bound. In
our formalism:

(

[

Vz2ElR[v(z2)---+ z2 :::; z1]1\ l
E lR Vz3 [Vz4ElR[:z:: -;z:4:::; z3]] .

(We write, shorthand, Vv~JR[g] to denote

(1)2 1 \fv: (0°) [Vu:(0°) [v(u) ---+JR(u)J ---+ gj,

3a History of the deramification 87

and \fzEIR[g] to denote \fz:(0°) 1 [IR(z) -+ g]). If we try to prove this theorem
within the system of Dedekind as formulated in the Principia-language
RTT, we have to specify a type ta for the variable z1. As z 1 must be a real
number, its type must be (0°) 1. If we give a proof of the theorem, and
construct some object f that should be the least upper bound of a set of
real numbers V, f will depend on V. Therefore, a general description off
will have a variable v for V in it. As v is of order 2, f must be of order 3 or
more. Therefore, f cannot be a real number, since real numbers have order
1. This makes it impossible to give a constructive proof of the theorem of
the least upper bound within a ramified type theory.

This is a consequence of the fact that it is not possible in RTT to give a
definition of an object that refers to the class to which this object belongs
(because of the Vicious Circle Principle). Such a definition is called an
impredicative definition. The relation with the notion of impredicative
type is immediate: an object defined by an impredicative definition is of a
higher order than the order of the elements of the class to which this object
should belong. This means that the defined object has an impredicative
type.

Nowadays we would consider the use of the Vicious Circle Principle too
strict. The impredicative definition of f is a matter of syntax, whilst the
existence of the object f has to do with semantics. The fact that we are
not able to give a predicate definition of f does not imply that such an
object does not exist. Here we must remark that Russell and Whitehead
did not make a distinction between syntax and semantics in the Principia.l
Therefore they had to interpret the Vicious Circle Principle in the strict
way above.

3a2 The Axiom of Reducibility

Russell and Whitehead tried to solve these problems with the so-called
axiom of reducibility.

Axiom 3.3 (Axiom of Reducibility) For each formula f, there is a for
mula g with a predicative type such that f and g are {logically) equivalent.

1 Though the basic ideas for this were already present in the works of Frege. See for
instance Uber Sinn und Bedeutung [49).

88 3 Deramification

Accepting this axiom, one may define equality on formulas of order 1 only:

Iff is a function of type (0°t for some n > 1, and a and b are individuals
for which the Leibniz equality a =L b holds then f(a) J(b) holds: With
the Axiom of Reducibility we can determine a predicative function 9 (so
of type (0°/), equivalent to f. As 9 has order 1, 9(a) 9(b) holds. And
because f and 9 are equivalent, also f(a) j(b) holds. This solves the
problem of Example 3.1. A similar solution gives, in Example 3.2, the proof
of the theorem of the least upper bound.

The validity of the Axiom of Reducibility has been questioned from the
moment it was introduced. In the introduction to the 2nd edition of the
Principia, Whitehead and Russell admit:

"This axiom has a purely pragmatic justification: it leads to the
desired results, and to no others. But clearly it is not the sort
of axiom with which we can rest content."

(Principia Mathematica, p. xiv)

Moreover, Weyl states that

"if the properties are constructed there is no room for an axiom
here; it is a question which ought to be decided on ground of
the construction"

(Mathematics and Logic: A brief survey serving as preface to
a review of "The Philosophy of Bertrand Russell", p. 5)

and that

"with his axiom of reducibility Russell therefore abandoned the
road of logical analysis and turned from the constructive to the
existential-axiomatic standpoint."

(Ibid., p. 6)

3a History of the deramification 89

With the more modern developments of logic in our mind, we could add
the following objection, associated to Weyl's argument above, against the
Axiom. The Axiom of Reducibility states that for each j, there is a pred
icative g that is logically equivalent to f. The function g is something at
object level, but the statement "f is logically equivalent tog" is a statement
at a higher level than the object level. Pfs exist (at least, in the syntac
tic construction) independently from the existence of the notion of logical
equivalence.

Moreover, there is more than one notion of logical equivalence, corre
sponding to the various kinds of logic that have been developed, or could
have been developed. It would be remarkable if one Axiom of Reducibility
would provide predicative pfs f for any kind of logic that is available, or
can be thought of, and indeed, this is not true as shown by the following
trivial example:

Example 3.4 \Ve consider so-called "bureaucratic logic". This logic has a
set of axioms A, and no derivation rules at all. In short, a proposition g is
true if and only if g E A. Take, for the sake of the argument,

so A is the set of all predicative propositions. In this system, a proposition
g is true if and only if it is predicative. Iff is an impredicative proposition,
then so is f +-+ g, for any proposition g. Therefore, f +-+ g is false for any
proposition g, in particular for any predicative proposition g. So the Axiom
of Reducibility does not hold in bureaucratic logic.

Thoggh Weyl [120] made an effort to develop analysis within the Rami
fied Theory of Types (but without the Axiom of Reducibility), and various
parts of mathematics can be developed within RTT and without the Axiom2,

the general attitude towards RTT (without the axiom) was that the system
was too restrictive, and that a better solution had to be found.

2 See [67], where many algebraic notions are developed within the Nuprl Proof De
velopment System, a proof checker based on the hierarchy of types and orders of RTT
without the Axiom of Reducibility.

90 3 Deramification

3a3 · Deramification

The first impulse to such a solution was given by Ramsey in 1926 [101].
He recalls that the Vicious Circle Principle 2.1 was postulated in order to
prevent the paradoxes. Though all the paradoxes were prevented by this
Principle, Ramsey considers it essential to divide them into two parts:

1. One group of paradoxes is removed

"by pointing out that a propositional function cannot sig
nificantly take itself as argument, and by dividing functions
and classes into a hierarchy of types according to their pos
sible arguments."

(The Foundations of Mathematics, p. 356)

This means that a class can never be a member of itself. The para
doxes solved by introducing the hierarchy of types (but not orders),
like the Russell paradox, and the Burali-Forti paradox, are called log
ical or syntactical paradoxes;

2. The second group of paradoxes is excluded by the hierarchy of orders.
These paradoxes (like the Liar's paradox, and the Richard Paradox)
are based on the confusion of language and meta-language. These
paradoxes are, therefore, not of a purely mathematical or logical na
ture. When a proper distinction between object language (the pfs
of the system RTT, for example) and meta-language is made, these
so-called semantical paradoxes disappear immediately.

Ramsey agrees with the part of the theory that eliminates the syntactic
paradoxes. This part is in fact RTT without the orders of the types. The
second part, the hierarchy of orders, does not gain Ramsey's support: if
a proper distinction between object-language and meta-language is made,
the semantic paradoxes disappear. Moreover, by accepting the hierarchy in
its full extent one either has to accept the Axiom of Reducibility or reject
ordinary real analysis. Ramsey is supported in his view by Hilbert and
Ackermann [64]. They all suggest a deramification of the theory, i.e. leav
ing out the orders of the types. When making a proper distinction be
tween language and meta-language, the deramification will not lead to a
re-introduction of the (semantic) paradoxes.

3a History of the deramification 91

The solution proposed by Ramsey, and Hilbert and Ackermann, looks
better than the Axiom of Reducibility. Nevertheless, both deramification
and the Axiom of Reducibility are violations of the Vicious Circle Principle,
and reasons (of a more fundamental character than "they do not lead to
a re-introduction of the semantic paradoxes" and "it leads to the desired
results, and to no others") why these violations can be harmlessly made
must be given. Godel [58] fills in this gap. He points out that whether one
accepts this second principle or not, depends on the philosophical point of
view that one has with respect to logical and mathematical objects:

"it seems that the vicious circle principle [. . . l applies only if
the entities involved are constructed by ourselves. In this case
there must clearly exist a definition (namely the description of
the construction) which does not refer to a totality to which the
object defined belongs, because the construction of a thing can
certainly not be based on a totality of things to which the thing
to be constructed itself belongs. If, however, it is a question of
objects that exist independently of our constructions, there is
nothing in the least absurd in the existence of totalities contain
ing members, which can be described only by reference to this
totality."

(Russell's mathematical logic)

The remark puts the Vicious Circle Principle back from a proposition (a
statement that is either true or false, without any doubt) to a philosophical
principle that will be easily accepted by, for instance, intuitionists (for
whom mathematics is a pure mental construction) or constructivists, but
that will be rejected, at least in its full strength, by mathematicians with
a more platonic point of view.

Godel is supported in his ideas by Quine [100], sections 34 and 35.
Quine's criticism on impredicative definitions (for instance, the definition
of the least upper bound of a nonempty subset of the real numbers with an
upper bound) is not on the definition of a special symbol, but rather on the
very assumption of the existence of such an object at all. Quine continues
by stating that even for Poincare, who was an opponent of impredicative
definitions and deramification, one of the doctrines of classes is that they

92 3 Deramification

are there "from the beginning". So, even for Poincare there should be no
evident fallacy in impredicative definitions.

The deramification has played an important role in the development of
type theory. In 1932 and 1933, Church presented his (untyped) .\-calculus
[28, 29]. In 1940 he combined this theory with a deramified version of
Russell's theory of types to the system that is known as the simply typed
,\-calculus3 .

3b The Simple Theory of Types

3bl Constructing the Simple Theory of Types from RTT

It is straightforward to carry out the deramification as it was originally
proposed by Ramsey, Hilbert and Ackermann: We take the formalisation
of RTT that was presented in Chapter 2, and leave out all the orders and the
references to orders (including the notions of predicative and impredicative
types). The system we obtain in this way will be denoted STT. The types
used in the system are the simple types of Definition 2.31.

The following definitions, lemmas, theorems and corollaries, including
their proofs, can be adapted to STT without any problems: 2.43, 2.44,
2.45, 2.46, 2.56, 2.57 (first free variable theorem), 2.58 (second free variable
theorem), 2.59, 2.61 (unicity of types), 2.64, 2.65, 2.67, 2.71, 2.72, 2.73
(existence of substitution), 2.74, 2.75 and 2.76 (subterm lemma).

The description of legal pfs for STT follows the same line as in Section
2d, with straightforward adaptions of 2.77, 2.78 (now, all simple types are
inhabited), 2.81, 2.82, 2.83, and finally 2.84 (characterisation of legal pfs):

Theorem 3.5 Let f E P. f is legal {mod a) if and only if:

• f = R(i1, ... , ia(R)), or

• f = z(k1, ... , kn), z i= kj for all kj E V and z does not occur in any
ki E P, and there is r with FV(j) ~ DOM (r) and for all ki E P,
r f- kj:tj, or

3 Thus, the adjective simple is used to distinguish the theory from the more com
plicated - both in its construction with a double hierarchy and in its use - ramified
theory. The classification "simple", therefore, has nothing to do with the fact that STT,
formulated with .A-calculus as described in [30], is the simplest system of the Barendregt
Cube (see Ac).

3b The Simple Theory of Types 93

• f = -.J' and J' is legal (mod a) or f = h V h, there are ri and ti
such that ri r fi:ti (mod a) and rl u r2 is a context, or

• f = Vx:t.f' and J' is legal.

A comparison between the formalisations of STT and RTT can easily be
made using Theorems 3.5 and 2.84. We find that

• All RTT-legal pfs are (when the ramified types behind the quantifiers
are replaced by their corresponding simple types) STT-legal;

• A STT-legal pf f is RTT-legal, except when f contains a subformula of
the form z(kb ... , kn), where one or more of the kjs are not RTT-legal
or can only be typed in RTT by an impredicative type.

3h2 Comparison of STT with Church's A-+

Nowadays, the Simple Theory of Types is often identified with Church's
formalisation of it in [30]. The definition of A-+ that was given there is
repeated in Section Ab of the Appendix.

We make the following remarks with respect to and the Simple
Theory of Types.

Remark 3.6 We see that the constants -., 1\, "'a and 1a are terms. This
may need some explanation for the modern reader.

• Church considers -, and 1\ to be functions. The function -, takes
a proposition as argument, and returns a proposition; similarly 1\

takes two propositions as arguments, and returns a proposition. In
Definition A.l6, we see that -. and 1\ are assigned the corresponding
types o--+ o and o--+ o--+ o;

• More remarkable: Va and 1a are just terms, and do not act as binding
operators. The usual variable binding of Vex and 1ex is obtained via
A-abstraction: instead of Vx:a[fj, Church writes Vo.(Ax:a.J). In this
way, Vex is a function that takes a propositional function of type a --+

o as argument, and returns a proposition (a term of type o). In
Definition A.l6, "'a obtains the corresponding type (a --+ o) --+ o.

Similarly, the choice operator 1a takes a propositional function of
type a --+ o as argument, and returns a term of type a. The term

94 3 Deramification

1x:a.j, or in Church's notation: ?a(>.x:a.j), has as interpretation: the
(unique) object t of type a for which f[x:=t] holds. Correspondingly,
the type of ?a is (a---+ o) ---+a.

The mappings T for types and - for terms (see Definition 2.40 and
Definition 2.7), adapted for STT, make it possible to compare STT with
A-+.

Regarding the types, we find that T gives an injective correspondence
between types of STT and A-+. Tis clearly not surjective, as T(t) is never of
the form a---+ i (this follows directly from Definition 2.34). This indicates
an important difference between STT and A-+. In RTT and STT, functions
(other than propositional functions) have to be defined via relations (and
this is the way it is done in Principia Mathematica). The value of such a
function f, described via the relation R, for a certain value a is described
using the ?-operator: 1y .R(a, y) (to be interpreted as: the unique y for which
R(a, y) holds). Things get even more complicated if one realizes that the?
operator is not a part of the syntax used in Principia Mathematica, but an
abbreviation with a not so straightforward translation (see [121], pp. 66-71).
In A-+, as everywhere in >.-calculus, functions (both propositional functions
and other ones) are first-class citizens, which means that the construction
with the ?-operator is not the first tool to be used when constructing a
function. If one has an algorithm (a >.-term) that describes the function f,
the value of f for the argument a can be easily described via the term fa.
And even if such an algorithm is not at hand, one can use the ?-operator,
which is part of the syntax of A-+. This makes >.--+ much easier to use for
the formalisation of logic and mathematics than RTT and STT.

Regarding the terms, - provides an injective correspondence between
terms of STT and A-+. Again, this mapping is not surjective, for several
reasons:

• T is not surjective. As there is no t with T(t) = i---+ i, there cannot
be a legal pf f such that 7 = >.x:i.X (cf. Theorem 2.65.2 adapted for
STT);

• We already observed that 7 is a).!-term for all f E P.).---+ also allows
terms like >.x:a.y;

• If 7 = zH1 · · · Hn for some z E V and some terms H1, ... , Hn, the
His must be either closed >.-terms, or variables, or individuals. This

3c Are the orders to be blamed? 95

means that there is no f E P such that 7 = .\z:o---to . .\x:t.z(Rx),
since Rx contains the free variable x and is neither a variable nor an
individual;

• We remark that 7 is always a closed .\-term, so there is no f E P
such that 7 = x;

• It has already been remarked that the ?-operator is part of the syntax
of .\ ---t, and this is not the case in STT and RTT.

The discussion above makes clear that .\---t is a far more expressive
system than RTT and STT. Type-theoretically, it generalises the idea of
function types of Frege and Russell from propositional functions to more
general functions.

Philosophically, there is another important difference between STT and
.\---t. The systems STT and RTT have a strong bottom-up approach: To
type a higher-order pf one has to start with propositions of order 0. Only
by applying the abstraction principles, it is possible to obtain higher-order
pfs. In .\---t, one can introduce a variable of a higher-order type at once,
without having to refer to terms of lower order.

3c Are the orders to be blamed?

The historical success of the deramification makes it attractive to conclude
that the ramification of Russell's theory is to be "blamed" for the restrictive
ness of RTT: the orders were just an emergency measure, and by removing
them from the theory, everything works fine. This reasoning, however, is
a bit too fast. Orders still play a role in logic, and they provide a useful
intuition to describe how complicated a certain proposition is (for example
"first-order", or "second-order").

Moreover, we feel that there are reasons to criticise not the concept
of order, but Russell's definition of order. Russell's classification of pfs in
types and orders is purely syntactic. This is quite harmless as far as (simple)
types are concerned: the number of arguments that a propositional function
takes is a notion that can be reasonably described by syntactic methods.4

4 The only criticism that one could have is that Russell's method excludes so-called
"constant" functions, i.e. functions of which the outcome is independent of one or more

96 3 Deramification

For orders, the syntactic classification is more questionable. Look for
instance at the pfs f = Vx:0°[R(x)] and g = Vx:0°[R(x)] V Vz:() 9 [z() V -.z()].
According to the Principia, g is a proposition of order 10, because g contains
a variable of order 9. On the other hand, f, a proposition of order 1, is
logically equivalent to g. So, the interpretation of g does not essentially
involve the variable z of order 9. We could therefore argue that the order
of g, for semantic reasons, should not be higher than 1, the order of f.

In the forthcoming sections we show that there are workable systems
that do have an order-like hierarchy and nevertheless are not restrictive.
The system that we present however, does not make a syntactic classifica
tion of propositional functions into orders, but a semantic one.

The system is based on Kripke's paper [78]. In 1936, Tarski [117] proved
that introducing a truth-predicate T in a first-order language leads to con
tradictions. Such a predicate T is true for objects that are encodings of
true propositions, and false for objects that are encodings of false propo
sitions. For this reason, Tarski distinguishes between object-language and
meta-language, and the truth predicate for propositions of the object lan
guage occurs only at the meta-level. For a truth predicate for propositions
in meta-language one needs a meta-meta-language, etcetera.

Kripke however, allows a restricted truth-predicate in a first-order lan
guage. The restrictions on this predicate are such that no contradictions
occur. The construction of Kripke's truth predicate has remarkable sim
ilarities with the use of orders in the Ramified Theory of Types, and we
show that RTT can be embedded within Kripke's Theory of Truths KTT.

It is even possible to define a notion of order for pfs of RTT, based on the
construction of Kripke's truth predicate. An important difference is that
this new notion of order is (partially) based on the interpretation of a pf,
whilst Russell's definition of order is purely syntactic.

In Section 3c1 we describe KTT. In Section 3c2 we embed RTT in KTT

and show that Russell's syntactic approach is much more restrictive than
Kripke's semantic approach.

Parts of this section are based on [70].

of the arguments it takes. We saw this in our translation of pfs to >-.-terms: all the
translations were >-.I-terms (see Lemma 2.23.3).

3c Are the orders to be blamed? 97

3cl Kripke's Theory of Truth KTT

In this section, we shortly describe Kripke's Theory of Truth: KTT (see
(78]). Kripke expresses higher-order formulas within a first-order language,
using the fact that many interesting languages are rich enough to express
their own syntax via a Godel Numbering.

In the rest of this Section 3c, L is a first-order language. A is the set
of constant symbols in L, :F is the set of function symbols in L, and n
represents the set of predicate symbols of L. We assume that 9J1 = (A, [])
is a model for L, where [] is an interpretation function for the symbols of
L.

Let us also assume two subsets 51 and 52 of A such that 81 n 52 = 0.

Kripke extends L by adding a monadic predicate T. The main idea is
to interpret T as a unary "truth predicate" T such that 81 contains the
elements a of A that are (codes of) formulas which we consider to be
"true", and 82 contains those a E A that are (codes of) formulas which we
consider to be "false". This extension of the model is denoted as 911(51 , Sz).
We do not demand that S1 U Sz =A, hence T may be a partially defined
predicate.

Definition 3. 7 (Logical Truth for KTT) Lets be an assignment function
V--+ A. We define 9J1 f= f[s] as follows5 :

f
R(a1, ... , am)

gl 1\ g2
g1 v gz
Vx[g]
3x[g]

9J1 /[s]
(al(s), ... ,am(s)) E [R]

9J1 gl[s] and 9J1 f= gz[s]
9J1 gl[s] or 9J1 g2[s]

9J1 f= g[s[x:=a]J for all a E A
9J1 f= g[s[x:=a]J for an a E A

9J1 g[s]

9J1 F -,j[s]
(ai(s), ... ,am(s)) C/. [R]
9J1 F= ((-.gl) V (•gz))[s]
911 f= ((-.gl) 1\ (-.g2))[s]

9J1 f= (3x[-.g])[s]
9J1 f= (Vx[-.g])[s]

911 f= (-,g)[s]

Here, R E R has arity m; a, a1, ... , am are terms of L, and g, g1, gz are
formulas of L. Moreover, s[x:=a] is the assignment function that assigns a
to x, and s(y) to any variable y E V\ {x}. Now let S1 ,Sz ~A such that

5 Notice that even though this definition is different from Tarski's definition, especially
with respect to the definition of 9J1 I= -,j, it is easy to prove the equivalence of both
definitions. This is because all primitive predicates of L are totally defined. We took this
definition however, as we need to extend it for the partial predicate T.

98 3 Deramification

81 n 8 2 = 0. L(T) is the extension of L with the monadic predicate T. We
extend the definition of 9Jt f= f to 9Jt(81, 82) f= f by putting

9Jt(81,82) F (T(a))[s] iff a(s) E 81

and

It is important (and easy) to notice that the extension of L and 9Jt to L(T)
and 9Jt(81, 82) is conservative:

Lemma 3.8 Assume f is a sentence in L, and 81,82 ~A such that 81 n
82 = 0. Then 9Jt f= f if and only if9J1(81,82) f= f. [g)

The predicate T cannot express truth in a direct way. This is because T
is a predicate in a first order language, and therefore can only take terms
(objects) as arguments, and not propositions. However, there is an indirect
way in which T can express truth: enumerate all formulas of L(T).

From now on, we assume that we have an injective, primitive recursive
function () from the formulas (including non-closed formulas) of the first
order language L(T) to the terms of L. If f is a sentence then we can form
the proposition T((f)), which expresses the truth of f. But we can also
form the proposition T((T((f)))), so we can discuss the truth of the truth
of f, etcetera. This makes it possible to express higher-order propositions.

As announced, we use the sets 81 and 82 to establish the truth of such
higher-order propositions. Actually, we build a hierarchy of sets 8a,1 and
8a,2 for ordinals a. We will see that this hierarchy has much in common
with Russell's hierarchy of orders.

Definition 3.9 For any ordinal a we define a pair of sets (8a,1, 8a,2) and
a model 9Jta.

def def def ()
• 8o,1 = 0; 8o,2 = 0; 9Jto = 9Jt 8o,1, 8o,2 ;

• If 8a,l, 8a,2 and 9Jta have been defined, then we define:

8a+1,1

8a+l,2

9Jta+l

def

def

{ [(f)] I f is a sentence and 9Jta f= !}

{ [(!)] I f is a sentence and 9Jta f= --,!}

3c Are the orders to be blamed? 99

• If a is a limit ordinal and Sf3,I, S13,2 and 9Jlf3 have been defined for all
{3 <a, then

U sf3 .. ,t)

f3<a

The proof of the following lemma is not difficult. Yet, the lemma plays
a crucial role in the rest of this Section.

Lemma 3.10 (Conservation of Knowledge (1))
If a < {3 then Sa,! <;;; Sf3,I and Sa,2 <;;; Sf3,2·

PROOF: Induction on {3. The only non-trivial case is {3 = {3' + 1. By the
induction hypothesis, Sa,i <;;; Sf3',i for all a< {3', so it suffices to prove that
s13',i <;;; s13 ,i·

We only give the proof for the case Sf3,li the proof for S13,2 is similar.

So assume a E Sf3',I· Determine"(< !3' and a sentence f such that [(f)]= a
and 9Jl1 f= f. Use induction on the definition of 9Jl1 f= f. We treat only
one case, the others are trivial: Assume f = T(a') for some term a' of L(T).
Then [a'] E S1 ,1 by definition of 9Jty f. By the induction hypothesis
on a we know: 5"(,1 <;;; Sf3',1, so: [a'~ E S/3',1· By definition, this means
9Jlf3' f= f. Hence[(!)] E Sf3'+l,ll and this means a E 5{3,1· ['gj

Corollary 3.11 (Conservation of Knowledge (2))
If a < f3 and 91la f then 9Jlf3 f. ['gl

Remark 3.12 It is not the case that 91la ~ f implies 91lf3 ~ f for a < {3.
For instance, let f = Vx[R(x) V -.R(x)]. Notice that 9Jlo f= f. Therefore,
(f) E S1,1, so 9Jll T((f)). But So,1 = 0, so 9Jlo ~ T((f)).

We prove that the theories with the new predicate T are all consistent:

Lemma 3.13 Let a be an ordinal.

1. For all formulas f of L(T) and for all assignments s,

100 3 Deramification

2. Sa,1 n Sa,2 0.

PROOF: We use induction on a. So assume the lemma has been proven for
all {3 <a (IH1).

1. Use induction on the structure of f. So assume the lemma has been
proven for all subformulas goff (IH2). We treat three cases only (the
other cases are similar).

• f = R(a1, ... , am)· If9lta I=(!!\ -.J)[s] then (a1(s), ... , am(s)) E
[R] and (a1 (s), ... ,am(s)) ¢ [R], which is impossible;

• f = g1 !\ g2. If 9lta I= (f !\ -.j)[s] then 9lta (gl !\ g2)[s], so
9lta gj[s] for j = 1, 2. Also: 9lta I= (-.(gl !\ gs))[s], so 9lta I=
((-.gi)v(-.g2))[s], so 9lta I= (-.gj)[s] for j = 1 or j = 2. Therefore
9lta I= (gj !\ -.gj)[s] for j = 1 or j = 2, which contradicts (IH2);

• f T(a) for a term a. If 9lta I= (f !\ -.J)[s] then a(s) E Sa,1 and
a(s) E Sa,2, which contradicts (IH1);

2. If a E Sa1 n Sa2 , then determine a formula g such that [(g)]= a, and
/31, /32 < a such that 9ltf31 I= g and 9Jtf32 -.g. Let {3 = max(/31, /32).
Then {3 < a and because of Conservation of Knowledge 3.11, 9Jtp I=
g !\-.g. This contradicts (IH1).

We can see the construction of the models 9lta as a process of obtaining
knowledge. At the initial stage 0, T({f)) is not defined for any formula f.
There is no knowledge at all.

By applying the definition of truth given for 9Jt0 , we obtain knowledge.
Some sentences f can be judged true: 9lto f. We store the code of f
in S1,1 . Some other sentences g can be judged false: 9Jt0 I= -.g. The code
of g is stored in S1,2· It is not possible to judge all sentences. For in
stance, neither 9Jto I= Vx[T(x) V -.T(x)] nor 9lto -.\ix[T(x) V -.T(x)] holds,
so [(Vx[T(x) V -.T(x)])] neither belongs to S1,1, nor to S1,2·

The knowledge we have obtained is expressed by the behaviour of the
predicate T in 9Jtl. At stage 1 we know more about T than at stage 0
So 1 S0 2 = 0, but S11 =F 0 and S1 2 =F 0. Hence more sentences

' ' ')

can be judged true or false. We store the codes of sentences that were
judged "true" at level 1 in S2,1 and codes of the sentences that were judged

3c Are the orders to be blamed? 101

"false" at level 1 in 82,2· The Lemma on Conservation of Knowledge 3.10
guarantees that this process only extends our knowledge, i.e.:

• Sentences that were judged to be true at level 0 remain true at level
1;

• Sentences that were judged to be false at level 0 remain false at level
1.

By iterating this process we arrive at the levels 2, 3, ... , w, w + 1, One
might expect that for each sentence f there is an ordinal a for which f E

Sa, I U Sa2 • This is not the case. There are sentences of which the truth
will never be established. See the forthcoming example 3.30.

3c2 RTT in KTT

Both in RTT and in KTT we are confronted with a hierarchy. Russell con
structs a hierarchy by dividing propositions and propositional functions
into different orders, taking care that a propositional function f can only
depend on objects of a lower order than the order of f.

Kripke does not make this distinction beforehand. He has only one
truth-predicate (T), but decisions about the truth of propositions are split
into different levels: At the first level only decisions about propositions
that do not involve any knowledge about T are made (for example: the
proposition R(al), but also the proposition (R(at)V-,R(at))VT(a2)). At the
second level decisions about propositions involving T for codes of first-level
propositions are made, and so on.

Before we can compare RTT with KTT, we must give a formal definition
of logical truth for pfs of RTT. After that, we investigate the similarity
between both hierarchies in subsection 3c2.2 by describing RTT within KTT.

In subsection 3c2.3 we investigate in which way RTT is more restrictive with
respect to self-reference than KTT.

3c2.1 Logical truth for RTT in Tarski's style

As KTT uses Tarski's notion of logical truth, we use a similar notion for
RTT. This definition of logical truth is quite informal. For example, the first
clause "If (a~, ... , am) E R then RTT I= R(a1, ... , am)" requires the symbol
R to be already fully interpreted and to denote a relation independently

102 3 Deramification

of any Tarskian assignment function. This is in line with Russell, who did
not make distinction between the syntactic symbol R in "f= R(a1, ... , am)"
and the semantic use of R in "(a1, ... , am) E R". We take care that it will
always be clear whether we use a symbol in its syntactic or in its semantic
way.

We must remark that the definition of logical truth for RTT is not due
to Russell and cannot be found in Principia Mathematica. In Principia,
Russell and Whitehead use a notion of truth based on derivations in natural
deduction style. But in order to make clear the similarities between RTT
and KTT, we must use the notion of truth used in KTT in RTT as well.

Definition 3.14 (Logical Truth for RTT) Let f be an RTT-context with
domain v. Let f E p be a legal pf in r with free variables XI, ... 'Xn of
types t~I, ... , t~n. Let s : V -t P be such that s(xi) : tf' E f. We define
RTT f=r f[s] by induction on the order of f. We give this definition by
induction on the structure of f.

• RTT f=r R(i1, ... , ia(R))[s] if (ii(s), ... , ia(R)(s)) E R;

• RTT Fr (91 V 92)[s] if RTT pr gl[s] or RTT pr 92[sj;

• RTT pr (•g)[s] if RTT ~r g[sj;

• f = z(k1, ... , kn)· The order of f[z:=s(z)] is lower than the order of
f. Therefore we can define: RTT f=r f[s] if RTT f=r (f[z:=s(z)])[s];

• f = \ix:ta[g]. The order of g is equal to the order of \ix:ta[g], so we
can assume that RTT Fr' g[s'] has already been defined for contexts
f' and valuations s'. Therefore we can define RTT f=r (\ix:ta[g]) [s] if
for all hE PUA for which f\ {x:ta} f-- h: ta, RTT Fr[x:t"] g[s[x:=h]].

Here f[x:ta] is the same context as r, except that we now assign the type
ta to the variable x. We write RTT f= f instead of RTT f=r f if it is clear
which context r is used.

3c2.2 RTT embedded in KTT

To embed RTT in a first order language L, we have to cope with two tech
nical problems:

3c Are the orders to be blamed? 103

1. We need to encode the notion of and the manipulation with (higher
order) propositional functions into a first-order language. The manip
ulation is particularly important with respect to substitution, which
in the higher-order situation is much more complicated than in the
first order case (cf. the definition of substitution 2.24);

2. In Russell's theory, it is only possible to quantify over a part of all
propositions. This makes it impossible to translate, for instance, the
proposition \ip:() 1 [p()V-,p()] directly to Vx[T(x)V-,T(x)], as the quan
tifier in the latter also quantifies over (codes of) higher-order propo
sitions.

As we do not want RTT-contexts to be involved in this coding, we assume
that each variable in RTT (implicitly) has a superscript t, indicating its
ramified type. We only consider the legal propositional functions of RTT,
and given a context r it is always possible to assign a unique type to each
free variable in such a pf (cf. Lemma 2.56.1). Therefore we can do without
contexts, as the types of the variables are now clear from the function in
which they occur. For reasons of clarity, we will not explicitly write this
superscript, as long as no confusion arises.

We propose the following solutions to the problems sketched above (we
first give the definition and afterwards explain our thoughts behind it):

Definition 3.15 Extend the language L(T) with for each ramified type t
a monadic predicate Typt, and for each n EN a (n+1)-ary function APPn·
We code the typable propositional functions f of P as formulas 7 in this
extension.6 We do this by induction on the structure of f.

• Iff = R(i1, ... , ia(R)), then f is present in the original language L
-def

and we take f = !;

• If f h V h, then 7 h V

- def
• If f =, f', then f =

-def -• Iff= \ix:u[J'], then f = Vx[...,Typ,Jx) V f'];

6 This mapping - is different from the mapping - that was used in Chapter 2.

104 3 Deramification

Notation 3.16 To keep notations uniform, we sometimes want to speak
about (x) when we only intend to mention x, for x E V, and about (a)

when only meaning a, for a E A. Hence, we formally define: (x) ~ x and

(a) ~ a for all x E V and all a E A.

We now give a formal interpretation of the newly introduced predicate
symbol Typt and function symbol APPn· We take A as domain of our model,
so: A = A. This corresponds with the fact that Russell did not make a
distinction between syntax and semantics. The following definition is also
based on this fact:

Definition 3.17 We define the function []:

• [a] = a for all a E A;

• [R] = R for all R E R;

~ 0 (-) • [Typ0o] =A, and fort =I 0, [Typt] = {[f] If E P,f: t};

• We do not give a full semantics of the function Appn. This is because
we need Appn and its semantics only in some special cases. Assume
n EN, f E Pis of type (t1, ... , tn) and has free variables x1 < · · · <
Xn· Also assume k~, ... , kn E AU P, ki: ti We define:

Together, A and [] form a model 9t for the translation of RTT in KTT.

We make some remarks with respect to these definitions.

Remark 3.18 It is clear that the newly introduced functions Appn can be
used for carrying out substitutions, thus solving the first of the technical
problems stated at the beginning of this subsection. The predicates Typt
(typability with type t) solve the second problem, as can be seen in the
definition of Vx:u[f].

70bserve: (and} do not belong to the syntax of L extended with T, Typt and Appn.
We define K; to be the encoding of the translation of ki, and not the list of symbols
started with (, followed by the list of symbols that represent k;, and closed by) .

3c Are the orders to be blamed? 105

Remark 3.19 At this point, our work is related to (but independent of)
Paul Gilmore's work on NaDSet 1. NaDSet 1 is a theory of generalised
abstraction which makes n-ary predication a primitive of the system, with
the unary truth predicate being trivially definable upon this basis. For a
useful connection between KTT and NaDSet 1, see [44].

Remark 3.20 The extensions of L(T) with the relation symbol Typt and
the function symbol Appn are of a mere technical character. Therefore, we
think that we can still speak of an embedding of RTT within KTT.

Below, we work in two systems: RTT and KTT. These systems have
a different notion of substitution, though they use the same notation for
expressing substitution. From the context however, it will always be clear
which kind of substitution is meant.

The language L(T) extended with Typt and Appn is an example of the
languages described in Section 3cl, and we can construct !Jt0 for each or
dinal a as described in that section.

Substitution in the language KTT is ordinary first-order substitution.
Higher-order substitutions in KTT can be obtained via the application op
erators APPn· For future results, it is essential to know that the combination
of first-order substitution and the operators Appn in KTT is compatible with
the higher-order substitution for RTT that was defined in Definition 2.24.
This is shown in the following Lemma (we write f[xi:=gi]f=1 as shorthand
for f[x1, ... , Xn:=gl, · · ·, 9n]):

Lemma 3.21 (Substitution Lemma) Let g be a legal propositional
function such that FV(g) = {XI, ... , Xm}, and k1, ... , km E .A U P such
that Xi and ki have the same type for all i. Let p be at least the order of
g[xi:=ki]?::/, and q at least the order of g[xi:=ki]i=l· Then

!ftp F= [X ·:=(F)]~ ~ t 'l=n

if and only if

PROOF: We prove the following two statements

106 3 Deramification

1.

if and only if

2.

if and only if

It is necessary to prove these two statements instead of the single statement
of the Lemma because of the special way in which we defined 9ta F •f.
We use induction on the order of g. So assume (induction hypothesis A)
that the substitution lemma is proved for all g' with an order smaller than
the order of g. Use induction on the structure of g[xi:=ki]7==-l (induction
hypothesis B).

• g[xi:=ki]7:::-l = R(i1, ... , ia(R))·

1. Notice: g[xi:=ki]7:l [xi:=(ki)] ::n = g[xi:=ki]i=1 [xr=(ki)] ::n+1 .

As the truth of R(a1, ... , aa(R)) can always be established at level
0 (so in 9to), there is nothing to be proved;

2. Similar;

• g[xi:=ki]7:l = g1 V g2.
1. The following statements are equivalent:

9lp F g1 V g2 [xi:=(ki)J::n;
9lp F (g1 V g2) [xi:=(ki)J::n;
9lp F g1 [xi:=(ki)J::n V 92 [xi:=(ki)J::n;
9lp pgj[xi:=(ki)J::n for somej E {1,2}. (2)

As the order of gj is at most the order of g[xi:=ki]~l, and the
order of 9j[Xn:=kn] is at most the order of g[xi:=ki]~ 1 , we can

3c Are the orders to be blamed? 107

apply induction hypothesis B. Therefore, (2) is equivalent to the
following statements:

9lq 9j[Xn:=kn) [xi:=(ki) J:n+l for some j E {1, 2};

9lq F gl[xn:=knl[xi:=(ki) J:n+l V

gz[xn:=kn) [xi:=(ki) J:n+l i

9lq (gdxn:=kn] V 92[Xn:=knJ) [xi:=(ki)J:n+l;

9lq (91 V gz)[xn:=kn] [xi:=(ki) J:n+l;

2. Similar;

• g[xi:=ki]~11 •g'.

1. This is induction hypothesis B(2) on g';
2. The following statements are equivalent:

(3)

By induction hypothesis B(l) on g', (3) is equivalent to the fol
lowing statements:

9lq p g'[xn:=kn] [xi:=(ki) J:n+l;

9lq p ••g'[xn:=knl[xi:=(ki)]:n+l;

9lq ••g'[xn:=kn] [xi:=(ki)] :n+l i

• g[xi:=ki]f~l Vx:t[g'].
1. The following statements are equivalent:

9lp Vx:t[g'] [xi:=(ki) J:n;
9lp f= Vx[•Typt(x) V g'] [xi:=(ki) J:n;

9lp f= Vx [-,Typt(x) V g'[xi:=(ki)]:n];

9lp g1 [xi:=(ki)]:n[x:=(h)] forallh:t. (4)

108 3 Deramification

By induction hypothesis B(l) on g', (4) is equivalent to the fol
lowing statements:

Vlq f= g'[xn:=knl[xi:=(k;:") J;:n+l [x:=(h)] for all h: t;

Vlq F Vx [-,Typt(x) V g'[xn:=knl[xi:=(ki)];:n+l];

!Rq Vx [-,Typt(x) V g'[xn:=knJ] [xi:=(ki)];:n+l;

!Rq Vx:t[g'[xn:=kn]l[xi:=(ki)] ;:n+l;

!Rq f= Vx:t[g'][xn:=kn] [xi==(ki)J;:n+l;
2. Similar;

• g[xi:=ki]~/ z(h1, ... ,hr)·
1. If Xn =J- z, then

g[xi:=(ki)];:n = g[xn:=kn] [xi:=(ki)];:n+l,
and there is nothing to be proved. So assume z Xn· Let Y1 <
· · · < Yr be the free variables of kn. The following statements are
equivalent:

Vlp F Xn(hl, ... , hr) [xi:=(ki)} ;:n;

Vlp F T (APPr (xn, (h1),. · ·, (hr))) [xi:=(ki)];:n;
Vlp T(Appr ((kn),(hl), ... ,(hr))) [xi:=(ki)];:n+l' (5)

Let hj ks if hj = X 5 and hj = hj if hj ¢ {xn+l, ... , Xm}· Then
(5) is equivalent to the following statements:

Vlp F T (Appr ((~), (h~), ... , (h~))) ;

!Rp-1 F kn[Yj:=hj]j=1;

Vlp-1 F kn[Yj:=hj]j=dxi:=ki]z;n+I· (6)

We can use induction hypothesis A: the order of kn is smaller than
the order of z(h1, ... , hr) and therefore smaller than the order of
g (see Corollary 2.63).). Thus (6) is equivalent to the following
statements:

Vlq F kn[Yr=hj]j=1 [xi:=(ki)J;:n+1;

Vlq z(h1, ... , hr)[xn:=kn] [xi:=(ki)] ;:n+l;

3c Are the orders to be blamed? 109

2. Similar.

Corollary 3.22 Assume g is a pf of order p and g[x:=k] is a proposition
of order q. IfiJ\q g[x:=k] then IJ\p g [x:=(k)J. ~

Remark 3.23 We have actually proved a stronger fact: Assume g is a
propositional function of order m and g[x:=k] is a proposition of order n.
If Pin f= g[x:=k] then IJ\p f= g[x:=(k)J, where p = min(m, n + 1). This
tells us more about the role of the predicate T: Although a substitution
may lower the order of a propositional function by more than one, only
one application of the !-predicate is involved (hence only one level in the
hierarchy of truths). However, in the theorem below we only need the
(weaker) form in which we presented the Substitution Lemma originally.

We now prove the main theorem of this section.

Theorem 3.24 (Embedding of RTT in KTT) Let f be an RTT-context
with domain v. Let f E p be a legal pf in r with free variables XI, ... 'Xn

of types t~1 , ••• , t~n. Let s : V ___. P be an assignment function such that

s(xi) : t~' E r. Let n be the order of f[s] := f[xi:=s(xi)]~ 1 .
Then RTT f= f[s] if and only if IJ\n f[s].

PROOF:

:::::} As in the proof of Lemma 3.21, we have to deal with the special way in
which we defined KTTn f= --.f. Therefore, we simultaneously prove:

1. If RTT f[s] then 9trt f= f[s];
2. If RTT f= --.f[s] then 9trt f= --.f[s].

The proof follows the same induction structure as the definition of
RTT f= f[s] (3.14).

• f = R(ar, ... , aa(R)) for some R E 'Rand some ar, ... , aa(R) E AUV.

Notice that 7 = f and that f[s] = f[s]. Write

f[s] :=R(a~, ... ,a~(R))

for certain ai, ... , a~(R) E A. As RTT f= R(a~, ... , a~(R)), we know
that (ai, ... , a~(R)) E R, hence 9trt R(a~, ... , a~(R)). The proof
is similar for --. f;

110 3 Deramification

• f 91 v 92·
Then 91 and 92 are legal. Assume nj is the order of 9j[s]. Notice
that ni ~ n.
First assume RTT f= f[s]. As

f[s] (91 V 92)[s]

(
2

.
30

.
1

) 91[s] V 92[s],

we have RTT gj[s] for j = 1 or j 2. By the induction hypothesis
on the structure off: 9lni 9j , and as nj ~ n: 9ln f= 9j[s].

Therefore, 9tn f= 9I[s] V 92[s]. Now observe that

=

(2 ·~· 1) 91 [s] V 92 [sJ.

Now assume RTT f= •f[s]. By a similar argument, we find that
RTT f= '9j [sJ for j = 1 and j = 2. By the induction hypothesis on
the structure of J, 9lni f= '9j[s] for j = 1, 2, so 9tn f= •gi[s]/\•g2 ,
or in other words:

9tn ..., (uds] V 92[sJ).

Observe that ..., (uds] V 92[s]) = •f[s];

• f = •g.
If RTT f[s] then use the induction hypothesis on the structure of
g to get 9tn f= •g[s], hence 9ln f= f[s].
If RTT f= •f[s], then RTT g[s], so by induction on the structure
of g, 9tn f= g[s], so 9ln ...,...,g[s], so 9ln •f[s];

• f = \fx:t[g].
If RTT f= f[s] then for all k:t, RTT f= g[s[x:=k]], where s[x:=k] is
the assignment function that assigns k to x, and s(y) to all y E

V \ { x }. By the induction hypothesis on the structure of f, we
know that for all k : t, 9lnk f= g[s[x:=k]J, where nk is the order of
g[s[x:=k]] = g[xi:=s(xi)][x:=k]. By Corollary 3.22 we have: For all
k: t,

3c Are the orders to be blamed? 111

Hence, for all a E A,

!Rn I= (•Typt(x) V g[xi:=s(xi)]~ 1) [x:=a].

So !Rn I= Vx [•Typt(x) V g[xi:=s(xi)]~ 1]. Observe:

f[s] (Vx:t[g]) [s]

Vx:t [g[xi:=s(xi)]~ 1]

= Vx [·Typt(x) V g[xi:=s(xi)]~ 1].

The argument for RTT I= •f is similar;

• f = z(h1 , ... , hp). Determine q such that z = Xq· Write hj = hj
if hj tf. {x1 , ... ,xm}; hj = s(xe) if hj = xe. Assume that s(xq) has
free variables Yl < · · · < Yr· Observe:

f[xi:=s(xi)]~ 1 = s(xq)[yr=hj]:=l·

So if RTT I= f[xi:=s(xi)]~ 1 then RTT I= s(xq)[yr=hj]:=l· As the
order of s(xq) is smaller than the order off, we can use induction on
the order off to obtain (with Conservation of Knowledge): !Rn f=
s(xq)[yr=hj]:=l' which is equivalent to: !Rn f= f[xi:=s(xi)]~ 1 .

The proof for RTT f= •f[xi:=s(xi)]~ 1 is similar;

<¢= This is easily shown now by contraposition. Assume, for the sake of the
argument, that RTT f= f does not hold. Then RTT f= •f, so by the ==;.

part of the theorem (that was proved above), !Rn I= •f. So, if !Rn I= f
then RTT f= f.

This theorem clearly shows the relation between the orders in RTT and
the levels of truth in KTT. The heart of the proof of Theorem 3.24 is
in the proof of case Xn(hl, ... ,hr) of the Substitution Lemma 3.21 (via
its corollary 3.22). This is the only place in the proof where the prop
erties of the predicate T are used. It is understandable that these prop
erties must be used at exactly this place when we look at the definition
of propositional functions and the typing rules for propositional functions.

112 3 Deramification

Exactly the possibility of constructing a propositional function of the form
Xn (h1 , ... , hr) makes it possible to arrive at higher-order propositional func
tions and higher-order propositions. So exactly at this spot, Kripke's pred
icate T must appear, in order to raise one level in KTT as well.

One might expect to need the properties of T in the proof of the case
f = z(h1, ... , hp) of Theorem 3.24 as well. But we see that this is not the
case. This is understandable: we do not consider the truth of z(h1, ... , hp)
itself, but of z(h1, ... , hp)[xi:=s(xi)]~ 1 . And we do not work with the order
of z(h1, ... , hp), but with n, the order of z(h1, ... , hp)[xi:=s(xi)]~ 1 . The
shift to a lower order has to do with the orders of z(h1, ... , hp) and s(xq),
but not with the orders of z(h1, ... , hp)[xi:=s(xi)]~ 1 and s(xq)[yj:=hj]~=l·
These last two propositions are syntactically equivalent and therefore of the
same order.

Corollary 3.25 Iff E P is a legal proposition of order n, then RTT F f
if and only if 9tn F f. ~

Corollary 3.26 (Conservativity of 9tw over RTT) RTT F f if and only
if9tw f= T ~

We cannot improve the result of Theorem 3.24 in general: For all n,
there are propositions f of order n in RTT whose code is provable at level
9tn in KTT, but not at any lower level.

Theorem 3.27 Let n > 0, and let fn be the nth-order-proposition

Then:
9tm F fn if and only if m ~ n.

PROOF:

<¢== follows from Theorem 3.24 and Lemma 3.10;

::::} is by induction on n. Observe that

fn := Vp[•TYPo•-l(p) V (T(Appo(p)) V -.T(Appo(p)))].

3c Are the orders to be blamed? 113

• n = 1. Let 9 be any proposition of order 0 in RTT. Then 9\0
Typ0o((g)) but as Tis completely undefined at level 0 (So,1 80,2 =
0),

9\o ~ T(Appo((g))) V -,T(Appo((g))).

Hence, 9\o ~ h;
• Assume the theorem has been proved for n - 1. Assume m < n

and 9\m f= fn· By definition of we have:

9\n-1 T(Appo((Jn-1))) V -,T(Appo((Jn-1))),

and for reasons of consistency: 9\m f= T(App0 ((Jn-1))). Therefore,

~ f= T(Un-1)), so, by the definition ofT: ~-1 f= , which
contradicts the induction hypothesis, as m - 1 < n - 1.

There are however, for any n, propositions f of order n in RTT for which
9\m f= J or 9\m •J can already be established for m < n.

Example 3.28 Consider a proposition 9 91 V 92 where 91 is a true
proposition of order m and 92 is any proposition of order n > m. As 91 is
true in RTT, we have 9\m f= 91, and therefore 9\m f= g.

3c2.3 The restrictiveness of Russell's theory

We illustrate the different approaches of Russell and Kripke by an example
given by Kripke himself in [78].

Example 3.29 Two politicians, Wim and Frits8 , are quarrelling about
who is telling the truth and who is lying. Of course, Wim states that any
thing said by Frits is untrue (A), and Frits argues that any statement of
Wim is false (B). The utterances (A) and (B) can be complete nonsense,
but they can also be meaningful. This does not only depend on the (syn
tactic) structure of (A) and (B), but also on their semantics, that is: on
the utterances of Wim and Frits (which may be more than only (A) and
(B)):

8 Any correspondence with existing Dutch politicians is purely coincidental.

114 3 Deramification

1. Assume, (A) is the only statement that Wim makes, and (B) is the
only statement that was made by Frits. Then (A) and (B) are non
sense. More precise, there is no reason to believe that (A) is true, and
there is no reason either to believe that (B) is true. Namely: if we
want to prove that (A) is true, we must show first that all statements
of Frits are false, in other words: that (B) is false. But in order to
establish the falsehood of (B) we must first find a true statement of
Wim, that is: we must prove (A). Summarising: The truth of (A) can
only be established if the truth of (A) has already been established
before. So the truth of (A) will never be established.

Similarly, we show that the falsehood of (A) will never be established,
and that neither truth nor falsehood of (B) will ever be established;

2. Now assume that (B) is still the only statement made by Frits, but
that Wim has not only uttered (A), but also argues that that one
equals one (C). Statement (C) is clearly true. This means that Frits
has been lying. Therefore, Frits' only statement (B) is false, hence
Wim's statement (A) is true.

We formalise this situation as follows. We assume that the first order
language L contains at least three relation symbols, W, F and =. Moreover,
we assume to have an individual symbols 1. W will be interpreted as the set
of (codes of the) utterances of Wim, F shall represent the set of (codes of
the) utterances of Frits. In this way, we can encode the expression (A) by

A:= Vx[•F(x) V •T(x)].

Here, Tis the truth predicate as introduced earlier in this Section. Similarly,
(B) is encoded by

B := Vx[•W(x) V •T(x)]

and (C) is encoded by
C:=1=1.

We model the situations 1 and 2 above as follows:

1. In the first situation we take N as our domain. The semantics of W

must represent the set of utterances of Wim, so we let W = [W] =
{[(A)]}. Similarly, F = [F] ={[(B)]}. Further we let [1] = 1. This

3c Are the orders to be blamed? 115

gives us a model rot1 for L. We can build a hierarchy !m; (for ordinals
a) as explained in Section 3cL We show that there is no ordinal a
for which rot; I= A.

Assume, a is the smallest ordinal for which !m; A. Then rot;
(--.F(x) V --.T(x))[s[x:=n]] for all n E Nand all assignment functions
s : V --+ N. This means that for all n E N, either n rf. F ornE Sa,2·
Notice that ~(B)~ E F. Therefore: [(B)~ E Sa,2· But then there
is f3 < a such that !mb I= --.B. Using the definition of !mbl= --.B,
this means that there is n E N such that n E W and n E SfJ,l· The
only candidate for such n is ~(A)], as this is the only element of W.
Hence: [(A)] E SfJ,I· Therefore, there is 1 < /3 for which !m~ A.
This is a contradiction because 1 < a, and a is the smallest ordinal
for which rot~ I= A.

In a similar way we can show that for all a, !m; fl.: -.A, !m~ fl.: B,
and !m; fl.: -.B. This corresponds to our earlier conclusions that the
sentences (A) and (B) are nonsense if they are the only utterances of
Wim and Frits;

2. For the second situation, we change the model rot1 to a model !m2 by
replacing W by {[(A)~, [(C)H. Notice that rot5 c, because I= 1.
Therefore, ~(C)~ E S1,1, so !mi I= T((C)). As [(C)] E W, we also
have !mr I= W((C)). Therefore, roti I= -.(--.W(x) V -.T(x))[s[x:=[(C)]],
for any assignment function s : V --+ N. Hence !mi I= -.B.

This shows that Frits' statement is indeed false, but it also shows that
Wim's statement (A) is true at level 2: As !mi -.B, [(B)~ E S2,2,

and this implies that rot~ I= A.

In Russell's terminology it would not be possible to type expressions
like A and B at all. The expression A involves B, and therefore has to be
of higher order than B. Similarly, B involves A, so it has to be of a higher
order than A.

This indicates an important difference between RTT and KTT: Kripke
allows much more expressions to be included in the system. In some situ
ations these expressions will never obtain any truth-value (like A and B in
the first example), but in other situations (so with other definitions of the
primitive predicates) the same expressions will get a truth-value. Kripke
concludes:

116 3 Deramification

"it would be fruitless to look for an intrinsic9 criterion that will
enable us to sieve out as meaningless, or ill-formed - those
sentences which lead to paradox"

([78], p. 692)

Example 3.30 Another, more formal, example of a proposition f in KTT

for which there is no g E P with g = f is the proposition

f ~ Vx[T(x) V -,T(x)].

Notice that this is an impredicative proposition. It expresses that all
propositions are either true or false, including f itself.

Assume, for the sake of the argument, that g = f. Let m be the order of
g. Determine whether RTT f= g or RTT -,g. We give the argument for the
case RTT f= g; the argument for -.g is easy. If RTT f= g then by Corollary
3.25, Dtm \fx[T(x) V -,T(x)]. This implies Dtm f= T(jm) V -,T(jm), where
fm is as in Theorem 3.27. By definition ofT this means Dtm-1 fm or
Dtm-1 f= -,fm, both contradicting Theorem 3.27.

3c3 Orders and types

RTT is based on a double hierarchy: One of types and one of orders. This
double hierarchy is too restrictive. It is possible to develop Logic and
Mathematics within RTT, but we saw that the proof of the theorem of
the least upper bound, which is fundamental in real analysis, cannot be
given. The origin of the problem is the use of the so-called predicative and
impredicative propositional functions.

It is therefore interesting to notice the relation between orders in RTT

and levels of truth in KTT, as formulated in Theorem 3.24. It shows that
Kripke's system can be regarded as a system based on RTT of which not
the orders, but the types have been removed. In this way, KTT can be seen
as a system that is dual to the simple theory of types.

KTT however, has a more subtle approach than many type theories as it
does not exclude any, possibly "paradoxical", expression from the syntax,

9 Italics of Kripke

Conclusions 117

which is the usual type-theoretic approach. If an expression is paradoxical,
it will not get a truth value at any level a of the hierarchy of Truths.
Whether an expression is paradoxical or not does not only depend on its
syntactic structure, but also on the domain A and the relations of R on
A (see Example 3.29). So paradoxes are only excluded at the level of
semantics.

The discussion above shows that the orders of RTT are not to be blamed
for the restrictiveness of RTT. KTT is a system which contains orders but
has only few restrictions towards self-application. It is the combination of
orders and types that makes RTT restrictive.

The special structure of KTT makes it possible to define a notion of
semantic order in RTT:

Definition 3.31 Let f E P have type ta. The semantic order of f is the
smallest natural number n for which either 9\n f= 1 or 9ln f= -.f.

By Theorem 3.24, the semantic order of f is always smaller than or equal
to its (syntactic) order.

Conclusions

We saw in Section 3al that the Ramified Theory of Types is very restrictive
for the description of mathematics within logic, because it is not possible
to formulate impredicative definitions in RTT.

This was already realised by Russell and Whitehead, who tried to solve
this by postulating the Axiom of Reducibility 3.3. This axiom has been
criticised from the moment it was written down, both by Russell and White
head themselves and by others. Ramsey, Hilbert and Ackermann deramify
RTT: They remove the orders. They observe that this does not lead to
known paradoxes as long as a proper distinction between language and
metalanguage is made.

Godel and Quine observe that the deramification does not violate the
Vicious Circle Principle, as long as one accepts that objects and pfs exist
independently of our constructions.

So historically speaking, one could say that the orders were blamed
for the restrictiveness of RTT. In Section 3c we showed that this is not
correct. We used the formalisation of RTT that was given in Chapter 2

118 3 Deramification

to compare RTT with Kripke's Theory of Truth KTT. We established the
· relation between Russell's hierarchy of orders and Kripke's hierarchy of

truth-levels. In particular we showed that:

1. A proposition of RTT of order n is true if and only if its interpretation
is true at level n in Kripke's Truth Hierarchy (Theorem 3.24);

2. The truth of some propositions of order n of RTT cannot be established
in KTT at a level of truth hierarchy smaller than n (Theorem 3.27).
Yet for some other propositions, it can be established at an earlier
level (Example 3.28).

We also saw that Russell's theory is more restrictive than Kripke's. On
the one hand, all propositional functions of RTT can be coded in Kripke's
Truth Theory; on the other hand there are formulas of Kripke's theory that
cannot be expressed in RTT, respecting both hierarchies.

We feel that the orders are not to be blamed (alone) for the restrictive
ness of RTT. KTT clearly has a structure with orders (see Definition 3.31);
nevertheless it is possible to give impredicative definitions (see Example
3.30).

Russell excludes all propositional functions that might lead to paradox
ical situations beforehand. Kripke does not exclude them, though it is not
guaranteed that each proposition gets a truth value. This may depend on
the model chosen (see Example 3.29).

Whether the orders should be blamed or not, the main line in the history
continues with non-ramified theories. For example, Church's combination of
,.\-calculus with simple type theory, the basis for most modern type systems,
has no orders.

Chapter 4

Propositions as Types and
Proofs as Terms

In this chapter we discuss the notions of Propositions as Types and Proofs as
Terms (both abbreviated as PAT). These notions have played an important
role in the development of Type Theory after the Second World War. They
opened the possibility to use Type Theory not only as a restrictive method
(to prevent paradoxes) but also as a constructive method. Many proof
checkers and theorem provers, like AUTOMATH [95], Coq [42], Nuprl [34],
LEGO [87], LF [59], use the PAT principle.

PAT was discovered independently by different persons. In Section 4a
we give a historical sketch. In the next two sections we describe how the two
most important type systems of the pre-PAT-era can be described in a PAT
style. This gives insight in the various ways in which PAT-implementations
can be made.

4a The discovery of PAT

In the first three chapters we discussed type systems the way they were
initially designed, namely to prevent the logical paradoxes. But although
the systems of both Russell and Church have some logical symbols in them
(like V, V), these theories themselves cannot be seen as a logical system. If
one wants to make logical derivations, one has to build a logical system on
top of one of these type systems.

120 4 Propositions as Types and Proofs as Terms

However, type theory nowadays also plays an important role in logic in
a different way: It can be used as a logical system itself. This use of type
theory is generally known as "propositions as types" or "proofs as terms".
As we will see in this section, both expressions only partially cover the idea
of using type theory as a logical system. As they both abbreviate to PAT,

we will use this abbreviation to indicate both "propositions as types" and
"proofs as terms".

"Proofs as terms" already suggests an important advantage of using
type theory as a logical system: In this method proofs are first-class citizens
of the logical system, whilst for many other logical systems, proofs are
rather complex objects outside the logic (for example: derivation trees),
and therefore cannot be easily manipulated.

Below we mention some origins of the PAT principle.

4al Intuitionistic logic

The idea of PAT originates in the formulation of intuitionistic logic. Though
it is not correct that "intuitionistic logic" is simply the logic that is used
in intuitionistic mathematics1, there are frequently occurring constructions

1 "Intuitionistic logic" is standard terminology for "logic without the law of the ex
cluded middle". The terminology suggests that it is "the logic that is used in intuition
ism". However, intuitionism, that is: the philosophy of Brouwer and the mathematics
based on that philosophy, declares mathematics to be independent of logic. According
to that philosophy, a proof of a mathematical theorem is a method to read that theorem
as a tautology. The fact that one needs a list of tautologies before the proof of more
complicated theorems becomes clear, only indicates that the constructions we make are
too complicated to be comprehended immediately. Mathematics itself however, is a con
struction in one's mind, independent of logic:

"Een logische opbouw der wiskunde, onafhankelijk van de wiskundige
intultie, is onmogelijk - daar op die manier slechts een taalgebouw wordt
verkregen, dat van de eigenlijke wiskunde onherroepelijk gescheiden blijft
·- en bovendien een contradictio in terminis - daar een logisch systeem,
zoo goed als de wiskunde zelf, de wiskundige oer-intultie nodig heeft"

(Over de Grondslagen der Wiskunde [19], p. 180)

(A logical construction of mathematics, independent of the mathematical intuition, is
impossible- for by this method no more is obtained than a linguistic structure, which
irrevocably remains separated from mathematics - and moreover it is a contradictio in
terminis - because a logical system needs the basic intuition of mathematics as much
as mathematics itself needs it. [Translation from [63]]).

4a The discovery ofPAT 121

in intuitionistic mathematics that have a logical counterpart. One of these
constructions is the proof of an implication. Heyting [62] describes the proof
of an implication a => b as: Deriving a solution for the problem b from the
problem a. Kolmogorov [77] is even more explicit, and describes a proof of
a => b as the construction of a method that transforms each proof of a into a
proof of b. This means that a proof of a=> b can be seen as a (constructive)
function from the proofs of a to the proofs of b. In other words, the proofs
of the proposition a => b form exactly the set of functions from the set of
proofs of a to the set of proofs of b. This suggests to identify a proposition
with the set of its proofs. Now types are used to represent these sets of
proofs. An element of such a set of proofs is represented as a term of the
corresponding type. This means that propositions are interpreted as types,
and proofs of a proposition a as terms of type a.

4a2 Curry

PAT was, independently from Heyting and Kolmogorov, discovered by Cur
ry and Feys [38]. In paragraph 8C of [38], Curry describes so-called F
objects, which correspond more or less to the simple types of Church in
[30]. As a basis, a list of primitive objects '1?1, '1? 2, ... is chosen. All these
primitive objects are F-objects. Moreover, if a and (3 are F-objects, then
so is Fa/3. Here, F is a new symbol. Fa/3 must be interpreted as the class
of functions from a to (3. If a is an F-object, then the statement 1- aX
must be interpreted as "the object X belongs to a". The following rule-F is
adopted: If 1- F XY Z and 1- XU then 1- Y(ZU). The intuitive meaning of
this rule is: If Z belongs to F XY and U belongs to X, then ZU belongs to
Y. This rule immediately corresponds to the application-rule of >.-Church
(see Ab).

Earlier in [38], Curry has introduced the combinator P, which is the
implication combinator. P XY can be interpreted as the proposition "if X
then Y". The combinator P comes together with a rule-P: If 1- P XY and
1- X then 1- Y. Curry notices that this rule has similar behaviour as rule-F.

Curry is the first one to give a formalisation of PAT. For each F-object
a he defines a corresponding proposition aP as follows: vf Di and
(Fa,B)P PaP f3P. Remark that Curry's function a ~---+ aP is in fact an
embedding of types in propositions (so a types-as-propositions embedding
instead of a propositions-as-types embedding).

122 4 Propositions as Types and Proofs as Terms

Curry then derives the following theorem, where FmXl · · · XmY is an
abbreviation of FX1(FX2(... (FXmY) ...)):

"Iff- Fm6 · · ·~mTJX then f- (Fm6 · · ·~mTJ)P.
Moreover, if f- Fm6 · · · ~mTJX is derivable from the premises
f- aiai (i = 1, ... ,p) then f- (Fm6 · · · ~mTJ)P is derivable from
the premises f- af (i = 1, ... ,p)."

([38], paragraph 9E, Theorem 1)

In other words: If there is (under certain type conditions ai:ai) an
object X that is a function taking arguments of types 6, ... , ~m, resulting
in an object of type ry, then the corresponding theorem is derivable (if
we presuppose af). Or in short: The types-as-propositions embedding
a t--t aP is sound.

The converse of the theorem holds as well:

"Iff- (Fm6 · · · ~mTJ)P is derivable by rule-P from the premises
f- af, then for each derivation of this fact and each assignment
of a1, ... , ap to a1, ... , ap respectively there exists an X such
that f- Fm6 · · · ~mTJX is derivable from the premises f- aiai (i =
1, ... ,p) by rule-F alone."

([38], paragraph 9E, Theorem 2)

In other words: The types-as-propositions embedding a t--t aP is com
plete.

The treatment of PAT in [38] is mainly directed towards Propositions
as Types. Proofs as terms are implicitly present in the theory of [38]: The
term X in the proof of Theorem 1 of [38] can be seen as a proof of the
proposition (Fm6 · · ·~mTJ)P. But this is not made explicit in [38].

Example 4.1 As an example, we show the deduction of the proposition
A --+ A from the logical axioms X --+ Y --+ X 2 (the K-axiom) and (X --+

Y --+ Z) --+ (X --+ Y) --+ X --+ Z (the S-axiom), both in the style of the

2 We assume that-+ is associative to the right, i.e. X-+ Y-+ Z denotes X -+ (Y -+ Z)
and not (X -+ Y) -+ Z.

4a The discovery ofPAT 123

combinator P and in the PAT-style. Both derivations correspond to the
derivation of the proposition A --+ A in natural deduction style, with the
use of modus ponens, and axioms X --+ Y --+ X and (X --+ Y --+ Z) --+
(X --+ Y) --+ X --+ Z only:

1- (A--+ (A-+ A)--+ A)--+ (A--+ A--+ A)-+ A--+ A
1- A--+ (A--+ A)--+ A

1- (A--+ A-+ A)-+ A-+ A

1- A--+

• We use PmXl · · · XmY as an abbreviation for

1-A-+A--+A

So P mX1 · · · XmY can be interpreted as the proposition

In this notation, Rule-P looks as follows:

1- Pm+IXo · · · XmY 1- Xo
1- PmX1· ··XmY

For terms X, Y, Z, we take the following axioms:

(K): 1- P2XY X;

(S): 1- P3(P2XYZ)(PXY)XZ.

Let A be a term. From the axioms we derive 1- P AA, using rule-P:

1- P3(P2A(PAA)A)(PA(PAA))AA
1- P2A(P AA)A

1- P2(PA(PAA))AA

1- PAA

1- PA(PAA)

• In PAT-style, the situation is similar. Now we do not use any axioms,
but we use some standard combinators. The combinator K (which
can be compared to the -\-term -\xy.x) has type F2XY X, for arbi
trary F-objects X, Y (a term can have more than one type in Curry's

124 4 Propositions as Types and Proofs as Terms

theory). K can be seen as a "proof" of the axiom (F2XY X)P. This
is indicated by putting K behind the axiom:

The combinator S, comparable to the A-term Axyz.xz(yz), has type
F3 (F2XY Z)(F XY)X Z for arbitrary F-objects X, Y, z. Sis a "proof"
of the axiom (F3(F2XYZ)(FXY)XZ)P. This is denoted as·

The derivation above now translates to:

f- F3(F2A(FAA)A)(FA(FAA))AAS
f- F2A(F AA)AK

f- F2(F A(F AA))AA(SK)

f- FAA(SKK)

f- FA(FAA)K

The conclusion of this derivation can be read as: SKK is a function
from A to A, or, with PAT in mind: SKK is a proof of the proposition
A---+ A.

Both derivations correspond to the derivation of the proposition A --+ A in
natural deduction style, with the use of modus ponens, and axioms X ---+

Y ---+ X and (X ---+ Y ---+ Z) ---+ (X ---+ Y) --+ X ---+ Z only:

f- (A ---+ (A ---+ A) --+ A) ---+ (A---+ A---+ A) ---+ A ---+A
f-A---+ (A---+ A) ---+A

f- (A ---+ A ---+ A) ---+ A ---+ A

f-A-+A

4a3 Howard

Howard [66] follows the argument of Curry and Feys [38] and combines it
with Tait's discovery of the correspondence between cut elimination and
,8-reduction of A-terms [116].

Example 4.2 The idea is as follows. Consider the following derivation in
natural deduction style of a proposition B:

4a The discovery ofPAT

[A]
I i)1l

B ji)2j
A-tB A

125

Here, [A] denotes that the assumption A has been discharged at the point
where we concluded A-t B from B. i)l is a derivation with some assump
tions of A, and conclusion B, whilst 1'2 is a derivation with conclusion A.
The derivation 1'2 can be used to replace the assumptions of A in derivation
1'1 . This means that we can transform the derivation to:

I 1'21
A

I 1'1!
B

where copies of i)z have replaced the assumptions A in 1'1.
We can decorate the two derivations above with A-terms that represent

proofs. This results in the following two deductions:

[x:A]

I 1'1 I
T: B ll'2j

(Ax:A.T) :(A-t B) S: A
((Ax:A.T)S) : B

and

I 1'2!
S:A

I 1'1 I
T[x:=S]: B

The assumption of A is represented by a variable x of type A. This is a
natural idea: the variable expresses the idea "assume we have some proof of
A". The derivation 1)1 is represented by a A-term T, in which the variable
x may occur (we can use the assumption A in derivation 1'1). Then the
term Ax:A.T exactly represents a proof of A -t B: it is a function that

126 4 Propositions as Types and Proofs as Terms

transforms any proof x of A into a proof T of B. As j)2 is a derivation of
A (assume, Sis a proof term of A), we can apply Ax:A.T to S, obtaining
a proof (Ax:A.T)S of B.

Now substituting the derivation j)2 for the assumptions of A in j)l is
nothing more than replacing the assumption "assume we have some proof
of A" by the explicit proofS, or in other words: substituting S for x. This
results in a term T, where each occurrence of x has been replaced by S:
the A-term T[x:=S].

We see that the proof transformation exactly corresponds to the /3-
reduction (Ax:A.T)S -+f3 T[x:=s].

This is the first time that proofs are treated as A-terms. Howard doesn't
call these A-terms "proofs" but "constructions".

Moreover, Howard's treatment of PAT pays attention to both Proposi
tions as Types (following the line of Curry and Feys) and Proofs as Terms
(by using A-terms to represent proofs, thus following the interpretation of
logical implication as given by Heyting).

Howard's discovery dates from 1969, but was not published until 1980.

4a4 De Bruijn

Independently of Curry and Feys and Howard, we find a variant of PAT
in the first AUTOMATH system of De Bruijn (AuT-68 [95], [21]). Though
De Bruijn was probably influenced by Heyting (see [23] in [95], p. 211),
his ideas arose independently from Curry, Feys and Howard. This can be
clearly seen in Section 2.4 of [20], where propositions as types (or better:
Proofs as terms) is implemented in the following way, differing from the
method of Curry and Howard.

First, a constant bool is introduced. bool is a type: The type of
propositions. If b is a term of type bool (so b is a proposition), then
true(b) is a primitive notion of type type. true(b) represents the type of
the proofs of b. So, a proof of proposition b is of type true(b) and not
of type b (since propositions themselves are no types) With this "bool
style" implementation (as it was called by De Bruijn in [23]) in mind, it
becomes clear why De Bruijn prefers the terminology "proofs as terms" to
"propositions as types": In the bool-style implementation, propositions are
not represented as types. Only the class of proofs of such a proposition is

4a The discovery ofPAT 127

represented as a type. Proofs however, are represented as terms, just as
in Howard's implementation of PAT. So in the bool-style implementation,
the link between proposition and type is not as direct as the link between
proof and term. The implementation of Howard (called "prop-style'' by
De Bruijn) does not make any distinction between a proposition and the
type of its proofs.

The bool-style implementation has as advantage that one does not need
a higher order lambda calculus to construct predicate logic. In relatively
weak AUTOMATH systems such as AUT-68 one usually finds a "bool-style"
implementation of PAT. It would be impossible to give a "prop-style" im
plementation in such a system as its A-calculus is not strong enough to
support it. In AUTOMATH systems with a more powerful A-calculus we also
find "prop-style" implementations. See [92] for a global description of how
prop-style implementations are made in AUTOMATH.

Another advantage of the bool-style implementation is that one does
not depend on a fixed interpretation of the logical connectives. One is free
to define ones own logical system (and it is possible to base that system on
the Brouwer-Heyting-Kolmogorov interpretation of the logical connectives,
just like the prop-style implementation of PAT). This has been one of the
reasons for De Bruijn to implement PAT in a bool-style way (see [23]).

Though the bool-style implementation has disappeared from later Au
TOMATH systems, it is still in use in the Edinburgh Logical Framework [59],
and the systems proposed in certain formulations of the Calculus of Con
structions by Luo [86], Streicher [115], and Altenkirch [3]. Luo defines a
class of proofs, called Prf(P), for each proposition P, and explicitly defines
how to construct a proof of a proposition of the form Vx:A.P by giving a
rule

r,x:A 1-M: Prf(P)
r 1- (Ax:A.M) : Prf(Vx:A.P).

Streicher and Altenkirch have a somewhat different approach. They also
define. a class of proofs for each proposition P (in Altenkirch's thesis this
class is denoted El(P)), but the proofs are constructed in a somewhat dif
ferent way: An equality relation :::. is introduced, and the class of proofs
El(Vx:A.P) is explicitly declared equivalent to the type Ilx:A.El(P):

El(Vx:A.P) :::. ITx:A.El(P).

128 4 Propositions as Types and Proofs as Terms

This type llx:A.El(P) represents the class of functions f with domain A,
and such that for each a in A, fa is an element of El(P)[x:=a], so a proof
of P[x:=a].

4b RTT Ill PAT style

In this section we show that the system RTT of Chapter 2 can be described
in a PAT style using the prop-style implementation of Curry and Howard.
This will give us a better view on the various ways in which PAT can be
implemented.

Before we can give a description, we must make the following observa
tions:

• Russell and Whitehead designed their system for classical logic. As
the PAT principle in prop style is based on intuitionistic logic, we need
to supply extra logical axioms to obtain the classical logic of Russell
and Whitehead;

• RTT is constructed with the logical connectives V, •, V, while the
PAT principle is strongly based on the interpretation of -t and V
as function types. In the sequel of this section we will work with
the symbols V, -t, and an additional symbol ..l, representing falsum.
This makes it possible to interpret a proposition •J by f -t ..l, and
a proposition f V g by (J -t ..l) -t g;

• As RTT distinguishes between propositions of various orders, it is not
enough to provide one class of types. We must distinguish between
several classes of types, corresponding to the orders of RTT. 3

In Section 4b1-4b3 we present a type system ARTT for a PAT representa
tion of RTT. The type system is (almost) a so-called pure type system. Pure
type systems (PTSs) were invented by Terlouw [118] and Berardi [13] as a
framework in which many type systems can be described. While defining

3 Something similar is done in the proof checker Nuprl, where type universes U 1 , U2 , ...

are introduced. The type universe Un contains all objects of order ::; n. The approach
below is not exactly similar to the Nuprl approach. In Nuprl, Un is not only a subset
of Un+l, but also an element of Un+l· See [69] (where these type universes are denoted
*1, *2, ...), [67], [34]. This is the case neither in RTT nor in system ARTT below.

4b RTT in PAT style 129

ARTT we try to give sufficient intuition about PTSs in order to understand
the ideas behind ..\RTT. A short overview of PTSs is given in Appendix A.
More details can be found in [5], [54] and [55].

In Section 4b4 we make a comparison between ..\RTT and RTT, and in
Section 4b5 we give some examples on how to "do" logic of the Principia
in ARTT.

In Section 4b6 we discuss in which ways PAT can be implemented. The
various implementations lead to different level structures within the result
ing PTS.

4bl An introduction to ARTT

We now present a system ..\RTT that will be suitable for a PAT representation
of RTT.

Definition 4.3 (Terms of ..\RTT) Let A, V and R be as in Chapter 2.
Define the set T of terms of ..\RTT by:

T "= *s I *N+ I ON+ I A I V I R I L jl. I
TT I >.V:T.T I ITV:T.T.

Remark 4.4 In this definition, *s, *n (for n E N+) and Dn (for n E N+)
are so-called sorts.

• *s is the sort of object types. There will be only one object type in
..\RTT, namely the type of individuals t. An individual a has type t,

this is denoted: a : t;

• *n (for n E N+) is the sort containing the propositions of order ::; n.
Notice that these propositions will be represented as types: We are
,presenting a PAT version of RTT;

• Dn (for n EN+) contains *n, and (translations of) the ramified types
of order n as they occur in RTT.

We write S for the set of sorts { *s, *1. D1, *2, Oz, ... }.

Remark 4.5 A term of the form ITx:A.B denotes a (dependent) function
type. That is: ITx:A.B is the type that contains functions f with domain

130 4 Propositions as Types and Proofs as Terms

A, and range Ux:A B (it is possible that x occurs free in B), such that fa
has type B[x:=a] for all a of type A. Such function types can occur at
several places:

• First of all, the translations of the propositional functions of a certain
ramified type will belong to a function type. Look for instance at
the ramified type (0°) 1 . Pfs of this type are functions that take an
individual as argument, and return a proposition of order ::; · 1 as
result. 4 This suggests to translate the ramified type (0°) 1

by the
function type ITx:i.*l (see the forthcoming Definition 4.13);

• Secondly, certain propositions will be represented as function types.
This has its origin in Heyting's description of the proof of an impli
cation as a function. If the proof of an implication is a function, then
the implication itself (a proposition, or equivalently, the type of all
the proofs of a proposition) must be a function type. For example,
the RTT proposition R(a)--+ R(b) will (in 4.13) be translated into the
type ITx:Ra.Rb.

A universal quantification will also be translated as a function type.
According to Heyting, the proof of a proposition \fx:A[B] is a function
that takes elements a of A as arguments, and returns proofs of B(a).
For example, the RTT proposition \fx:0°[R(x)] will (again: In 4.13) be
translated by ITx:i.Rx. Here we see an example of a type IIx:A.B
where B depends on the variable x. The intuition of a function of
type ITx:i.Rx coincides with the intuition of a proof of the proposi
tion \fx:0°[R(x)]: A function taking individuals a as arguments, and
returning a proof of R(a).

The type system .\RTT will have a rule to introduce terms of type
IIx:A.B (provided we have a term of type B): If b is a term of type B
(possibly x occurs free in b), then >.x:A.b is of type IIx:A.B. This can
be understood with the above interpretations of IIx:A.B in mind. For in
stance, we represented the RTT-proposition Vx:0°[R(x)] by ITx:i.Rx. If we

4 The proposition that is returned can be of order 1, for instance in the case we
substitute the individual a for x in the pf 'v'y:o0 [R(x, y)], or of order 0, for instance in the
case we substitute a for x in the pf R(x, x). However, the returned proposition can never
be of order > 1, due to Corollary 2.63. See also Remark 4.7.

4b RTT in PAT style 131

have a term b of type Rx (sob proves Rx for an arbitrary individual x) then
the function >.x:t.b, assigning b[x:=a] to each a E t, is indeed a proof of the
proposition Vx:0°[R(x)].

The system ARTT also has a rule that shows what can be done with a
term of type ITx:A.B. If a is a term of type t, and f a proof of ITx:0°.Rx,
then we can apply f to a, thus obtaining fa of type Rx[x:=a], which is Ra.
Indeed applying the function f to an individual a gives a proof of Ra.

Remark 4.6 It is usual to write A ___.. B for ITx:A.B, if x 'does not occur
free in B. Hence, in notation there is hardly any difference between the
RTT proposition R(a) ___.. R(b) (where ___.. denotes logical implication) and
the ARTT type Ra ___.. Rb (where ___.. is used to form a function type).

Remark 4. 7 One may wonder why we chose *n to be the type of all propo
sitions of order ~ n instead of the type of all propositions of order n. This
has a technical reason that already popped up in footnote 4, namely the
translation of the ramified types of RTT into >.-terms. Consider a ramified
type (t~ 1 , ..• , t~")a. If r 1, ... , Tn are appropriate translations of t~1 , ••. , t~",

then one would like to translate (t~1 , ••. , t~" t into r1 ---* • · • ---* Tn ---* *m,
where *m represents the type of propositions of some order m. This would
suggest that a propositional function f of type (t~1 , ••• , t~")a always results
in a proposition of {fixed) order m as soon as values of types t~1 , •.• , t~"
are substituted for its free variables. However, it is impossible to determine
such m:

• Consider the pfs f = z(a) and g = z(a) VVz':(0°) 1 [z'(b)] in a context

r = {z:(0°)1
}. Observe: r f- f: (Co0

)
1r and r f- g: ((o0

)
1r.

But if we substitute R(x) for z in both f and g, we obtain R(a) (a
proposition of order 0) and R(a) V Vz':(0°)1 [z'(b)J (a proposition of
order 1).

So substituting the same propositional function R(x) in two differ
ent propositional functions f and g of the same type, may result in
propositions of different orders;

• Let f be as above, and extend r with the declaration x:0°. Notice:
Both h1 = R(x) and h2 = R(x) V Vy:0°[S(y)J are pfs of type (0°)\
so they can be substituted for z in f. As a result we obtain R(a),

132 4 Propositions as Types and Proofs as Terms

a proposition of order 0, and R(a) V Vy:0°[S(y)], a proposition of or
der 1. So substituting different propositional functions h1, h2 of the
same type in one and the same propositional function f may result
in propositions of different orders.

Therefore, we cannot interpret *m in 71 -+ · · · -+ T n -+ *m as the
type of propositions of order m. However, by Corollary 2.63, the order of
the proposition f [x1, ... , Xn :=g1, ... , 9n] cannot be higher than the order
of f. Hence, it is safe to translate the ramified type (t~ 1 , ••• , t~n)m into
r 1 -+ · · · -+ T n -+ *m, if we interpret *m as the type of propositions of order
~m.

One might wonder whether this somewhat unusual interpretation of *m
makes ARTT much different from the original RTT. The idea of "propositions·
of order ~ m" however, is not very different from the idea of "propositions
of order m", as all propositions of order < m have a logically equivalent
proposition of order m (at least in the logic that Russell and Whitehead
had in mind): Iff has order < m then

is of order m, and logically equivalent to f. The system -XRTT will have
a special rule (Incl) stating that any proposition of order ~ m is also a
proposition of order ~ m + 1.

Contexts, as in the situation of Chapter 2, contain information on the
types of variables. These variables can be of different nature: First of all,
we still have the variables of Chapter 2. These variables live at the level of
types, as propositions are interpreted as types. But now we can also have
variables that serve as assumptions: If A is a proposition, then a variable
of type A refers to an arbitrary proof of A. If a context contains such a
declaration x:A, then this can be read as: It is supposed that A holds (and
that x is some proof of A).

In Chapter 2, contexts were sets. In particular, the order in which the
various declarations were mentioned, did not matter: {x:0°, y:() 1

} is not
different from {y:()l, x:0°}. Now, types that occur in a context can depend
on variables that are declared somewhere else in that context. We do not
want a variable to occur in a context before its type has been declared.
Therefore, we present contexts as lists. The order in which the variables

4b RTT in PAT style 133

are declared is determined by the order in the list: In a context (x:r, y:v),
the variable x was declared before y. Thus it is possible that v depends on
x, i.e. x may occur as a free variable in v. On the other hand, y must not
occur in T, as y is declared after r has appeared. Therefore, the context
{x:r, y:v) is different from the context (y:v, x:r).

The presented intuition leads to the type system in Definition 4.9 be
low, which is in fact almost a PTS. The IT-form rule determines which
types (and, with the PAT principle in mind: Which propositions) can be
constructed in the system. The general form of the IT-formation rule is

fi-A:81 r,x:AI-B:82
r 1- (ITx:A.B) : 83

where 8 1 , 82,83 are sorts. By specifying for which combinations of triples
(s1 , 82 , s3) the IT-formation rule can be applied, one can control which IT
types can be constructed. We now informally discuss which IT-formation
rules we need in a PAT description of RTT. After that, we give a formal
presentation of the system ARTT.

4bl.l The translations of the ramified types

To translate and type the ramified types, we need the rules (* 8 , Dn, Dn)

and (Dm, Dn, Dn) for n 2 1 and m < n.
Assume (t~1 , .•• , t;P t is a ramified type, and that we already found

proper translations Tl, ... , Tp for the ramified types t~ 1 , ••• , t;P such that

• 1--\RTT Ti : * s if t~i

(we use 1-·,xRTT to denote derivability in ARTT, the PAT version of RTT). The
type system ARTT will have an axiom rule that declares that *a has type

, therefore we have: xp:Tp 1-,xRTT *a : Da. Now distinguish:

• If t;P = L then we use IT-formation rule (*s, Da, Da):

1- -\RTT Tp : * s Xp:Tp 1-,\RTT *a : Da.

1--\RTT (ITxp:Tp-*a) : Da '

134 4 Propositions as Types and Proofs as Terms

• If t~~' ::1= ~ then we use IT-formation rule (Dap' Da, Da) (notice that
ap <a):

fc-.xRTT 7p : Dap Xp:7p f-,XRTT *a :

f-.xRTT (I1xp:7p·*a): Da

In ARTT there will be a weakening rule so that we can weaken this conclusion
by adding a variable Xp-1:

In a similar way, we can now deduce:

and so on until we have

Notice that the variables Xi are only dummy variables, and do not occur in
any of the 7j. We can therefore write

71 -t ... -t 7p -t *a

instead of (IIx1:71· · · · .Ilxp:7p·*a) : Da. This 71 --+ · · · --+ 7p --+ *a is the
translation of the RTT-type (tr1

, ••• , t;~'t.

4b1.2 The translation of the logical implication

The translation of propositional functions will have a lot of similarities with
the mapping - of Definition 2. 7. A propositional function f with free vari
ables xr < · · · < Xm will be translated into a >.-term >.xr:7I ... Xm:7m.F,
where F is a >.-term of type *n, n is the order of J, and 7I, ... , 7m are trans
lations of the types of the variables x1, ... , Xm· In this way, the translation
off will have type 71 --+ ... --+ 7m --+ *m which is exactly the translation of
the type off. In this subsection, we focus on the translation of propositions
of the form f --+ g; in the next subsection we focus on the translation of
propositions of the form \fx:A[f].

If f and g are propositions, we must be able to form the proposition
f --+g. According to Russell's definition in Principia Mathematica, f --+ g

4b RTT in PAT style 135

is only shorthand for (-.f) V g. In a system in PAT style, the implication
plays a more central role, as the logical connectives --, and v are defined
with the use of implication.

If f is a proposition of order m, and g has order n, then f -+ g

clearly has order max(m, n). In PAT, we can obtain this effect via a rule
(*m, *n, *max(m,n)). We can assume that F is a translation of f, and G
is a translation of g, such that 1->.aTT F : *m and 1->.RTT G : *n· Intro
ducing a variable x of type F does not affect the fact that G is a type of
sort *n: x:F 1->.RTT G : *n (the system ARTT will have a so-called weak
ening rule that formalises this intuition). Applying the TI-formation rule
(*m, *n• *max(m,n)) results in

1->.RTT F : *m x:F 1->.RTT G: *n
hRTT (flx:F.G) : *max(m,n)

Notice that x is only a dummy variable here, and does not occur in G.
Therefore we can write F -+ G instead of flx:F.G. This F -+ G is the
translation of the RTT-proposition f -+g.

4b1.3 The translation of the universal quantifier

If f is a pf with x as one and only free variable, then we want to translate
f by some term >.x:r.F. With PAT in mind, we want to translate 'v'x:t[f]
by flx:r.F: A proof of 'v'x:t[f] must be a function that assigns a proof of
Fa to each a of type T.

The construction of flx:r.F can be done in the following way. We can
assume that >.x:r.F has a type that corresponds to a propositional function
with one variable: A type of the form T -+ *n• where n is the order of f.
This means that F itself must be of type *n, where n is the order of f. The
term flx:r.F (a translation of 'v'x:t[j]) should have type *n, as it represents
a proposition of order n. Now T is a translation of a ramified type, therefore
it is of sort *s (if T = ~) or sort 0 111 (if T ¥;. t). For the construction of flx:r.F

we need the TI-formation rule (*s• *n. *n) or (Om, *n, *n). Notice that x is
a free variable of f, so its order is smaller than the order of f. In other
words: m < n.

The rules (*s, *n, *n) can also be used to represent universal quantifica
tion over pfs with more than one free variable. We discuss the situation for
two free variables; for three or more free variables the procedure is similar.

136 4 Propositions as Types and Proofs as Terms

Let g be a pf with two free variables x1 < x2, having type (t]'1
, t~2)a,

where tfi is the type of Xi. We assume that g has been translated into a
term of the form .Xx1:T(t11

) • .Xx2:T(t~2).G, of type T(t11
) ___. T(t~2) ___. *n,

where n is the order of g. With the definition of - in mind, we translate

Vx1:t1'1 [g] into

A.xt:T(t]'1).IIx2:T(t~2).G.

We can form Ilx1:T(t11).Gin a similar way as Ilx:r.F above, using IT-for

mation rule (*s, *n• *n) or (Om, *n• *n) for an n 2:: 1 and an m < n. The
term Ilx1:T(t11).G has type *n, and .Xx2:T(t~2).IIx1:T(tj'1).G will have type
T(t~2) ___. *n, which is the appropriate type for a translation of Vx1:tj'1 [g].'
Similarly, Ilx2:T(t~2).G has type *n, and .Xx1:T(t11).IIx2:T(t~2).G has type
T(t11

) --+ *n, which is appropriate for a translation of Vx2:t~2 [g].

4b2 The system ARTT

Now that we have explained the way in which types are constructed in ARTT,

we present the system in a formal way. As announced, it will (almost) have
the form of a Pure Type System (PTS).

A PTS always has five fixed rules, and two "flexible" rules (axioms and
IT-formation rules):

(Axioms) Axioms provide the types of certain constants that are used in
the system. This rule is flexible: The axioms may vary from one PTS
to another. In ARTT, we have the following axioms:

• *n : Dn for n 2:: 1. See Remark 4.4;

• l. : *1· This means that we consider falsum to be a proposition
of the lowest order;

• t : *s· See Remark 4.4;

• a : t for a E A. Each individual belongs to the type t of individ
uals;

• R : t --+ · • • --+ t --+ *1 for R E R. This illustrates that R is an
""-v---"
a(R) times L

n(R)-ary relation on individuals.

4b RTT in PAT style 137

All axioms are derivable in an empty context;

(Start) If we want to introduce a variable, we can only do this if we assign
a type to such a variable. In the type systems that we saw before (like
RTT and A-+), it was always clear what the types of a certain type
system are. There were always two definitions: First a definition that
describes which types are allowed, and then a definition that describes
which terms have what type. In a PTS however, terms and types are
mixed up in one derivation system. Types are recognised as follows:

• Each sort s E S is a type;

• If r f- A : s for a s E S then A is a type (within the context f).

In the second case, we see that the type A has also a type itself,
namely: s. For these "typable" types we make it possible to introduce
variables via the start rule:

ff-A:s
r,x:A f- x:A'

This means that we can only introduce a variable of type A if A
itself has a type s E S. In ARTT, this is possible for the sort *n
(because this sort has type Dn)· This means that it is possible to
introduce variables for propositions of order n. However, Dn cannot
be typed itself in ARTT. This is not harmful, as we do not want to
introduce variables of type Such a variable would be a variable
for a ramified type of order ::; n, and such variables do not occur in
RTT, either.

As the introduced variable must be seen as a new object, we demand
that xis "fresh": It must not occur anywhere in r or A;

(Weakening) Once we have derived r f- M : N, we want to be able to
add variables to the context r. Compare this to the weakening rule
2.45:5 for RTT. To add such a variable to the context, we take the
same precautions as in the start rule, so we have a premise r f- A : s
if we want to add a variable of type A tor. The weakening rule now
becomes:

ff--M:N ff--A:s
r,x:A f- M: N

138 4 Propositions as Types and Proofs as Terms

Again, we demand that xis fresh: It must not occur in r, M, N, or
A· ,

(IT-formation) This rule describes which IT-types can be constructed. It
is flexible: In different PTSs, different IT-types may be allowed. We
already discussed this rule in Section 4bl. In Subsections 4bl.1-4bl.3
we described which IT-formation rules are needed for ARTT:

• (*5 , On, Dn) and (Om, Dn, Dn) (m < n) to translate the ramified
types;

• (*m,*n,*max(m,n)) to translate the logical implication;

• (*s,*n,*n) and (Dm,*n,*n) (m < n) to translate the universal
quantification;

(IT-introduction) This rule describes how we can form terms of type
ITx:A.B, once we have established that the type ITx:A.B can be con
structed. If r f- (ITx:A.B) : s has been derived (using the IT-formation
rules), we can not only introduce variables of this type with the start
and weakening rules, but we can also form terms of this type by A.
abstraction:

r, x:A f- b:B r f- (ITx:A.B) : s

r f- (A.x:A.b) : (ITx:A.B)

This rule is a modern version of the Abstraction Principles 1.1 and
1.2, and the abstraction rules 2.45.3 and 2.45.4 for RTT.

The IT-introduction rule is also called A.-formation-rule;

(IT-elimination) This rule describes what can be done with a term f
of type ITx:A.B~ The intuition is clear: f is a function that takes
arguments of type A, so it should be possible to apply f to any a of
type A. And indeed:

r f- f : ITx:A.B r f- a : A

r 1- fa: B[x:=a]

The substitution in the type of the result is necessary. This can be
seen if we interpret ITx:A.B as a proposition Vx:A.B. Then f is a
proof ofVx:A.B, and fa is a proof of B where x has been replaced by

4b RTT in PAT style 139

a, so B[x:=a]. The IT-elimination rule together with ,8-reduction can
be seen as a modern substitution rule. We already saw in Chapter
2 that substitution in RTT can be seen as function application plus
f)-reduction to normal form in A-calculus. Indeed: If we apply a term
-Xx:A.b to a term a, we get (.Xx:A.b)a, which f)-reduces to b[x:=a].

The IT-elimination rule is also called application-rule;

(Conversion) If a term A f)- reduces to a term A', we consider A and A'
to be equal, in some way. A property of PTSs is that if r 1- A : B and
A --+!3 A', then also r 1- A' : B (the so-called "Subject Reduction"
property). However, we do not have the "Type Reduction" property
that r 1- A : B' whenever r 1- A : B and B --+!3 B'. This property
does not even hold if we demand that r 1- B' : s for some s E S. As
we want to have that f)-equal types have the same inhabitants, we
introduce a conversion rule:

f 1- A : B f 1- B' : s

r 1- A:

As was already observed in the motivation for the start rule, there is an
important difference between PTSs and the other type systems that have
appeared in this thesis up till now. The other systems always made a clear
distinction between terms and types. The definition of types is usually
given first, and then a second definition indicates which terms are of what
type. This distinction is not made in PTSs. There, types and terms are
defined in one system. The jargon used may be confusing to the reader that
is not familiar with PTSs, and therefore we give the following definition:

Definition 4.8 (Terms and Types)

Terms

Types

• A term A is a legal term in a context r, if there is B such that
r 1- A : B or r 1- B : A;

• A is a term of type B in a context r, if r 1- A : B;

• A term A is a type in a context r if there is a sort s E S such
that r 1- A : s;

140 4 Propositions as Types and Proofs as Terms

• A is the type of B in a context r if r 1- B: A;

• A type A is inhabited in a context r if there is a term B such
that r 1- B : A.

So: a type is always a term. And: a term can sometimes act as a type.
Look for instance at the IT-introduction rule. In the right-hand premise,
ITx:A.B is a term of type s. But in the conclusion, it acts as a type: the
term >.x:A.b is of type ITx:A.B.

For ARTT we need a rule in addition to the seven rules that were stated
for PTSs above. That is why we said that >.RTT is almost a PTS. This is
the so-called inclusion-rule, which describes the intuition behind *n as the
class of propositions of order ::; n (and not only the class of propositions of
order n). We can formulate this rule as follows:

We summarise the eight rules in the following definition:

Definition 4.9 (Derivation Rules for ARTT) Let s, s1, s2 range over
S { *s, Dt, D2, ... , *t, *2, ... }, and let

R = { (* s, Dn, Dn) I n ~ 1} U

{(0711 , Dn, Dn) II::; m < n} U

{(*m, *n, *max(m,n)) I m, n ~I} u
{ (* s, *n, *n) I n ~ I} U

{(Om, *n, *n) II ::; m < n }.

The derivation rules for ARTT are as follows:

(Axioms) 1- *n: Dn
1- t : *s

1- l. : *1

1- a: t

1- R : t -+ · · · -+ t -+ *t __________..
a(R) times L

(n ~ I)

(a E A)
(R E 'R)

4b RTT in PAT style

(Start)

(Weak)

(IT-form)

(IT-in)

(IT-el)

(Conv)

(Incl)

fi-A:s
r,x:A F x:A

fi-M:N fi-A:8
r,x:A 1-M: N

r 1- A : SI r, x:A 1- B : 82

r 1- (ITx:A.B) : s3

r, x:A 1- b:B r 1- (ITx:A.B) : 8

r 1- (>.x:A.b) : (ITx:A.B)
r 1- M : ITx:A.B r 1- N : A

f 1- MN: B[x:=NJ

r 1- A: B r 1- B': 8 B =f:J B'
r 1- A: B 1

r 1- A: *n
r FA: *n+I

141

The introduced variables x in the Start and Weakening rules are assumed
to be fresh. If confusion with derivation rules of other type systems might
arise, we use 1->.RTT instead of 1- to indicate derivability in ARTT.

4b3 Meta-properties of ARTT

We now describe some meta-properties of ARTT. Their formulation is very
close to the formulation of the usual meta-properties of PTS, as described
in Section Ac of the Appendix. However, there are a few deviations. This
is due to the rule (Incl), which is not a rule in PTSs. The proofs of the
meta-properties below are as in the standard literature on PTSs ([5], [55]).
In Remark 4.12 we provide some intuition behind these meta-theorems and
compare them with the meta-theorems we found for RTT in Chapter 2.

Theorem 4.10 (Properties of ARTT)

1. (Cl}urch-Rosser) If A -/3 B1 and A-(:! B2 then there is a C such
that B1 -.13 C and B2 -.13 C;

2. (Free Variables) Let r Xl:Al, ... ,xn:An, and assume r 1- A: B.
Then:

• FV(A) U FV(B) <;;;: DOM (f);

• For all 1 :::; i :::; n there is Si E S such that
Xl:Al, ... , Xi-l~Ai-1 1- Ai: 8ii

142 4 Propositions as Types and Proofs as Terms

3. (Substitution) Assume f, x:A, ~ f- B:C and f f- D:A.
Then f, ~[x:=D] f- B[x:=D] : C[x:=D];

4. (Thinning) Assume f, ~ are legal and f ~ ~.
Then f f- A : B =? ~ f- A : B;

5. (Generation)

(a) If f f- *n : C then C := Dn;

If f f- L : c then c = * s;
If f f- ..l : C then C := *n for some n E N;
For a E A, iff f-a: c then c = Li
ForRER, iff f- R: C then C = L---+ · · · ---+ L---+ *l or a.(R) = 0

'--v-'
a(R) times ~

and C = *n for some n E N;

(b) Iff f- X : c then there are B, s such that f f- B : s, x:B E f,
and either B =13 C, or there are m, n with m < n and B = *m,
C = *ni

(c) Iff f- (IIx:A.B):C then there are s1, s2, s3 such that (s1, s2, s3) E

R, f f-A : sl, and f, x:A f- B : S2· Moreover, c = S3 or there
are m, n such that m < n, s3 = *m and C = *ni

(d) Iff f- (>.x:A.b): C then there are B,s such that f f- (IIx:A.B):
s; f,x:A f- b: Band C =!3 IIx:A.B;

(e) Iff f- (AB) : C then there are x, P, Q such that f f- A :
(IIx:P.Q), f f- B : P, and either C =13 Q[x:=B] or there are
m, n with m < n and Q[x:=B] = *m, C = *ni

6. (Correctness of Types) If f f- A : B then there is s E S such that
f f- B : s orB= s;

7. (Subject Reduction) Iff f- A : B and A ---+13 A' then f f- A' : B;

8. (Permutation) If f,x:A,y:B,~ f- c : D and X (/. FV(B) then
f, y:B, x:A, ~ f- C: D;

9. (Topsort Lemma) If s is a topsort and f f- A : s then A is not a
variable and A is not of the form A1A2 or >.x:A1.A2.

4b RTT in PAT style 143

Theorem 4.11 (Strong Normalisation for ARTT) If r 1- A: B then A
is strongly normalising.

PROOF: We embed ARTT into system >..C of the Barendregt cube by map
ping *n to * (for all n E N), *s to*, and Dn to D. In this way, ARTT becomes
a pure type system (as rule (Incl) disappears) that is a subsystem of >..C.
As all terms of >.C are strongly normalising, ARTT is strongly normalising
as well. r8l

Remark 4.12 We provide some intuition for the properties in Theorems
4.10 and 4.11.

1. The Church-Rosser theorem is a basic theorem on >.-calculus. It in
dicates that it does not matter in which way one makes a calculation
(list of tJ-reductions): The result will always be the same (or, more
precisely: The results can be coerced to be the same). The various
proofs that are known even present a constructive method to find a
common reduct C of two tJ-equal terms B1 and B2;

2. The first part of the Free Variables Lemma is comparable to Lemma
2.56.1 of RTT.

The second part has no counterpart in RTT. This is because in RTT
the set of types is determined by a separate definition (2.37), and
types do not have a type themselves. In ARTT, the derivation rules
determine which types are "allowed", and which types are not: An
allowed type has a sort as type. The second part of the Free Variables
Lemma shows that types that occur in a context are, indeed, always
typable by a sort;

3. The Substitution Lemma can be compared to the Substitution Rule
of RTT (see 2.45.6). Observe that the substitution [x:=DJ is now not
only carried out in B (as was the case in RTT), but also in C and ~.
This is due to the fact that in ARTT, types may have free variables;

4. The Thinning Lemma is comparable to the Weakening Rule of RTT
(see 2.45.5);

5. The Generation Lemma (called "Stripping lemma" in [54]) is one of
the most important meta-properties of a PTS. The derivation rules

144 4 Propositions as Types and Proofs as Terms

of ARTT are, as is the case with most usual formulations of PTSs,
not syntax directed, i.e. the last rule in a derivation is not necessarily
determined by the structure of the term and the context of the con
clusion of the derivation. 5 This is due to rules like (Weak), (Conv)
and (Incl). If the conclusion of the derivation is r f- A : C, then the
Generation Lemma provides information on the type of the subterms
of A, and on the structure of C.

The Generation Lemma for ARTT is comparable to Theorems 2.84
and 2.85 for RTT.

Case (a) of the Generation Lemma might raise the question why a
relation symbol R of arity > 0 cannot have type t --t · · · --t t --t *n
for n > 1, while a relation symbol R' of arity 0 can have type *n
for n > 1. This has to do with the way in which we implemented
type inclusion. We only declared that *n is a subtype of *n+l for all
n, but did not extend this to types of the form T1 --t T2. It is quite
possible to work with type systems that have an extensive subtyping
relation (see for instance [33]), but as we do not need an extension of
subtyping in this Section, we do not introduce it here;

6. Correctness of Types shows that every term B for which there are
r, A such that r f- A : B is typable by a sort. Compare this to the
second part of the Free Variable Lemma, that proves a similar thing
for types occurring in a context;

7. Subject Reduction shows that the type of an expression does not
change during a calculation. As there is no real reduction in RTT, we
do not have an equivalent statement in RTT. One could see the fact
that the Free Variable property 2.58 is maintained under substitution
as a weak form of Subject Reduction;

8. Permutation is closely related to the Permutation Rule 2.45.7;

9. This lemma shows that the topsorts (see Definition A.34. In ARTT,

the topsorts are *s and 01, 02,) are only inhabited by types (i.e.
constants or terms of the form IIx:A.B).

5It is possible to present PTSs in a syntax directed way. See Severi's thesis [113].

4b RTT in PAT style 145

Strong Normalisation for ARTT can be compared to the theorem on Ex
istence of Substitution for RTT, 2.73. However, in ARTT much more re
ductions are possible. For instance, the proof terms of ARTT do not have
an equivalent in RTT, and these proof terms are also >.-terms that might
fJ-reduce.

4b4 Interpreting RTT in ARTT

In this section we formally prove our claim that ARTT indeed is a PAT

interpretation of RTT. We translate the ramified types of RTT to types of
ARTT:

Definition 4.13 We define a type T(ta) for each ramified type ta:

• T(0°) = t;

All the translations of the ramified types are typable in ARTT. As an
nounced in Subsection 4bl.l, we use the IT-formation rules (*s, On, On) and
(Om, On, On) form < nand n ;::: 1.

Lemma 4.14 In ARTT we can derive:

• f- T(0°) : *si

• f- T((t~1 , ... , t:;_,= t) : Oa.

PROOF: Induction on the definition ofT; use the rules (*s, On, On) and
(Om, On, On) of ARTT as sketched in Subsection 4bl.l. f2J

On the other hand: The inhabitants of *s and On are all translations
of ramified types:

Lemma 4.15

1. If r f- A : *s then A i.
J

2. If r f- A : On then there is a ramified type tn with T(tn) = A.

146 4 Propositions as Types and Proofs as Terms

PROOF:

1. As *s is a topsort, A cannot be a variable, or of the form A1A2 or
.\x:A1.A2 (see Theorem 4.10.9). As there are no 81,82 E S for which
(81, 82, *s) E R, A cannot be of the form Ilx:A1.A2. Therefore, A
must be a constant. By the Generation Lemma, 4.10.5(a), A = t;

2. Use induction on the length of A. As Dn is a topsort, A cannot
be a variable, a .\-abstraction, or an application. Considering the
Generation Lemma, 4.10.5, we conclude that A= *n (and in that case
we are done: Take tn = (t) or A= Ilx:B1.B2. .

In the last case, we use the Generation Lemma to obtain: r f- Bl : 81
and r, x:B1 f- B2:82, where (81, 82, Dn) E R.

Due to the definition of R, 82 =: Dn. Hence r, x:B1 f- B2:Dn. Using
the induction hypothesis, we can find u~2 , ••• , u~m such that B2 =
T((u~2 , ••• , u~m)n) (it is not the case that B2 = T(0°), otherwise we
would have r, x:B1 f- t:Dn)·

Due to the definition of R we also have 81 = *s or 81 = Da1 for some
a1. By induction, B 1 = t, or B 1 = T(u~1) for a ramified type u~1 •

Hence A = T((t, u~2 , ... , u~m)n) or A = T((u~\ ... , u~m)n) (notice
that a1 < n, as 81 = Da1 and (81, 82, Dn) E R).

We extend the mapping T to propositional functions:

Definition 4.16 Let r be a RTT-context. We define a term T(i) for all
i E V U A, and a term T(J) for each f E P for which the variables off are
contained in DOM (r):

• T(x) = x for x E V;

• T(a) =a for a E A;

• T(R(i1, .. ·, ia(R))) = AXl:T(h) ... AXn:T(tn).R(T(il)) · · · (T(ia(R))).

Here, x1 < · · · < Xn are the free variables of R(i1, ... , ia(R)), and
Xi:ti E r for 1 :S i :S n;

4b RTT in PAT style 147

• If fi,h E P and T(fj) = AXji:Aji· .. AXjm:Ajm·Fj, where Xji <
· · · < Xjm are the free variables of fj, then define T(fi --+h) =

Here, XI < ... < Xn are the free variables of !I --+ h, and Xdi E r
for 1 ~ i ~ n;

• Iff E P and T(f) = AXI:AI ... AXn:An.F, where XI < · · · < Xk <
· · · < Xn are the free variables of f, then define T('v'xk :tk [f]) =

• If z E V and ki, ... , km E AU V UP, then define T(z(ki, ... , km)) =

where XI < · · · < Xn are the free variables of z(ki, ... , km) and Xi:ti E

r.

We show that the legal pfs of RTT are legal terms in .\RTT. For one step
in the proof, we need a Lemma:

Lemma 4.17 Iff f-A: Dn or f f-A: *s then FV(A) = 0.

PROOF: By Lemma 4.15, there is a ramified type ta such that A= T(t0
).

From the definition of T(t 0
) we conclude that FV(T(t0

)) = 0. 1:8:1

Lemma 4.18 Let f E P and assume r f- f : ta in RTT. Then f- T(j) :
T(t0

) in .\RTT.

PROOF: Induction on the structure of f. Though the proof is rather
straightforward, we treat all cases, in order to show where which rules
of .\RTT are used.

1. f = R(ii, ... , ia(R)), and XI < · · · < Xm are the free variables of f.
Notice: Xi:0° E f for 1 ~ i ~ m (Theorem 2.85). Therefore: T(f) :=

AXI:i ... AXm:i.Rii · · · ia(R)· Notice that XI:i, ... , Xm:i f- Rii · · · ia(R) :
*I· By abstraction, f- T(f) :~--+*I;

a(R) times L

148 4 Propositions as Types and Proofs as Terms

2. f = h ---* h; XI < · · · < Xm are the free variables of J, and Xji <
· · · < Xjmi are the free variables of !J. Assume Xi:tf' E r such that
Xji:t;t. By Theorem 2.84, the fj are legal, and by Theorem 2.58,

(
ail aimj) bj . r f- fj : tji , ... , tjmi for some bj. Observe that we can wnte

(due to Definition 4.16)

T(fj) = AXji:T (t;{1
) •.• AXjmi:T (t;;;i) .Fj,

and that, by the induction hypothesis,

f- T(fj): T (t;f
1)---* · ··---* T (t;;;i)---* *bi·

This means (Generation Lemma):

and therefore (Weakening):

xi:T (tr1
), ••• , xm:T (t~m) f- FI : *b1 ,

and
xi:T (tr1

), ••• , xm:T (t~m), x:FI f- F2 : *b2

(notice that {xi, ... ,xm} 2 {xji, ... ,XjmJ).
With rule (*b1 ,*b2 ,*max(b1 ,b2)),

XI:T (tr1
), ••• , Xm:T (t~m) f- FI ---* F2 : *max(b1 ,b2)·

Now notice that a= max(bi, b2), and use >-.-abstraction m times:

3. f = \ix:ub[f'], XI<···< Xm are the free variables of J, and Xi:tf' E
r. For simplicity of notation, we will assume that x < XI. As x E
FV(j'), we can write T(f') = >-.x:T(ub).>-.xi:T(tr1

) ... >-.xm:T(t':n_m).F'.
By Theorem 2.84 and Lemma 2.56, we have that f' is legal in r U
{ x:ub}, and by Theorem 2.58 and Corollary 2.61: r u { x:ub} f- f'
(ub, tr\ ... , t':n_m t. By the induction hypothesis,

4b RTT in PAT style 149

Therefore (Generation Lemma),

so by the permutation lemma and Lemma 4.17

As T(ub) has either type or type *s (Lemma 4.14), and b < a, we
can use rule (Db, *a, *a) or (*s, *a, *a) to derive

By >.-abstraction, we find 1- T(j) : T(ta);

4. f = z(kb ... , kn), x1 < · · · < Xm are the free variables of j, and
Xi:tfi E r. By Theorem 2.84, the kj are either legal pfs of predicative
type in r, or variables (so one of the Xis), or individuals (of type 0°).
Let u~i be the type of kj in r. By Theorem 2.85: z:(u~1 , ••• , u~n)a-l E
r. Using the induction hypothesis for the kj E P, we have that

for 1 s j s n. We also have

Therefore,

x1:T(t~1
), ••• , Xm:T(t~"') 1- z(T(kl)) · · · (T(kn)) :*a-I,

hence (by the (Incl) rule)

By >.-abstraction, 1- T(J) : T(ta).

150 4 Propositions as Types and Proofs as Terms

Remark 4.19 The use of the (Incl) rule in case 4 of the above proof is
essential. There, it is shown that

and one could try to form >.-abstractions without using the (Incl) rule
first. However, z E Fv(f), so at a certain point one has to construct a
>.-abstraction over z. Let tz be such that z : (, E r. The resulting term
>..z:T(tz).G has type T(tz) -t •.. -+ *a-1· As z has order a- 1, T(tz) is
a term of type Da-1 (Lemma 4.14). One needs a rule (Da-1, Dp, Dp) with
p > a 1 (as for p ::; a 1 such a rule is not present) for the construction of
T (t z) -+ ... -+ * a-1· Hence, one has to use the rule (Inc!) to replace * a-1

by *a, which has type Da. This makes it possible to use p = a.

4b5 Logic in RTT and ARTT

Before we can use ARTT as a system in which we can prove theorems, we
must add some logical axioms to it. These axioms mainly have to do with
the symbol .L For -+ and V the needed derivation rules are already provided
by the type theory (via the PAT principle ala Curry-Howard).

• The -,-introduction rule of natural deduction systems is already in
corporated in the translation of -,A to A -+ .L If we have a proof T
of _L under the assumption that x is a proof of A, then >.x:A.T is a
proof of A -+ _L;

• For the rule "ex falso sequitur quodlibet" the type system does not
provide a natural equivalent. We therefore introduce an axiom

ExFalson : llf:*n·llp:_l.f

for each n E N+. We will store these axioms in some basic context
ro.
We remark that the type llf: *n .IIp:_l.f is indeed a type in >..RTT. It
is straightforward to derive that it is a type of sort *n+l·

We also remark that it is necessary to introduce separate axioms
ExFalso1, ExFalso2,.... If we want to conclude the proposition f

4b RTT in PAT style 151

using the ExFalso-axiom, we must provide the type of f, and in that
type the order off is also mentioned. This is a usual thing in ramified
type systems, and such constructions occur also in Principia (cf. [121],
pp. 41-43);

• RTT is based on classical logic, and PAT on intuitionistic logic. There
fore we must add a "classical" axiom. We prefer to add the "law of
double negation", and introduce axioms

It is easy to show that the type of this axiom is of sort *n+l· We store
the axioms DblNegn in the same context fo.

We compare the obtained system with the original logical system that
was proposed in Principia Mathematica. That system is presented in what
we would now call a natural deduction style.· It has one derivation rule,
modus ponens (cf. Principia, *1·1), and the following axioms:

(pVp)-+p

q- (p v q)

(p v q)- (q v p)

(p V (q V r))-+ (q V (p V r))

(q-+ r)-+ ((pVq)-+ (pVr))

f(x)-+ 3z[f(z)]

f(x) V f(y)-+ 3z[f(z)]

In any assertion containing a free variable, this free
variable may be turned into an apparent variable of
which all possible values are asserted to satisfy the
function in question

(*1·2);

(*1·3);

(*1·4);

(*1·5);

(*1·6);

(*9·1);

(*9·11);

The formulation of the last axiom is not as precise as the other ones. In
later formulations of logic (as the ones by Godel [57] and Church [30]) we

152 4 Propositions as Types and Proofs as Terms

see that the axioms for propositional logic are mostly maintained, but that
the axioms on predicate logic are replaced by two other ones:

'v'x[f]-+ f[x:=a]

'v'x[f V g] -+ f V 'v'x[g]

where we assume that x fl. FV(j) and that a does not contain any. variable
that is bound in f at a place where x is free in f. These new axioms are
theorems in the Principia (*9·2 and *9·25), and Russell's axioms are proved
in Church's system [30].

We must take into account that Godel and Church both use simple type
theory instead of ramified type theory. But Russell's system, by accepting
the axiom of reducibility, is in fact also based on simple type theory.

Clearly, ARTT has also modus ponens (function application). We now
show that all the axioms of Russell's system can be derived in ARTT as well:

Theorem 4.20 In ARTT with the axioms ExFalson and DblNegn, one can
construct terms of the following types:

T(Vp:*k[(pVp)-+ p]) (*1·2);

T(Vp:*k'v'q:*m[q-+ (p V q)J) (*1·3);

T(\fp;*k 'v'q:*m[(p V q)-+ (q V p)]) (*1·4);

T(\lp:*k 'v'q:*m Vr:*n[(p V (q V r)) -+ (q V (p V r))]) (*1·5);

T('v'p:*k'v'q:*mVr:*n[(q-+ r)-+ ((p V q)-+ (p Vr))J) (*1·6);

T('v'f:L-+ *m'v'x:L[f(x)-+ 3z:t[f(z)]]) (*9·1);

T('v'f:t-+ *mVx:Ny:t[(f(x) V f(y)-+ 3z:t[f(z)]J) (*9·11).

4b RTT in PAT style

PROOF: The following terms are inhabitants of the types above:

.\p:*k·Ax:(p-+ .L)-+ p.DblNegkp(.\y:p-+ .L.y(xy))

.Xp:*k·.Xq:*m·Ay:q . .Xx:p-+ .L.y

.Xp:*k·.Xq:*m·.Xx:(p-+ .L) -+ q .
.\y:q-+ .L.DblNegkp(.Xz:p-+ .L.y(xz))

Ap:*k·Aq:*m·Ar:*n·Ax:(p-+ .L)-+ ((q-+ .L)-+ r) .
.Xy:q -+ L.Xz:p -+ .L.xzy

Ap:*k·Aq:*m·Ar:*n·Ax:q-+ r.
.\y:(p-+ .L) -+ q . .Xz:p-+ .L.x(yz)

.Xx:t.Af:t-+ *k·Ap:fx . .Xq:(lly:t.fy-+.L).qxp

.Xx:t.Ay:t.Af:t-+ *k·Ap:(fx-+ t)-+ fy .
.\q:llz:t.fz-+ .L.qy(p(qx))

(*1·2);

(*1·3);

(*1·6);

(*9·1);

153

The last axiom of Russell's logical system is implemented in ARTT by
the IT-elimination rule.

We conclude that the embedding T is sound with respect to the logics
that are used in RTT and ARTT.

4b6 Various implementations of PAT

As was explained in Definition 4.8, types and terms are mixed up in one
system ARTT. As a consequence we can spot a hierarchy of levels in ARTT.

The hierarchies in RTT and >.RTT are depicted in Figures 4 and 5. Some of
the levels in these figures are empty. Later, we will compare the systems RTT

and ARTT with other systems. For this comparison, we will draw similar
pictures, in which we need the levels that are empty in the presentation of
RTT and ARTT.

We have the level of propositional types: This is formed by the terms
that have a type of the form Below the level of propositional types we
find propositions and propositional functions. These have a propositional
type as type. Under the level of propositions and propositional functions
we find the level of proofs; A proof has always a proposition as its type.

154 4 Propositions as Types and Proofs as Terms

Ramified Types
oo ()2 (oo)1

Objects I Propositions I Prop. functions
a Vx:()1[x()- x()] R(x)

Figure 4: Levels within RTT

Topsorts

*s 02 01
Ramified Types

l *2 l- *1
Objects Propositions Prop. functions

a IIx:*1·IIy:x.x >.x:t.Rx
Proofs

>.x:*1.>.y:x.y

Figure 5: Levels within ARTT

4b RTT in PAT style 155

There is a second hierarchy of levels in ARTT. At its top we find *s,
the type of individual types. It has as its only inhabitant t, the type of
individuals. One could imagine situations in which *s has more inhabitants.
For instance, if we would allow several sets of individuals. Or if the II
formation rule (* s, * 8 , * s) is allowed, so that also types like t -+ t can
be constructed. Below the type of individuals, we find the individuals
themselves.

We see that the transformation of RTT to .ARTT has introduced some
new term levels:

• A level of topsorts. These topsorts are needed to type the ramified
types. Such typing is needed for two reasons:

Variable introduction If we want to introduce a variable of a cer
tain type r in a PTS, we have to establish that r is an allowed
type. This is done by requiring that r itself must have a certain
type;

Type construction To control the construction of types with the II
formation rules, II-formation is only allowed with certain types.
This is determined by the type of that type. The ramified types
of RTT however, do not have a type in RTT. We use the topsorts

, 0 2 , • • • to type the translations of these ramified types in
ARTT. This also gives us a good way to check the order of a
type: A type of order n has type Dn;

• A level of proofs.This level was empty in RTT, as proofs are not part
of the theory of RTT.

From our PTS-point of view it is remarkable that sorts of RTT which are
denoted by the symbol*, are not all at the same level. The sort *s occurs
at the level of topsorts, while the sorts *n live at the level of the ramified
types. Moreover, we have already seen that each II-formation rule of the
form (On, s1, s2) also has a variant of the form (*s, s1, s2), and vice versa.
With this in mind it would have been more clear to write 0 8 instead of *s,
and use *s for t.

The reason that we chose the symbol *s (instead of Ds) has to do with
traditions within the discipline of Pure Type Systems: The levels are

156 4 Propositions as Types and Proofs as Terms

Logical Topsorts
02 01

Object Topsorts Logical Ramified Types

*s *2 t- *1
Object Types Propositions Prop. functions

t Ilx:*1·Ily:x.x >.x:t.Rx
Objects Proofs

a >.x:*t·>.y:x.y

Figure 6: Levels of >.RTT in PTS tradition

Obj. Tops. Proof Topsorts Logical Topsorts

*s *2 02 01
Obj. Types Proof Types Logical Ramified Types

t true(Vx:()1.x-x) ()2 (oo)1

Objects Proofs Propositions I Prop. functions
a >.x: *1 .>.y:x.y Vx:()1.x-x R(x)

Figure 7: Levels of ARTT in bool-style PAT

4b RTT in PAT style 157

usually partitioned in such a manner that *s and *n live at the same level.
See Figure 6.

Let's have a closer look at the traditional situation. The PAT principle
within PTSs is often implemented by lifting the propositions and proposi
tional functions from term level to type level, but leaving the individuals
at term leveL We see that proofs are not introduced at a new level below
term level, but that the type level (as far as propositions and propositional
functions are concerned) is lifted, and that the proofs are put at the term
level that was originally occupied by the propositions.

The treatment of propositions at a higher level than individuals can
be understood if we take a look at first-order logic. In systems for first
order logic, quantification over individuals is possible, but quantification
over propositions and propositional functions is not allowed. This leads to
the treatment of propositions and propositional functions at a higher leveL

Contrary to the PTS tradition, we did not lift propositions from term
level to type level when we constructed a PAT implementation for RTT.
Instead, we built a new level below the level of propositional functions,
propositions and individuals: The level of proofs. In this way the double
role of propositions is more clear:

• They are terms, as they live at the same level as the individuals;

• They are types, as they can have inhabitants (their proofs).

The PAT implementation a Ia De Bruijn can in various ways be seen as
a compromise between the two different points of view above (though it
has been developed independently). A PAT implementation of RTT ala De
Bruijn could be depicted as in Figure 7. There are three hierarchies now:
The two well-known hierarchies of objects and propositions/propositional
functions, plus a new hierarchy for proofs. The hierarchies of propositional
functions·and proofs are connected via the operator true (see Section 4a4),
which assigns a type of proofs to each proposition. This picture:

• Respects the wish to treat propositions at term level;

• Respects the wish to treat proof classes as types;

• Can also be seen, in retrospect, as a compromise from a historical
point of view. Though AUTOMATH and the PAT notion in De Bruijn

158 4 Propositions as Types and Proofs as Terms

style are mainly independent of other developments in logic and type
theory, the bool-style PAT notion (1968) historically fits between the
style of Figure 5 for the Ramified Theory of Types (1908-1912) and
the style of Pure Type Systems in Figure 6 (1988).

4c STT in PAT style

From the description of RTT in PAT style it is easy to make a description
..\STT of STT in PAT style: Simply remove all references to orders. This
means that *n has to be replaced by *, and On by 0 (for all n E N).
In fact, the same procedure is followed by Ramsey [101], Godel [57] and
Church [30] in their presentations of simple type theory.

One of the consequences is that rule (Incl) disappears. We obtain a pure
type system with axiom *:0 and rules (*s, D, D), (0, D, D), (*s, *, *), (*, *, *)
and (0, *, *). This looks familiar to the Calculus of Constructions >.C. In >.C
there is the same axiom *:0, and rules(*,*,*),(*, o, D), (D, *, *), (D, o, D).
But ..\STT is more restricted than >.C. More specifically, rule (*s, o, D) is
not as powerful as rule (*, D, D) in >.C. As in >.C, we do have higher order
logic, but we do not have the higher order functions that are present in >.C.
This is due to the fact that *s is a topsort in ..\sTT, while * has type D.

Therefore, ..\STT is a system somewhere in between >.w and >.C.
Notice that we have given a PAT version of the simple theory of types,

and not of the simply typed >.-calculus of Church [30]. In [30] there are
more things formalised than in STT:

• In the simply typed >.-calculus there are more types. For instance,
i-t i is a type, and so is * -t i (in [30] this type is denoted o -t i).

More precise: For a PAT implementation of Church's theory we should
add a rule (*s, *s, *s), and a rule (D, *s 1 *s);

• Church has an additional logical operator (1) in his system. This
operator also occurs in Russell's RTT, but only as an abbreviation
and not as a new syntactical object (see [121], pp. 66-68 and pp.
173-175).

Remark 4.21 Together, the rules (*s, D, D) and (D, D, D) form a version
of the simply typed lambda calculus of Church. The identification would
have been complete if we had identified *s with D.

Conclusions 159

Conclusions

We saw that there are various ways in which PAT can be implemented in
type theories. There are two main streams:

Curry-Howard approach: This approach treats propositions as types,
and a proof of a proposition is an inhabitant of the type that repre
sents that proposition. The implementation is based on the Brouwer
Heyting-Kolmogorov interpretation of the logical connectives. In par
ticular, a proof of an implication A ---+ B is represented as a function
that transforms proofs of the proposition A (terms of the type A) to
proofs of B (terms of type B);

De Bruijn approach: For each proposition P we create a type bool(P).
A proof of P in this approach is not a term of type P (as in the
Curry-Howard style), but a term of type bool(P).

In Curry-Howard style implementations, logic is already part of the sys
tem. The logical connective ---+ and the quantifier V immediately translate
to the construction of function types. Using higher-order logic, other logical
connectives can be defined in terms of ---+ and V. De Bruijn style imple
mentations have more possibilities. One can implement the logical system
independent from the type system. But it is also possible to use function
types for the translation of ---+ and/or V as is done in the Curry-Howard
style.

The various implementations lead to various levels in type systems.
This was depicted in figures 6 and 7. In Curry-Howard style and the PTS
tradition, propositions are at the same level as types, and therefore, proofs
are at the same level as objects (terms). In De Bruijn style (bool-style),
proofs, propositions, and propositional functions all live at term level.

A third division into levels appeared when we gave a description of RTT
in PAT-style. See Figure 5. On the one hand, ARTT uses a Curry-Howard
style implementation. There is no difference between a proposition and
the type of its proofs. Therefore, proofs and propositions do not live at
the same level (as is the case in PAT ala De Bruijn). On the other hand,
objects and propositions live at the same level.

The implementation of RTT in PAT-style not only serves as an elaborate
example of PAT, but also shows that ramified types can be placed in the
framework of Pure Type Systems without too many problems.

Chapter 5

Automath

The first practical use of the propositions-as-types principle sketched in
Chapter 4 is found in the AUTOMATH project [95]. The AUTOMATH sys
tems are the first examples of proof checkers, and in this way they are
predecessors of modern proof checkers like Coq [42] and Nuprl [34].

The project was started in 1967 by N.G. de Bruijn, and

"it was not just meant as a technical system for verification of
mathematical texts, it was rather a life style with its attitudes
towards understanding, developing and teaching mathematics."

([23]; see [95] p. 201)

Thus, the roots of AUTOMATH are not to be found in logic or type
theory, but in mathematics and the mathematical vernacular [22]. This is
also clearly reflected in the goals of the AUTOMATH project:

"1. The system should be able to verify entire mathematical
theories.

2. The system should remain very general, tied as little as pos
sible to any particular set of rules for logic and foundations
of mathematics. Such basic rules should preferably belong
to material that can be presented for verification, on the
same level with things like mathematical axioms that have

to be explained to the reader. 1

3. The way mathematical material is to be presented to the
system should correspond to the usual way we write mathe
matics. The only things to be added should be details that
are usually omitted in standard mathematics."

([23]; see [95] pp. 209-210)

161

Goal 1 was definitely achieved: Van Benthem Jutting translated and
verified Landau's "Grundlagen der Analysis" [83] in AUTOMATH (see [9],
[10]) and Zucker formalised classical real analysis in AUTOMATH (see [124]).

A consequence of goal 2 has already been discussed in Section 4a4.
There, we saw that de Bruijn used a PAT principle that was somewhat
different from Curry and Howard's. Curry and Howard identified the log
ical implication and the universal quantifier with function types, following
Heyting's intuitionistic interpretation of logical connectives. In doing so,
they do not leave a possibility for a different interpretation of implication
and universal quantification. Using PAT in de Bruijn's style, the rules for
manipulating the logical connectives always have to be made explicit by the
user (an example of such a specification can be found in Section 12 and 13
of [11 J). This makes it possible to give interpretations of logical connectives
that are not based on interpreting implication and universal quantification
by a function type.

De Bruijn has spent a lot of effort in achieving goal 3. He has studied the
language of mathematics in great depth (see [22]), and many of his insights
are reflected in AUTOMATH. \Ve mention some AUTOMATH features that
help to achieve goal 3:

• The use of books. Just like a mathematical text, AUTOMATH is writ
ten line by line, where each line may refer to definitions or results
given in earlier lines;

• The. use of definitions. Without definitions, expressions very soon
become too long. Moreover, a definition gives a name to a certain

1 So: the logical rules should be treated on the same level as mathematics. A logical
rule can be introduced as an axiom in the same way a mathematical axiom can be
introduced. Other logical rules can be derived from existing rules, like mathematical
theorems can be derived from existing theorems and axioms. [remark by the author]

162 5 Automath

expression, and this name makes it easier for the user to remember
(or understand) what the use of the definiens is;

o The use of a parameter mechanism together with a default mech
anism. We discuss the advantages of these mechanisms in Section
5a.

As AUTOMATH was developed quite independently from other develop
ments in the world of type theory and >.-calculus, there are many things
to be explained in the relation between the various AUTOMATH languages
and other type theories. In this chapter we focus on the relation' between
AUTOMATH and Pure Type Systems (PTSs). Both [5] and [54] mention this
relation in a few lines, but as far as we know a satisfactory explanation of
the relation between AUTOMATH and PTSs is not available. Moreover, both
works consider AUTOMATH without one of its most important mechanisms:
The definition system. Even the system PAL, which roughly consists of the
definition system of AUTOMATH only, is able to express some simple math
ematical reasoning (see for instance Section 5 of [21]). Moreover, recent
developments on the use of definitions in Pure Type Systems by Bloo, Ka
mareddine and Nederpelt [17, 16] and Severi and Poll [114] justify renewed
research on the relation between AUTOMATH and PTSs. The combination
of the work of Severi and Poll [114] and the parameter mechanism of Au
TOMATH leads to a white spot in the theory of PTSs, and this spot will be
filled up in Chapter 6.

In Section 5a we give a description of AUT-68, which is one of the
most elementary AUTOMATH system. In Section 5b we discuss how we can
transform AUT-68 into a PTS. In doing so, we must notice that AuT-68
has some properties that are not usual for PTSs:

o AUT-68 has 7]-reduction;

o AUT-68 has IT-application and IT-reduction (as it does not make any
difference between >. and II);

o AuT-68 has a definition system;

o AuT-68 has a parameter mechanism.

77-reduction is the reduction relation generated by (>.x.Rx) ---tTJ R, where
x rf_ Fv(R). In systems with IT-application, a term ITx:A.B can be applied

5a Description of AUTOMATH 163

to a term N (of type A). This results in (IIx:A.B)N. The usual application
rule of Pure Type Systems then changes to

r t- M : IIx:A.B r t- N : A

r t- M N : (IIx:A.B)N

In such systems, II behaves like A, and as a consequence, there also is a
rule of IT-reduction

(IIx:A.B)N -+rr B[x:=NJ.

In AUTOMATH, one does not even make any distinction between the terms
IIx:A.B and Ax:A.B. They are both denoted [x:A]B. It is not always easy
to see whether a term [x:A]B represents (in notation of PTSs) Ax:A.B or
IIx:A.B.

We pay more attention to IT-application and IT-reduction at the end of
this Chapter; for more details see [17] and the literature on AUTOMATH
[95].

We consider ?]-reduction not as one of the essential features of Au
TOMATH, and prefer to focus on the definition and parameter mechanisms,
which are the most characteristic type-theoretical features of AUTOMATH.

In Section 5c, we present a system A68 that is (almost) a PTS. We show
that it has the usual properties of PTSs and we prove that .\68 can be seen
as AUT-68 without ?]-reduction, IT-application and IT-reduction. There is
no direct parameter system in .\68 either, but this parameter system is
hidden in the rules for the construction of product types. In Section 5d we
compare the definition system of AUT-68 with several other, more modern,
type systems with definitions.

5a Description of AUTOMATH

During the AUTOMATH-project, several AUTOMATH-languages have been
developed. They all have two mechanisms for describing mathematics. One
of them essentially is a typed A-calculus, with the important features of .\
abstraction, .\-application and ,()-reduction. The other mechanism is the use
of definitions and parameters. The latter is the same for most AUTOMATH
systems, and the difference between the various systems is mainly caused by
different A-calculi that are included. In this section we will describe the sys
tem AUT-68 which not only is one of the first AUTOMATH-systems, but also

164 5 Automath

a system with a relatively simple typed >.-calculus, which makes it easier
to focus on the (less known) mechanism for definitions and parameters.

A more extensive description of AuT-68 on which our description below
is based, can be found in [11], [20] or [40].

5al Books, lines and expressions

In the conception underlying the AUTOMATH-systems, a mathematical text
is thought of as being a series of consecutive "clauses". Each clause is
expressed in AUTO MATH as a line. Lines are stored in so-called books. For
writing lines and books in AUT-68 we need

• The symbol type;

• A set V of variables;

• A set C of constants;

• The symbols ([]

We assume that V and C are infinite, or at least offer us as many different
elements as needed. We also assume that VnC = 0 and that type 1. VuC.

The elements of V are called block openers, the elements of V U C are
called identifiers in [21].

Definition 5.1 (Expressions) We define the set£ of AUT-68-expressions
(or, in short, expressions) inductively:

(variable) If x E V then x E £;

(parameter) If a E C, n E N (n = 0 is allowed) and I:1, ... , L:n E £
then a(I:1, ... , L:n) E £. I:1, ... , L:n are called the parameters of
a(L:1, ... ,L:n);

(abstraction) If x E V, L; E £ U {type} and 0 E £then [x:I:Jrl E £;

(application) If I:1, I:2 E £then (I:2)I:1 E £.

Sometimes we will consider the set £+ ~f £ U {type}.

Sa Description of AUTOMATH 165

Remark 5.2 The AUT-68-expression [x:I:]n is AUTOMATH-notation for
abstraction terms. In PTS-notation one would write either ,\x:E.n or
llx:I:.n. In a relatively simple AuTOMATH-system like AUT-68, it is easy
to determine whether ,\x:E.n or ITx:I:.n is the correct interpretation for
[x:I:]n. This is harder in AUTOMATH-systems with a more complex >.
calculus, like AUT-QE.

Remark 5.3 The AUT-68-expression {l:2}l:1 is AUTOMATH-notation for
the intended application of the "function" l:1 to the "argument" l:2. In
PTS-notation: l:2.

Note the unusual order of "function" E1 and "argument" l:2 in {2::2} E1.
An advantage of this notation with respect to the classical notation becomes
clear if we assume that E 1 is a function [x:n1]n2. In that case, (E2)E1
{E2} [x:n1]n2. The argument E2 and the abstraction [x:n1] belong together:
As soon as the intended application of the function E1 to its argument is
carried out, E 2 is substituted for x everywhere in n2. It is convenient
to put expressions that belong together next to each other. In the usual,
classical notation, we would write ([x:n1jn2)E2, where E2 and [x:n1] are
separated from each other by the expression n2. This makes the structure
of the expression less clear, in particular if n2 is a very long expression. The
advantages of writing {E2}E1 instead of the classical E1E2 are extensively
discussed in the works of Kamareddine and Nederpelt see for instance
[94], [72], [73].

Definition 5.4 (Free variables)

• FV(x) ~f {x };

• FV(a(Ell· .. , En))~ U~=l FV(l:i)i

• Fv([x:E]n) ~f Fv(E) u (Fv(n) \ {x});

• FV((E2)EI) ~ FV(E1) U FV(2:2).

Convention 5.5 We adhere to the usual convention that names of bound
variables in an expression differ from the free variables in that expression.

We use = to denote syntactical equivalence (up to renaming of bound
variables) on expressions.

166 5 Automath

Definition 5.6 If 0, I:: I, ... , I:n are expressions (in £), and XI, ... , Xn are
distinct variables, then

denotes the expression 0 in which all free occurrences of XI, ... , Xn have
simultaneously been replaced by I:: I, ... , I:n. This, again, is an expression
in £ (this can be proved by induction on the structure of 0).

type[xi, ... , Xn:=I::I, ... , I::n] is defined as type.

Definition 5. 7 (Books and lines) An AUT-68-book (or book if no confu
sion arises) is a finite list (possibly empty) of (AuT-68)-lines (to be defined
next). If h, ... ,ln are the lines of book 123, we write 123 = h, ... ,ln.

An AuT-68-line (or line if no confusion arises) is a 4-tuple (r; k; I:: I; I::2).
Here,

• r is a context, i.e. a finite (possibly empty) list XI:O:I, ... ,Xn:O:n,

where the XiS are different elements of V and the O:iS are elements of
[+;

• k is an element of V U C;

• I::I can be (only):

o The symbol- (if k E V);

o The symbol PN (if k E C) (PN stands for "primitive notion");

o An element of£ (if k E C);

• I::2 is an element of£+.

Remark 5.8 As regards the intended meaning of an AUTOMATH-line, we
note the following. There are three sorts of lines:

1. (r; k; -; I::2) with k E V. This is a variable declaration of the variable
k having type I::2. This does not really add a new statement to the
book, but these declarations are needed to form contexts.

Variables can play two roles. First of all they can represent an un
specified object of a certain type (compare this to the mathematical
way of speaking: "let x be a natural number"). Secondly, a variable

5a, Description of AUTOMATH 167

can act as a logical assumption. This happens if the variable has as
type the proof of a certain proposition A. The usual mathematical
way of speaking in such a situation is not "let x be a proof of A",
but: "assume A";

2. (r; k; PN; I:z) with k E C. This line introduces a primitive notion: A
constant k of type . This constant can act as a primitive notion
(for instance introducing the type of natural numbers, or introducing
the number 0), or as an axiom (to be precise, a postulated inhabitant
of the set of proofs of the proposition expressing the axiom).

The introduction of k is pammetrised by the context r. For instance,
if we want to introduce the primitive notion of "logical conjunction",
we do not want to have a separate primitive notion for each possi
ble conjunction and(A, B). 2 Instead, we want to have one primitive
notion and, to which we can add two propositions A and B as param
eters when we want to form the proposition and(A, B). Therefore, we
introduce and in a context r = x:prop, y:prop. Given certain propo
sitions A, B this enables us to form the AuT-58-expression and(A, B);

3. (r; k; 2::1 ; 2::2) with k E C and E E. This line introduces a defini-
tion. The definiendum k is defined by the definiens and has type
2::2 . Definitions can be parametrised in a similar way as primitive
definitions. Definitions have two important applications:

• They make it possible to abbreviate long expressions, thus keep
ing the structure of a book clear, and making manipulations with
expressions more efficient;

• They make it possible to give a name to an expression. For
instance, we can abbreviate S(S(S(S(S(S(S(O))))))) by 7.

Example 5.9 In Figure 8 we give an example of an AUTOMATH-book that
introduces some elementary notions of propositional logic. We have num
bered each line in the example, and use these line numbers for reference in

2 Contrary to the habit in mathematics to use only one character (possibly indexed)
for a variable, AUTOMATH adopts the convention of computer science to use variables
that consist of more than one character. So and represents only one variable, and not
the application of a to n and d.

168 5 Automath

our comments below. To keep things clear, we have omitted the types of
the variables in the context. The book consists of three parts:

• In lines 1-5 we introduce some basic material:

1. We take the type prop as a primitive notion. This type can be
interpreted as the type of propositions;

2. We declare a variable x of type prop. This variable will be used
in the sequel of the book;

3. We similarly define a variable y of type prop. We do this within
the context x: prop. For reasons of space, we do not explicitly
mention the type of x in the context; if necessary we can find
that type in line 2;

4. Given propositions x andy, we introduce a new primitive notion,
the conjunction and(x,y) of x andy;

5. Given a proposition x we introduce the type proof (x) of the
proofs of x as a primitive notion. In this way, we can use the
PAT principle a la de Bruijn (cf. Section 4a4);

• In lines 6-11 we show how we can construct proofs of propositions of
the form and(x, y), and how we can use proofs of such propositions:

6. Given propositions x and y, we assume that we have a expres
sion px E V of type proof (x). In other words, the variable px
represents an arbitrary proof of the proposition x;

7. We also assume a proof py of y;

8. Given the propositions x and y, and proofs px and py of x and
y, we want, to conclude that and(x,y) holds. This is an ax
iom of natural deduction, and we call this axiom and- I (and
introduction) in our book. An expression and-I(x,y ,px,py) is
a proof of and(x, y), so of type proof (and(x, y)).

In line 8, we see proof(and) instead ofproof(and(x,y)) as the
type of and-I. This is usual notation in AUTOMATH, and keeps
lines short. To be precise, this "default mechanism" works as
follows. From line 4, we conclude that and should always carry
two parameters. This is because the context of line 4 has two

c.,,
1).)

tJ
(!)
[/)
~

:::! -o·
0
i::l

"lj
0 &q· 0 prop PN type (1),

.:: > ...,
0 X prop (2) (!) ~

00 X y (3) 1-,j
prop 0

trJ x,y and PN prop (4) 15:
~ ~ 1).)

X proof PN type (5) s =
'0 x,y px proof(x) (6) ro-
0 x,y,px py proof(y) (7),
1).) x,y,px,py and-I PN proof(and) (8)
l:l

> x,y pxy proof(and) (9)
~ x,y,pxy and-01 PN proof(x) (10) 1-,j
0 x,y,pxy and-02 PN proof(y) (11) 2:::
> X prx proof(x) (12) 1-,j

= x,prx and-R and-I(x,x,prx,prx) proof(and(x,x)) (13) ' 0"
0 x,y,pxy and-S and-I(y,x,and-02,and-01) proof(and(y,x)) (14) 0
~

170 5 Automath

variables x and y. In the expression proof (and) in line 8, no
parameters are provided for and. It is then implicitly assumed
that the first two variables of the context of line 8 are used as
"default parameters". The first two variables of the context of
line 8 are x and y. Therefore, proof (and) in line 8 should be
read as proof(and(x,y)).

In a similar way, we could write proof instead of proof (x) in line
6. From line 5 (where proof is introduced) we find that proof
carries one parameter. Writing just proof in line 6 means that
we must use the first variable of the context of line 6, x, as a
default parameter. We must write proof (y) in line 7. Writing
just proof would give proof (x);

9. We also want to express how we can use a proof of and (x, y).
Therefore we introduce a variable pxy that represents an arbi
trary proof of and (x, y);

10. First of all, we want that x holds whenever and(x,y) holds.
Therefore we introduce an axiom and-01 (and-out, first and
elimination). Given propositions x, y and a proof pxy of the
proposition and (x, y), and -01 (x, y, pxy) is a proof of x;

11. Similarly, we introduce an axiom and-02 that represents a proof
of y;

• We can now derive some elementary theorems:

12. We want to prove that we can derive and (x, x) from x. That
is: Whenever we have a proof of x, we can construct a proof
of and (x, x). In line 6, we already introduced a variable for a
proof of x: px. However, we declared this variable in the context
x, y. As we do not want a second proposition y to occur in this
theorem, we declare a new proof variable prx, in the context x;

13. We derive our first small theorem: The reflexivity of the logical
conjunction. Given a proposition x, and a proof prx of x, we
can use the axiom and- I to find a proof of and (x, x): we can
use the expression and-I(x,x,px,px) thanks to line 8. We give
a name to this proof: and-R. If, anywhere in the sequel of the
book, I; is a proposition, and n is a proof of :E, we can write

Sa Description of AUTOMATH 171

and-R(I::, fl) for a proof of and(I::, I::). This is shorter, and more
expressive, than the original expression and- I(I::, fl, fl);

14. We can also show that and is symmetric. That is: Whenever
and(x,y) holds, we also have and(y,x). The idea is as fol
lows. Given propositions x,y and a proof pxy of and(x,y), we
can form proofs and-Ol(x,y,pxy) of x and and-02(x,y,pxy)
of y. We can feed these proofs "in reverse order" to the axiom
and- I: The expression and-I(y ,x,and-02,and-01) represents
a proof of and (y, x). The expression and-02 should be read as
and-02(x, y ,pxy) due to the "default parameter" mechanism.
Similarly, and-01 must be read as and-Ol(x,y ,pxy).

5a2 Correct books

Not all books are good books. If (r; k; I::1; I::2) is a line of a book Q3, the
expressions I:: 1 and I::2 (as long as I::1 is not PN or -, and I::2 is not type)
must be well-defined, i.e. the elements of VUC occurring in them must have
been established (as variables, primitive notions, or defined constants) in
previous parts of 113. The same holds for the type assignments Xi:ai that
occur in r. Moreover, if I::1 is not PN or -, then I::1 must be of the same
type as k, hence I::1 must be of type I::2 (within the context f). Finally,
there should be only one definition of any object in a book, so k should not
occur in the preceding lines of the book.

Hence we need notions of correctness (with respect to a book and/or a
context) and we need a definition of the notion "I::1 is of type I::2" (within
a book and a context).

We write 113; 0 1- OK to indicate that a book 113 is correct, and 113; r 1- OK

to indicate that the context r is correct with respect to the (correct) book
113. As the empty context will be correct with respect to any correct book,
this does not lead to misunderstandings.

We write 113; r 1- I:: (or 113; r 1-AUT -68 I:: if confusion with other deriva
tion systems might arise) to indicate that I:: is a correct expression with
respect to 113 and r. We write 113; r 1- I::1 : I::2 (or Q3; r I-AUT-68 I::1 : I::2) to
indicate that I::1 is a correct expression of type with respect to 113 and
r. We also say: I::1 : is a correct statement with respect to 113 and r.

The following two interrelated definitions are based on [40].

172 5 Automath

Definition 5.10 (Correct books and contexts) A book ~ and a con
text r are correct if SB; r 1- OK can be derived with the following rules (The
relation =,ed ("definitional equality") will be explained in Section 5a3. The
rules use the notion of correct statement as given in Definition 5.11).

(axiom)

(context ext.)

(book ext.: varl)

(book ext.: var2)

(book ext.: pnl)

(book ext.: pn2)

(book ext.: defl)

(book ext.: def2)

0;01- OK

~1, (f; x; -;a), !Bz; f 1- OK
SB1,(f;x;-;a),SB2;f,x:a 1- OK

!B;f 1- OK
SB, (f; x; -;type); 0 1- OK

SB; r 1- L:z : type
SB, (f; x; -; L:z); 0 1- OK

!B;f 1- OK
!13, (f; k; PN; type); 0 I- OK

SB; r 1- L:z : type
!13, (f; k; PN; L:2); 0 I- OK

SB; r 1- L:1 : type
!13, (f; k; L:1; type); 0 1- OK

SB; r 1- L:z :type SB; r 1- L:1 : I:~ SB; r 1- L:z =(3d I:~
!13, (f; k; L:1; L:2); 0 1- OK

For the (book ext.) rules, we assume that the introduced identifiers x E V
and k E C do not occur anywhere in SB and r.

Definition 5.11 (Correct statements) A statement SB; r 1- I: : 0 is
correct if it can be derived with the rules below (the start rule uses the
notions of correct context and correct book as given in Definition 5.10).

(start)

(parameters)

SB; r1, x:a, fz 1- OK
SB;r1,x:a,f2 l- x:a

SB = SB1, (x1:a1, ... , Xn:an; b; 01; Oz), !Bz
SB; r 1- L:i:ai[X1, ... 'Xi-1:=L:1, ... 'L:i-1](i = 1, ... 'n)

SB;f 1- b(L:1,··· ,L:n): Oz[x1,··· ,xn:=L:1,··· ,L:n]

(abstr.l) SB; f 1- L:1:type SB; r, x:L:1 1- 0 1:type
SB; r 1- [x:L:1J01 : type

5a Description of AUTOMATH 173

(abstr.2)
'23; r 1- L:l :type

(application)

(conversion)
sn;r 1- L:: fh

When using the parameter rule, we assume that '23; r 1- OK, even if n 0.

Example 5.12 The book of Example 5.9 (see Figure 8) is correct. We
prove this line by line for the first four lines (the reader is invited to check
lines 5-14 for himself). We write (m-n) to denote the book that consists
of lines m to n of Example 5.9.

1. By (axiom), 0; 0 1- OK, so by (book ext.: pn1),

(0;prop;PN;type);01- OK.

2. By (parameters), (1-1); 0 ~ prop : type. Therefore by (book ext.:
varl), (1-1), (0, x, -,prop); 0 1- OK.

3. By (context ext.), (1-2);x:prop 1- OK. Therefore by (book ext.: var1),
(1-2), (x:prop; y; prop) 1- OK.

4. By two applications of (context ext.), (1-3);x:prop,y:prop 1- OK. By
(parameters), (1-3); x:prop, y:prop 1- prop:type. Therefore by (book
ext.: pn2), (1-4); 0 1- OK.

5a3 Definitional equality

We still need to describe the relation =f3d ("definitional equality"). This
notion is based on both the definition mechanism and the abstraction/ap
plication mechanism of AuT-68. The abstraction/application mechanism
provides the well-known notion of ,8-equality, originating from the rule of
,8-conversion:

174 5 Automath

We will use notations like -f3, =13, and -+t as usual (see A.ll).
We now describe the definition mechanism of AUT-68 via the notion of

d-equality. This definition depends on the definition of derivability, and the
definition of derivability given in the previous subsection depends on the
definition of definitional equality. In fact, the definitions of correct book,
correct line, correct context, correct expression and definitional equality
should be given within one definition, using induction on the length of the
book. This would lead to a correct but very long definition, and that is
probably the reason why the definitions are split into smaller parts (in this
thesis as well as in [40]).

Definition 5.13 (d-equality) Assume, 123;f I- L:: L:'. We define the d
normal form nfd (L:) of L: with respect to 123 by induction on the length of
the book 123. So, assume nfc! (L:) has already been defined for all books 123'
with less lines than 123, and all expressions L: that are correct with respect
to 123' and a context r. Use induction on the structure of L::

• If L: is a variable x, then nfc!(L:) ~ x;

• Now assume L: = b(01, ... , On), and assume that the normal forms
of the nis have already been defined.

Determine a line (~; b; 3 1 ; 3z) in the book 123 (there is exactly one
such line, and this line is determined by b).

Write~= x1:a1, ... ,xn:an· Distinguish:

o 3 1 = -. This case doesn't occur, as b E C;

o 3 1 = PN. Then define nfd(L:) ~ b(nfd(OI), ... , nfd(On));

o 21 is an expression. Then 3 1 is correct with respect to a book
123' that contains less lines than 123 (123' doesn't contain the line
(~; b; 21; 2z), and all lines of 123' are also lines of 123), hence we
can assume that nfc!(31) has already been defined. Now define

• If L: = [x:01]0z then nfd(L:) ~ [x:nfd(Ol)]nfc!(Oz);

• If L: = (Oz)01 then nfd(L:) ~f (nfd(02))nfd(01).

Sa Description of AUTOMATH 175

As we see, the d-normal form nfd(I:) of a correct expression I: depends on
the book~' and in order to be completely correct we should write nfd23 (I:)
instead of only nfd(I:). We will, however, omit the subscript~ as long as
no confusion arises.

We write ={3d for the smallest equivalence relation that contains both
={3 and =d·

Definition 5.14 (Definitional equality) I:1 and I:2 are called defini
tionally equal (with respect to a book ~) if I:1 ={3d I:2.

This definition completes the description of AuT-68. Again, definitional
equality of expressions I:1 and I:2 depends on the book ~' so we should
write =f3d'B instead of ={3d· Also in this case we leave out the subscript ~
as long as no confusion arises.

As an alternative to Definition 5.13, we describe the notion of d-equality
via a reduction relation.

Definition 5.15 (8-reduction) Let~ be a book, r a correct context with
respect to ~' and I: a correct expression with respect to ~; r. We define
I: --+0 n by the usual compatibility rules, and

(8) If I:= b(I:1, ... , L:n), and~ contains a line (x1:a1, ... , Xn:an; b; 31; 32)
where 31 E £,then

We say that I: is in 8-normal form if for no expression n, I: --+0 n, and use
notations like -*o, -t and = 0 as usual. --+0 depends on~' but as we did
before with nfd and =d, we only explicitly mention this if it is not clear in
relation to which book ~ --+0 is considered.

The relations =d and = 0 are the same:

Lemma 5.16

1. (Church-Rosser) If A1 = 0 A2 then there is B such that A1 --+0 B and
A2 --+o B;

176 5 Automath

2. nf.i(E) is the (unique) 8-normal form of E;

3. E =ii fl if and only if E =d fl.

PROOF: AUT-68 with --tc can be seen as an orthogonal term rewrite system
(see [75]).

1. Such a term rewrite system has the Church-Rosser property (see [75]);

2. It is not hard to show that E -8 nfd(E). By induction on the def
inition of nf.i(E) one shows that nfd(E) is in 8-normal form. The
uniqueness of this normal form follows from the Church-Rosser prop
erty;

3. If E =c fl then by (1) there is \Ji such that E --tc \Ji and fl ----.8 \Ji.
This means that the 8-normal forms of E and n are equal, so by (2),
nf.i(E) = nf..I(fl).

On the other hand, if nfd(E) = nfd(fl), then E and fl have the same
8-normal forms (by (2)), so E =c fl.

Lemma 5.17 The relation --tc is strongly normalising.

PROOF: We already know that --t0 is weakly normalising (by 2). Moreover,
the definition of nf..I (E) in 5.13 induces an innermost reduction strategy.
By a theorem of O'Donnell (see [96], or pp. 75-76 of [75]), --t0 is strongly
normalising. t8l

5a4 Some elementary properties

Although we do not want to give a complete overview of all the meta
theoretical properties of AUTOMATH (these are studied in [91] and [40]), we
do present some properties that we will need at a later stage.

Definition 5.18 A book S.B is part of another book S.B', denoted as S.B ~ S.B',
if all lines of S.B are lines of S.B' as well. Similarly, a context r is part
of another context r', notation r ~ r', if all declarations x:o: of r are
declarations in r' as well.

5b From AUT-68 toward? a PTS 177

Lemma 5.19 (Weakening for AUT-68) If s:B; r 1- E n, s:B C s:B',
r ~ r' and s:81

; r' 1- OK then s:B'; r' 1- E: fl.

PROOF: By induction on the derivation of s:B; r 1- E : 0. 1:8:1

5b From AuT-68 towards a PTS

We want to give a description of AUT-68 within the framework of the Pure
Type Systems. There are several ways to do this. One of the most im
portant choices to be made is whether or not to maintain the parameter
mechanism (that is: To allow expressions with parameters, as in the sec
ond clause of Definition 5.1). On the one hand, the parameter mechanism
is an important feature of AUTOMATH. On the other hand PTSs do not
have a parameter mechanism, and the parameter mechanism can be easily
imitated by function application (cf. the second clause of the forthcoming
Definition 5.20). Moreover, the description by van Benthem Jutting in [5] of
the systems AUT-68 and AUT-QE in a PTS style does not use parameters.

In this chapter, we provide a translation to PTSs without parameters.
In doing so, we can explain van Benthem Jutting's description of AUT-68
and AUT-QE.

We will see, however, that the way in which we must handle parameters
in the resulting PTS is a bit artificiaL Moreover, we think that parameters
play an important role in the AUTOMATH systems, and that they could
play a similar role in other PTSs. Therefore, we will present an extension
of PTSs with parameters in Chapter 6. This extension is based on the way
in which parameters are handled in AUTOMATH, and it will be shown that
AUTOMATH can be described very well within these PTSs with parameters.

For a description of AUT-68 in PTSs without parameters, we must first
make a translation of the expressions in AUT-68 to typed .A-terms. This
translation is very straightforward:

Definition 5.20 We define a mapping n from the correct expressions
in [(relative to a book s:B and a context r) to 1', the set of terms for PTSs.
We assume that C U V ~ V (Vis the set of variables for PTS-terms).

_clef £ V
• X =X or X E ;

178 5 Automath

def -- def
• [x:I:]O = ITx:L:.O if [x:I:]O has type type, otherwise [x:I:]O

Ax:L:.O;

d fi -- def
Moreover, we e ne: type = *·

In the second clause of this definition we see that the parameter mecha
nism of Definition 5.1 is replaced by repeated function application in PTSs.

With this translation in mind, we want to find a type system A68 that
"suits" AUT68, i.e. if I: is a correct expression of type 0 with respect to
a book Q3 and a context r, then we want Q3', r' f- I: : 0 to be derivable in
A68, and vice versa. Here, Q3' and r' are some suitable translations of Q3
and r. The search for a suitable A68 will concentrate on three points, which
we first discuss informally. In the next section we give a formal definition
of A68, and prove that it has the desired property.

5bl The choice of the correct formation (II) rules

When we keep in mind that type = *, the definition of correct expressions
5.11 gives a clear answer to the question of which IT-rules are implied by
the abstraction mechanism of AuT-68. The rule

Q3;f f- I:1:type Q3;f,x:I:l f- 01:type

Q3; r f- [x:I:1]01 :type

immediately translates into IT-rule (*, *, *) for PTSs:

~,rf-~:* Q3,r,x:I:1f-01:*

Q3,r f- (ITx:I:I.OI): *

where Q3 and rare suitable translations of Q3 and r.
It is, however, not immediately clear which IT-rules are induced by the

parameter mechanism of AUT-68.

5b From AUT-68 towards a PTS 179

Let ~ = b(~1, ... , ~n) be a correct expression of type n with respect
to a book 123 and a context r. rhere is a line (see Definition 5.10)

in 123 such that each ~i is a correct expression with respect to 123 and r, and
has a type that is definitionally equal to ai[x1, ... , Xi-1:=~1, ... , ~i-1]·

We also know that n =,ad 2dx1, 0 0 0 'Xn:=~1, 0 0 0 ~nl·
Now ~ = b~1 · · · ~n, and, assuming that we can derive in .\68 that ~i

has type

it is not unreasonable to assign the type Ilx1:a1 · · · IIxn:antob.32. We will
abbreviate this last term by rr~=1 Xi:ai.32. Then we can derive (using n
times the application rule that we will introduce for .\68) that ~ has type
n in .\68.

Jt is important to notice that the type of b, rr~= 1 Xi:ai.32, does not
necessarily have an equivalent in AuT-68, as in AUT-68 abstractions over
type are not allowed (only abstractions over expressions ~ that have type
as type are possible- cf. Definition 5.11). In other words, the type of b,
f1~= 1 Xi:ai.32, is not necessarily a first-class citizen of AUT-68 and should
therefore have special treatment in .\68. This is the reason to create a
special sort L, in which these types of AUT-68 constants and definitions
are stored. This idea originates from Van Benthem Jutting, and was firstly
presented in [5].

If we construct Ilxn:an.32 from 32, we must use a rule (81, 82, 83), where
81, 82,83 are sorts. Sort 81 must be the type of an. As an= type or an has
type type, we must allow the possibilities 81 = * and 81 = D. Similarly,
3 2 =type or 3 2 has type type, so we also allow 82 =*and 82 =D. As we
intended to store the new type in sort L, we take 83 = L.

For similar reasons, we introduce rules (*,L,L) and (D,L,L) to con
struct rr~=1 Xi:ai.32 from IIxn:an.32 for n > 1.

As a result, we have the following IT-rules:

(*,*,*);
(*, *, L); (D, *, L);
(*,D,L); (D,D,L);
(*,L,L); (D,L,L).

180 5 Automath

We do not have rules of the form (.6., sz, s3) or (sb .6., s3) with S3 *
or s3 = D. So types of sort cannot be used to construct types of other
sorts. In this way, we can keep the types of the .A-calculus part of AuT-68
separated from the types of the parameter mechanism: The last ones are
stored in .6..

In Example 5.2.4.8 of [5], there is no rule (*, *, .6.). In principle, this
rule is superfluous, as each application of rule (*, *, .6.) can be replaced by
an application of rule(*,*,*). Nevertheless we want to maintain this rule:

• First of all, the presence of both(*,*,*) and (*,*,.6.) in the sys
tem stresses the fact that AUT-68 has two type mechanisms: One
provided by the parameter mechanism and one by the .A-abstraction
mechanism;

• Secondly, there are technical arguments to make a distinction between
types formed by the abstraction mechanism and types that appear
via the parameter mechanism. In this thesis, we will denote product
types constructed by the abstraction mechanism in the usual way (so:
ITx:A.B), whilst we will (from now on) use the notation ~x:A.B for
a type constructed by the parameter mechanism. Hence, we have
for the constant b above that b : ~i=1 Xi:ai.Bz3 . As an additional
advantage, the resulting system will maintain Unicity ofTypes.4 This
would have been lost if we had introduced rules (*, *, *) and (*, *, .6.)
without making this difference, as we can then derive both

and

• There is another reason to make a distinction between types formed by
the abstraction mechanism and types that appear in the translation
via the definition mechanism. For the moment, we consider AUT-
68 without so-called IT-application. In AUT-68 with IT-application

3we use ~?= 1 x; :a; .3z as an abbreviation for ~x1 :a1 · · · ~Xn :an .::::2
4 The system as presented in [5] has Unicity of Types as well, because it does not have

the IT-formation rule (*, *, L:.) and is therefore singly sorted.

5b From AUT-68 towards a PTS 181

(call this system AuT-68IT for the moment; see also Section 5d3) the
application rule of Definition 5.11

~; r f- I:I=[x:01]02 ~; r f- I:2:01
~; r f- (I:2)I:1 : 02[x:=I:2]

is replaced by

~; r 1- I:dx:01]02 ~; r 1- I:2:01
~; r 1- (E2)I:1 : (I:2)02

but the rule describing the type of b(I:1, ... , En) is the same as the
rule in Definition 5.11 (parameters).

So if we want to make a translation of AUT-68IT, the application rule
for IT-terms has to be different from the application rule for ,-terms.
Without distinction between IT-terms and ,-terms, it would be im
possible to amend the system to represent AuT-68IT. Distinguishing
between IT-terms and ,-terms makes it possible to obtain a transla
tion of AUT-68IT from the translation of AUT-68 in a simple way.

5b2 The different treatment of constants and variables

When we seek for a translation in >.68 of the AUT-68 judgement ~; r f
E : 0, we must pay extra attention to the translation of~' as there is no
equivalent of books in PTSs. Our solution is to store the information on
identifiers of ~ in a PTS-context. Therefore, contexts of >.68 will have the
form Ll; r. The left part Ll contains type information on primitive notions
and definitions, and can be seen as the translation of the information on
primitive notions and definitions in~. In the right part r we find the usual
type information on variables.

The idea to store the constant information of ~ in the left part of the
context arises in a natural way. Let ~ be a correct AuT-68 book, to which
we add a line (f; b; PN; 32)· Then r = x1 :a1, ... , Xn:an is a correct context
with respect to ~' and~; r f- 82:type or 22 type. In >.68 we can work
as follows. Assume the information on constants in ~ has been translated
into the left part Ll of a >.68 context. We have (assuming that >.68 is a
type system that behaves like AUT-68, and writing f for the translation
X1:a1,··· ,Xn:an off):

tt.; r 1- 22:s

182 5 Automath

(8 = * if~; r f- 3 2:type; 8 = o if 3 2 =type). Applying the ~-formation
rule n times, we obtain

D.; 0 f- ~f.32 : 6.

(If r is the empty context, then ~f.32 = 32, and 32 has type * or 0

instead of 6.. We write ~r for ~~1 xi:ai)· As ~f.32 is exactly the type
that we want to give to b (see the discussion in Subsection 5bl), we use this
statement as premise for the start rule that introduces b. As the right part
r of the original context has disappeared when we applied the ~-formation
rules, b: ~f.32 is automatically placed at the righthand end of D.: The
conclusion of the start rule is

D., b: ~f.32 f- b: ~f.32.

Adding b: ~ f.32 at the end of D. can be compared with adding the line
(f; b; PN; 3 2) at the end of~-

The process above can be captured in one rule:

D.;r f- 22:81 D.;f- ~r.B;-:82

D., b: ~ r.22; f- b: ~ r.22

Here 81 E { *, 0} (compare: 22:type or 32 = type) and 82 E { *, o, 6.}
(usually, 8 2 = 6.; the cases 82 = *, 0 only occur if r is empty).

5b3 The definition system

A line (x1:a1, ... , Xn:an; b; 31; 32), in which b is a constant and 31 E £,
represents a definition. It should be read as: For all expressions n1, ... , Dn
(obeying certain type conditions), b(D1 , ... , Dn) is an abbreviation for
21[x1, ... ,xn:=n1,··· ,nnJ, and has type

So in A68, the context should also mention that bX1 · · · Xn "is equal to"
3l[x1, ... 'Xn:=X1, ... 'XnJ, for all terms x1, ... 'Xn· The most straight
forward way to do this, is to write

5b From AUT-68 towards a PTS 183

in the context instead of only b: ,i=I
that allows to unfold the definition of b:

and adding a 8-reduction rule

whenever b:= (..\i=l Xi:ai.B!): (,i=1 Xi:ai.3;} E ~.
Unfolding the definition of b in a term b~1 · • •

reduction n times results in BI[x1:=~1]· · · [xn:=~nl·
responds exactly to the 8-reduction

and applying /3-
This procedure cor-

~ 1-- b(~l, ... , ~n) -+ti [x1, · · · ,xn:=~l, ... , ~n]

in AUT-685 .

This method, however, has some disadvantages.

• Look again at a line (x1:a1,··· xn:an;b;B1;B2) in an AUT-68 book.
Then b(~r, ... , ~n) has b~1 · · · as its equivalent in ..\68. If n > 0,
the latter ..\68-term has B = ···~mas a subterm for any m < n.
But B has no equivalent in AuT-68: Only after B has been applied
to suitable terms , ... , ~n the resulting term B~m+l · · · ~n has
b(~l, ... , ~n) as its equivalent in AUT-68. Hence B must not be
seen as a term directly translatable into AUTOMATH, but only as an
intermediate result that is necessary to construct the equivalent of
the expression b(~11 ... , ~n). B is recognisable as an intermediate
result via its type ,i=m+l Xi:ai.B2, which has sort 6 (instead of* or
0).

The method above allows to unfold the definition of b already in B,
because · · · ~m can reduce to (..\i=l Xi:ai·3'0 · · · ~m, and we
can /3-reduce this term m times to (..\f=m+l Xi:ai·3'0 [x;:=~j]~1 . It
is more in line with AUT-68 to make such unfolding not possible before
all n arguments ~1, ... , ~n have been applied to b, so only when the
construction of the equivalent of b(~l, ... , ~n) has been completed;

• Moreover, ..\i=I Xi:ai.Bl not necessarily has an equivalent in AUT-68.
Consider for instance the constant b in the line

(a:type; b; [x:a]x; [x:a]a).
5We can assume that the x; do not occur in the l:j, so the simultaneous substitution

Sl[x1, ... ,xn:=l:l, ... , l:n] is equal to 31[X1:=I:d · · · [xn:=l:n]·

184 5 Automath

In this case, ,\~ 1 = ,\a:*.Ax:a.x. Its equivalent in AuT-
68 would be [a:type][x:a]x, but an abstraction [a:type] cannot be
made in AuT-68. 6 This is the reason why we do not incorporate
,\f=1 Xi :ai.31 as a citizen of -\68; we feel that this is better than making
it a (first-class or second-class) citizen of -\68.

Therefore we choose a different translation. The line

where 31 E £, will be translated by putting

instead of

in the left part of the translated context .6... And a reduction rule

is added for all terms X1. ... , Xn. The symbol§ is used instead of,\. This
is to emphasise that, though both §x:A and ,\x:A are abstractions, they are
not the same kind of abstraction.

5c .\68

5cl Definition and elementary properties

We give the formal definition of ,\68, based on the motivation in Section
5b.

Definition 5.21 (,\68)

6 This situation can be compared to the situation in Section 5bl, where we found that
the type of b is not necessarily a first-class citizen of AUT-68. There, we could not avoid
that the type of b became a citizen of >.68 (though we made it a second-class citizen by
storing it in the sort L::,.).

Sc)..68 185

1. The terms of .-\68 form a set T defined by

T ::=vIc I s ITT I .-\V:T.T I §V:T.T I IIV:T.T I ,V:T.T,

where S is the set of sorts { *, o, ~ }.
We also define the sets of free variables Fv(T) and ("free") 7 constants
FC(T) of a term T in the straightforward way;

2. We define the notion of context inductively:

• 0; 0 is a context; DOM (0; 0) = 0;

• If~; r is a context, x E V, x does not occur in~; rand A E T,
then ~; r, x:A is a context (x is a newly introduced variable);
DOM(~;r) = DOM(~;r) U {x};

• If~; r is a context, b E C, b does not occur in ~; r and A E T
then ~' b:A; r is a context (in this case b is a primitive con
stant; cf. the primitive notions of AUTOMATH in Section Sal);
DOM(~,b:A;r) = DOM(~;r) U {b};

• If ~; r is a context, b E C, b does not occur in ~; r, A E T,
and T E T, then ~, b:=T:A; r is a context (in this case b is
a defined constant; cf. ·the definitions of AUTOMATH in Section
Sal); DOM (~, b:=T:A; r) = DOM (~; r) U {b}.

Observe that a semicolon is used as the separation mark between the
two parts of the context, and that a comma is used to separate the
different expressions within each of these parts.

We define

PRIMCONS (~; r)

DEFCONS (~; r)

FV(~;r)

= { b E DOM (~; r) I b is a primitive constant};

{ b E DOM (~; r) I b is a defined constant};

DOM (; r);

3. We define the notion of 8-reduction on terms. Let ~ be the left part
of a context. If (b:= (§~1 Xi:Ai.T): (,~1 Xi:Ai.B)) E ~. where B is
not of the form ,y:B1.B2, then

~ 1- bX1 · · · Xn -+b T[xl: ... , Xn:=Xl, ... , Xn]
7 Of course, to call a constant "free" is a bit peculiar, since there are no bound

constants.

186 5 Automath

for all X1, ... Xn E T.

We also have the usual compatibility rules on 6-reduction. We use
notations like -rh , =0 as usual. When there is no confusion
about which ~ is considered, we simply write

bX1 · · · Xn -+o T[xb ... 1 Xn:=X1, ... ,Xn]i

4. We use the usual notion of I)-reduction;

5. Judgements in A68 have the form ~; r 1- A : B, where ~; r is a
context and A and Bare terms. In the case that a judgement ~; r I
A : B is derivable according to the rules below,~; r is a legal context
and A and B are legal terms. We write ~; r 1- A : B : C if both
~; r 1- A : B and ~; r 1- B : C are derivable in .A68.

Here are the rules for .A68 (v, pc, and de are shorthand for variable,
primitive constant, and defined constant, respectively):

{Axiom)

{Start: v) ~;r 1- A: 8

LS;r,x:A F x: A
where 8 = *,o

(Start: pe)

where 81 = *• 0

(Start: de)

(Weak: v) ~; r 1- M : N Ll; r 1- A : 8

LS;r,x:A 1-M: N
where 8 *• 0

(Weak: pc) Ll; 1-M: N Ll; r 1- B : 81 Ll; 1- , r.B : Sz
LS,b:,f.B;I- M: N

where s1 = *, 0

(Weak: de)
~;1-M:N ~;fi-T:B:s1 ~;1-,f.B:sz

~, b:=(§ f.T):(,f.B); 1-M: N

Sc .\68 187

where s1 = *, 0

(IT-form) .6.; r f-A : * .6.; r, x:A f- B : *
.6.; r f- (IIx:A.B) : *

(~-form)
.6.;r f-A: s1 .6.;f,x:A f- B: s2

.6.; r f- (~x:A.B) : 6
where s1 = *, 0

(.\) .6.;f f- IIx:A.B: * .6.;f,x:A f- F: B
.6.; r f- (.\x:A.F) : (IIx:A.B)

.6.; r f- M : IIx:A.B .6.; r f- N : A
.6.; r f- M N : B[x:=NJ

.6.; r f- M : ~x:A.B .6.; r f- N : A
.6.; r f- M N : B[x:=N]

(Conv)
.6.; r f- M : A .6.; r f- B : s .6. f- A =f3o B

LS;r F M: B

The newly introduced variables in the Start-rules and Weakening
rules are assumed to be fresh. Moreover, when introducing a variable
x with a "pc"-rule or a "dc"-rule, we assume x E C, and when intro
ducing x via a "v"-rule, we assume x E V.

We write .6.; r h,68 A : B instead of .6.; r f- A : B if the latter gives rise to
confusion with other derivation systems.

Notice that there is no rule (§). This is because we do not want that
terms of the form § x:A.B are first-class citizens of .\68: they do not have
an equivalent in AUTOMATH.

Many basic properties for Pure Type Systems also hold for .\68 and
can be proved by the same methods as in the standard literature on PTSs.
Due to the split of contexts and the different treatment of constants and
variables, these properties are on some points differently formulated than
usual (see Section Ad of the Appendix).

Lemma 5.22 (Free Variable Lemma) Assume .6.; r f- M : N. Write
.6. = bl:Bl, ... ,bm:Bm; r = Xl:Al, ... ,xn:An {in .6., also expressions
bi:=Ti:Bi may occur, but for uniformity of notation we leave out the :=Ti
part). Then:

• The b1, ... , bm E C and x1, ... , Xn E V are all distinct;

188 5 Automath

• FC(M), FC(N) ~ {b1, ... , bm}; FV(M), FV(N) ~ {x1, ... , Xn};

• b1:B1, ... ,bi-1:Bi-1;l- Bi:Si for some Si E {*,0,,6.};

.6.;x1:A1, ... ,Xj-1:Aj-11- A1:tj for some tj E {*,0}.

Lemma 5.23 (Start Lemma) Let D.; r be a legal context. Then D.; r 1-
* : o, and if b:A E .6.; r, or c:=T:A E .6., then D.; r 1- c : A. C8l

The following lemma is not a basic PTS-property. However, it can be seen
as an extension of the Start Lemma.

Lemma 5.24 (Definition Lemma) Assume

D.1,b:= (.§ xi:Ai.r): (.~ xi:Ai.n) ,D.2;r 1-M: N,
t=1 t=1

where B is not of the form ,y:B1.B2. Then .6.1; x1:A1, ... , Xn:An 1- T: B :
s for an s E {*,0}. C8l

The Transitivity Lemma must be formulated in a somewhat different
way than usual (cf. A.24). This has to do with the fact that contexts may
contain definitions. To the usual formulation

"Let .6.1; f1 and .6.2; f2 be contexts, of which .6.1; f1 is legal.
Assume that for all b:A E .6.2; f2 and for all b:=T:A E .6.2; f2,
.6.1; f1 1- b:A. Then .6.2; f2 1- B: C::::} .6.1; f1 1- B: C."

we must add an extra clause that b is defined in .6.1; r 1 in a similar way as
it has been defined in .6.2; f2. In the following example we show that things
go wrong otherwise:

Example 5.25 Let

.6.1 = bl:*, b2:*, b3:=bl:*;

.6.2 = bl:*, b2:*, b3:=b2:*

and r1 = r2 = X3:b3. Notice that all the assumptions of the traditional
formulation of the Transitivity Lemma (see above) hold for .6.1; r 1 and
.6.2; f2. Nevertheless, we can derive

5c ,\68 189

(because .6.2; r2 f-- x:b3 and according to .6.z, b3 =fJd b2, so we can use the
conversion rule). But we cannot derive

(because b3 and b2 are not definitionally equal according to .6.1).

The following formulation of the Transitivity Lemma is correct:

Definition 5.26 We define: .6.1; r1 f-- .6.z; rz if and only if

• If b:A E .6.z; rz then .6.1; r1 f-- b:A;

• If b:=T:A E .6.2 then .6.1;r1 f-- b:A;

• If b:=(§i==1 Xi : Ai.U):B E .6.2 and U '¥=:. § y:B.A' then
.6.1 f-- bx1 · · · Xn =fie U.

Lemma 5.27 (Transitivity Lemma)
Assume .6.1; r1 f-- .6.z; rz and .6.z; rz f-- B: C. Then .6.1; r1 f-- B: C. l:'i!:l

Lemma 5.28 (Substitution Lemma)
Assume .6.;r1,x:A,r2 f-- B: C and .6.;r1 f-- D: A.
Then .6.; rb rz[x:=D] f-- B[x:=D]: C[x:=D]. l:'i!:l

Lemma 5.29 (Thinning Lemma) Let .6.1; r1 be a legal context, and let
.6.z; r2 be a legal context such that .6.1 ~ .6_z and r1 ~ rz.
Then .6.1; r1 f--A: B:::} .6.2; rz f--A: B. l:'i!:l

Lemma 5.30 (Generation Lemma)

• If x E V and .6.; r f-- x:C then there is s E { *, D} and B =fie C such
that .6.; r f-- B : s and x:B E r;

• If b E C and .6.; r f-- b:C then there is s E S and B =fie C such that
.6.; r f-- B : s, and either b:B E .6. or there is T such that b:=T:B E .6.;

• If s E S and .6.; r f-- s:C then s * and C =w) D;

• If .6.; r f-- M N : C then there are A, B such that .6.; r f-- M : (ITx:A.B)
or .6.; r f-- M: (,x:A.B), and .6.; r f-- N:A and C =fie B[x:=N];

190 5 Automath

• If~; r I- (.Xx:A.b) : C then there is B such that~; r I- (Ilx:A.B) : *,
~; r, x:A I- b: B and C =130 Ilx:A.B;

• Assume~; r I- (Ilx:A.B) :C.
Then C =130 *, ~;rI-A:* and~; r, x:A I- B:*;

• If ~; r I- (~x:A.B) : c then c =f3o 6., ~; r I- A:sl for some S! E
{ *, D}, and~; r, x:A I- B:s2 for some s2 E { *, D, 6.}.

Lemma 5.31 (Unicity of Types) If~; r I- A : B1 and~; r I- A : B2
then B1 =13o B2. I2<:J

Lemma 5.32 (Correctness of Types) If ~; r I- A B then there zs
s E S such that B := s or ~; r I- B : s. I2<:J

From Correctness of Types and the Generation Lemma we conclude:·

Lemma 5.33 If~; rI-A: (Ilx:B1.B2) then

• ~; r 1- B1 : *;

• ~;r,x:B1 I- B2: *·

Lemma 5.34 If~; rI-A: (~x:B1.B2) then

• ~;r I- B1 : s1 for some s1 E {*, D};

• ~; r, x:B1 I- B2:s2 for some sort s2.

5c2 Reduction and conversion

In this section we show some properties of the reduction relations ---+13 , ---+ 0

and ---+f3o· As 8-reduction also depends on books, we first have to give a
translation of AUT-68 books and AUT-contexts to .\68-contexts:

5c >.68 191

- def
Definition 5.35 Let r be a AUT-68-context Xl:Ci:l, ... ,xn:Ci:n· Then r =
Xl ' ... 'Xn:Ci:n·

Definition 5.36 Let \.:8 be a book. We define the left part \.:8 of a context
in >..68:

0
def

0 • = ;
=-~:-::-----:::7 def - - -

• \.:8, (r; b; PN; n) = \.:8, b:, r.n;

• -::-:\.:8:--::(r=-.-x-· -.--n-,-) ~r \.:8 ·
' ' ' , '

• \.:8, (r; b; ~; n) \.:8, b:= § r.~= ,r.n .

Example 5.37 The translation of the book of Example 5.9 is given in Fig
ure 9 (because of the habit in computer science to use more than one digit
for a variable, we have to write some additional brackets around subterms
like proof to keep things unambiguous). We see that all variable decla
rations of the original book have disappeared in the translation. In the
original book, they do not add any new knowledge but are only used to
construct contexts. In our translation, this happens in the right part of the
context, instead of the left part.

Lemma 5.38 Assume, ~ is a correct expression with respect to a book \.B.

1. ~ --t 13 ~~ if and only if ~ --t 13

2. \.:8 f- ~ --t0 ~~ if and only if \.:8 f- ~ --to

PROOF: An easy induction on the structure of~. ~

The Church-Rosser property of --tp0 will be proved by the method of
Parallel Reduction, invented by Martin-Lof and Tait (see Section 3.2 of
[4]).

Definition 5.39 Let Ll be the left part of a context. We define a reduction
relation =?p0 ("parallel reduction") on the set of terms T:

• For x E V, Ll f- x =?p0 x;

":rj
dti'
~
"1
("0

<.0

t:il
~
:::!
U}

~ .,...
s·
:::!
0,
tr:l
><
~ s

"0
(1)
<:.n
<.0

prop
and

proof
and-!

and-01
and-02
and-R

and-S ·-

*,
~ x :prop.~ y:prop. prop,
~x:prop.*,
~x:prop. ~y:prop. ~px:(proof)x. ~py:(proof)y.(proof)((and)xy),
~x:prop. ~y:prop. ~pxy:(proof)((and)xy).(proof)x,
~x:prop. ~y:prop. ~pxy:(proof)((and)xy) .(proof)y,
§x:prop. §prx:(proof)x. (and- I)xx(prx)(prx)
~x:prop. ~prx:(proof)x.(proof)((and)xx),
§x:prop.§y:prop.§pxy:(proof)((and)xy).
(and- I)yx((and-02)xy(pxy))((and-01)xy(pxy))
~x:prop. ~y:prop. ~pxy:(proof)((and)xy).(proof) ((and)yx)

Sc).68

• For bE C, ~ 1- b =?fJo b;

• ForsE S, ~ 1- s =?fJo s;

• If~ 1- P =?(Jo P' and ~ 1- Q

- ~ 1- >.x:P.Q =?fJo >.x:P'.Q';

~ 1- ITx:P.Q =?f36 ITx:P'.Q';

- ~ 1- ~x:P.Q =?fJo ~x:P'.Q';

- ~ 1- PQ =?f36 P'Q';

193

Q', then

• If~ 1- Q =?f36 Q' and ~ 1- R
Q'[x:=R'J;

R', then ~ 1- (>.x:P.Q)R =?f36

• If b:=(§f=1 xi:Ai.T):(~f: 1 Xi:Ai.U) E ~.the term Tis not of the form
§y:T1.T2, ~ 1- T =?f36 T' and ~ 1- Mi =?f36 Mf fori= 1, ... , n, then
~ 1- bM1 · · · Mn =?(36 T'[x1, ... , Xn:=M{, ... , M~J.

Some elementary properties of =? (Jo are:

Lemma 5.40 (Properties of =?(J6) Let ~ be the left part of a context.
For all terms M, N:

1. ~1-M =?f36 M;

2. If~ 1- M ---t /36 M' then ~ 1- M =? /36 M';

3. If ~ 1- M =? /36 M' then ~ 1- M ----* /36 M'.

PROOF: All proofs can be given by induction on the structure of M. t8l

We conclude from this lemma that ----*(36 (the reflexive and transitive closure
of ---t/36) in the context~ is the same relation as the reflexive and transitive
closure of =?(Jo in ~. Therefore, if we want to prove the Church-Rosser
theorem for -(36, it suffices to prove the Diamond Property for =?f36· We
first make some preliminary definitions and remarks:

Lemma 5.41 (Substitution and =?(J6) If~ 1- M =?p6 M' and ~ I-
N =?p0 N' then~ 1- M[y:=NJ M'[y:=N'].

PROOF: Induction on the structure of M. t8l

194 5 Automath

Lemma 5.42 Assume, ~ and ~' ~~ are left parts of legal contexts, and
FC(M) ~ DOM (~). Then~ f- M -::::,./36 N if and only if~' ~1 f- M -::::,./36 N.

PROOF: By induction on the length of~ and by induction on the definition
of ~ f- M -::::,.!36 N. All cases in the definition of ~ f- M -::::,./36 N follow
directly from the induction hypothesis for ~ f- M -::::,./36 N, except for the
case bM1 · · · Mn -::::,./36 T 1[x1, ... , Xn:=M{, ... , M~].

As FC(M) ~ DOM (~),we have bE DOM (~).

Write ~ = ~1, b:=(§f=1 Xi:Ai.T):(,i=I Xi:Ai.U), ~2·

• Notice that Tis typable in ~1; x1:A1, ... , Xn:An (Definition Lemma).
By the Free Variable Lemma: FC(T) ~ DOM (~I). By the induction
hypothesis on the length of~ we have ~1 f- T -::::,./36 T 1 iff~ f- T -::::,.!36
T 1

, and~~ f- T -::::,./36 T 1 iff~'~~ f- T -::::,./36 T 1
;

• We conclude: ~ f- T -::::,./36 T 1 iff~'~~ f- T -::::,./36 T 1
;

• By the induction hypothesis on the definition of~ f- M -::::,./36 N, we
have ~ f- Mi -::::,./36 Mf iff~'~~ f- Mi -::::,./36 Mf;

• Notice that b:=(§f=1 Xi:Ai.T):(,i= 1 Xi:Ai.U) is an element of both ~
and~' ~1 • Moreover, b rt DOM (~1) (because~'~~ is the left part of a
legal context). Therefore we have that ~ f- bM1 · · · Mn -::::,./36 N if and
only if~'~~ f- bM1 · · · Mn -::::,./36 N.

For left parts ~ of contexts and for M E T with Fc(M) ~ DOM (~),
we define a term M~. In M~, all,8-redexes that exist in Mare contracted
simultaneously (this is a usual step in a proof of Church-Rosser by Parallel
Reduction), but also all 8-redexes are contracted. We will show that ~ f
N -::::,./36 M~ for any N with ~ f- M -::::,./36 N; so M~ helps us to show the
Diamond Property for =:::,.. f36.

Definition 5.43 We define, for any left part ~ of a context and any M E T
such that FC(M) ~ DOM (~), M~. The definition of M~ is by induction
on the length of~- So assume M~' has been defined for contexts ~~ that
are shorter than~- We use induction on the structure of M:

~clef f • x = x or any x E V;

5c -A68 195

• M = b. Distinguish:

- b.t. ~ b for any bE PRIMCONS (~;);

b.t. ~ b for any bE DEFCONS (~;) that is not a <5-redex;

- If b E DEFCONS (~;) is a <5-redex, then ~ := ~1, b:=T:U, ~2,
where T :f. §y:T1.T2. By the Definition Lemma, ~1;!- T: U,
so we can assume that T.t. 1 has already been defined. Then
b.t. ~ T.t.1 •

l

.6. def
• 8 = 8 for any 8 E S;

• (.Ax:P.Q).t. -Ax:P.t..Q.t.;

(IIx:P.Q).t. ~ IIx:P.t. .Q.t.;

(,x:P.Q).t. ~f ,x:P.t. .Q.t.;

• M is an application term. We distinguish three possibilities:

M = PQ is not a /)<5-redex. Then we define M.t. p.t.Q.t.;

M is a /J-redex (.Ax:P.Q)R. We define M.t. ~f Q.t.[x:=R.t.];

- M is a <5-redex bM1 · · · Mn, and

where Tis not of the form §y:T1.T2. In that case

(by the Definition Lemma), so we can assume that T.t.1 has
already been defined.

Then M.t.~T.t. 1 [xb··· ,xn:=Mf', ... ,M~].

Lemma 5.44 Let ~ be the left part of a legal context. ~ 1- M ~'/36 M.t.
for all M with FC(M) ~ DOM (~).

196 5 Automath

PROOF: By induction on the definition of MLJ.. We only treat the case
.6. 1- bM1 · · · Mn *f3ti (bM1 · · · Mn)LJ. where bM1 · · · Mn is a 8-redex. As in
the definition of (bM1 · · · Mn)LJ., write

By induction, we may assume that .6. 1 1- T *f3ti TLJ. 1 and .6. 1- Mi *f3ti MiLJ..
By the Definition Lemma, Tis typable in .6.1;x1:A1, ... ,xn:An, so by the
Free Variable Lemma, FC(T) ~ DOM (.6.1). By Lemma 5.42, .6. 1- T *f3ti

TLJ. 1 • So .6. 1- bM1 · · · Mn *f3ti TLJ. 1 [x1, ... , Xn:=Mf, ... , M~]. ~

Theorem 5.45 Let .6. be the left part of a legal context. Assume Fc(M) ~
DOM (.6.). If .6. 1-M *f3ti N then .6. 1- N *f3ti MLJ..

PROOF: Induction on the the definition of MLJ..

• M = x. Then N = x and MLJ. = x;

• M =b. Distinguish:

- bE PRIMCONS (.6.;). Then N =:band MLJ. =: b;

- b E DEFCONS (.6.;), but b is not a 8-redex. Then N =: b and
MLJ. = b;

- b E DEFCONS (.6.;), and .6. =: .6.1, b:=T:U, .6.2, and T ¥:. §y:T1.T2.
Then either N = borN= T' where T *f3ti T'. If N = b then
M =Nand we can use Lemma 5.44. If N = T then observe that
by the induction hypothesis, .6.1 1- T *f3ti TLJ. 1 , that by Lemma
5.42 .6. 1- T *f3ti TLJ. 1 , and that MLJ. = TLJ. 1 ;

• M = s. Then N = s and M LJ. = s;

• M =)..x:P.Q. Then N =)..x:P'.Q' for some P', Q' with .6. 1- P *f3ti P'
and .6. 1- Q * f3ti Q'. By the induction hypothesis on P and Q we find
.6. 1- P' *f3ti pLJ. and .6. 1- Q' *f3ti QLJ.. Therefore .6. 1-)..x:P'.Q' *f3ti
)..x:PLJ. .QLJ..

The cases M = Ilx:P.Q, M = ,x:P.Q, and M = PQ where PQ is not
a ,88-redex, are proved similarly;

• M is an application term (and is either a ,8 or a 8-redex). Distinguish:

- M is a ,8-redex, M = ()..x:P.Q)R. Distinguish:

5c >.68 197

* N =: (>.x:P'.Q')R' for P', Q', R' with ~ 1- P =*f3o P', ~ 1-
Q =*f36 Q' and ~ 1- R =*f36 R'. By induction, ~ 1- Q' =*p6 QA
and ~ 1- R' =* p6 RA. Therefore ~ 1- N =* {3/i QA [x:=RA];

* N = Q'[x:=R'] for Q', R' with~ 1- Q =*f3o Q' and~ 1- R =*f36
R'. By induction, ~ 1- Q' =* 136 QA and ~ 1- R' =* f31i RA. By
Lemma 5.41, ~ 1- Q'[x:=R'] =*f3o QA[x:=RA];

- M is a 6-redex, M = bM1 · · · Mn,

where T ::j. §y:T1.T2. Distinguish:

* N = bMf · · · M~ for Mf with~ 1- Mi =*f36 Mf. By induction,
we have ~ 1- Mf MiA. By the Definition Lemma, T
is typable in a context ~1;x1:A1, ... ,xn:An, so by the Free
Variable Lemma, FC(T) s;;; DOM (~1). By Lemma 5.44, ~1 I
T =*f3o TA1. By Lemma 5.42, ~ 1- T =*f3o TA1. Hence
~ 1- N TA1 [x1, ... ,xn:=Mf, ... ,M~];

* N =: T 1[x1, ... , xn:=M{, ... , M~] for aT' with~ 1- T =*f3o T 1

and for Mf with ~ 1- Mi =* {36 Mf. By the Definition Lemma,
T is typable in ~~; x1 :A1, ... , xn:An, so by the Free Variable
Lemma, FC(T) s;;; DOM (~1). By Lemma 5.42, ~~I-T =*f36 T'.
By the induction hypothesis on T, ~1 1- T 1 TA1. As
~~ I- T =*p6 T 1

, FC(T') s;;; DOM (~1), so by Lemma 5.42,
~ 1- T 1 =* {3/i TA1. By the induction hypothesis, also ~ 1-
M[=*f3o Mf. Repeatedly applying Lemma 5.41, we find8

~ 1- T'(x1, ... , Xn:=Mf, ... M~J =* {36

TA 1 [x1, ... ,Xn:=Mf, ... ,M;-].

8 We must remark that

and
TD.1 [x1, ... , Xn:=Mf, ... ,M~] := TD.1 [x1:=MfJ· · · [xn:=M~J.

This is correct as we can assume that the Xi do not occur in the Mj and MiD..

198 5 Automath

Corollary 5.46 (Diamond Property for =}/36) Let~ be the left part of
a context in which M is typable.
Assume ~ f- M =}136 N1 and ~ f- M =}136 N2. Then there is P such that
~ f- N1 =}/36 P and~ f- N2 =}/36 P.

PROOF: Immediately from the theorem above: Take P = Mt:... t8l

Corollary 5.47 (Church-Rosser property for ---"136) Let ~ be the left
part of a context in which M is typable.
If~ f- M --/36 N1 and ~ f- M --/36 N2 then there is P such that ~ f
Nl --/36 P and~ f- N2 --136 P.

PROOF: Directly from Lemma 5.40.2, Lemma 5.40.3 and Corollary 5.46.
t8l

5c3 Subject reduction

Lemma 5.48 (Subject Reduction)
If ~;r f-A: Band A ---"13 A' then ~;r f-A': B.

PROOF: The proof is as in [5]. t8l

Subject Reduction also holds for the reduction relation ___, 6 :

Lemma 5.49 (Subject Reduction for ---"6)
If~; r f-A: B and A ---"6 A' then~; r f-A': B.

PROOF: Following the line of [5], we define~; f ---"6 ~; f' iff:= f1, x:A, f2,
and f' = f1,x:A',r2, and~ f-A ---"6 A'. We define ~;r ---"6 ~';r similarly,
and we simultaneously prove

~; r f- A:B and~ f-A ---"6 A' =} ~; r f- A':B

~; r f- A:B and~; r __,6 ~'; r =} ~'; r f- A:B

~; r f- A:B and~; r ---"6 ~; r' =} ~; r' f- A:B,

using induction on the derivation of~; r f- A:B. We only treat the case in
which the last applied rule is the 2nd application rule, and we only prove

5c .>..68 199

the first of the three statements for this case. We write A[xi:=Bi]~m as a
shorthand for A[xm:=Bm][Xm+l:=Bm+l] · · · [xn:=Bn]· We can assume that

(1)

with B :1= ,y:B1.B2, and that the conclusion of the 2nd application rule is

for some Kn, and therefore

We must prove: Ll; r 1- T[xi:=Mi]f=1 : Kn. We do this in two steps.

1. We analyse the structure of Kn, and derive that

Ad 1.

(2)

We repeatedly apply the Generation Lemma, starting with (2), thus ob
taining Kn,Kn-1,··· ,K1, K~,K~_1 , ... ,KL Ln,Ln-b··· ,L1 such that

(3)

(4)

(5)

(6)

We end with Ll; r 1- b: (,x1:Lt.Kf). By (1) and the Generation Lemma:

n
Ll 1- ,x1:L1.Kr =13o , xj:Aj.B.

j=l

200 5 Automath

By the Church-Rosser Theorem we have L1 =130 A1 and

Hence

n

~ 1- K~ =130 ~ xrA1.B.

(6)
~ 1- ~x2:L2.K~ =13o

(5,7)
=f3o

j=2

n

~ x(Ai[x1:=M1].B[x1:=M1],
i=2

(7)

so by the Church-Rosser Theorem L 2 =130 A2[x1:=M1]. Proceeding in this
way, we obtain for i = 1, ... , n:

~ 1- Li =13o Ai[x1:=M1J;:,i; (8)

~ 1- KI =13o ~ Xj:Aj[xk:=Mklt"::\.B[xk:=Mk]t-:,11;
j=i+1

n . .
~ 1- Ki =13o ~ Xj:Aj[xk:=Mk]k=1 .B[xk:=Mk]k=1 ·

j=i+1

In particular,

(9)

Ad 2.
Now we calculate the type of T[xi:=Mi]i=1. By the Definition Lemma on
(1) we also have

(10)

so by the Start Lemma: ~1; x1:A1, ... , Xi-1:Ai-1 1- Ai:Si for sorts Si E S.
This yields:

~; r 1- A1 : s1

~;f,x1 :A1 is legal

~;r,x1:A1 1- A2: s2

~; r, X1:A1, X2:A2 is legal

(Thinning Lemma);

(Start Rule);

(Thinning Lemma);

(Start Rule);

(Start Rule).

5c)..68 201

Therefore, we can apply the Thinning Lemma to (10), and we find:

Ll.; r, Xl:Al, ... 'Xn:An 1- T: B.

As Ll.;r 1- M1 : £ 1 (4) and Ll.;r 1- A1 : s1, we have Ll.;r 1- M1 : A1 by the
Conversion rule and (8), so by the Substitution Lemma:

Ll.; r, xz:A2[Xl:=Ml], ... 'Xn:An[xl:=Ml] 1- T[xl:=Ml] : B[xl:=Ml];

Ll.;r 1- A2[x1:=M1]: s2.

As Ll.; r 1- Mz : L2 (4) and Ll. 1- A2[x1:=M1] =f36 L2 (8) we have by
conversion Ll.; r 1- M 2 : A2[x1 :=M1], and again by the Substitution Lemma:

Ll.; r, XJ:AJ[Xi:=Mi];=l' ... 'Xn:An[Xi:=Mi]t=I

1- T[xi:=Mi]t=I : B[xi:=Mi];=Ii

Ll.; r 1- A3[xl:=Ml][xz:=M2]: SJ.

Proceeding in this way we eventually find

(ll)

Applying Lemma 5.32 to (9) we have Ll.; r 1- Kn : s. Now use the Conversion
Rule, (ll), and the fact that Ll. 1- Kn B[xi:=Mi]~1 . IZI

Corollary 5.50 (Subject Reduction for -tf30) If .6.; r 1- A : B and
A --7'>(36 A' then Ll.; r 1- A' :B. IZI

The Subject Reduction Theorem for -6 is used to prove:

Lemma 5.51 Assumes E S and M legal.
Then (Ll. 1-M =(36 s):::} M s.

PROOF: First assumes E {D,L:::.}. If Ll.;r 1- M : N for some rand
N, and Ll. 1- M =(36 s then by Church-Rosser Ll. 1- M -(36 s, so by
Subject Reduction Ll.; r 1- s : N, contradicting the Generation Lemma. If
Ll.; r 1- N : M and .6. 1- M =(36 s and M ¢: s then we have by Lemma 5.32
that Ll.; r 1-M : P for some P, so again Ll.; r 1- s: P, in contradiction with
the Generation Lemma.

Now assume s = *• Ll.; r 1- M : N, and .6. 1-M =(36 s. Again by Church
Rosser, Ll. 1- M -(3o *, say .6. 1- M -(36 ... -(36 M' -(36 *· By Subject
Reduction, .6.; r 1- M' : N and .6.; r 1- * : N. By the Generation Lemma
.6. 1- N =(36 o, so N D. Distinguish:

202 5 Automath

• M' = (.\x:A.B)C and*= B[x:=C]. By the Generation Lemma there
is B' such that ~ I- B'[x:=CJ =f36 D (hence B'[x:=CJ =: D), .6.; r 1-
(.\x:A.B) : (IIx:A.B') and .6.; r I- C : A. C = D contradicts .6.; r 1-
C : A, so B' =: D. By Lemma 5.33 .6.; r I- (Ilx:A.D) : *• so by the
Generation Lemma .6.; r, x:A I- D : *, contradiction;

• M' =: bM1 · · · Mn and .6. I- bM1 · · · Mn ---+6 T[xi:=Mi]~ 1 = *· The
argument is similar as in the case M' = (.\x:A.B)C.

If s =: *, ~; r I- N : M, and .6. I- M =f36 s then by Lemma 5.32 M =: s
(and we are done) or .6.; r I- M : s' (which implies M = s by the above
argument). [?:<:~

5c4 Strong normalisation

We prove Strong Normalisation for ,68-reduction in .\68 by mapping a ty
pable term M (in a context .6.; r) of .\68 to a term 1Mb that is typable in a
strongly normalising PTS. The mapping is constructed in such a way that
if M ---+{3 N, IMI~ -t INI~, and that if .6. I- M ---+6 N, IMI~ -f3 INI~·

Definition 5.52 Let .6. be the left part of a legal context and let M E T.
We define IMI~ by induction on the length of .6. and the structure of M.

I I
def

• x ~ = x for x E V;

• lbi~ ~ b for all bE C \ DEFCONS (.6.;);

• lbl~ ~f A~l Xi: IAil~l .ITI~l

if .6. = .6.1, b:=(§i=l Xi:Ai.T):(~i=l Xi:Ai.U), .6.2;

• lsi~ ~ s for s E S;

• 1.\x:P.QI~ ~ .\x: !PI~ ·IQI~;

• IIIx:P.QI~ ~ IIx: IPI~ .IQI~;

• l~x:P.QI~ ~f IIx: IPI~ .IQI~;

• IPQI~ ~ I PI~ IQI~.

5c >.68 203

The following lemmas are useful:

Lemma 5.53 Let ~ be the left part of a legal context and M E T. Then
FV(jMj~) = FV(M).

PROOF: The proof is by induction on the definition of JMI~ and is trivial
for all cases except the case M b and ~ = ~b b:=(§ r.T):(~ r.U), ~2
(T :f.§ y:Tl.Tz).

By the Definition Lemma, Tis typable in ~1; r; therefore FV(T) ~ DOM (r)
(Free Variable Lemma). By the induction hypothesis, Fv(jTj~1) ~ DOM (r)
and therefore FV(jbj~) = 0. ~

Lemma 5.54 If~~ and ~2 are left parts of legal contexts and ~2 = ~1? ~'
then jMj~2 = jMj~1 for all MET with FC(M) ~ DOM (~1).

PROOF: An easy induction on the definition of jMj~1 • ~

Lemma 5.55 Let ~ be the left part of a legal context. For all M, N:

PROOF: By induction on the definition of JMI~· In the case M = b and
b:=T:U E ~' use the fact that FV(jMj~) = FV(M) 0 (Lemma 5.53) and
therefore IMI~ [x:= IN!~] 1Mb= !M[x:=N]I~· ~

The purpose of the definition of !MI~ is explained in the following two
lemmas:

Lemma 5.56 If M -+13 N then IMI~ -j INI~·

PROOF: Induction on the structure of M. We only treat the case M =
(>.x:P.Q)R and N Q[x:=R].

IMI~ (>.x: IPI~ .JQI~) IRI~

-+{3 IQI~ IRI~l
5.55
= IQ[x:=RJI~.

204 5 Automath

Lemma 5.57 If~ I- M -+oN, then JMJ~ -!3 JNJ~.

PROOF: Induction on the structure of M. We only treat the case in which

M = bM1···Mn;

~ = ~1, b:= (.§ xi:Ai.r): (.~ xi:Ai.u), ~2;
t=l t=l

N = T[x1, ... ,xn:=M1, ... ,Mn]·

Notice that

JMJ~ (.~ Xi: JAiJ~ .JTJ~) JM1J~ · · ·JMnJ~ t=l I I

5.55

JTI~~ [xi:= JMil~li=l

JTJ~ [xi:= JMiJ~]i=l

JT[xi:=Mi]i= 1 J~
JT[xl, ... , Xn:=M1, · · · , Mn]J~ ·

At the last equivalence, we must make a remark similar to footnote 8 on
page 197. l:8l

Let >.SN be the PTS over >.-terms with variables from V U C and sorts from
S, and the following rules (we choose the name >.SN because this system
will help us in showing that).68 is SN):

(*, *, *);
(*,*,6); (0,*,6);
(*, D, 6); (D, D, 6);
(*, 6, 6); (D, 6, 6).

This is in fact the pure type system that is based on the IT-formation
rules that were proposed in Section 5bl. >.SN is contained in the system
ECC (see [85]). As ECC is ,8-strongly normalising, also >.SN is ,8-strongly
normalising.

We present a translation of).68-contexts to >.SN-contexts:

Definition 5.58 Let ~; r be a legal >.68-context.

Sc)..68

• We define 1~1 by induction on the length of~:

-101~0;

l~,b:UI ~ 1~1 ,b: lUll!.;

I~, b:=T:UI ~ 1~1;

205

We see that definitions b:=T:U in ~ are not translated into 1~1- This
corresponds to the fact that all these definitions are unfolded (replaced by
their definiendum) in I bill..

Now we are able to prove the most important lemma of this subsection:

Lemma 5.59 If~; r 1->.68 M: N then I~; fll-.xsN I Mill. : INill..

PROOF: The proof is by induction on the derivation of~; f 1- M : N. We
treat a few cases:

(Start: Primitive Constants)

By the induction hypothesis, 1~11-.xsN I~T.Bill. : s2, so by the Start
rule:

1~1, b: 1~ r.Bill. 1- b: 1~ r.Bill..

Observe that 1~, b: ~ r.BI = 1~1 'b: I~ r.Bill., that lblll.,b: ~r.B =band

that (by Lemma 5.54) I~ r.Bill. = I~ r.Bill.,b: ~r.B;

(Start: Defined Constants)

~;r h68 T: B: s1 ~;1->.68 ~r.B: s2()
---'-----,-----=-=---,----:--:-::-=-=-:--,----.:....__.,-c--"-::::-::-,----- s 1 = * , D .

~' b:=(f.T):(~ f.B); h68 b: ~ f.B

By induction we have

206 5 Automath

so (writer= X!:Al, ... 'Xn:An):

n

I~; I f-.xsN TI xi: IAiiLl .IE ILl : s2. (12)
i=l

By induction, we also have I~; fJ f-.xsN ITILl : IBILl, so:

and by repeatedly applying the >.-rule on (13) and using the fact that,
by the Induction Hypothesis, the types flj=i Xj: IAJILl .IE ILl are all
typable, we find:

(14)

(Application 1) (the Application 2-case is similar)

~; f f-.x68 M: (IIx:A.B) ~; r f-.x68 N: A
~;r f-.x68 MN: B[x:=N]

By the induction hypothesis, we have

and I~; fJ f-.xsN INILl: IAILl· The application rule gives

Use the definition of IM NILl and Lemma 5.55 to obtain

Corollary 5.60 (Strong Normalisation) >.68 is (38-strongly normalis
zng.

5c >.68 207

PROOF: Assume, we have an infinite /38-reduction path in).68:

(15)

As 8-reduction is strongly normalising (5.17 and 5.38.2), there must be
infinitely many /3-reductions in this reduction path, so we have a path

By Lemmas 5.56 and 5.57, this gives us a reduction path

which is an infinite /3-reduction path in >.SN. By Lemma 5.59, IN1I~ is a
legal term in >.SN. But as >.SN is strongly normalising, the above infinite
/3-reduction path cannot exist. Hence, the infinite /38-reduction path (15)
does not exist, either. t8J

5c5 The formal relation between AuT-68 and ;\68

Theorem 5.61 Let ~ be an AUTOMATH book and r an AUTOMATH con
text.

• If~; r 1-A UT-68 OK then ~; f is legal;

• If~;r 1-Aur-68 E: n then ~;r 1- : n.

PROOF: We prove both statements simultaneously, using induction on the
derivation of ~;r 1-AUT-68 OK and ~;r 1- E: n of Definition 5.10 and
Definition 5.11. We only treat one case; the other cases are similar or
trivial. Assume, the last step of the derivation has been an application of
the book extension rule def2:

~; r 1-AUT-68 Ez:type ~; r 1-AUT-68 E1:Ez ~; r 1-AUT-68 Ez =1M Ez
~' (r; k; E1; Ez); 0 1-AUT-68 OK

By the induction hypothesis, we have

~; r 1->.68 E2 : * (16)

208 5 Automath

and

By Lemma 5.38, we have

Applying the conversion rule of >..68 to (16), (17) and (18) yields

~; r 1->.68 L:1 =

(17)

(18)

(19)

Notice that ~; f is legal, so for each x:a E f (say: f := r1, x:a, r2) we have
~; r1 1- a: s for an s E {*, D}, by the Free Variable Lemma 5.22. Thus we
can repeatedly apply the 1f-formation rule (starting with (16)) to obtain:

(20)

(If r = 0 then we apply the 1f-formation rule zero times, and the type of
,f.L:2 is* instead of 6). Now we can apply the (Start: de) rule on (19),
(16) and (20) to obtain:

~; k:=(§ r.L:I):(,r.L:2);1->.68 k = 1rr.L:2,

so~' (r; k; L:l; L:2); = ~. k:=(§ r.L:I):(,r.L:2); is legal. l8l

It is possible to prove a conservativity theorem (in the style: If ~; r 1->.68

: fl, then~; r 1-AUT-68 L:: fl), but we want to prove that all the typable
terms of >..68 have some interpretation in AuT-68, and not only the terms
that have an equivalent in AUT-68. We have to distinguish six different
cases, and the interpretation of these six cases is given after the proof of
the next theorem.

Theorem 5.62 Assume .6; r 1->.68 M : N. Then there is an AUTOMATH

book ~ and an AUTOMATH context rt such that ~; r' f- AUT-68 OK, and
~. .6;r. Moreover,

1. If N := D then M = *;

2. If .6.; r h68 N : D then N * and there, is n E £ such that n := 1\-1

and ~; r' I-A UT-68 fl : type;

Sc .-\68 209

3. If N =!:::,. then there is r" = X1:~1, ... 'Xn:~n and n E £+ such that

• r'' r" is correct with respect to 123;

• M = ~r".O;
• 0 =:type or 123; r' f--A UT-68 0 :type;

4. If Ll; r h68 N: 6. then there are bE C and ~1, ... , ~n E £ such that
M = b~1 · · · ~n· Moreover, 123 contains a line

such that

• m > n;

• 123;r' f--AUT-68 ~i:Oi[X1,··· ,Xi-1:=~1,··· ,~i-1] {1 ~ i ~ n);

• N = (~:,n+ 1 Xi:Oi.32) [x1, ... ,xn:=~1, ... , ~n];

5. If N =: * then there is 0 E £ such that 0 =: M and 123; r' f--A UT -68
n: type;

6. If Ll; r f-->.68 N : * then there are ~' 0 E £ such that ~ = M and
0 =: N, and 123; r' f-- AUT-68 ~: 0, and 123; r' f-- AUT-68 0: type.

PROOF: We use induction on the derivation of Ll; r f-->.68 M: N. We only
treat a few cases:

Weakening: definitions The last step in the derivation has been

Ll;h68 M: N Ll;r f-->.68 T: B: s1 Ll;h68 ~r.B: s2

Ll, b:=(§ r.T):(~ r.B); f-->.68 M: N

where s1 = * or s1 = D. Use the induction hypothesis and determine
123, r', ~1, ~2, 01, and 02 such that 123 =: Ll, r' =: r, ~1 =: T, ~2 =: B,
01 =: M and 02 =: N. We know by induction that 123; r' f-- AUT-68 ~2 :
type (if s1 =*)or ~2 =*(if s2 =D). Also, 123;r' f--AUT- 68 ~1: ~2-
This makes it possible to extend 123 with a new line, thus obtaining
a legal book 123, (r'; b; ~1; ~2). Using Weakening for AUT-68 (Lemma
5.19) and the induction hypothesis on Ll; h68 M : N, it is not hard
to verify the cases 1-6 for Ll, b:=(§ r.T):(~ r.B); h68 M: N;

210 5 Automath

Application 2 The last step in the derivation has been

L\; r 1- .X68 M1 : (~x:A.B) Ll; r 1-.X68 M2 : A

Ll;r h68 M1M2: B[x:=M2]

Determine ~. r1 such that ~ :::: L\ and r' :::: r. By Correctness
of Types 5.32 and the Generation Lemma 5.30, we have Ll; r 1- _x68
(~x:A.B) : 6, so by the induction hypothesis (case 4), there are
b, ~1, ... , ~n such that M1 = b~1 · · · ~n, and there is a line

in ~ such that m > n, ~; r 1
1-AUT-68 ~d1i[Xj:=~j];~\ for i -

l, ... ,n,and

Observe: A :::: !ln+I[xj As ~; r' 1-AUT-68 !ln+l : type or
!ln+l :::: type, we have Ll; r I--\68 : s for an s E { *, D}, and
by Substitution Lemma and Transitivity Lemma we have .6.; r l-_x68
nn+I[Xj:=~j]]=:cl : s, hence L\; r I-A68 A: s.

With the induction hypothesis we determine ~ E E such that

and M2:::: We now treat the most important ones of the cases 1-6:

4. The only thing that does not directly follow from the results above
is m > n + 1. Assume, for the sake of the argument, m = n + 1.
Then B[x:=M2] S2[xj:=~j]j~{. As Ll; r l-.x68 B[x:=M2] : 6,
S2[x1 is of the form ~x:P.Q, which is impossible;

6. Notice: B[x:=M2] = (~.i=n+2 Xi:!li.E;) [xj . We have
L\; r 1--\68 B[x:=M2] : *· Therefore B[x:=M2] cannot be of the
form ~y:P.Q, and therefore m = n + 1. Therefore, S:S; r' 1-AUT-68
b(~I, ... , ~n+d : [xi:=~i]?~l-

Sd Related work 211

Remark 5.63 We give some explanation to the different cases mentioned
in the formulation of Theorem 5.62.

• The cases N = D and ~; r f- N : D imply that there are no other
terms in ..\68 than * itself at the same level as *· This corresponds to
the fact that type is the only "top-expression" in AuT-68;

• The cases N = * and ~; r f- N : * give a precise correspondence
between expressions of AUT-68 and terms of ..\68: If M : N in ..\68
then there are expressions :E, 0 in AUT-68 such that :E : 0 in AUT-68
and :E = M and n = N;

• The cases N = 6 and ~; r f- N : 6 cover terms that do not have an
equivalent in AUT-68 but are necessary in ..\68 to form terms that have
equivalents in AuT-68. More specific, this concerns terms of the form
~i=I Xi:Ai.B (which are needed to introduce constants) and terms
of the form bM1 · · · Mn, where b is a constant of type ~~1 Xi:Ai.B
for certain m > n (which are needed to construct ..\58-equivalents of
expressions of the form b(:E1, ... , :Em)).

We conclude that ..\68 and AuT-68 coincide as much as possible, and
that the terms in ..\68 that do not have an equivalent in AUT-68 can be
traced easily (these are the terms of type 6 and the terms of a type N : 6,
and the sorts D and 6, which are needed to give a type to * and to the
~-types).

Notice that the alternative definition of 8-reduction in ..\68, discussed
at the end of Subsection 5a3, would introduce more terms in ..\68 without
an equivalent in AuT-68, namely terms of the form >.i=I Xi:Ai.B.

5d Related work

The system AuT-68 is one of several AUTOMATH-systems that have been
proposed. Another frequently used system is AUT-QE. In Section 5d1 we
compare AUT-68 to AuT-QE and describe how we can easily adapt ..\68 to
a system ..\QE.

Recently, various type systems with definitions in PTS-style have been
proposed by, amongst others, Bloo, Kamareddine and Nederpelt ([16, 17])

212 5 Automath

and by Severi and Poll ([114]). The presentation of AUT-68 in the PTS
like system ,\68 makes a good comparison between these systems and the
definition system in AUT-68 possible. This will be done in Sections 5d2 and
5d3.

5dl AUT-QE

The system AUT-QE has many similarities with AuT-68. There are a few
extensions:

1. We can also form abstraction expression [x:'E]type (thus extending
Definition 5.1);

2. Inhabitants of types of the form [x:'E]type are introduced by extend
ing the abstraction rules 1 and 2 of Definition 5.11 with the following
rule for AUT-QE:

~; r 1- 'El:type ~; r, x:'El 1- 'E2:type

~; r 1- [x:'El]'E2 : [x:'El]type

Notice that the expression [x:'E1]type is not typable, just as type is
not typable. In a translation to a PTS, these expressions should get
type D;

3. There is a new reduction relation on expressions, which is specific for
AUT-QE and therefore will be called --tqE in the sequel. The relation
is described by the rule

[x1:'E1]· · · [xn:'En][y:O]type --tQE [x1:'E1]· · · [xn:'En]type

(for n 2: 0).

The first two rules are rather straightforward. They correspond to an ex
tension of A--t to ,\P in Pure Type Systems. It is also easy to extend ,\68
with similar rules: We just add the IT-formation rule(*, D, D):

t6.;f 1- A:* t6.;f,x:A 1- B: D

t6.; r 1- (ITx:A.B) : D

In AUT-68 PAT is implemented in De Bruijn-style (see Section 4a4 and
Example 5.9). An implementation of predicate logic in Howard-style is

5d Related work 213

not possible in AUT-68, but due to the extension with types of the form
[x:L::]type, such an implementation becomes possible in AuT-QE. See [39].

The third rule deserves some extra attention, as it is very unusual. It
is needed in AUT-QE because that system does not distinguish between >.s
and ITs. In AUT-68 this did not matter, as from the context it could always
be derived whether an expression [x:L::]n should be interpreted as >.x:L:.n
or as I1x:L::.n. The latter should have type type, and the first should not
have type type.

In AuT-QE the situation is more complicated. A expression [x:L::]O may
have more than one type:

Example 5.64 Let 2) consist of two lines:

(0, a,-, type),

(a:type, x,-, a).

Notice that, using rule (abstr.1) of Definition 5.11, we can derive that

2); a:type f-qE [x:a]a : type.

But using the new abstraction rule of AUT-QE we can also derive

2); a:type f-qE [x:a]a : [x:a]type.

(21)

(22)

More generally, we can prove that the two statements below are equiv
alent (that is: if either of them is derivable then they are both derivable)
in AuT-QE:

2); r f-qE [x1:L1]· · · [xn:Ln]O: [x1:L::1]· · · [xn:Ln]type; (23)

2); r f-qE [x1:L::I) · · · [xn:L::n)O: [x1:L::1]· · · [xm:Lm]type (24)

(for rn < n). In (23), the expression [x1:L::1]· · · [xn:L:n]O should be read as
>.i=1 xi:Li.n; in (24) it should be read as >.~ 1 xi:Li. Tij=m+l Xj:Lj.n.

But this equivalence holds only for expressions of the form

and not for general expressions L: (take, for instance, L: a variable). In order
that the equivalence holds for general expressions L::, De Bruijn introduced
a rule for type inclusion:

2); r f-qE L: : [x1 :I: I]··· [xn:L::n]type
2); r f-qE L:: [x1:L::1]· · · [xn-l:L::n_i]type.

214 5 Automath

Lists of abstractions [x1:L:1]· · · [xn:En] were also called telescopes by de
Bruijn. In the rule for type inclusion, we see that one part of the telescope
"collapsesn.

5d2 Comparison with the DPTSs of Severi and Poll

In [114], Severi and Poll present an extension of PTSs with definitions, thus
obtaining Pure Type Systems with Definitions (DPTSs). They extend the
usual PTS-rules with the following D-rules:

(D-start)

(D-weak)

(D-form)

(D-intro)

(D-conv)

f,x=a:A I- B: s
r I- (x=a:A in B) : s

f,x=a:A I- b: B r I- (x=a:A in B): s
r I- (x=a:A in b): (x=a:A in B)

r 1- b : B r 1- B' : s r 1- B =v B'
r 1- b: B'

where D-reduction is defined by the following rules:

r I- (x=a:A in b) --+v b (x (/_ FV(b));

r, x=a:A I- b --+v b'
r I- (x=a:A in b) --+v (x=a:A in b')

and the usual compatibility rules. As we see, there is an extra class of terms
in DPTSs, namely those of the form (x=a:A in b).

When regarding both systems we find that:

• In DPTSs, definitions do not only occur in a context, but may also
occur in terms. Moreover, definitions may disappear from contexts
when they are introduced in terms (e.g. the D-form and the D-intro
rules, and the last of the three D-red uction rules), and definitions may
disappear from terms when the definiendum does not occur in that
term (the middle D-reduction rule).

5d Related work 215

This gives definitions a more temporary character: We can use them
as long as needed, and when we do not need them any more, we can
remove them from the context.

Definitions can also play a more local role: A definition that is needed
in only one term can be imported into that term while it is not nec
essary to carry it around in the (global) context, as well.

This temporary and local behaviour of definitions is not present in
AUTO MATH;

• Due to the fact that definitions can also play a local role, D-reduction
can also unfold definitions which are not present in the (global) con
text, but which are given within the term. For example, we have
a:* f- (id=Ax:a.x in id) -o Ax:a.x, though there is no definition of
id in the context a:*.

Again, this is not possible in AUTOMATH;

• The start rule for definitions in DPTSs,

ff-T:B

r,x=T:B f- X: B

does not require r f- B : s for a sorts. In)..68 we have the rule (Start:
de):

~; r 1- T : B : s1 ~; 1- ,- r.B : s2 () ___:_ _____ ..::.__ __ _..:.._.::.._ __ ...::. S! = *, 0
~' x:= § r.T:, r.B; f- X : , r.B

where we see that both Band ,-r.B need to be of a certain sort (and
B must be of sort * or D);

• The start rules for definitions in DPTSs and in)..68 also differ in
another respect, namely the type of definiens and definiendum. In
DPTSs they have the same type (in the notation of the previous
paragraph: B), while in)..68 the definiens T has type B and the
definiendum X has type , r .B. This topic has already been discussed
when we introduced the definition mechanism of)..68 in Section 5b3;

• D-reduction differs from 8-reduction, also when only global definitions
are taken into account. For instance, 8-reduction is substitutive, i.e. if
~f-A ---'> 0 A' then~ f- A[x:=b] ---'>0 A'[x:=b] (proof: Induction on the

216 5 Automath

structure of A). D-reduction is not substitutive: taker = a:*, y=a:*.
Then r f- y --+o a, but f 17' y[a:=MJ --+o a[a:=MJ for arbitrary M.

In ..\68, this example would look as follows. Take L\ = y:=a:~a: * ·*·
Then L\ f- ya -+IS a and L\ f- ya[a:=MJ -+IS a[a:=MJ.

Substitutivity for --+o is lost, because unfolding a definition by D
reduction may introduce new free variables in the term. In Au
TOMATH, all free variables in the definiens must be added as pa
rameters to the definiendum. In ..\68 this is visible in the Start and
Weakening rules for defined constants: The right part r of the context
.6; r that is used to type the definiens T in these rules, serves as list
of parameters in the definiendum. When an AUTOMATH-definition is
unfolded, the free variables occurring in the definiens are replaced by
the parameters;

• We see that the definition of y in).68 in the example above is more
general than in the corresponding DPTS situation. In the DPTS
example, y D-reduces to one, fixed term a. In the ..\68 version, yM is
defined for any (typable) term M. To do something similar in DPTSs,
one needs to define y as .Aa:*.a. In particular, one needs to type the
term .Aa:*.a, which involves the use of IT-formation rule (0, D), so
the use of a higher type system. One could say that AUTOMATH
and).68 use an implicit .A-abstraction where DPTSs need an explicit
.A-abstraction. On this point, AuTOMATH and ..\68 are more flexible
than DPTSs. This is due to the parameter mechanism of AUTOMATH.
It is possible to extend DPTSs with a parameter mechanism as well.
This will be the main topic of Chapter 6.

We summarise the differences between DPTSs and AUTOMATH:

• DPTSs have global and local definitions. AUTOMATH has only global
definitions;

• In DPTSs, the type B of a definition x=T:B does not have to be
typable itself. In AUTOMATH, B has to be typable;

• The D-reduction of DPTSs,is not substitutive; 8-reduction of Au
TOMATH is substitutive;

5d Related work 217

• AUTOMATH has a parameter mechanism, DPTSs do not have such a
mechanism.

5d3 Comparison with systems of Bloo, Kamareddine and
Nederpelt

In [17], Bloo, Kamareddine and Nederpelt extend the usual PTSs with
both IT-conversion and definitions. [17] starts with PTSs extended with
IT-reduction, but without definitions (see [73]). This system (which we will
call .\,BIT for the moment) does not have the Subject Reduction property.
Fbr instance, one can derive

a:*, x:a f- (.\y:a.y)x: (ITy:a.a)x,

but it is not possible to derive

a:*, x:a f- x : (ITy:a.a)x.

Adding a definition mechanism results in a system that we will call .\,8IT8
and is the main point of interest in [17]. As a sort of "side effect" of adding
this definition mechanism, .\,8IT6 has Subject Reduction.

It will be clear that it is useful to take IT-conversion into consideration
when comparing AUTOMATH with .\,BIT. Though our system .\68 does not
have IT-conversion, it is very easy to extend it to a system .\IT68 by:

• Changing rule (Appd into

~;r f- M: ITx:A.B ~;r f- N: A
~; r f- M N : (ITx:A.B)N

(Rule (App2) remains unchanged see also the discussion in Section
5b1);

• Adding a new reduction rule --tn by

(ITx:A.B)N --tn B[x:=N].

The system .\IT68 is actually much closer to AuT-68 than .\68 as AUT-68
has IT-conversion as welL

218 5 Automath

In -XIT68 we do not have Subject Reduction, either: It is not hard to
derive

; a:*, x:a I- (-Xy:a.y)x: (ITy:a.a)x

in -XIT68. Nevertheless, we can not derive

; a:*, x:a I- x : (ITy:a.a)x

(In such a derivation, no definitions can occur: Definitions, once they have
been introduced, cannot be removed from the left part of the context any
more; when we are not allowed to use any definition rules, -XIT68 has not
more rules than the system A;::HI of Bloo, Kamareddine and Nederpelt).

The "restoration" of Subject Reduction in \BITd is only because of
the special way in which definitions are introduced and removed from the
context. We do not go into details on this; the interested reader can consult
[17].

Another main difference between -XIT68 and \BITd has already appeared
in Section 5d2: In -XIT68 there is a different correspondence between the
types of definiendum and definiens than in -X,BITd.

Conclusions

In this chapter we described the most basic AUTOMATH-system, AuT-68,
in a PTS style. Though such descriptions have been given before in, for
example, [5] and [54], we feel that our description is more accurate than
the two ones cited above. Moreover, our description pays attention to the
definition system, which is a crucial item in AUTOMATH. The descriptions
mentioned above do not.

-A68, the main topic of this chapter, does not include IT-conversion (while
AUTOMATH does). However, it is very easy to adapt -X68 to include IT
conversion (this was done in Section 5d3 to compare our system to the
system in [17]).

The adaption of -A68 to a system .>.QE, representing the AUTOMATA
system AuT-QE is not hard, either: It requires adaption of the IT-formation
rule to include not only the rule(*,*,*) but also(*, D, D) and introduction
of the additional reduction rule of type inclusion. ·

Of course, the properties of -A68 presented in Section Sc have to be
reviewed for these new systems.

Conclusions 219

When comparing ..\68 to other type systems with definitions, we find an
important difference. In ..\68, the correspondence between types of definien
dum and definiens differs from the similar correspondence in the systems
in [114] and [17].

The reason why ..\68 differs from other theories in this respect has been
discussed in Section 5b3: The definition system in AUTOMATH allows pa

rameters to occur in the definiens, and there is no parameter mechanism in
PTSs. In Chapter 6, we extend PTSs with a parameter mechanism. This
extension has AUT-68 as a subsystem. Moreover, we show that a parameter
mechanism has also other advantages.

Chapter 6

Pure Type Systems with
Parameters

This chapter is devoted to the description of pure type systems with pa
rameters. One reason to study this extension of PTSs is to give a better
description of AUTOMATH than in the previous Chapter, where we had to
work with the sort 6 to store terms and types that did not have a coun
terpart in AUTOMATH (cf. Subsection 5bl). Such terms and types were
needed for the description of the system because no parameters were used.
But there are many more arguments why type systems with parameters
deserve to be studied:

Definitions The various AUTOMATH systems had mechanisms to incor
porate parameters and definitions in the formal language (as we saw
in the previous chapter). There are also modern systems in which
definitions are part of the formal machinery of the system (see [114],
[16]). We will show that the (now widely accepted) system of Severi
and Poll [114] can be easily extended with a parameter mechanism;

Programming languages Parameters and parametric definitions are not
only used in implementations of type systems. They also occur in
many other parts of computer science. For example, look at the
following Pascal fragment P with the function double:

function double(z : integer) : integer;

begin
double

end;
z + z

221

In a PTS with definitions like the one in [114], P could be represented
by the context declaration

double= (h:Int.(z+z)): (Int--+ Int).

Of course, this declaration can imitate the behaviour of the function
perfectly well. But the construction has the following disadvantages:

• The declaration has as subterm the type Int --+ Int. This sub
term does not occur in P itself. More general, Pascal does not
have a mechanism to construct types of the form A --+ B;

• Moreover, due to the way in which double is defined, double is
a separate subterm in a PTS. But double itself is not a separate
expression in Pascal: you can't write x := double in a program
body. One may use the expression double in a program, pro
vided that one specifies a parameter p that serves as an argument
of double.

We conclude that the translation of P by means of the context decla
ration above is not fully to the point. The extension of the system of
[114] with a parameter mechanism, to be presented in this chapter,
allows us to translate P by the parametric context declaration

double(z:Int) = (z+z) : Int.

This declaration does not have the disadvantages described above:

• It doesn't have the subterm Int --+ Int;

• As we will show in this chapter, double itself cannot be a sub
term of a term. We always have to specify an argument p for
double, thus constructing a subterm double(p);

First-order logic Implementations of first-order logic in a PTS in PAT

style usually use a PTS that is related to >..P. >..P has sorts *, D,

axiom *:0, and two IT-formation rules, (*, *, *) and(*, D, D). In this

222 6 Pure Type Systems with Parameters

PTS it is possible to construct types (that is: terms of type * or D)
that are not in ,6-normal form. Hence, a derivation in AP can have
non-trivial applications of the conversion rule

r 1- A: Bs

This can be problematic in implementations. In theory, it is always
decidable whether two terms B1, Bz are ,6-equal or not (simply: check
whether their ,6-normal forms are syntactically equal or not). In
practice, such a calculation may take quite some time and memory.
Therefore, it would be better to use a PTS in which applications of
the conversion rule are only possible when B1 = Bz. This is the
case if all types in such a PTS are in ,6-normal form. As all types
in A-+ (that is: AP without IT-formation rule (*,D,D)) are in ,6-
normal form, it would be a good candidate for an implementation of
first-order predicate logic. Unfortunately, first-order predicate logic
cannot be described in PAT-style in A-+. The introduction of the re
lation symbols in a first order language involves the IT-formation rule
(*, D).

But in a first-order language, a relation symbol R always has a fixed
arity a(R). This means that R itself is not a proposition. It can only
be used to construct a proposition: if t1, ... , ta(R) are terms, then
R(t1, ... , ta(R)) is a proposition. With the use of parameters in PTSs,
it is possible to introduce the relation symbols without IT-formation
rule (*, D, D). This results in a system in which the conversion rule is
superfluous, and therefore easier to handle in implementations. See
Section 6f;

Philosophical arguments The parameter mechanism enables us to de
scribe the difference between developers and users of certain systems.
We illustrate this by expressing the different attitudes of logicians and
mathematicians towards the induction axiom for natural numbers. A
logician is someone developing this axiom (or studying its proper
ties), whilst the mathematician is usually only interested in applying
(using) the axiom.

Assuming a variable N (the type of natural numbers) of type *• a vari
able 0 (representing the natural number zero) of type N and a variable

223

S (an implementation of the successor function: Snm is assumed to
hold if and only if m is the successor of n) of type N -+ N -+ *• the
induction axiom can be described by the following PTS-type (let's
call it: Ind):

ITp:(N-+*).pO-r(ITn:N.ITm:N.pn-+Snm-+pm)-+ITn:N.pn

in a PTS with sorts *• D, axiom * : D and IT-formation rules (*• *, *),
(*,D,D), (D,*,*). With this type Ind one can introduce a variable
ind of type Ind that may serve as a proof term for any application of
the induction axiom. This is the logician's approach.

For a mathematician, who only applies the induction axiom and
doesn't need to know the proof-theoretical backgrounds, this inter
pretation is too strong. Translating the mathematician's conduct to a
PTS-like setting, we may express this as follows: The mathematician
uses the term ind only in combination with terms P: N-+*, Q: PO
and R : ITn:N.ITm:N.Pn-+Snm-+Pm to form a term indPQR of
type ITn:N .Pn. In other words: he is only interested in the applica
tion of the induction axiom, and treats it as an induction scheme in
which values P, Q, R have to be substituted to use it.

The use of the induction axiom by the mathematician is therefore
much better described by the following, parametric, scheme (p, q and
r are the parameters of the scheme):

ind(p:N-+*, q:pO, r:(ITn:N.ITm:N.pn-+Snm-+pm)): ITn:N.pn.

If now P: N-r*, Q:PO and R: ITn:N.ITm:N.Pn-rSnm-+Pm, then
one can form the term ind(P, Q, R) of type ITn:N .Pn. The types
that occur in this scheme can all be constructed using sorts *•
axiom* : D and rules (*• *, *), (*• D, D), hence the rule (0, *, *) is not
needed (in the logician's approach, this rule was needed to form the
IT-abstraction ITp:(N--+ *) · · ·).

Consequently, the type system that is used to describe the mathe
matician's use of the induction axiom can be weaker than the one
for the logician. Nevertheless, the parameter mechanism gives the
mathematician limited (but for his purposes sufficient) access to the

224 6 Pure Type Systems with Parameters

induction scheme. Without parameter mechanism, this would not
have been possible.

We see that the parameter mechanism enables us to describe the
difference between a user of a system (in this example: the mathe
matician) and a developer of the same system (in this example: the
logician). In this light it is interesting to note that AUTOMATH, which
has a parameter mechanism, was developed from the viewpoint of
mathematicians (see [23]);

A different form of abstraction and application In >.-calculus with
out parameters there is one mechanism for abstraction and applica
tion. For abstraction, we use >.-abstraction, and application is imple
mented via function application. Abstraction and application form
the basis for a type system. A parameter mechanism is a different
abstraction-and-application mechanism. In the philosophical argu
ment above, the parametric scheme for induction could only be used
when parameters were supplied. In other words: abstraction is al
lowed, but has to be followed immediately by application. In the
perspective of our study of the various ways in which application and
abstraction are present in type theory, we conclude that this mecha
nism for combined abstraction and application, being different from
the >.-calculus mechanism, deserves our attention.

We conclude that there is ample motivation to extend PTSs with parame
ters.

There are several ways in which such an extension can be made. For
instance, when working in the systems of the Barendregt Cube, we may
want to add only parametric terms t(p1, ... ,pn) for which the parameters
PI, ... , Pn have types A1, ... , An that are of sort *· But we could also decide
to add parametric terms t(pl, ... , Pn) without this restriction to the types
of the PI, .. · ,Pn·

There is a method to classify these various parametric extensions that
corresponds to the classification of type systems that is used in the frame
work of Pure Type Systems.

In the Barendregt Cube, there are two sorts * and 0, and the vari
ous PTSs in the cube are determined by the various ways in which type
abstractions can be made. If all constructions of IT-types are allowed, we

225

obtain the Calculus of Constructions, with rules (*• *• *), (*, D), (D, *, *)
and (D, D, D). If we do not allow all IT-type constructions, we get one of
the subsystems of the Calculus of Constructions in the Barendregt Cube.

Something similar can be done with the parameter mechanism. One op
tion is to provide one, general way of parametric abstraction and parametric
application. We then allow all kinds of parameters. On the other hand,
there are several ways in which a parameter mechanism may be restricted.
We mention two ways:

• Assume, we are working in one of the systems of the Barendregt Cube,
extended with parameters, and we have that t(pl, ... , Pm) has type
A. By Correctness of Types, A has either type * or type D. One can
imagine that we only allow t(p1, ... ,pm) if it has type A of type* (so
we only allow parametric terms);

• Still working in one of the systems of the Barendregt Cube extended
with parameters, we will show that the .parameters PI, ... , Pm in a
term t(PI, . .. , Pm) are typable themselves. Again, a parameter Pi can
have a type Pi of type * (so Pi is at term level), or a type Pf of type
D (so Pi is at type level), and there are systems in which one would
only allow parameters Pi that have a type Pi of type* (or of type D).

These two possibilities for restriction are orthogonal in the sense that they
can be combined. In many Pascal versions, for instance, parametric terms
can only have parameters at term level. It is, for instance, not possible
in Pascal to write a function CartProd that takes two types A and B as
parameters, and returns a type that represents the Cartesian product Ax B
of A and B.

It is possible to incorporate such restrictions in our system in a similar
way as the restrictions on the formation of IT-types in PTSs. We then
obtain rules for parameter constructions. These rules have the form (s1 , s 2).

The sort s 1 indicates that the parameters p1, ... ,pm have to have types
P1, ... , P m of sort s1. The sort s2 indicates that the resulting parametric
term must have a type P of sort s2. The combination of the rules for
parameter constructions with the well-known rules for the construction of
IT-types in the Barendregt Cube leads to a division of the Barendregt Cube
into eight sub-cubes (we illustrate this in Figure 11 on page 278). As in the
Barendregt Cube, one dimension in the cube still corresponds with one of

226 6 Pure Type Systems with Parameters

the rules(*, D), (D, *)or (D, D). Following an edge of the cube in dimension
(s1, s2) can now be done in two ways:

• As was already possible, we can follow the edge to the end. This still
corresponds to accepting the IT-formation rule (s1, s2, s2);

• We can also follow the edge only half-way. This means that we do
not accept the IT-formation rule (s1, s2, s2), but that we do accept the
parameter construction rule (s1, s2).

This viewpoint suggests that allowing the IT-formation rule (s1, s2, s2) also
allows the parameter construction rule (s1, s2). Formally, one can work
with systems in which we do allow the IT-formation rule, but do not allow
the parameter construction rule. We can prove, however, that if the IT
construction rule (s1, s2, s2) is allowed, a parameter construction involving
rule (s1, s2) can be imitated by >.-abstractions (Theorem 6.79).

This chapter is organised as follows. In Section 6a, we give definitions of
PTSs extended with parametric constants and definitions. This definition
includes an extension of the 8-reduction described in [114] (which unfolds
definitions) to parametric definitions. In Section 6b we show that the 8-
reduction and ,68-reductions have the Church-Rosser property, and that
8-reduction (under some reasonable conditions) is strongly normalising. In
Section 6c, we show some elementary properties of the system introduced in
Section 6a, like a Generation Lemma, and the Subject Reduction theorem
for ,68-reduction. We also prove that ,68-reduction is strongly normalising
if a slightly stronger PTS is ,6-strongly normalising.

Section 6d is devoted to the various ways in which parameters can be
added to a PTS in a more restricted way, with the refined Barendregt Cube
of Figure 11 as a result.

In Section 6e, we compare our system with some other type systems, like
AUTOMATH. We place various AUTOMATH systems in the refined Baren
dregt Cube of Figure 11.

In Section 6f we see that the use of parameters can sometimes result in
simpler and more realistic implementations of type systems.

6a Parametric constants and definitions 227

6a Parametric constants and definitions

In [114], PTSs extended to include definitions are abbreviated as DPTSs.
In this section we extend PTSs with parametric constants and definitions.
This extension will also contain the DPTSs (definitions in DPTSs can be
interpreted as parametric definitions with zero parameters). In Section 6e,
we show that AuT-68 can be seen as a (on some points somewhat restricted
version of a) PTS with parameters and definitions.

Definition 6.1 The set Tp of parametric terms is defined together with
the set Cv of lists of variables and the set LT of lists of terms:

Tp .. - vIs I C(£T) I TpTp I >.V:Tp.Tp I
IIV:Tp.Tp I C(.Cv)=Tp:Tp IN Tp;
01 (.Cv, V:Tp};
0 I (.CT, Tp}.

where, as usual, V is a set of variables, C is a set of constants, and S is a
set of sorts. Formally, lists of variables are of the form

We usually write (x1 :A1, ... , Xn:An) or even XI :A1, ... , Xn:An. A similar
convention is adopted for lists of terms. In a parametric term of the form
c(b1, ... , bn), the subterms b1, ... , bn are called the parameters of the term.

Terms of the form C(.Cv)=Tp:Tp in Tp represent parametric local def
initions. An example of such a term is double(x:N)=(x+x):N IN A. The
term indicates that a subterm of A of the form double(P) is to be inter
preted as P + P, and has type N. The definition is local, that is: the
scope of the definition is the term A. Local definitions stand in contrast to
global definitions. Global definitions are given in a context r, and refer to
any term that is considered within r (see the forthcoming Definition 6.8).
The definition system in AUTOMATH can be compared to the system of
global definitions in this Chapter. However, there are no local definitions
in AUTOMATH.

228 6 Pure Type Systems with Parameters

Definition 6.2

• We extend the definition of Fv(A), the set of free variables of a term
A, to parametric terms:

FV(c(al, ... ,an))
Fv(c(x:A)=A:B IN c)

U?=l FV(ai)i

u:=l (Fv(Ai) \{xi, ... , Xi-d)

U (Fv(A) U FV(B)) \ {x1, ... , Xn}
U FV(C)

• We similarly define CONS (A), the set of constants and global defini
tions of A:

CONS(s) = CONS(x)

CONS (c(a1, ... , an)) =
CONS(AB)

CONS (.Xx:A.B)
CONS (Ilx:A.B)

CONS (c(x:A)=A:B IN C)

0;
{c} U U?=l CONS (ai);
CONS (A) U CONS (B);
CONS (A) U CONS (B);
CONS (A) U CONS (B);

U?=l CONS (Ai)

U CONS (A) U CONS (B)
U (CONS (C)\ {c}).

FV(A) U CONS (A) forms the domain DOM (A) of A.

Remark 6.3 The definition of

Fv(c(x:A)=A:B IN c)
and

CONS (c(x:A)=A:B IN C)
make clear what the binding structure in a term c(x:A)=A:B IN C is .

• A variable declaration Xi:Ai in the parameter list x:A binds all the
occurrences of Xi in Aj, for j ~ i. That is: the type of a parameter
Xj may depend on earlier declared parameters;

6a Parametric constants and definitions 229

• Moreover, the declaration Xi:Ai binds all the occurrences of Xi in
A and B. This corresponds to the intuitive idea of a parametric
definition: Xi can serve as a parameter in the definiens A and in the
type B of the definiens;

• However, the variable declaration Xi:Ai does not bind any occurrence
of Xi in C. The definiendum c will occur in C only with a list of
parameters a1 , ... , an behind it, so in the form c(a1, ... , an). The
variables x 1 , ..• , Xn in the definition of c only serve to indicate what
the type of the ais must be (below, we will see that ai must have type
Ai[xj:=aj]j:;), and what the type of the term c(al> ... , an) is (this
appears to be B[x{=aj]j=I);

• Moreover, we see that c is not included in the constants of

c(x:A)=A:B IN c.

This is because c is a local definition, and acts as a binder for the
occurrences of c in C.

Remark 6.4 There are several reasons for including the type B in a local
definition c(x:A)=A:B IN C:

• We want to remain consistent with other binders, such as ..\ and II.
In a term ..\x:A.B or IIx:A.B we mention the type of the binder x,
therefore we also mention the type of the binder c in a local definition
c(x:A)=A:B IN C;

• Sometimes A : B indicates that the term A is a proof of a theorem
B (using PAT). If we want to use B in the proof of a new theorem
B', we must use the proof term A of B in the proof A' of B'. In
that case it is attractive to abbreviate A by introducing a definition
c(x:A)=A:B IN A'. It is important to remember that cis (an abbre
viation of) a proof of B, and that is a reason to mention B, the type
of A, in the definition declaration;

• For practical purposes like proof assistants or proof checkers, it may
seem to be problematic to have B in the definition declaration. How
ever, the program does not always have to ask the user to explicitly

230 6 Pure Type Systems with Parameters

mention the type of the abbreviation. Often it can find this type
itself via a type checking algorithm. Of course, this also depends on
whether type checking is decidable in the underlying type system.

Sometimes, the user may wish to manually enter the type, because
he/she may prefer a certain formulation of the type to a ,8-equivalent
formulation that the program automatically offers.

As usual in PTSs, we do not make difference between terms that are
equal up to renaming of bound variables: we consider these terms to be
syntactically equal. Moreover, we assume the Barendregt variable conven
tion:

Convention 6.5 Names of bound variables and constants will always be
chosen such that they differ from the free ones in a term.

Hence, we do not write (.Xx:A.x)x but (.Xy:A.y)x. Similarly, we write
c(x':A)=x':A IN c(x) instead of c(x:A)=x:A IN c(x).

Definition 6.6 We extend the definition of substitution of a term a for a
variable x in a term b, b[x:=a], to parametric terms, assuming that x is not
a bound variable of either b or a:

c(b1, ... , bn)[x:=a]
(c(x:A') = A:B IN C)[x:=a]

= c(b![x:=a], ... , bn[x:=a]);

c(xl:Al[x:=a], ... , Xn:An[x:=a])=
A[x:=a]:B[x:=a] IN C[x:=a].

We now define contexts for type systems with parameters and defini
tions.

Definition 6. 7 The set of contexts is given by

Cp ::= 01 (Cp, V:Tp) I (Cp,C(.Cv)=Tp:Tp) I (Cp,C(.Cv):Tp).

Notice that .C v ~ C p: all lists of variable declarations are contexts, as
well. We denote contexts by r, r',

Definition 6.8 Let r be a context. Elements x:A, c(xl:Bl, ... 'Xn:Bn):A,
c(x1:B1, ... ,xn:Bn)=a:A of rare called declarations.

6a Parametric constants and definitions 231

• x:A is a variable declaration.

- The variable x is the subject of the declaration;

- A is the type or predicate of the declaration;

• A declaration of the form c(x1:B1, ... ,xn:Bn):A is a constant decla
ration.

- The constant c is the subject of the declaration. As c is intro
duced without further definition, cis called a primitive constant
(cf. the primitive notions in AUTOMATH);

- x1, ... , Xn are the parameters of the declaration;

- A is the type (predicate) of the declaration;

• A declaration c(x1:B1, ... ,xn:Bn)=a:A is called a global definition
declaration or shorthand global definition or definition.

- The constant c is the subject or definiendum of the declaration.
c is called a (globally) defined constant;

- x1, ... , Xn are the parameters of the declaration;

a is the definiens of the declaration;

A is the type (predicate) of the declaration.

The reasons for including the type of a global definition or a parametric
constant in its declaration are the same as for local definitions. See Remark
6.4.

In the rest of this chapter, ~ denotes a context X1 :B1, ... , Xn :En con
sisting of variable declarations only. Such a context is typically used as a
list of parameters in a definition c(~)=a:A. We write

fori ~ n.

We extend the definition of substitution to contexts:

232 6 Pure Type Systems with Parameters

Definition 6.9 Let f E Cp, ME Tp. We define f[x:=M] as follows:

0[x:=M] = 0;
(f, x:A) [x:=M] _ f!x:=M];

(f,x':A)[x:=M] = (f!x:=M],x':A[x:=M]) if x :t x';
(f, c(~):A)[x:=M] = (f[x:=M], c(~[x:=M]):A[x:=M]);

(f, c(~)=a:A) [x:=M] _ (f!x:=M], c(~[x:=M])=a[x:=MJ :A[x:=M]).

For a term A we defined FV(A) and CONS (A). For a context f we do
not form one set CONS (f), but we split this set into a set PRIMCONS (f),
containing the primitive constants off, and a set DEFCONS (f), containing
the defined constants of f.

Definition 6.10 Let f be a context. We define the free variables, con
stants and definitions of f:

f FV(f) PRIMCONS (f) DEFCONS(f)
0 0 0 0
f,x:A FV(f) U {x} PRIM CONS (f) DEFCONS (f)
f,c(~):A FV(f) PRIM CONS (f) U { c} DEFCONS(f)
f, c(~)=a:A FV(f) PRIMCONS (f) DEFCONS (f) U {c}

Finally we define the domain of f, DOM (f), by

FV(f) U PRIM CONS (f) U DEFCONS (f) .

In ordinary Pure Type Systems we have that, for a legal term A in a legal
context f, Fv(A) ~ FV(f). The type of a free variable in A, therefore, can
always be determined via f. In our pure type systems with definitions and
parameters we will have: FV(A) ~ FV(f) and CONS (A) ~ PRIMCONS (f) U
DEFCONS (f). This has not only as an effect that the type of a free variable
or a constant can be determined via f, but also that f determines whether
a constant in A that is not serving as a local definition within A, is a defined
constant or a primitive constant. We therefore define:

Definition 6.11 For a context f and a term A with DOM (A) ~ DOM (f)
we define

DEFCONSr(A) = CONS (A) n DEFCONS (f) j

PRIMCONSr(A) CONS (A) n PRIMCONS (f).

6a Parametric constants and definitions 233

We see that a constant c E C can play three roles in a term A, with
respect to a context r:

• If c occurs in a subterm (c(il)=b:B IN a) of A, then c IS a locally
defined constant;

• If c E DEFCONSr(A), then cis a globally defined constant;

• If c E PRIMCONSr(A) (or c ~ DOM (f)), then cis a primitive constant.

Example 6.12 It is possible that c E CONS (A) is a globally defined con
stant with respect to a context r, but a primitive constant with respect to
a context f'. Take for example A := id, r := a:*, id()=(>.x:a.x):(a --+ a),
and r' =a:*, id():(a--+ a).

A natural condition on a context r 1 , c(il)=a:A, r 2 is that all the free
variables and constants of a and A are declared in either f1 or Ll, and
that all free variables and constants in a declaration Xi:Bi E Ll are declared
in rl,Lli (recall that Ll is a standard context Xl:Bl,···,Xn:Bn and Lli =
x1:B1, ... , Xi-l:Bi_I). We call such a context sound:

Definition 6.13 r E Cp is sound if r := f1, c(il)=a:A, f2 implies

DOM (a) U DOM (A) ~ DOM (fl) U DOM (fl)

and

The contexts occurring in the type systems proposed in this chapter
are all sound (see Lemma 6.23). This fact will be useful when proving
properties of these systems.

We will consider some extensions of Pure Type Systems (PTSs). The
definition of PTSs can be found in the appendix (Definition A.20), and has
already been discussed in Section 4bl.

• An extension that includes globally and locally defined constants is
described and studied in [114]: "PTSs with definitions" (D-PTSs);

234 6 Pure Type Systems with Parameters

• Orthogonally, we can extend PTSs with parameter-free primitive con
stants. Then we obtain C-PTSs. C-PTSs are not very interesting, as
the role of parameter-free primitive constants can usually be imitated
by variables.1 One could agree that a parameter-free primitive con
stant is a special sort of variable, and promise not to make any (.\ or
II) abstraction over such a variable;

• Our first real extension describes PTSs with parametric primitive
constants, but without definitions (C-PTSs). The C-PTSs include
the C-PTSs, as a parameter-free primitive constant can be seen as a
parametric primitive constant with zero parameters;

• Another extension includes parametric defined constants, and can be
seen as a generalisation of D-PTSs: D-PTSs;

• We can combine the extensions with primitive constants and defined
constants, choosing between parametrised or parameter-free variants.
For instance, we can make an extension that includes parameter-free
defined constants, and parametric primitive constants. \Ve call this
extension CD-PTSs.

Combining the various extensions, we obtain a hierarchy that can be de
picted as in Figure 10.

Example 6.14 We give some examples of the possibilities of parameters
and definitions.

• We illustrate the difference between PTSs, C-PTSs and C-PTSs.

In the PTS A-+ (with only one axiom*: 0 and one IT-formation
rule (*, *, *)) we could introduce a type variable N : * and a
variable o : N when we want to work with natural numbers.
N represents the type of natural numbers and o represents the
natural number zero;

Though the representation of objects like the type of natural
numbers and the natural number zero as a variable works fine in

1 There are, however, extensions of PTSs in which constants play an essential role. See
for instance the Modal PTSs in the thesis of Borghuis [18], p. 28-29

6a Parametric constants and definitions 235

CD-PTS

/~
CD-PTS CD-PTS

/~/~
C-PTS CD-PTS D-PTS

~/~/
C-PTS D-PTS

PTS

Figure 10: The hierarchy of parameters and definitions

practice, there is a philosophical problem with such a represen
tation. We do not consider the set N and the number 0 E N to
be variables, because these objects "do not vary". If we have a
derivation of N:*, o:N 1- t : N for some term t, it is technically
possible to make a .\-abstraction over the variable o and obtain
N:* 1- ..\o:N.t : N -+ N. In this judgement, o acts as a variable,
while it was initially introduced as a constant.

In C-PTSs we can distinguish between constants and variables.
If o is introduced as a constant, it is not possible to form a
.\-abstraction ,\o:N.t;

- In Example 5.9, we introduced for each proposition L: the type
proof(L:) of proofs of :E. This cannot be done in the PTS A-+ ex
tended with (unparametrised) constants: such a constant proof
should be of type prop -+ type and this type cannot be con
structed in A-+ (notice that type = *, so the construction of
prop-+ type would involve the IT-formation rule(*, D, D)).

236 6 Pure Type Systems with Parameters

However, the term proof will hardly ever be used on its own.
It is usually used when applied to a proposition I:. In C-PTSs
it is possible to introduce a parametric version of proof by the
following context declaration:

proof(p:prop): type.

This does not involve the construction of a type prop ---> type.
Nevertheless it is possible to construct the term prop(P) for any
term P : prop. We obtain a form of polymorphism without using
the polymorphism of >.-calculus.

A disadvantage may be that we cannot speak about the term
proof "as it is". When using proof in the syntax, it must always
be applied to a parameter T : prop.

However, an advantage is that we can restrict ourselves to a
much more simple type system. In the situation above we remain
within the types of the system A--->. We do not need to use types
of the system >.P. This may have advantages in implementations
of type systems. For instance, the system A---> does not involve
the conversion rule

ff-A:B ff-B:s B'
r f-A:

while >.P does involve such a rule. The conversion rule involves
,8-equality of terms, and though it is decidable whether two >.
terms of >.Pare f)-equal or not, it may take a lot of time and/or
memory to establish such a fact. This may cause serious prob
lems when implementing certain type systems. Using parameters
whenever possible may therefore simplify implementations. We
give an example in Section 6f;

• We illustrate the difference between PTSs, D-PTSs and D-PTSs.

- In a simple PTS like >.---> one can derive the following statement
for an identity function:

o::* f- (>.x:o:.x) : o:---> o:;

6a Parametric constants and definitions 237

The same derivation can be made in the corresponding D-PTS,
but in that D-PTS we have the possibility of abbreviating the
term .Xx:a.x. We can do this in two ways. First of all, we can
introduce this definition in the context:

a:*: id=(.Xx:a.x):(a->a) f- id: a->a.

But we can also decide to make a local definition:

a:* f- (id=(.Xx:a.x):(a->a) IN id):

id=(.Xx:a.x):(a->a) IN a->a.

We see that the definition of id appears both in the term and in
the type of the term, but not in the context.

The advantages of definitions are:

o We can abbreviate long expressions. This makes terms more
surveyable: id is shorter than .Xx:a.x;

o We can give names to important expressions. This makes
terms more understandable: id expresses that we have to do
with the identity function, whilst .Xx:a.x does not express
this fact;

- In a D-PTS we have more options for abbreviating the identity
function.

o First of all, we can make the same derivation as in the D
PTS. Formally, there is a small difference: we cannot use
id but must work with id(), a parametric term with zero
parameters (as in D-PTSs we can only work with parametric
definitions). We obtain (in the case of the global definition):

o But we could also decide to use one or more parameters in
the definition of id. For instance, we could parametrise the
variable a. This results in the declaration

238 6 Pure Type Systems with Parameters

If we want to use this declaration, we must have a term T
of type *· Assuming that we have such a term T, we can
derive:

id(o::*)=(Ax:o:.x):(o:---+o:) 1- id(T): T---+ T.

We see that we obtain a restricted form of polymorphism in
this way. The type system may not allow the construction of
Ao::*.Ax:o:.x; nevertheless the parameter mechanism makes
it possible to express id(T) for any type T : *;

o We could also decide to parametrise the variable x, and leave
the variable o: unparametrised. This yields a context

o::*, id(x:o:)=x:o:.

We see that the A-abstraction Ax:o:.x is parametrised now.
The definition declaration means: For any term t of type o:,
the term id(t) of type o: is defined by t. If we have such a
term t, then we can derive

o::*, id(x:o:)=x:o: 1- id(t) : o:.

Observe that id(t) does not have type o: ---+ o: (as was the
case with id) but type o: (which would also be the type of
idt if we had used the identity id=Ax:o:.x from A-calculus);

o Finally, one could parametrise both o: and x. This results
in a declaration

id(o::*, x:o:)=x:o:

in the context. If we have a term T of type * and a term t
of type T, we can derive

id(o::*, x:o:)=x:o: 1- id(t): T.

The global definitions given in the D-PTS case could also be
made local, as was done in the D-PTS case.

We now start a more detailed description of the various extensions of
PTSs with definitions and parameters.

6a Parametric constants and definitions 239

We define two reduction relations, namely the 6- and /J-reduction. {3-
reduction is defined as usual, and we use --+13, -f3, , and =13 as usual.
As far as global definitions are concerned, 8-reduction is comparable to
6-reduction in AUTOMATH. This is reflected in rule (61) in the definition
below. But now, a 6-reduction step can also unfold local definitions. There
fore, two new reduction steps are introduced. Rule (82) below removes the
declaration of a local definition if there is no position within its scope where
it can be unfolded ("removal of void local definitions"). Rule (63) shows
how one can treat a local definition as a global definition, and thus how the
problem of unfolding local definitions can be reduced to unfolding global
definitions ("localisation of global definitions").

Remember that~ x1:B1, ... ,xn:Bn.

Definition 6.15 We define the following three reduction rules:

r 1- c(~)=a:A IN b -+t; b if c rf. CONS (b)

r, c(~)=a:A 1- b -+t; b'
r 1- c(~)=a:A IN b --+6 c(~)=a:A IN b'

(61)

(62)

(63)

Furthermore, we have some compatibility rules. These rules are not
very complicated, there are only quite a lot of them.

Definition 6.16 \Ve define the following compatibility rules:

r, ~ 1- a --+6 a'
r 1- c(~)=a:A IN b --+0 c(~)=a

1 :A IN b
r, ~ 1- A --+0 A'

r 1- c(~)=a:A IN b --+0 c(~)=a:A
1

IN b

r, ~i 1- Bi -+,s Bi
r 1- c(~)=a:A IN b -+,s c(xl :Bl, ... , Xi:BL ... ,Xn:Bn)=a:A IN b

r 1- a -+,sa' r 1- b -+t; b'
r 1- ab --+6 a'b r 1- ab -+,s ab1

r,x:A 1- a --+0 a' r 1- A -+t; A'
r 1- A.x:A.a --+0 A.x:A.a r 1- A.x:A.a --+6 A.x:A'.a

r,x:A 1- a -+,sa' r 1- A -+,sA'
r 1- ITx:A.a --+6 ITx:A.a' r 1- ITx:A.a -+,s ITx:A'.a

240 6 Pure Type Systems with Parameters

Remark 6.17 One might also expect a compatibility rule

r 1- b --+{; b'
f 1- c(Ll)=a:A IN b --+ 0 c(Ll)=a:A IN b'.

However, this rule is a derived rule (see the forthcoming Lemma 6.26).

Now we can give a formal definition of 6-reduction:

Definition 6.18 6-reduction is defined as the smallest relation --+0 on Cp x
Tp x Tp closed under the rules (61), (62) and (63) of Definition 6.15 and
under the compatibility rules of Definition 6.16.

When r is the empty context, we write a --+0 a' instead of r 1- a --+0 a
1

•

We extend --+0 to contexts:

Definition 6.19 6-reduction between contexts is the smallest relation --+6

on C p x C p closed under the following rules:

6a Parametric constants and definitions 241

We now describe the extensions to PTSs that are needed to obtain C
PTSs and D-PTSs. We don't discuss D-PTSs and CD-PTSs: D-PTSs are
introduced in [114] and CD-PTSs can be constructed by extending D-PTSs
with the additional rules for C-PTSs.

Definition 6.20 (C-PTS: Pure type systems with parametric con
stants) The typing relation r-6 is the smallest relation on Cp x Tp x Tp
closed under the rules in Definition A.20 and the following ones (we still
write D. = Xl :B1, ... , Xn:Bn):

(C-weak) r r-6 b: B r, D. r-6 A : s

f, c(D.) : A f-6 b : B

f1, c(D.):A, f2 f-6 bi:Bi[xi:=bi]~-;;;,\ (i = 1, ... , n)

(C-app)
fl,c(D.):A,f2 A:s (ifn=O)

where s E S and the c that is introduced in the C-weakening rule is assumed
to be f-fresh.

At first sight one might miss a C-introduction rule. Such a rule, however,
is not necessary, as c (on its own) is not a term. c can only be (part of)
a term in the form c(b1, ... , bn), and such terms can be typed by the C
application rule.

The extra condition f 1,c(D.):A,f2 r-6 A: sin the C-application rule
for n 0 is necessary to prevent an empty list of premises. Such an empty
list of premises would make it possible to have almost arbitrary contexts
in the conclusion. The extra condition is only needed to assure that the
context in the conclusion is a legal context.

Adapting these rules for r-6 and the rules for definitions of [114] results
in rules for parametric definitions:

Definition 6.21 (D-PTS: Pure type systems with parametric def
initions) The typing relation f-0 is the smallest relation on Cp x Tp x Tp
closed under the rules in Definition A.20 and the following ones:

242

(:0-weak)

(:D-app)

(:D-form)

(D-intro)

(D-conv)

6 Pure Type Systems with Parameters

r f-- 15 b : B r, ~ f-- 15 a : A

r, c(~)=a:A f-- 15 b: B

f1, c(~)=a:A, f2 f-- 15 bi : Bi[xj:=bj]~-:,i (i = 1, ... , n)

f 1 , c(~)=a:A, r 2 f-- 15 a: A (if n = 0)

f 1, c(~)=a:A, f2 f-- 15 c(b1, ... , bn) : A[xj:=bj]j=1

r, c(~)=a:A f-- 15 B: s

f f--ti c(~)=a:A IN B: s

r, c(~)=a:A f--ti b: B r f-- 15 c(~)=a:A IN B: s

f f--ti c(~)=a:A IN b: c(~)=a:A IN B

r f-- 15 b : B r f-- 15 B' : s r f-- B =a B'

r f-- 15 b: B'

where s E S, and the c that is introduced in the D-weakening rule IS

assumed to be f-fresh.

f--D includes the definition system of [114]: The D-application rule for
n = 0 can be seen as the 8-start rule of D-PTSs.

Definition 6.22 (Pure Type Systems with (parametric) constants
and (parametric) definitions)

Let 6 be a specification (see A.l7).

• A pure type system with {parametric) constants C-PTS is denoted as

). c (6) and consists of a set of terms Tp, a set of contexts C p, the

,6-reduction rule and the typing relation f--C;

• A pure type system with {parametric) definitions D-PTS is denoted

as). ti (6) and consists of a set of terms Tp, a set of contexts C p, ,6
and 8-reduction and the typing relation f--D;

• A pure type system with (parametric) constants and {parametric) def
initions CD-PTS is denoted as ;.615 (6) and consists of a set of terms
Tp, a set of contexts Cp, ,6 and 8-reduction and the typing relation
1-cti, which is the smallest relation on C p x Tp x Tp that is closed
under the rules of Definition A.20 and the rules of f--C and f--D.

6b Properties of terms 243

A term a is legal (with respect to a certain type system) if there are r, b
such that either r f- a : b or r f- b : a is derivable (in that type system).
Similarly, a context r is legal if there are a, b such that r f- a : b.

All contexts occurring in CD-PTSs are sound (see Definition 6.13). As
CD-PTSs are clearly extensions of PTSs, C-PTSs and D-PTSs, this implies
that all contexts occurring in PTSs, C-PTSs and D-PTSs are sound. We
need this fact in many proofs in the next sections. The proof of the lemma
below is by induction on the derivation of r r-cti a: A.

Lemma 6.23 Assume r r-cti b: B.

1 .. DOM (b), DOM (B) ~ DOM (r);

2. r is sound.

PROOF: We prove the statements (1) and (2) simultaneously by induction

on the derivation of r r-cti b: B. We treat the two most important cases:

• (D-weakening) r, c(~)=a:A f- b:B because r f- b:B and r, ~ f- a:A.
(1) is trivial; (2) follows from the induction hypothesis for (1);

• (D-formation) r f- (c(~)=a:A IN B): s because r, c(~)=a:A f- B: s.
(1) follows from the induction hypothesis for (2); (2) is trivial.

6b Properties of terms

In this section, we prove properties of terms without wondering whether
these terms are legal or not. In Section 6b1 we discuss some basic properties,
such as a Substitution Lemma, and substitutivity. Section 6b2 is devoted to
the Church-Rosser property for ,88-reduction, and in Section 6b3 we prove
strong normalisation for 8-reduction.

Though we do not restrict ourselves to legal terms in this section, we
often demand that the free variables and constants of a term are contained
in the domain of a sound context.

244 6 Pure Type Systems with Parameters

6bl Basic properties

In the following lemma we show that a 8-reduction step remains invariant
if we enlarge the context. The proof is done by induction on the definition
of --->0 .

Lemma 6.24 (--->0-weakening) Let (f1, f2, f3) E Cp be such that

r 1 , r 3 f- b ___.a b'.

Then

The implications from left to right of the following lemma are a partic
ular case of Lemma 6.24.

The implications from right to left allow to make the context shorter.
The first two parts state that declarations of the form c(~):A and x:A in
a context do not have any influence on the reduction relation ---> f36. The
last part states that declarations of the form c(.6.)=a:A in a context do not
have any influence on the --->130 reduction behaviour of terms b E Tp with
c rf. CONS (b). This allows to remove definition declarations, as rule (82) of
the definition of 8-reduction does for local definitions.

The lemma is proved by induction on the definition of --->13 and ---> 0 .

Lemma 6.25

1. Let (f1, x:A, f2) E Cp and bE Tp.
f1,f2 f- b --->130 b' if and only iff1,x:A,f2 f- b --->f3o b';

2. Let (f1, c(.6.):A, f2) E Cp and bE Tp.
f1,f2 f- b --->f3o b' if and only iff1,c(~):A,f2 f- b --->130 b';

3. Let (f1,c(.6.)=a:A,f2) E Cp and bE Tp be such that c rf. CONS(b) .
. f1,f2 f- b --->f3o b' if and only iff1,c(~)=a:A,f2 f- b --->130 b'.

Now we show that the compatibility rule for c(~)=a:A IN b when we
reduce inside b is a derived rule (and therefore not included in the list of
compatibility rules in Definition 6.16).

6b Properties of terms 245

Lemma 6.26 The following rule is derivable from the ones in the defini-
tion of -+15:

r 1- b -+o b'
r 1- c(.6.)=a:A IN b -+0 c(.6.)=a:A IN b1

•

PROOF: Suppose r 1- b -+0 b'. By Lemma 6.24, r, c(.6.)=a:A 1- b -+0 b1
• By

definition of -+0 , it follows that r 1- c(.6.)=a:A IN b -+0 c(.6.)=a:A IN b1
• [8J

The following lemma is proved by induction on the structure of a.

Lemma 6.27 (Substitution Lemma) Suppose x 1= y and x f/. FV(d).
Then

a[x:=b][y:=d] = a[y:=d][x:=b[y:=d]J.

The following lemma shows that -+13 is substitutive. It is proved by
induction on the generation of -,-r/3 and by the Substitution Lemma.

Lemma 6.28 (Substitutivity for -+13) If a -+13 a' then a[x:=b] -+13

a1[x:=b]. l:8l

The relation -+0 is not substitutive. For example, let

r :::: x:a, X1 :a, c()=x:a.

We have
r 1-.8 c(): a

and
r 1- c() -+ox,

but not
r 1- c()[x:=x1

] -+o x[x:=xl

The reason for this is to be found in the b-weakening rule. When we
introduce a new parametric definition c(.6.)=a:A, the term a may contain
free variables that are not in the domain of .6. but in the domain of r. When
unfolding the definition c, these new variables can appear, thus destroying
substitutivity.

However, we do have the following version of substitutivity. It is adapted
so that the substitution now occurs in the context as well. The proof is by
induction on the derivation of r 1- a -+o a1

•

246 6 Pure Type Systems with Parameters

Lemma 6.29 (Weak substitutivity for ___.,5) If r f- a ___.o a' then

r[x:=b] f- a[x:=b] ___.0 a'[x:=b].

PROOF: Induction on the derivation of r f- a ___.0 a'. We only consider the
two most interesting cases:

• f1, c(6.)=d:A, f2 f- c(b1, ... , bn) ___.o d[xi:=bi]i=1. (81)

Now

(f1, c(A)=d:A, f2)[x:=b] =
(fl[x:=b], c(6.[x:=b])=d[x:=b]:A[x:=b], f2[x:=b])

so

(f1, c(6.)=d:A, f2)[x:=b] f-

c(bl[x:=b], ... , bn[x:=b]) ___.0 d[x:=b][xi:=bi[x:=b]]~ 1

and as the Xi are bound in (f1, c(A)=d:A, f2), Xi ¢ FV(b) by the
variable convention, so by the Substitution Lemma

• c cf_ CONS (a) and f f- c(A)=d:A IN a ___.o a (82). We have that c is
bound in c(A)=d:A IN a, so by the variable convention c ¢CONS (b),
so c ¢CONS (a[x:=b]). Hence

r[x:=b] f- (c(A)=d:A IN a)[x:=b] ___. 0 a[x:=b].

In the following lemma we reduce inside the term b of a[x:=b]. The
proof is by induction on the structure of a.

Lemma 6.30 If r f- b ___.f3o b' then r f- a[x:=b] -*f3o a[x:=b']. C8l

6b Properties of terms 247

6b2 Church-Rosser for ---+136

In this section we prove the Church-Rosser theorem for ---7'113 , ---7'16 and ---7'!136 •
As for ordinary A-terms, we have:

Theorem 6.31 (Church-Rosser theorem for /3-reduction) If a ---7'1!3
a1 and a ---7'tf3 a2 then there exists a term a3 such that a1 -!3 a3 and
a2 ---7'1 13 a 3. t8l

The proof is similar to the proof for A-terms without definitions and
parameters.

For a context r and a term b we define lblr, which is, intuitively, b in
which all definitions are unfolded. That is: both the local definitions inside
b, and the global definitions given in r. The definition is by induction on
the total number of symbols occurring in r and b.

Definition 6.32 For a E Tp and r E Cp we define a term lair E Tp as
follows:

lxlr

I sir

iablr
jAx:A.alr

jiix:A.Bir

ic(Ll.)=a:A in blr

x (for x E V);

s (for s E S);

{

ialrl t:l[xi:=lbilrli=l if r
' (rl> c(Ll.)=a:A, r2);

c(jb1jr,. · ·, lbnlr) if c rf_ DEFCONS (r);

lalrlblri

= Ax:IAir·lalr,x:Ai

IIx:IAir·IBir,x:Ai
- jblr,c(ll)=a:A (where Cis r-fresh).

The following lemma shows that lblr is independent from variable dec
larations x:A and constant declarations c(Ll.):A in r. The proof is by in
duction on the definition of lblr r .

1' 2

Lemma 6.33

248 6 Pure Type Systems with Parameters

By induction on the definition of JbJr one shows that Jblr does not
contain any local definitions.

Lemma 6.34 For all bE Tp and f E Cp, Jblr has no subterms of the form
(c(~)=a:A IN d). t8:i

The intuition on Jblr suggests that all definitions of b are unfolded in
Jblr· However, there may be global definitions in f that have not been
unfolded in Jblr· Take, for example, f = (c()=c'():*, c'()=c"():*). Then
JcOJr = Jc'()J 0 = c'(), but c'() is not in 8-normal form with respect to f.
This is due to the fact that f is not a sound context (see 6.13).

By induction on the definition of JbJr, we show that iff is sound, Jblr
is equal to b with all the definitions in b and f unfolded. It is no serious
restriction to consider only sound contexts, as all contexts that appear in
CD-PTSs are sound (Lemma 6.23).

Lemma 6.35 Let f be a sound context such that DOM (b) C DOM (f).
Then DOM (JbJr) <;;;; DOM (f)\ DEFCONS (f).

PROOF: Induction on the definition of Jblr· We treat the two most inter
esting cases (at (IH) we use the induction hypothesis):

• b = c(b1, ... , bn) and f := (r1, c(~)=a:A, f2).

DOM (JbJr) DOM (JaJr 1 ,.6.[xi:=JbiJrJf=l)
n

C (DOM (JaJr1 ,.6.) \ { X1, ... , Xn}) U u DOM (JbiJr)

(IH)
c

i=l
(DOM (f1 , ~) \ DEFCONS (fl)) \ { x 1 , ... , Xn}

U (DOM (f)\ DEFCONS (f))

DOM (f) \ DEFCONS (f) .

We can use the induction hypothesis at (IH) because f is sound, and
therefore DOM (a) <;;;; DOM (f1 , ~);

6b Properties of terms 249

• b =: c(D.)=a:A IN b'.

DOM (lblr) DOM (lb'lr,c(~)=a:A)
(IH)
C DOM (f, c(D.)=a:A) \ DEFCONS (f, c(D.)=a:A)

DOM (f)\ DEFCONS (f).

With the above we can show:

Lemma 6.36 If r is sound and DOM (d) ~ DOM (r), then

PROOF: Induction on the total number of symbols occurring in r and d.
We treat the two most important cases:

• r = (f1, c(D.)=a:A, f2) and d = c(b1, ... , bn).
Notice that r f- d -+6 a[xi:=bi]i=1 ·

By induction, f1, D. f- a ---*6 ialr 1 ,~, so r f- a ---*6 lalr 1 ,~ (Lemma
6.24), so by Lemma 6.29,

r[xi:=bi]i'=l f- a[xi:=bi]i=l ---*6 lalr 1 ,~[xi:=bi]i'=l·

As the Xi are bound in c(D.)=a:A, they do not occur free in r, so
r[xi:=bi]f=1 = r. Therefore

• d = c(D.)=a:A IN b. By the induction hypothesis,

f, c(D.)=a:A f- b ---*6 lblr,c(~)=a:A

hence

f f- c(D.)=a:A IN b ---*6 c(D.)=a:A IN lblr,c(~)=a:A·

250 6 Pure Type Systems with Parameters

Now DOM (d) ~ DOM (f), so DOM (b) ~ DOM (f, c(.6.)=a:A), so by
Lemma 6.35,

DOM (lblr,c(~)=a:A) ~ DOM (f, c(.6.)=a:A) \ DEFCONS (f, c(.6.)=a:A),

so c ~CONS (lblr,c(~)=a:A), SO

f I- d ---*6 c(.6.)=a:A IN lblr,c(~)=a:A -+o lblr,c(~)=a:A·

Corollary 6.37 In any CD-PTS, the relation -+0 is weakly normalising,
i.e. each legal term has a /3 -normal form.

PROOF: By Lemma 6.34 and Lemma 6.35, lblr is in 8-normal form; by
Lemma 6.36, lblr is a 8-normal form of b. ~

The mapping 1-1- also helps us to show that -+(30 is confluent (Theorem
6.42). For the proof we use some lemmas:

Lemma 6.38 Assume (f1,r3) is sound and DOM(b) ~ DOM(f1,f3).

Then lblr r r = lblr r · 1,2,3 1,3

PROOF: Induction on the definition of lblr
1
,r

3
· We consider only a few

non-trivial cases:

• b = c(.6.)=a:A IN b. Notice that

6b Properties of terms 251

ic(~)=a:A IN b\r1,r3 = lblri.r3,c(Ll..)=a:A

(~)
lblrl ,r2,r3,c(Ll..)=a:A

- \c(~)=a:A IN b\rl,r2,r3·

Lemma 6.39 Assume (f1,f2) is sound, and DOM(a) C DOM(f1,f2),
DOM (b) ~ DOM (f1) and X ef_ DOM (fi). Then

\alrl ,r2 [x:=\ b\rl] \a[x:=b] lr1 ,r2[x:=b]"

PROOF: Induction on the definition of \air r . We treat only a few non-
1' 2

trivial cases:

!alr1 ,r2 [x:=lblrl]

- ic'lr
11

r 21 ,Ll.. [xi:=lbilrl ,r2l~dx:=lblrll
(6.27)

jc'lr1,r21 ,Ll..[x:=\blrll [xi:=\bilrl,r2 [x:=\blrllli=I

jc' [x:=bllri.r21 (x:=b],Ll..[x:=b] [xi:=\bi [x:=b] lr1 ,r2[x:=b]Ji=1

jc(b1, ... , bn)[x:=bllr1

• a= c(~)=c':C IN d.

lalr1,r2 [x:=\b\rll = \d\rl,r2,c(Ll..)=c':dx:=lb\rll
(~)

\d[x:=bJir1 ,r2 (x:=b] ,c(Ll..(x:=b])=c'[x:=b]:C[x:=b]

= l(c(~)=c':C IN d)[x:=bllr1,r
2
[x:=b]'

Lemma 6.40 Iff f- d ---+fi d', f is sound, and DOM(d) ~ DOM(f), then
\d\r \d'\r and DOM (d') ~ DOM (f).

252 6 Pure Type Systems with Parameters

PROOF: We prove the following two statements simultaneously by induc
tion on the definition of Jdlr:

• If r f- d ->o d' then ldlr = jd'lr;

• If r ->o r' then Jdlr = jdjp.

We prove the two non-trivial cases:

ldlr lalr1,t.[xi:=lbilrlr=l
{6.33)

Jalr1 [xi:=Jbilrlf=l
(6~8)

= lalr[xi:=Jbilrli=l
(6~9)

Ja[xi:=bi]i=IIr

!d'lr·
The several cases that have to be distinguished for r -+ 0 r' are all
easy to prove;

• d c(.6..)=a:A IN b. Use induction on r f- d ->o d'. We treat two
cases:

(6.38)
- d' b and c rf. CONS (b). Then Jdlr = Jblr,c(.:l)=a:A = Jblr =

ld'lr;
d' := c(.6..)=a:A IN b' and r, c(.6..)=a:A f- b -+fi b'. Then jdJr :=

(~) I - I

Jblr,c(.:l)=a:A = Jb lr,c(.:l)=a:A = Jd lr·

If r ->o r' then Jdlr
(IH)

Jblr,c(.:l)=a:A = JbJr',c(.:l)=a:A

Lemma 6.41 If r is sound, DOM (d) ~ DOM (r) and d -+ f3 d', then

Jdlr ----*(3 Jd'lr· C8l

The proof is similar to the proof of Lemma 6.40.

6b Properties of terms 253

Theorem 6.42 (Confluence for __,.f3o) If r is sound, r f-a ---'~~'f3o b1 and
r f- a ---'~~'(36 b2 then there exists a term d such that r f- bl ---'~~'(36 d and
r 1- b2 ---'~~'f3o d.

PROOF: The proof is illustrated by the following diagram.

/b' 636
b lb2l

/3
6.31 .41

6.40

a 6.36 lal d

~r /3
6.31

lhlr /38 bl 6.36 b

6b3 Strong normalisation for --+6

In [40], van Daalen presents a proof (originally due to deBruijn) of strong
normalisation for a definition system that is at the basis of AUTOMATH.

De Vrijer uses a similar technique to prove the finite developments theorem
[119]. A similar technique to the one of de Vrijer is also used in [114] to
prove strong normalisation for 8-reduction in D-PTSs. We extend these
techniques to prove strong normalisation for 8-reduction in CD-PTSs.

First we define the multiplicity Mz(r, a) of a variable z in a term a,
depending on a context r.

Definition 6.43 For z E V, r E Cp and a E Tp we define a natural number

254 6 Pure Type Systems with Parameters

Mz (r, a) by induction on the total number of symbols in r and a.

Mz(r, z) =
Mz(r, x) =
Mz(f, s)

1;
0 if x ¢. z;
0 if s E S;

Mz(r, c(~)=a:A in b)

Mz(r, ab)
Mz(r, IIx:A.a)
Mz(r, >.x:A.a)

1
Mz((r1,~),a) +
~r=l Mz(f, bi) · max(l, Mx; ((f1, ~),a))
If r = (rl' c(~)=a:A, r2);

I:7=1 Mz(r, bi) otherwise;
= Mz((r, ~),a)+ Mz((r, ~),A)+

I:7=1 Mz((r, ~i), Bi) +
Mz((r, c(~)=a:A), b);
Mz(f, a)+ Mz(f, b);

= Mz((r, x:A), a)+ Mz(r, A);
Mz((r, x:A), a)+ Mz(r, A).

Following the line of [119] one can prove the following lemma (using
induction on the definitions of M_ (-, -)):

Lemma 6.44

1. If r is sound, DOM (a) ~ DOM (r) and x <1. Fv(a) u Fv(r), then
Mx(r, a) = 0;

2. If(f1,f3) issoundandDOM(a)~DoM((f1 ,f3)), then

3. If (f1,f2) is sound, DOM(b) ~ DOM((f1,f2)), DOM(a) ~ DOM(fi),
x ¢. z and x <1. Fv(f1), then

The following lemma requires a somewhat more complicated proof than
in [119], as contexts are involved in our situation.

6b Properties of terms 255

Lemma 6.45 Let r be sound, DOM (a) ~ DOM (r). If r 1- a --+0 b, then
Mx(r,a) 2: Mx(r,b).

PROOF: We simultaneously prove, using induction on the total number of
symbols in r and a, the following two statements:

1. If r 1- a --+0 b, then Mx(r, a) 2: Mx(r, b);

2. If r --+0 r', then Mx(r,a) 2: Mx(r',a).

The proof is straightforward, using the lemma above. [81

Next we define, for r E Cp and a E Tp, a natural number Lr (a) that
decreases with each 8 reduction step. It is similar to the mappings defined
in [119] (used to prove the finite developments theorem), in [40] and in [114]
(used to prove strong normalisation of 8-reduction). This function L_ (-)
computes an upper bound for the length of the longest 8-reduction path
from a term to its 8-normal form.

Definition 6.46 For r E Cp and a E Tp we define Lr (a) by induction on
the total number of symbols in r and a:

Lr(x)
Lr (s)

Lr (c(~)=a:A in b)

Lr (ab)
Lr (IIx:A.a)
Lr (Ax:A.a)

0 if X E V;
0 if s E S;

I
L(r1 ,D.} (a)+
~~:_Lr (bi) · max(.1,Mx,(~rl,~),a)) + 1
If r = (rl, c(~)=a.A, r2),

2:::~ 1 Lr (bi) otherwise;
= L(r,D.} (a)+ L(r,D.} (A)+

L~1 L(r,D.;} (Bi) +
L(r,c(D.)=a:A} (b)+ 1;
Lr(a)+Lr(b);

= L(r,x:A} (a)+ Lr (A);
L(r,x:A} (a)+ Lr (A).

Similar properties as in Lemma 6.44 and Lemma 6.45 hold for L_ (-):

256 6 Pure Type Systems with Parameters

Lemma 6.47

1. If (f1,r3) is sound, DOM(a) ~ noM((f1,f3)), then

L(r1,r3) (a)= L(r1,r2,r3) (a);

2. If(f1,f2) is sound, DOM(b) ~ DOM((f1,f2)), DOM(a) ~ DOM(f1),
and x ft Fv(ri), then

L(r1,r2 [x:=a]) (b[x:=a]) = L(r1,r2) (b)+ Lr1 (a)· Mx((f1, f2), b).

The lemma above is used to prove the crucial property of L_ (-):

Lemma 6.48 Iff is sound, DOM (a) ~ DOM (f) and f 1- a --+6 b, then
Lr (a) > Lr (b).

PROOF: Similar to the proof of Lemma 6.45. ~

Theorem 6.49 (Strong Normalisation for 8) The reduction 8 {when
restricted to sound contexts r and terms a with DOM (a) ~ DOM (f)) zs
strongly normalising, i.e. there are no infinite 8-reduction paths.

PROOF: This follows from lemma 6.48. ~

Without the restriction to sound contexts rand terms a with DOM (a) ~
DOM (f), we do not even have weak normalisation: take

f := (c()=d():A, d()=c():A).

The term c() does not have a f-normal form.

6c Properties of legal terms

The properties in this section are proved for all terms that are legal in a
pure type system with parameters, i.e. for terms a for which there are A,
r such that r f--c.O a : A or r f--CD A : a. The main property we prove is
that strong normalisation is preserved by certain extensions.

Many of the standard properties of PTSs in [5], [54] hold for CD-PTSs
as well. In the same way as in [5], [54] we can prove the Substitution
Lemma, Correctness of Types, Subject Reduction (for ,68-reduction) and
Uniqueness of Types (for singly sorted CD-PTSs):

6c Properties of legal terms 257

Theorem 6.50 Let 6 be a specification. The type system ,\ci5(6) has the
following properties:

• Substitution Lemma;

• Correctness of Types;

• Subject Reduction (for -+{38).

Moreover, if 6 is singly sorted then ,\ci5(6) has Uniqueness of Types. 181

The Generation Lemma is extended with two extra cases:

Lemma 6.51 (Generation Lemma, extension)

1. If r t-Ci5 c(br, ... , bn) : D then there exist s, Ll and A such that

r 1- D =f38 A[xi:=bi]i=r' and r t-615 bi : Bi[xr=bi]j-;;;,l. Besides we
have one of these two possibilities:

(a) Eitherr (rr,c(L:l):A,r2) andrr,ilf-CD A:s;

(b) Orr= (rr, c(il)=a:A, r2) and r 1 , ill-ci5 a: A;

2. If r 1-6.6 c(il)=a:A IN b: D then we have two possibilities:

(a) Either r, c(il)=a:A f-CD b: B, r t-615 (c(Ll)=a:A IN B): s and
r 1- D c(il)=a:A IN B;

(b) Orr, c(il)=a:A 1-ci5 b: s and r 1- D =f38 s.

In case l(b) we do not necessarily have rr, ill-ci5 A: s. For instance, in
the CD-PTSs of the Barendregt Cube one can abbreviate terms a of type
o, whilst 0 is not typable in these systems.

Also Correctness of Contexts has some extra cases compared to usual
PTSs. Recall that r is legal if there are b, B such that r t-Ci5 b: B.

Lemma 6.52 (Correctness of Contexts)

1. If r, x: A, r' is legal then there exists a sort s such that r 1-c i5 A : s;

258 6 Pure Type Systems with Parameters

2. If r, c(~):A, f' is legal then r, ~ r-6.8 A: s;

3. If r, c(~)=a:A, r' is legal then r, ~ r-6.8 a: A.

Again, in case 3 we do not necessarily have r, ~ r-6.8 A : s.

Now we prove that ;.6.8(6) is ,88-strongly normalising if a slightly larger
PTS >.(6') is ,8-strongly normalising. The proof follows the same ideas of
[114] to prove that a PTS extended with definitions is ,88-strongly normal
ising.

For legal terms a E Tp in a context r, we define a lambda term llallr
without definitions and without parameters. If a is typable in a CD-PTS

>.6.8(6), then llallr will be typable in a PTS >.(6'), where 6' is a so
called completion (see Definition 6.60) of the specification 6. Moreover,
we take care that if a -+p a', then llallr -t lla'llr (that is: llallr -!3 lla'llr
and llallr "1- lla'll f). Together with strong normalisation of 8-reduction

(Theorem 6.49), this guarantees that ;.6.8(6) is ,88-strongly normalising
whenever >.(6') is ,8-strongly normalising.

We suppose that V U C, the set of variables and constants that are used
to define Tp, is included in the set of variables that is used to define T, the
set of terms used for the PTS >.(6').

~ still denotes a list of variables x 1 :B1 , ... , xn:Bn and ~i is an ab
breviation for x1 :B1, ... , Xi-1 :Bi-1· >.~.a denotes >.f=1 Xi:Bi.a and IT ~.A
denotes Il7=1 Xi:Bi.A.

Definition 6.53 For a E Tp andrE Cp we define llallr as follows:

llsllr
llxllr

llc(b1, .. · , bn) llr

llabllr
Jj>.x:A.bllr
IIIIx:A.bllr

llc(~)=a:A IN bJir

s if s E S;
X if X E V;

{

II>. ~.a)llr1 llb1llr · · -llbnllr
if r = (f1, c(~)=a:A, f2);

c jjb1llr, ... , llbnllr otherwise;
Jlallr Jlbllr;
>.x: JJAllr .jjbJJr x·A; ' .
IIx: JJAllr .JJbllr x·A;

(>.c:(JJIT ~.Ajj;): JjbJJr,c(.6.)=a:A) Jj>. ~.aJJr ·

6c Properties of legal terms 259

. The mapping 11-11_ is slightly different from the mapping 1-1_· This is
because we want 11-11_ to maintain .8-reductions. In a term c(.6.)=a:A IN b,
there may be .8-redexes in .6., a or A. These redexes may be lost in
lc(.6.)=a:A IN blr = lblr,c(~)=a:A· Due to the extra >.-abstraction in the
definition of llc(.6.)=a:A IN bllr, the possible ,8-redexes in .6., a and A are
maintained.

The mapping 11-11_ is extended to contexts.

Definition 6.54 For a context r E Cp we define llfll as follows:

11011 =
llf,x:AII =

11r, c(.6.):AII
11r, c(.6.)=a:AII

0·
' llfll, x: IIAIIr;

11r11, c: (IITI .6..AIIr);
llfll, c: (IITI .6..AIIr).

We have similar properties for 11-11_ as for 1-1_:

Lemma 6.55 If (f1,f3) is sound and DOM(a) c DOM((f1,f3)), then

llallr1,r2,r3 = llallr1,r3 • [gJ

The proof is similar to the proof of Lemma 6.38.

Lemma 6.56 Assume (f1,f2) is sound, and DOM(a) ~ DOM((f1,f2)),

DOM (b) ~ DOM (fl), and X f/_ DOM (fl). Then

llallr1,r2 [x:= llbllr1l = lla[x:=b]llr1,r2 (x:=b]·

The proof is similar to the proof of Lemma 6.39.
We now show that 11-11_ translates a 8-reduction into zero or more

,8-reductions, and that it translates a ,8-reduction into one or more .8-
reductions.

Lemma 6.57 Let r be sound, and assume DOM (a) ~ DOM (r). If a ~6 b

then llallr --{3 llbllr·

PROOF: Using induction on the definition of r 1- a ~6 b, we simultaneously
prove:

260 6 Pure Type Systems with Parameters

1. If a --t6 b then llallr -/3 llbllr;
2. If r --t6 r' then llallr -/3 llallr'·

We only treat two non-trivial cases.

llc(b1, · · ·, bn)llr II-X ~.allr1 llbi!Ir · · ·llbnllr

(31 Xi: IIBillr1,Ll; -llallr,Ll) llb1llr · · ·llbnllr

-~ llallr1 ,.!l [xi:= llbillrl7=1
(6~5)

llallr1 [xi:= llbillrl~ 1

• f I- c(~)=a:A IN b --t6 b because c rf_ CONS (b). Then c rf_ FV(IIbllr).
Hence

llc(~)=a:A IN bllr (-Xc: IITI ~-AIIr -llbllr,c(Ll)=a:A) II-X ~.allr
--t/3 llbllr,c(Ll)=a:A [c:= II-X ~.allrl

llbllr ·

Lemma 6.58 Let r be sound, and assume DOM (a) ~ DOM (r). If a --t/3 b

then llallr -S llbllr·

PROOF: The following two statements are proved simultaneously by induc
tion on the structure of a.

1. If a --t/3 b then llallr -S llbllr;
2. If r --t/3 r' then llallr -(3 llallr'·

(IH 1) refers to the induction hypothesis on 1, (IH 2) to the induction hy
pothesis on 2. We do not treat all cases, and only prove the first statement.

6c Properties of legal terms

• c(b1, ... , bn) --t f3 c(b1 , ... , bj, ... , bn), where bj --t f3 bj,
and r = (f1, c(Ll)=a:A, fz). We have:

(IH 1)
-+

f3

II .X Ll.allr1 llb1llr · · ·llbnllr

I!ALl.allr1 llb1llr · · ·llbjllr · · ·llbnllr

Jjc(bl, · · · 'bj, · · · 'bn) llr;

• (.Xx:p.q)r --tf3 q[x:=r]. Observe:

II(.Xx:p.q)rllr

=

(.Xx: IIPIIr .llqllr,x:p) llrllr

llqllr,x:p [x:= llrllrl

llq[x:=rlllr;

• c(Ll)=a:A IN b --tf3 c(Ll')=a:A IN b, where

- Ll' := X1:B1, ... , Xj:Bj, ... , Xn : Bn;

- Bj --tf3 Bj.

261

Write Ci = Bi if i # j and Cj = Bj. Furthermore, let Ll~ =
x1:C1, ... , Xi-l:Ci-1· Observe that

llc(Ll)=a:A IN bllr

= (.Xc: (llf1 Ll.AIIr) -llbllr,c(ll.)=a:A)

(!lA Ll.allr)

(IH 1)
-+

f3

(IH 2)
---*{3

(.Xc: (llprodLl'.AIIr) .llbllr,c(ll.)=a:A)

(!lA Ll'.allr)

(.Xc: (llf1 Ll'.AIIr) -llbllr,c(ll.')=a:A)

(II .X Ll'.allr)

Jjc(Ll')=a:A IN bJJr.

The proof for the cases c(b1, ... , bn) and c(Ll)=a:A IN b shows that this
lemma does not hold if we use 1-1_ instead of 11-11_· The proof for the case
c(Ll)=a:A IN b shows the need to prove that llallr ---*{3 llallf' iff --tf3 f'.

262 6 Pure Type Systems with Parameters

Definition 6.59 The specification 6 (S, A, R) is called quasi full if for
all s1, s2 E S there exists s3 E S such that (si> s2, s3) E R.

Definition 6.60 A specification 6' = (8 1
, A', R') is a completion of 6 =

(S,A,R) if

1. S ~ S', A ~ A', and R ~ R';

2. S' is quasi full;

3. for all s E S there is a sort s' E S' such that (s, s') E A'.

Theorem 6.61 Let 6 = (S,A,R) and 6 1 (S',A',R') be such that 6 1

is a completion of 6. If r 1-g.D a :A then

!lrlll-s' llallr : IIA!Ir ·

PROOF: Induction on the derivation of r 1-gn a : A. The rules of normal
PTSs do not cause any problem, and the proof for the rules for paramet
ric constants are simplifications of the proofs for the rules for parametric
definitions. We therefore only focus on the rules for parametric definitions.

• 8-application:

r1, c(Ll)=a:A, r2 1-c.D bi : Bi[xj:=bj]j:,i (i = 1, ... , n)

rl> c(Ll)=a:A, r2 1-cn a: A (if n = 0)

rb c(Ll)=a:A, r2 1-cn c(b1, ... , bn) : A[xj:=biJJ=l

Writer:= r1, c(Ll)=a:A, r2. If n = 0 then we know by induction that

llflll-s' llallr : I!AIIr

(6.55)
and we are done because llc(b1, ... , bn)l!r = llal!r

1
llallr·

Now assume n > 0. As we have a derivation of r 1 , c(Ll)=a:A, r 2 1-cn
b1:B1, we can use Correctness of Contexts to find a (shorter) derivation
of r 1 , L\1-015 a:A. By the induction hypothesis, we have

(1)

6c Properties of legal terms 263

Moreover, we can use the induction hypothesis to find

!Ifill, c: IITI ~.AIIr1 , lifzlil-6' llbillr: IIBi[xj:=bj]j:,illr · (2)

We can use Correctness of Types for the PTS >.6' to find s E S' with

(3)

Using rule(>.), (1) and (3) result in lifiiii-6' II>. ~.aJ!r1 : IITI ~.AJir1 ·
By definition of IITI ~-AIIr1 , this means

Jlflll-61 JJ>. ~.aJirl : n~=l Xi: IIBillrl.~ .JJAIIrl,~· (4)

By Lemma 6.56, JIBi[Xj:=bj]~:,iJir IIBillr,~; [xj:= llbillrl~:,;. Using
(2) and the application rule, we can derive from (4) that:

IJfiJI-6' (IJ>.~.allr1 llb1llr · · ·llbnllr): (11AIIr1 ,.6. [xj:= IJbillrl;=l) ·

We are done because

and

• 8-weakening:
f 1-ciJ b: B f, ~I-CD a: A

f, c(~)=a:A 1-ciJ b: B

By induction, Jlf, ~II I-51 1Jallr,.6.: IIAIJr,~· so

llfll ,x1: IJB1IIr,~1 , • • • ,xn: I!Bnllr,.6.n 1-61 JJallr,.6.: JJA11r,.6. ·
(5)

By Correctness of Contexts for >.6', there are s1, ... , Sn E S' such
that

(6)

By Correctness of Types for ;.g i5, there are two possibilities:

264 6 Pure Type Systems with Parameters

- There iss E S such that A= s. As 6 1 is a completion of 6, there
is s' E S' such that ilf, ~111-6' s: s'.

- There is s' E S such that r, ~ 1-cfl A : s'. Then by induction,

llf, ~Ill- IIAIIr,L\ : s'.

In any case: we can determine s0 E S' such that

As 6' is quasi-full, we can subsequently determines~, ... , s~ such that
(si, s~_ 1 , sD E R' fori= 1, ... , n. This allows us to apply IT-formation
n times, with as premises (6) and (8), and as conclusion:

llflll-6' TI~=l Xi: IIBillr,L\;·IIAIIr,L\: s~.

Notice that TI~=l Xi: IIBillr,L\; -IIAIIr,L\ = IITI ~-AIIr· As the induc
tion hypothesis gives us also llfll 1-6' llbllr : IIBIIr, we can use the
weakening rule of >.6' to obtain

llfll, c: IITI ~-AIIr 1-6' llbllr : IIBIIr.

We are done because llbllr = llbllr,c(L\)=a:A and IIBIIr = IIBIIr,c(L\)=a:A
(Lemma 6.55);

• 8-formation:
f1, c(~)=a:A 1-cv B: s

rl f-CD c(~)=a:A IN B: s

Write r = f1, c(~)=a:A. By the induction hypothesis, we have

llflll-6' IIBIIr : s, so

(8)

By Correctness of Contexts on (8) there is s1 E S' such that

(9)

Moreover: As 6' is a completion of 6, there is s2 E S' such that
(s:s2) E A'. By the Start Lemma,

(10)

6c Properties of legal terms 265

As 6' is quasi-full, there is 83 E S' such that (81, 82, 83) E R'. Hence
we can apply IT-formation:

I Ifill f-e, IIc: IITI ~.AIIr1 .8 : 83. (11)

We can now apply >.-formation on (8) and (11):

llfiil f-e, (>.c: IITI~.AIIr1 ·IIBIIr): (rrc: IITI~.AIIr1 .8).
(12)

As we have a derivation of f 1 , c(~)=a:A f--CD B : 8, we can apply

Correctness of Contexts to find a (shorter) derivation of f 1 , ~ f-cii
a:A, so by induction:

Using (9), we can repeatedly apply >.-abstraction and obtain

llf1ll f-e, II>- ~.allr1 : IITI ~.AIIr1 •

Using (12) and the application rule, we find:

llfiii f-e, (>.c: IITI~.AIIr1 ·IIBIIr) ll>.~.allr 1 : 8;

• 8-introduction:

f1, c(~)=a:A f--CD b:B f1 f-Cii c(~)=a:A IN B: 8

f1 f--CD (c(~)=a:A IN b): (c(~)=a:A IN B)

(13)

In a similar way as in the previous case, we can find derivations of
(13) and

llfiil f-e, (>.c: IITI ~.AIIr 1 ·llbllr) : (IIc: IITI ~.AIIr1 .IIBIIr).
(14)

Using (13), (14) and the application rule, we find

II rill f-e, (>.c: IITI ~.AIIr 1 ·llbllr) II>- ~.allr1 : IIBIIr [c:= II>- ~.allrJ .
By the induction hypothesis,

so we can apply the conversion rule to find

266 6 Pure Type Systems with Parameters

• 8-conversion:

r r-615 b: B r r-6.8 B': s

r 1-6.8 b: B'

By induction, llf!ll-s' llbllr : IIBIIr and llflll-s' IIB'IIr : s. By Lemma
6.57, IIBIIr =(3 IIB'IIr· By Conversion, llflll-s' llbllr : IIB'IIr·

Theorem 6.62 Let 6 = (S, A, R) and 6' = (S', A', R') be such that 6'
is a completion of 6. If the PTS .\(6') is {3-strongly normalising, then the

CD-PTS .\6.8(6) is {38-strongly normalising.

PROOF: Suppose that .\(6') is {J-strongly normalising, and suppose towards

a contradiction that .\615 (6) is not {38-strongly normalising, i.e. there is an
infinite {38-reduction sequence a1 ---+(36 a2 ---+(36 ... , starting at a = a 1 and
r 1-6.8 a: A.

Observe that the number of {3-reductions in this sequence is infinite. Oth
erwise there would be n E N such that r 1- an ---+6 an+l ---+6 an+2 ... ,
which contradicts the fact that 8-reduction is strongly normalising (Theo
rem 6.49).

We conclude that the reduction sequence is of the form

By lemmas 6.57 and 6.58 there is an infinite {3-reduction sequence starting
at llallr:

llallr ---*f311anlllr -S llan2llr ---*f311an311r -S llan4llr ---*!3 · · ·

and by Theorem 6.61, llflll-s' llallr : IIAIIr, which contradicts the assump
tion that .\(6') is {J-strongly normalising. 1:8]

6d Restrictive use of parameters

In the extension of P.TSs to CD-PTSs presented in Sections 6a-6c, we did
not put any serious restrictions on the use of parameters:

6d Restrictive use of parameters 267

1. If 6 = (S,A, R) is a specification, then the introduction of a para

metric constant c in ,\6.8(6) only requires that its intended type A
is of type 8, for some sort 8 E S. Similarly, for the introduction of
a parametric definition we only require that its definiens a is of a
certain type A. By correctness of types, either A = 8, or A has type
8, for some 8 E S;

2. Similarly, if r = f1, c(~)=a:A, f2, or r := f1, c(~):A, f2, the only
restrictions we put on ~ are that ~ must contain only variable dec
larations, and that r 1, ~ must be legal. There are no additional
restrictions on the types Bi of the declarations Xi:Bi in ~-

Something similar is the case with IT-formation rules in a (parameter
free) PTS in which there is no restriction on the use of IT-formation rules:
(8!,82,83) E R for any 81,82,83 E S. In the specific situation that S =
{ (*,D)} and A= { *:D}, this would give the system .-\C, which is on top of
the Barendregt Cube. The other systems of the Barendregt Cube cannot
be constructed if we do not put restrictions on the rules that are allowed.
It is the variation in the set of IT-formation rules that makes it possible to
distinguish the various type systems in the Cube (and the various logical
systems that are behind it, via the PAT-isomorphism).

In this section we study CD-PTSs in which we put restrictions on the
types of parametric constants and definitions, and their parameters. These
restrictions can be described in a set P of parametric rules, just as the
restrictions on IT-formation rules is described in R. The effect of the rules
in P is as follows.

• Assume we have a constant declaration c(~) : A that is part of a legal
context r. By Correctness of Contexts, A has type 8 for some 8 E S.
Similarly, for each declaration Xi:Bi in ~ there is a sort 8i such that
Bi has type 8i. The use of parameters is restricted by demanding
that (8i, 8) E P fori= 1, ... , n;

• In principle, the same holds for a definition declaration c(~)=a:A.
However, there is a small difference on this point. It is not necessary
that A has type 8 for some sort 8 E S: it can be the case that
A = 8 and that 8 : 81 does not hold for any 81 E S. This is a feature
that occurs in the DPTSs of Severi and Poll. To keep our system
compatible with the DPTSs, we want to maintain this feature.

268 6 Pure Type Systems with Parameters

To cover this case, we do not only introduce rules of the form (Si, s),
but also rules of the form (si, TOP). If the use of parameters is re
stricted by a set P, then either (si,s) E P fori= 1, ... ,n, or A is a
topsort, and (si, TOP) E P fori= 1, ... , n.

In the specific case of the Barendregt Cube, the combination of R and
P leads to a refinement of the Cube, thus making it possible to classify
more type systems within one and the same framework.

The similarity of restricting the use of parameters by a set P with re
stricting the use of IT-formation by a set R gives us a theoretical motivation
for the work in this section. But there are also some practical motivations,
as several type systems can be described using restriction of parameters.

Example 6.63 Consider the Pascal function double that was presented
in the Introduction to this Chapter.

• Remark that double only takes object variables as parameters. In
Pascal, it is not possible to have functions with type variables as
parameters;

• Moreover, double returns an object. It is not possible in Pascal to
construct functions that return a type as result.

So the use of parameters is restricted to the object level.

Other examples (ML, LF, AUTOMATH) are discussed in Section 6e.

6dl CD-PTSs with restricted parameters

We now give a formal definition of pure type systems with restricted pa
rameters and restricted parametric definitions.

Definition 6.64 (Parametric Specification) A parametric specifica
tion is a quadruple (S, A, R, P) such that (S, A, R) is a specification (d.
Definition A.17), and P ~ S x (S U {ToP}). The parametric specification
is called singly sorted if the specification (S, A, R) is singly sorted.

The set P enables us to present a restricted version of the C-weakening
rule of Definition 6.20. We call this rule restricted C-weakening (C-weak):

r r-6 b : B r, .6.i r-6 Bi : si r, .6. r-6 A : s

r,c(.6.): A 1--6 b: B

6d Restrictive use of parameters 269

The condition (Si, s) E P must holds for all i E { 1, ... , n}. However, it is
not necessary that all the Si are equal: in one application of rule (C-weak)
it is possible to rely on more than one element of P.

Definition 6.65 The typing relation f-e is the smallest relation on Cp x
Tp x Tp closed under the rules in Definition A.20, (6-app) (see Definition
6.20), and (C-weak).

Similarly, we present a restricted version of the 8-weakening rule of
Definition 6.21. We call this rule restricted D-weakening (D-weak):

r, .D. 1-b a : A : s

b: B

Again, (si,s) E P must hold for all i E {1, ... ,n}, and again it is not
necessary that all the Si are equal.

For the case that A is a topsort, we present a special version of this
rule. By A : TOP we denote that A s and that there is no s' E S such
that (s : s') EA.

r f-b b: B

r, c(.D.)=a:A f-b b: B

For all i E {1, ... ,n}, (si,TOP) E P must hold, but the Si may, again, be
different.

Definition 6.66 The typing relation f-b is the smallest relation on Cp x
Tp x Tp closed under the rules in Definition A.20, (D-app), both versions
of (D-weak), (D-form), (D-intro), and (D-conv) (see Definition 6.21).

Definition 6.67 The typing relation r-eb is obtained from the relation
r-615 by replacing rule (C-weak) by rule (C-weak) and rule (D-weak) by
rules (D-weak).

Definition 6.68 (Pure Type Systems with Restricted Parameters
and Restricted Parametric Definitions) Let 6 be a parametric spec
ification. The pure type system with restricted parameters and restricted
parametric definitions (CD-PTS) and parametric specification 6 is denoted
.xeb(6). The system consists of the set of terms Tp, the set of contexts
Cp, /J-reduction, 8-reduction, and the typing relation r-eb.

270 6 Pure Type Systems with Parameters

We do not extensively discuss the various meta-properties of CD-PTSs.
This is because a CD-PTS with parametric specification (S, A, R, P) is a
subsystem of the CD-PTS with specification (S, A, R). We only give a
stronger formulation of the extension of the Generation Lemma 6.51:

Lemma 6.69 (Generation Lemma, second extension)
Iff f-eb c(b1 , ... ,bn): D then there exists,~ and A such that r f

D =f3o A[xi:=bi]f=1 , and r f- bi : Bi[xj:=bj];:,i. Besides we have one of
these three possibilities:

1. Either we have that r = (r1, c(~):A, f2) and f1, ~ f-eb A : s, and

for each i there is Si with (si,s) E p and r,~i f- 6 D Bi: Si;

2. Or we have that r = (r1, c(~)=a:Aandf2), f 1 , ~f-eb a: A: s, and

for each i there is Si with (si,s) E p and r,~i f- 6 b Bi: Si;

3. Or we have that f = (r1, c(~)=a:Aandf2), f 1 , ~ f-eb a : A : TOP,

and for each i there is Si with (si, TOP) E P and r, ~i f-eb Bi : Si.

An important observation is the following one.

Remark 6. 70 Our systems with restricted parameters cover the PTSs
with Definitions (D-PTSs) that were introduced by Severi and Poll in [114].
Let 6 = (S, A, R) a specification, and observe the parametric specification
6' = (S, A, R, 0). The fact that the set of parametric rules is empty does
not exclude the existence of definitions: it is still possible to apply the rules
D-weak for n = 0. In that case, we obtain only definitions without param
eters, and the rules of the parametric system reduces precisely to the rules
of a D-PTS with specification 6. 2

For the comparison of CD-PTSs with other PTSs, we introduce some
terminology.

In the introduction to this Chapter, we argued that a parameter mecha
nism can be seen as a system for abstraction and application that is weaker

2 The parametric system with specification 6' has a C-weakening rule while the sys
tems of Severi and Poll do not. But the C-weakening rule can only be used for n = 0,
and in that case C-weakening can be imitated by the normal weakening rule of PTSs: a
parametric constant with zero parameters is in fact a parameter-free constant, and for
such a constant one can use a variable as well.

6d Restrictive use of parameters 271

than the >.-calculus mechanism. We will make this precise by proving
(in Theorem 6.79) that a D-PTS with specification (S, A, R) is as pow
erful as any CD-PTS with parametric specification (S, A, R, P) for which
(s1, s2) E P implies (s1, s2, s2) E R. We call such a CD-PTS parametrically
conservative:

Definition 6. 71 Let 6 = (S, A, R, P) be a parametric specification. 6
is parametrically conservative if for all s1, s2 E S, (s1, s2) E P implies
(s1,s2,s2) E R.

Each CD-PTS can be extended to a parametrically conservative one by
taking its parametric closure:

Definition 6. 72 Let 6 = (S, A, R, P) be a parametric specification. We
define CL(6), the parametric closure of 6, by (S,A,R',P), where R' =

Ru {(s1,s2,s2) I (s1,s2) E P}.

The Lemma below follows immediately from the definitions above.

Lemma 6. 73 Let 6 be a parametric specification.

1. CL(6) is parametrically conservative;

2. CL(CL(6)) = CL(6).

6d2 Imitating parameters by >.-abstractions

Let 6 = (S, A, R, P) be a parametric specification. If 6 is parametrically
conservative, then each parametric rule (s1 , s2) of 6 has an equivalent IT
formation rule (s1, s2, s2). In this section we show that this IT-formation
rule can indeed take over the role of the parametric rule (s1, s2). This
means that 6 has the same "power" (see Theorem 6.79) as (S,A,R,0).
With Remark 6.70 in mind, this even means that 6 has the same power as
the D-PTS with specification (S, A, R).

In order to compare 6 = (S, A, R, P) with 6' = (S, A, R, 0), we need
to remove the parameters from the syntax of >.cb(6). This is easy:

272 6 Pure Type Systems with Parameters

• The parametric application in a term c(b1 , ... , bn) is replaced by func
tion application cb1 · · · bn;

• A local parametric definition is translated by a parameter-free local
definition, and the parameters are replaced by >.-abstractions;

• A global parametric definition is translated by a parameter-free global
definition, and the parameters are replaced by >.-abstractions.

This leads to the following definitions:

Definition 6.74 We define the parameter-free translation {t} of a term
t E Tp as follows:

{x} X"
'

{ s} = s;

{ c(b1, ... , bn)}

{ab}

{>.x:A.b}

{IIx:A.B}

{ c(~)=a:A IN b}

C {bi} · · · {bn} j

{a}{b};

>.x: {A}. {b};

Ilx: {A}. {B};

c()= {>.~.a}: {fl ~.A} IN {b}.

Definition 6. 75 We extend the definition of { _} to contexts:

{0}
{r, x:A}

{f,c(~):A}

{r, c(~)=a:A}

();

{r},x:{A};

{r}, c(): {fl ~.A};
{r}, c()= {>.~.a}: {fl ~.A}.

To demonstrate the behaviour of { _} under ,88-reduction, we need a
lemma that shows how to manipulate with substitutions and { _}. The
proof is straightforward, using induction on the structure of a.

Lemma 6. 76 For a, b E Tp: { a[x:=b]} = {a} [x:= { b}]. I:8J

The mapping { _} maintains ,8-reduction. A 8-reduction is translated
into a 8-reduction followed by zero or more ,8-reductions. These ,8-reduc
tions take over the n substitutions that are needed in a 8-reduction

c(b1, ... , bn) --->6 a[xi:=bi]~=l·

6d Restrictive use of parameters 273

Lemma 6.77

1. If a ---"{3 a1 then {a}-% {a'};

2. Iff f-a ---"o a' then there is a11 such that {r} f- {a} -t a11 -f3 {a'};

3. Iff f-a -f3o a1 then {r} f- {a} {a'}.

PROOF: (1) follows easily by induction on the structure of a, and Lemma
6.76. (3) follows from (1) and (2). We only show (2), using induction on
the definition of r f- a ---"fJ a', and treating only the most important case.

Assume r f1, c(6.)=a:A, f2 and r f- c(b1, ... , bn) ---"o a[xi:=bi]~=l· Ob
serve that {r}::::: {ri}, c()= {>. 6..a}: {IJ 6..A}, {f2}, so

{r} f- c() {bi} .. · {bn} ---"o {>.6..a}{bl} .. · {bn}

{a} [xi:= {bi}J~=l

Remark 6.78 In 6.77.1, we cannot replace-% by ---"!3· This has to do
with the definition of {c(6.)=a:A IN b}. One ,8-reduction in 6. gives rise to
(at least) two ,8-reductions in c()= {,\ 6..a} : {TI 6..A} IN { b}.

Similarly, we cannot replace the -t in 6.77.2 by ---"o·

Now we show that { -} embeds the CD-PTS with parametric speci
fication 6 (S, A, R, P) in the CD-PTS with parametric specification
6 1 (S, A, R, 0), provided that 6 is parametrically conservative.

Theorem 6.79 Let 6 = (S, A, R, P) be a parametric specification. As
sume 6 is parametrically conservative. Let 6 1 = (S, A, R, 0). Then

PROOF: Induction on the derivation of f f-gn a : A. With the help of
Lemma 6. 76 and Lemma 6. 77.3, all cases are straightforward except for the

274 6 Pure Type Systems with Parameters

(C-weak) and (D-weak) rules. We only treat the (D-weak) rule; the proof
for (C-weak) is similar. So: assume the last step of the derivation was

By the induction hypothesis, we have:

{r} r-eb
6'

{f, ~i} r-eb
6'

{f,~} r-eb
6'

{f,~} r-eb
6'

{b} : {B};

{Bi}: 8ij

{a}:{A};

{A}: 8.

(15)

(16)

(17)

(18)

6 is parametrically conservative, so (8i, 8, 8) E R for i = 1, ... , n. There
fore, we can repeatedly use the IT-formation rule, starting with (18) and
(16), obtaining

(19)

Notice: TI7= 1 Xi: {Bi}. {A} = {fl ~.A}. Repeatedly using A-formation,
using (1 7) and (19), results in

(20)

Similarly, -Xi'=I xi: { Bi}. {a} = {A ~.a}. Using (D-weak) (for the specifica
tion 6') on (15), (16), (19) and (20) results in

{r} ,c()= {A~.a}: {fl~.A} r-gP {b}: {B}.

Remark 6.80 The results in Section 6d2 were presented for CD-PTSs.
The same result, however, can be obtained for C-PTSs, that is: for PTSs
with restricted parameters, but without definitions. We can also give an
alternative formulation of Remark 6.70, stating that a C-PTS with specifi
cation (S, A, R, 0) is in fact nothing more than a C-PTS with specification
(S, A, R).

6d Restrictive use of parameters 275

6d3 Refined Barendregt Cubes

Theorem 6. 79 has important consequences. The mapping { _} is fairly sim
ple. It only translates some parametric abstractions and applications into
..\-calculus style abstractions and applications. Hence a CD-PTS with para
metric specification 6 = (S, A, R, 0) can be extended with any set of para
metric rules without extending its logical power, as long as the parametric
specification obtained remains parametrically conservative.

· In this section, we will apply the insight obtained in Section 6d2 to a
concrete situation: the Barendregt Cube. The Barendregt Cube (Figure 13
on page 300) is a three-dimensional presentation of eight well-known PTSs.
All systems have sorts S = {*,D}, and axioms A= {(*,D)}. Moreover,
all the systems have rule (*• *• *). System ..\-+ has no extra rules, but the
other seven systems all have one or more of the rules (*• D, D), (D, *• *) and
(D, D, D):

• Going to the right in the cube means adding rule (*, D);

• Going upwards in the cube means adding rule (D, *• *);

• Going backward in the cube means adding rule (D, D, D).

Thus, going to the right, going upwards and going backward means going
to a stronger type system.

The systems depicted in Figure 13 have the following IT-formation rules:

).._, (*,*•*)
..\2 (*,*•*) (D,*,*)
..\P (*,*•*) (*, D, D)
Af:!:L (*,*•*) (D,D,D)
..\P2 (*,*•*) (D,*,*) (*, D)
..\w (*,*•*) (D,*,*) (D,D,D)
..\Pf:!:L (*,*•*) (*, D, D) D,D)
..\C (*,*•*) (D, *• *) (*, D, D) D,D)

This cube can be constructed not only for PTSs, but also for C-PTSs,
D-PTSs, C-PTSs, D-PTSs, and their combinations (see Figure 10 on page
235).

With Theorem 6.79, we can place certain CD-PTSs in the cube of D
PTSs (and, with Remark 6.80 in mind, certain C-PTSs can be placed in

276 6 Pure Type Systems with Parameters

the cube of C-PTSs). Let us, for example, have a look at the following
parametric specifications:

(S,A,{(*,*,*),(*,D,D)},0);
(S, A,{(*,*,*),(*, D, D)},{(*,*)});
(S, A,{(*,*,*),(*, D, D)},{(*, D)});
(S, A, { (*, *, *), (*, D, D)}, { (*, *), (*,D)}).

where S = { *, D} and A={(*, D)}. According to Theorem 6.79, the CD
PTSs with the above specifications are all equal in power, and according to
Remark 6. 70, they are all equal in power to the D-PTS with the specification
of AP.

Now look at the parametric specification

The C-PTS A c (6) is clearly stronger than the PTS A--+, as in A c (6) it
is possible (in a restricted way) to talk about predicates. For instance, we
can have the following context:

a
eq(x:a, y:a)

refl(x:a)
symm(x:a, y:a, p:eq(x, y))

trans(x:a, y:a, z:a, p:eq(x, y), q:eq(y, z))

*,
*,
eq(x, x),
eq(y, x),
eq(x, z)

This context introduces an equality predicate eq on objects of type a, and
axioms refl, symm, trans for the reflexivity, symmetry and transitivity of
eq. It is not possible to introduce such a predicate eq in the PTS A-+
without any parameter mechanism. On the other hand, A c (6) is weaker
than the PTS AP: in AP we can construct the type Ilx:a.Ily:a.*, which
allows us to introduce variables eq of type Ilx:a.Ily:a.*. This makes it
possible to speak about any binary predicate, instead of one fixed predicate
eq. It also gives us the possibility to speak about the term eq without the
need to apply two terms of type a to it (cf. the "philosophical argument"
in the introduction to this Chapter).

Altogether, this puts the C-PTS Ac(6) clearly in between the PTSs
A--+ and AP. Similarly, the CD-PTS Acb(6) is in between the D-PTSs

6e Systems in the refined Barendregt Cube 277

).--. and >.P. We can illustrate this in the Barendregt Cube by putting the
specification 6 in the middle of the edge that connects the systems).--.
and >.P.

This idea can be generalised to obtain a refinement of the Barendregt
Cube. We start with the system).--.. Adding an extra IT-formation rule
(81, 82, 82) to).--. corresponds to moving in one dimension (to the right,
upward, or backward) in the Cube. We add the possibility of moving in
one dimension in the Cube, but stopping half-way the Cube, and we let
this movement correspond to extending the system with the parameter
rule (8t, s2). This "going only half-way" is in line with Theorem 6.79,
which says that IT-formation rule (81, 82, s2) can mimic the parameter rule
(s1, 8 2). In other words, the system obtained by "going all the way" is at
least as strong as the system obtained by "going only half-way".

The refinement of the Barendregt Cube is depicted in Figure 11.

6e Systems in the refined Barendregt Cube

In this section, we show that the Refined Barendregt Cube enables us to
compare some well-known type systems with systems from the Barendregt
Cube. In particular, we show that ML, LF,).68, and >.QE can be seen as
systems in the Refined Barendregt Cube. This is depicted in Figure 12 on
page 283, and motivated in the four subsections below.

6el ML

In ML (see for instance [90]) one can define the polymorphic identity as
follows (we use the notation of this Chapter. In ML, the types and the
parameters are left implicit):

Id(a::*) (>.x:a:.x) : (a: -+ a:).

But it is not possible to make an explicit >.-abstraction over a::*: the ex
pression

Id (>.a::*.>.x:a:.x) : (IIa::*.a:-+ a:)

cannot be constructed in ML, as the type ITa::*.a: -+ a: does not belong
to the language of ML. Therefore, we can state that ML does not have a
II-formation rule (0, *, *), but that it. does have the parametric rule (0, *).

278 6 Pure Type Systems with Parameters

Figure 11: The refined Barendregt Cube

6e Systems in the refined Barendregt Cube 279

Similarly, one can introduce the type of lists together with some ele
mentary operations in ML as follows:

List(a:*)

nil(a:*)

cons(a:*)

List(a);

a---+ List(a) ---+ List(a),

but the expression ITa:*·* does not belong to ML, so introducing List by

List :ITa:*·*

is not possible in ML. We conclude that ML does not have a IT-formation
rule (D, D, D), but only the parametric rule (D, D). Together with the fact
that ML has a IT-formation rule (*, *, *), this places ML in the middle of
the left side of the refined Barendregt Cube, exactly in between .\---+ and
.\w.

6e2 LF

Geuvers [54] initially describes the system LF (see [59]) as the PTS .\P.
However, the use of the IT-formation rule (*, D) is quite restrictive in
most applications of LF. Geuvers splits the .\-formation rule in two rules:

(.\o)
r,x:A 1-M: B r 1- ITx:A.B: *

r 1- .\ox:A.M : ITx:A.B
x:A 1- M : B r 1- ITx:A.B : D

r 1- .\px:A.M :

System LF without rule (.\p) is called LF-. f)-reduction is split into Po
reduction and f)p-reduction:

(.\ox:A.M)N ---+130 M[x:=NJ;
(.\px:A.M)N ---+f3p M[x:=NJ.

Geuvers then shows that

• If Af : * or !vi : A : * in LF, then the f)p-normal form of M contains
no .\p;

• If r 1-LF· M: A, and r, M, A do not contain a .\p, then r 1-LF- M: A;

280 6 Pure Type Systems with Parameters

• If rI-M: A(:*), all in ,Bp-normal form, then f f-1F- M: A(:*).

This means that the only real need for a type ITx:A.B : D is to be able
to declare a variable in it. The only point at which this is really done is
where the bool-style implementation of PAT is made (see Section 4a4): the
construction of the type of the operator Prf (in an unparameterised form)
has to be made as follows:

prop:* I- prop:* prop:*, a:prop I- *:D
prop:* I- (Ila:prop.*) : D

In the practical use of LF, this is the only point where the IT-formation rule
(*• D) is used. No Ap-abstractions are used, either, and the term Prf is
only used when it is applied to a term p:prop. This means that the practical
use of LF would not be restricted if we introduced Prf in a parametric form,
and replaced the IT-formation rule (*, D, D) by a parameter rule (*,D). This
puts (the practical applications of) LF in between the systems A--+ and AP
in the Refined Barendregt Cube.

6e3 A68 and AUT-68

Looking back at the system AUT-68 of Section 5a and its A-calculus variant
A68 that was constructed and discussed in Sections 5b-5c, we remark that
AUT-68 has a parameter mechanism and a mechanism for global parametric
definitions:

• A line (f; k; PN; type) in a book is nothing more that the declaration
of a parametric constant k(f):*, and a line (r; k; 2::1 ; type) is the
declaration of a global parametric definition k(f)=2::1:*. There are
no demands on the context r, and this means that for a declaration
x:A E r we can have either A ::=:::type (in PTS-terminology: A ::=::: *,
so A : D) or A: type (in PTS-terminology: A : *). We conclude that
AUT-68 has the parameter rules (*,D) and (D, D);

• Similarly, lines of the form (r; k; PN; 2::2) and (r; k; ; 2::2), where
I:2:type, represent parametric constants and global parametric defini
tions that are constructed using the parameter rules (*, *) and (D, *).

Moreover, AUT-68 has a A-calculus mechanism with as only IT-formation
rule(*,*,*).

6e Systems in the refined Barendregt Cube 281

This suggests that AUT-68 can be represented by a CD-PTS with spec
ification

668 = (S,A,{(*,*,*)},S X S)

where S = {*, D} and A {(*,D)}. This system can be found in the exact
middle of the refined Barendregt Cube.

As for the structure of abstraction and application, this gives a good
description of AUT-68. The position of AUT-68 in the Refined Barendregt
Cube gives a far better idea of the force of AUT-68 than, for instance, the
description of AUT-68 in [5], where it cannot be clearly positioned in the
Barendregt Cube. Another advantage is that >,CD(668) has parameters.
Thus, it is closer to the original system AUT-68 than the system >.68 that
was described in Chapter 5, and in [5] (though in Theorem 5.62 and Remark
5.63, we minutely described the way in which the parameter mechanism
appears in >.68).

On the other hand, we should not say that AUT-68 is exactly the system
>. c D (6 68). There are several differences:

• DPTSs have global and local definitions. AUTOMATH has only global
definitions;

• In DPTSs, the type B of a definition x=T:B does not have to be
typable itself. In AUTOMATH, B has to be typable;

• The D-reduction of DPTSs is not substitutive; 8-reduction of Au
TOMATH is substitutive;

These differences can also be found between AUT-68 and the DPTSs of
Severi and Poll (see Section 5d2).

6e4 >.QE and AUT-QE

In >.QE we have a IT-formation rule (*, D) additionally to the rules of
>.68. This means that the applicational and abstractional behaviour can
be described by the CD-PTS with IT-formation rules (*, *, *) and (*, D, D),
and parametric rules (81, 82) for s1, 82 E S. This system is located in the
middle of the right side of the Refined Barendregt Cube, exactly in between
>.C and >.P. Again, this is not the exact representation of AUT-QE; there are
differences that are similar to those described in Section 5d2. Moreover,

282 6 Pure Type Systems with Parameters

AUT-QE has a rule of type inclusion (see the Conclusion of Chapter 5),
which is not taken into account in CD-PTSs.

6e5 PAL

The AUTOMATH languages are all based on two concepts: typed >.-calculus
and a parameter/definition mechanism. Both concepts can be isolated: it
is possible to study >.-calculus without a parameter/definition mechanism
(for instance via the format of Pure Type Systems), but one can also isolate
the parameter/definition mechanism from AUTOMATH. One then obtains
a language that is called PAL, the "Primitive AUTOMATH Language". It
cannot be described within the Refined Barendregt Cube (as all the sys
tems in that cube have at least some basic >.-calculus in it), but it can be
described as a CD-PTS with the following parametric specification:

S { *, D}

A {(*,D)}

R 0

P {(*, *),(*,D), (D, *), (D, D)}

This parametric specification corresponds to the parametric specifications
that were given for the AUTOMATH systems above, from which the IT
formation rules are removed.

6f First-order predicate logic

A standard way to code first-order predicate logic in PAT-style (Curry
Howard variant) uses a type system that looks familiar to >.P. It is due to
Berardi, and presented in Definition 5.4.5 of [5].

To keep objects and object types separated from proofs and proposi
tions, the sorts* and D of >.Pare replaced by *s,*p,*f,Ds and DP. Here,
*s and Ds handle the objects and object types, whilst *p, DP are used for
propositions and their proofs. The sort * f is used to store the types of the
function symbols of the first-order language. For the construction of logical
implication and universal quantification, the IT-formation rules (*p, *P' *p)
and (*s,*p,*p) are used. The IT-formation rule (*s,*s,*J) allows the for
mation of a function space between object types, and the IT-formation rule

6[First-order predicate logic 283

Figure 12: LF, ML, -X68, and -XQE in the refined Barendregt Cube

(* 8 , * f, *f) makes it possible to form functions of several arguments between
object types. There is no sort 0 f, as free variables for function spaces are
not allowed. The construction of relation symbols requires IT-formation
rule (*s, DP,

Thus, we find a PTS (or a D-PTS) with the following specification:

s = { *s, *p, * f, Ds, Dp};

A = { (*s, Ds), (*p, Dp)};

R = {(*s,*s,*J),(*s,*f,*J),(*s,*p,*p),(*p,*p,*p),(*s, Dp)}.

Due to the IT-formation rule (*s, DP, Dp) in the PTS-representation of
first-order logic, there are types that are not in ,6-normal form:

Example 6.81 For a term A : *s we can form the type ITx:A.*p· If b is
a term of type *p in which a variable x:A may occur free, we can form
-Xx:A.b of type ITx:A.*p· Applying this term to a term a of type A results
in (-Xx:A.b)a of type *p· This term is a type (because it has type *p) and is
not in ,6-normal form.

284 6 Pure Type Systems with Parameters

If a PTS has types that are not in /1-normal form, it is possible that
there are applications of the conversion rule

r 1- A : B r 1- B' : s B'
r 1- A:

in a deduction in such a PTS. The conversion rule has as a disadvantage
that its implementation in computer systems makes the system slow. This is
because it may be very time-consuming (or memory-consuming) to establish
whether two >.-terms are /1-equal or not. Hence, it would be useful to have
a type system in which all types are in /1-normal form.

In the formulation of first-order predicate logic above, it is only the rule
(*s, DP, Dp) which allows to form types that are not in /1-normal form. We
show this as follows. Assume, r 1- P : s, P is not in /1-normal form, and
all the subterms P' of P that are a type are in /1-normal form. Then P
cannot be a sort or a variable. As P has type s, P cannot be of the form
>.x:H.P2, either. If P Ilx:H.P2 then either PI or P2 are not in /1-normal
form. As PI and P2 are both types, this does not occur. So P must be
an application term P1P2. By the Generation Lemma for PTSs, there is
a type A and a sort s such that r 1- P1 : (ITx:A.s). By Correctness of
Types, there is a sort s' such that r 1- (IIx:A.s) : 8

1
• By the Generation

Lemma, there is (s1,s2,s') E R such that r 1- A: 81 and f,x:A 1- s: 82.
This means that (8, s2) is an axiom, and therefore 82 E {Ds, Dp}· Hence,
(81,82,83) = (*s,Dp,Dp)·

We conclude that implementations of first-order predicate logic in type
theory would be more efficient if it were possible to avoid rule (*s, Dp, Dp).
With the use of parameters, it is easy to avoid that rule. This is because
rule (* s, DP, DP) is only necessary to type the relation symbols of the first
order language. And as relation symbols in a first-order language are always
introduced with parameters, it is no restriction to introduce them in the
type system in a parametrised way. This can be done with parameter-rule
(*s, Dp): if we want to introduce a n-ary relation symbol R with arguments
of type U1, ... , Un (where the Uis are of type *s), we apply (\weakening
(let 6. X}:Ul,···,Xn:Un and 6.i Xl:UJ, ... ,Xi-l:Ui-1):

r 1- b:B

r, R(6.) : *p 1- b : B

This involves the use of the parameter-rule (*s, Dp)·

6f First-order predicate logic 285

Hence, replacing rule (*s, Dp, Dp) by parameter-rule (*s, Dp) enables one
to remove the conversion rule in the type-theoretic representation of first
order predicate logic, making it more efficient (see the forthcoming Theorem
6.84). It is reasonable to replace more rules by parameter-rules in the case
of first-order predicate logic, as we presently explain.

Function symbols in a first-order language are also of a parametric na
ture. The sort * f, the IT-formation rules (*s, *s, *f) and (*s, * f, *f) are only
used to construct the types of these function symbols. We can introduce
these function symbols in a more realistic way by using parametric rule
(*s,*s) instead of the IT-formation rules (*s,*s,*J) and (*s•*f,*J):

r 1- b:B

r, f(!l) : u 1- b: B

We have now obtained a C-PTS with parametric specification 6 1

(S',A',R',P'), where:

S'
A'
R'

P' =

{*s,*p• ,Dp};

{(*s, Ds), (*P• Dp)};

{(*s,*p,*p),(*p•*P•*p)};

{(* s, * s), (* s, Dp)}.

We now prove that types in this C-PTS are always in ,8-normal form.
For the proof we need as a lemma that any object term (that is: a term P
such that there is Q with P: Q : *s) is in ,8-normal form .

. Lemma 6.82 Iff 1-~, P : Q : *s then P is in ,8-normal form.

PROOF: Induction on the structure of P.

• The cases P E V and P E S' are trivial;

• If P = c(b1 , ... , bn) then we use the second extension of the Gen
eration Lemma, 6.69, and determine B1, ... , Bn, B and s1, ... , sn, s

such that r 1-~, bi:Bi[Xj:=bj];~\ and r,xl:Bl,·· .Xi-l:Bi-11-~, Bi:Si,

and (si, s) E P'. Due to the definition of P', Si = *s for all i.
By the Substitution Lemma, r 1- Bi[xr=bjJ;:\ : *s, and therefore

f 1- kBi[xr=biJj~\ : *s· By the induction hypothesis, the bi are in
,8-normal form. Therefore, c(b1 , ... , bn) is in ,8-normal form;

286 6 Pure Type Systems with Parameters

• If P = P1P2 then there are (Generation Lemma) R 1 , R2 such that

r f-~, P1 : Tlx:R1.R2, and Q =f3 R2[x:=P2]. By Correctness of Types

there is s E S' such that r f-~, (ITx:R1.R2) : s. By the Gener

ation Lemma and the definition of R', r, x:R1 f-~, R2 :*p· By the

Substitution Lemma, r f-~,- R2[x:=P2]:*p· Let Q' be a common /3-
reduct of Q and R2[x:=P2]. By Subject Reduction, r f-~, Q' : *s and

r f-~, Q' : *p, which contradicts Unicity of Types. We conclude that
the case P = P1P2 does not occur;

• If P = >..x:P1.P2 then there are R1,R2 such that Q =(3 Tlx:R1.R2. Let
Q' be a common /3-reduct ofQ and Tlx:R1.R2. There are R~,R~ such

that Q' Tlx:R~.R2. By Subject Reduction, r f-~, Tlx:R~.R2 : *s·
By the Generation Lemma, there are s1, s2 such that (s1, 82, *s) E R'.
This is not the case. So the case P >..x:P1.P2 does not occur;

• If P = Tlx:P1.P2 then there is 8 such that Q = s. By the Generation
Lemma, this would mean that 8 : *s is an axiom, which is not the
case. So the case P Tlx:P1.P2 does not occur.

Remark 6.83 The proof of this lemma not only shows that a P for which
P : Q : *s is always in normal form. It also shows that P can only be
a variable or an expression of the form c(b1, ... , bn) such that there are
B1, ... , Bn with bi : Bi : *s· This corresponds exactly to the definition of
terms in first-order logic. We conclude that our specification 6' results in
an exact description of the terms of first-order logic.

Theorem 6.84 Assume r f-~, P: s. Then P is in {3-normal form.

PROOF: Induction on the structure of P.

• The cases P E V and P E S' are trivial;

• P c(b1, ... , bn)· By the second extension of the Generation Lemma
6.69, there are sorts s1, ... , Sn and terms B11 ... , Bn such that (si, 8) E

P', r 1-g, bi: Bi[Xj:=bj]~~\ and r,x1:B1. ... ,Xi-l:Bi-1 f-~, Bi:Si· By
the definition of P', Si = *s for all i. By the Substitution Lemma,
r 1-g, bi : Bi[x1:=bi]~~i : *s· By Lemma 6.82, the bi are in /3-normal
form. Therefore c(b1, ... , bn) is in /3-normal form;

Conclusions: Yet another extension of PTSs? 287

• P = P1P2. By the Generation Lemma, there are R1, R2 such that
r I-~, H : ITx:R1.R2 and s =fJ R2[x:=P2]. By Correctness of Types,

the Generation Lemma and the definition of R', r, x:R1 I-~, R2 :

*p· By the Substitution Lemma, r 1--g, R2[x:=P2] : *p· By Subject

Reduction, r I-~, s: *p· This means that (s, *p) is an axiom, which is
not the case. We conclude that the case P = P1P2 does not occur;

• P = >.x:P1.P2. By the Generation Lemma, s =fJ ITx:R1.R2 for some
R 1 , R2 . This is impossible. We conclude that the case P >.x:P1.P2

does not occur;

• P ITx:P1.P2. By the Generation Lemma, there are s1, s2 such that
r I-~, pl : St and r' x:Pl I-~, p2 : 82. By the induction hypothesis, pl

and P2 are in ,6-normal form. SoP is in ,6-normal form.

We conclude that replacing the IT-formation rules

by parametric rules

makes the implementations of first-order languages in type theory

• easier to implement (as the conversion rule becomes superfluous);

• more realistic (it gives, for example, an exact description of the terms
in first-order logic, something that cannot be done in the parameter
free PTS proposed by Berardi).

Conclusions: Yet another extension of PTSs?

Since PTSs have been introduced, many extensions have been proposed
(see [6] for a non-exhaustive list). The reader may wonder why yet another
extension of PTSs is proposed in this Chapter, and whether it is more
interesting than those other extensions or not. In this section we give an
answer to these questions.

288 6 Pure Type Systems with Parameters

Practical motivation

We gave already some reasons for the use of parameters at the beginning
of this Chapter:

• Our extension is compatible with (and can be seen as an extension
of) the extension of PTSs with definitions as proposed by Poll and
Severi, which is considered to be a standard way to introduce defini
tions in PTSs. In fact, allowing only parametric constants with zero
parameters results in the D-PTSs of [114];

• Parameters and parametric definitions occur in many implementa
tions of type systems, and more general, in programming languages.
The Pascal-function double that was introduced at the beginning of
this Chapter can be described in our formalism by the context decla
ration

double(z:Int)=z+z:Int;

• The AUTOMATH systems, which form the basis for most modern proof
checkers that are based on type theory, can be described in our sys
tem. The description given in Chapter 5 is precise, but it is not a
description that looks natural. The separate abstractors , and § do
their job as well as possible in a type system without parameters, but
a description of AUTOMATH that includes parameters does more jus
tice to that system. Moreover, it places AUTOMATH in a more general
framework, so that it can easily be compared with other type systems
(see Figure 12 on page 283);

• Modern type systems, like LF and ML, have already been described
as one of the systems of the Barendregt Cube (Figure 13 on page
300). But in Section 6e we showed that a more detailed description
can be given in the refined Barendregt Cube of Figure 12;

• As argued in Section 6f, parameters are useful when describing first
order logic in type theory. Compared to the traditional PTS-represen
tation (systems related to >..P of the Barendregt Cube) of first-order
logic, parametric representations are

- easier to implement (because the conversion rule is not needed);

Conclusions: Yet another extension of PTSs? 289

- closer to the original first-order language and therefore closer to
the intuition;

• As argued in the beginning of this Chapter, parameters make it pos
sible to distinguish the attitude of users and developers of a system.
Often, the user only needs a (partially) parametrised version of the
system, whilst the developer wants to have the possibilities of full
;\-abstractions.

But "parameters give a better description of the type theory that is
used in practice" is not the only argument in favour of the system of this
Chapter. There is more than that.

The heart of type theory

In the Introduction we extensively discussed the notions of functionalisation
and instantiation and declared them to be the heart of type theory. After
our exploration of type theory throughout the present work, we still think
they are, for more than one reason:

• Functionalisation and instantiation stood at the cradle of type theory.
The story of type theory began with Frege's abstraction principles
(instantiation was not explicitly defined, but definitely present in an
implicit form), and the logical paradoxes that arose if one does not use
these principles carefully. Type theory made a careful use of Frege's
principles possible;

• An important application of modern type theory is logic. This is due
to the PAT-principle, which on its turn is based on the interpretation
of --> and V as function types. And function types exist because of
functionalisation and instantiation.

The parameter mechanism shows us a new, different form of functionalisa
tion and instantiation and therefore makes the theory of functions richer
and more interesting:

• It gives us a better idea of the possibilities of the traditional forms of
functionalisation and instantiation;

290 6 Pure Type Systems with Parameters

• It places these traditional forms in a broader perspective by showing
that these forms are not the only possible forms of functionalisation
and instantiation.

In this light, the parameter mechanism is not only an extension of
Pure Type Systems (as depicted in Figure 10 on page 235), but also (and
particularly) a refinement of this framework, resulting in refinements of
parts of it, like the Barendregt Cube (Figure 11 on page 278).

Future work

There are several things concerning parametric type systems that deserve
to be studied in the future:

• The meta-theoretical properties may have easier proofs than the ones
presented in this Chapter. In particular, the proof of strong normali
sation for a parametric type system is based on strong normalisation
for a PTS that may have more IT-formation rules. It would be in
teresting to know whether (and to what extent) these rather strong
demands can be weakened;

• In the systems proposed in this chapter, it is not possible to have a
parametric constant (or definition) that takes a parametric function as
a parameter. For example: We want to formulate the property Ref(B)
for binary relations B over type T, indicating that this relation is
reflexive. In our current system, B cannot be a parametric function
b(x:T, y:T), because b(x:T, y:T) is not a term. We must make the full
.\-abstraction .\x:T . .\y:T.b(x, y) (which is a term) if we want to give
it as an argument to Ref.

It may be useful to design a system in which the parametric function
b(x:T, y:T) could be substituted for B without the need of making
the .\-abstractions.

• There may be a relation between the parameter mechanism of this
chapter and AUTOMATH, and the use of parameters in the represen
tation of higher order propositional functions in the ramified theory
of types of Russell and Whitehead.

Appendix A

Preliminaries

In this thesis we try to present various important type systems that were
proposed during this century in a uniform framework. An important part
of this framework is formed by the so-called Pure Type Systems (PTSs).
Therefore, a short introduction to typed lambda calculus and PTSs is es
sential for the understanding of this thesis.

Lambda calculus was introduced by Church [28, 29], as a formalisation
of the notion of function. With this formal notation he could formulate
his set of postulates for the foundation of logic. Kleene and Rosser [74]
showed that Church's set of postulates was inconsistent. The lambda cal
culus itself, however, appeared to be a very useful tool. In Chapter 2 of
this thesis we showed that it is much more clear and accurate than the
notion of (propositional) function as introduced by Russell and Whitehead
in Principia Mathematica [121].

Nowadays, [4] is the standard work for (untyped) lambda calculus. We
present the basic definitions and properties of the >.-calculus in Section Aa.

Being a suitable framework for the formalisation of functions, it is not
surprising that lambda calculus appeared to be an excellent tool for for
malising the Simple Theory of Types [30]. In Section Ab we give a short
description of Church's formalisation. This formalisation is at the basis of
most modern type theories and especially at the basis of PTSs. PTSs were
introduced by Terlouw [118] and Berardi [13], providing a general frame
work in which many type systems can be described. Section Ac presents
the definition of PTSs and Section Ad discusses the most important meta-

292 A Preliminaries

properties as described in [55], [5], and [54].

Aa Lambda calculus

We give a description of typed lambda terms. This description follows the
line of [5], as it mainly serves as a description of Pure Type Systems (PTSs).

Definition A.l Let V be a set of variables and C a set of constants. The
set T(V, C) (shorthand: T, if it is clear which sets V and <C are used) of
typed lambda terms with variables from V and constants from C is defined
by the following abstract syntax:

T ::=vIc ITT I >..V:T.T I IIV:T.T.

If x does not occur in B then IIx:A.B is sometimes denoted by A- B.

We assume that V and C are countably infinite. We use = to denote
syntactical equality between typed lambda terms.

We use x, y, z, a, fJ as meta-variables over V. In examples, we some
times want to use some specific elements of V; we use typewriter-style to
denote such specific elements. So: x is a specific element of V; while x is
a meta-variable over V. The variables x, y, z are assumed to be distinct
elements of V (sox =I= y etc.), while meta-variables x,y,z, ... may refer
to variables in the object language that are syntactically equal. We use
A, B, C, ... , a, b, ... as meta-variables overT.

A term >..x:A.b has as intuitive interpretation the function that assigns
b[x:=a] (the term bin which each occurrence of x has been replaced by a)
to each a that belongs to (is an element of, has type) A. If b has type B,
then >..x:A.b is a function from A to B. A - B should be interpreted as
the type of functions from A to B. This means: >..x:A.b has type A- B.

Example A.2 >..x:A.x is the identity function on A, and has type A - A.

In some situations, we allow that the type B of b depends on the variable
x. In that case, b[x:=a] is of type B[x:=a] for a of type A. Then >..x:A.b is a
function with domain A and range Ua:A B[x:=a], with the special property
that the function value for a:A, b[x:=a], belongs to the subset B[x:=a] of
Ua:A B[x:=a]. The type of such functions will be represented by IIx:A.B.

Aa Lambda calculus 293

Example A.3 The polymorphic identity >.y:*.>.x:y.x has as type

ITy:*·Y-+ y.

We could have written I1y:*.I1x:y.y instead of IIy:*·Y -+ y. Here * can be
interpreted as the class of types.

Remark A.4 The term >.y:type.>.x:y.x in Example A.3 is a function of two
variables: y and x. The function is constructed by repeated >.-abstraction.
The first >.-abstraction (over x) leads to a function of one variable: >.x:y .x,
and another >.-abstraction (over y) leads to the desired function of two
variables. The use of repeated >.-abstraction in order to represent functions
of more than one variable is called "currying" after H. B. Curry, though
currying was already discovered by Schonfinkel in 1924 [109], before Curry
discovered it, and the basic ideas for currying can already be found in the
works of Frege, which date from 1879 (see Section 1b1 of this thesis).

The following notational conventions allow us to reduce the number of
brackets in terms:

Notation A.5

• We write M5:A.B, or >.f=1 Xi:A.A, as shorthand for

• We write AB1 · · · Bn as shorthand for

(· · · ((ABI)Bz) · · · Bn)·

Definition A.6 For A E T we define FV(A), the set of free variables of A,
as follows:

• FV(c) = 0 forcE C;

294 A Preliminaries

• FY(x) = {x} for x E V;

• FY(A1A2) = FY(AI) U FY(A2);

• FY(.\x:A1.A2) = (Fv(AI) \ {x}) U FY(A2);

• FY(l1x:A1.A2) = (Fv(AI) \ {x}) U FY(A2).

Definition A.7 IfFv(a) = {x1, ... ,xn} and A1, ... ,An is a list of terms
then .\~ 1 Xi:Ai.a is a closure of a.

Notice that there may be many different closures of one and the same term
a.

A subset of the set of .\-terms that will be used in this thesis is the set
of the so-called .XI-terms:

Definition A.8 Let V be a set of variables and <C a set of constants. The
set of .XI-terms ~ over V and <C is defined as follows:

• If v E V then v E ~; if c E <C thencE~;

• If A,B E ~then ABE~;

• If A, bE~ and x E FY(b) then .\x:A.b E ~;

• If A, BE~ then llx:A.B E ~-

So within the set of .XI-terms, a .\-abstraction .\x:A.b can only be made
if the term b really depends on the variable x. This means that constant
functions, and functions of more variables that are constant in one or more
of their variables, are excluded from the set of .XI-terms.

Terms that are equal up to a change of bound variables are considered
to be syntactically equal. This allows us to assume the so-called Barendregt
Convention:

Convention A.9 (Barendregt Convention) Bound variables will be
chosen to be different from free variables. For instance, we write (.\y:A.y)x
instead of (.Xx:A.x)x.

Aa Lambda calculus 295

Once this variable convention has been assumed we can define substi
tution in a straightforward manner (whereas the definition in [38] is more
complicated, and a formal definition of substitution is completely absent in
[28, 29] and [31]):

Definition A.lO (Substitution) We define A[x:=B] by induction on the
structure of A:

• y[x:=B] = { : if y = x;
if y :f:. x;

• (A1A2)[x:=B] = AI[x:=B]A2[x:=B];

• (.>.y:A1.A2)[x:=B] .>.y:AI[x:=B].A2 [x:=B];

• (IIy:A1.A2)[x:=B] = IIy:A1[x:=B].A2[x:=B].

We use the abbreviation A[xi:=Bi]i'=m to denote

If m > n then A[xi:=Bi]i'=m denotes A. We also use the notation A[x:=B]
for A[xi:=Bi]~1 .

On lambda terms we have the notion of /3-reduction.

Definition A.ll (/3-reduction) The relation -+13 is described by the
contraction rule

(.>.x:A1.A2)B -+13 A2[x:=B]

and the usual compatibility rules (so: if A -+ f3 A' then AB -+ f3 A' B,
BA -+!3 BA', .>.x:A.B .>.x:A'.B, .>.x:B.A -+13 .>.x:B.A', IIx:A.B -+13
IIx:A'.B and IIx:B.A -+f3 IIx:B.A').

-[3 is the smallest reflexive and transitive relation that includes
=13 is the smallest reflexive, symmetric and transitive relation that includes
-+13. By A-t B we indicate that A -!3 B, but A =I= B.

A term that has no subterm of the form (.>.x:A1.A2)B is a term in (3-
normal form, or a normal form if no confusion arises. We write A -+pt B

if A -+!3 Band B is in /3-normal form. Similarly, A -~f B if A -!3 Band
B is in f3-normal form.

296 A Preliminaries

The most important property of ----+13 is the so-called Church-Rosser
property:

Theorem A.12 If A ----*{3 B1 and A ----*{3 B2 then there is C such that
B1 ----*!3 C and B2 ----*!3 C.

There are numerous proofs of this theorem in the literature. The most
well-known is via the Strip Lemma (see [4], Chapter 11), another short
and elegant proof is given by Tait and Martin-Li::if [88], also described in
Chapter 3 of [4].

In this thesis we see many variants on the basic lambda terms of Defi
nition A.l, for instance lambda terms with parameters in Chapter 6. It is
easy to prove that these variants have the Church-Rosser property for ----+ 13
as well.

Ab Simply typed -A-calculus

We give a definition of the simply typed .A-calculus as introduced by Church
[30] in 1940.

Definition A.13 The types of).----. are defined as follows:

• L and o are types;

• If a and (3 are types, then so is a ----+ (3.

We denote the set of simple types by 1!'.

L represents the type of individuals; o is the type of propositions. a ----+ (3
is the type of functions with domain a and range (3. We use a, (3, ... as
meta-variables over types. ----+ associates to the right: a ----+ (3 ----+ ry denotes
a----+ ((3----+ ry).

The terms of the original presentation of).----. are a bit different from the
presentation in [5]. We give some explanation after repeating the original
definition.

Definition A.14 The terms of).----. are the following:

• ...,, 1\, V a for each type a, and ?a for each type a, are terms;

Ab Simply typed >..-calculus 297

• A variable is a term;

• If A, B are terms, then so is AB;

• If A is a term, and x a variable, then >..x:a.A is a term.

Definition A.15 A context in A-+ is a set {x1:a1, ... Xn:an} where the Xi
are distinct variables and the ai are types.

Some terms are typable (legal) in>..-+, according to the following deriva
tion rules:

Definition A.16 The judgement r 1- A : a holds if it can be derived using
the following rules:

• r 1- -, : 0 -+ o;

r 1- A : o -+ o -+ o;

r 1- y a : (a -+ 0) -+ o;

r 1- ?a;: (a-+ o)-+ a;

• r 1- x : a if x:a E r;

• If r,x:a 1- A: (3 then r 1- (>..x:a.A): a-+ (3;

• If r 1- A : a-+ (3 and r 1- B : a then r 1- (AB) : (3.

We use 1- _A_. if we need to distinguish derivability in >..-+ from derivabil
ity in other type systems.

The simply typed >..-calculus can be seen as a pure type system, and
therefore has the properties of pure type systems, that can be found at the
end of the following Section. To adapt the simply typed >..-calculus to a
pure type system, some amendments are made:

• The two basic types t, o are replaced by an infinite set of type vari
ables;

• The constants-., A, Ya and ?a are not introduced in the PTS-presen
tation.

These adaptions do not seriously affect the system and are only used to
make A-+ fit in the PTS-framework.

298 A Preliminaries

Ac Pure type systems

Pure Type Systems (PTSs) were introduced by Berardi [13] and Terlouw
[118] as a general framework in which many current type systems can be
described. The framework is a generalisation of the well-known Barendregt
Cube.

Though PTSs were not introduced before 1988, they were already im
plicitly present in Nederpelt's thesis ([91], Chapter III, Definition 1.3)
and many rules are highly influenced by rules of known type systems like
Church's Simple Theory of Types [30] and Automath (see 5.5.4. of [39],
and Section Sa).

The description below is based on [5].

Definition A.17 (Specification) A specification is a triple (S, A, R),
such that S s;;; C, A s;;; S x S and R s;;; S x S x S. The specification is
called singly sorted if A is a (partial) function S---+ S, and R is a (partial)
function S x S ---+ S. S is called the set of sorts, A is the set of axioms,
and R is the set of (IT-formation) rules of the specification.

Definition A.18 (Contexts) A context is a finite (possibly empty) list
Xl :Al, ... l Xn:An (shorthand: x:A) of variable declarations. { Xl, ... l Xn} is

called the domain DOM (x:A) of the context. The empty context is denoted

().

We user, ~ as meta-variables for contexts.
Substitution can be extended to contexts:

Definition A.19 We define r[x:=A] by induction on the length off:

• ()[x:=A] = ();

I . ·- - { r'[x:=A]
• (r 'y.B)[x.-A] = f'[x:=A], y:B[x:=A]

if X=: y;
if X =t- y.

Definition A.20 (Pure Type Systems) Let 6 = (S, A, R) be a spec
ification. The Pure Type System >-6 describes in which ways judgements

Ac Pure type systems 299

r hs A : B (or r 1- A : B, if it is clear which 6 is used) can be derived.
r 1- A : B states that A has type B in context r.

(axiom)

(start)

(weak)

(II)

(,\)

(appl)

(conv)

(} f- S! : S2

fi-A:s

r,x:A 1- X: A
fi-A:B ff-C:s

r,x:C 1- A: B
ff-A:s1 f,x:AI-B:s2

r 1- (IIx:A.B) : SJ

r, x:A 1- b : B r 1- (Ilx:A.B) : s
r 1- (-\x:A.b): (IIx:A.B)

r 1- F : (IIx:A.B) r 1- a : A

r 1- Fa : B[x:=a]
r 1- A : B r 1- B' : s B'

r 1- A:

X f/_ DOM(f)

X f/_ DOM(f)

A context r is legal if there are A, B such that r 1- A : B. A term A is
legal if there are r, B such that r 1- A: B or r 1- B : A.

An important class of examples of PTSs is formed by the eight PTSs
of the so-called Barendregt Cube. These systems all have { *, D} as set of
sorts, and *:D as only axiom, but they differ on the IT-formation rules that
are allowed, depending on which triples are in R:

,\---- (*,*,*)
,\2 (*,*,*) (D, *, *)
,\P (*,*,*) (*, D, D)
A!:!:!. (*, *, *) (D, D)
-\P2 (*, *, *) (D, *, *) (*, D, D)
AW (*,*,*) (D, *, *) (D,D,D)
-\P!:!:!_ (*,*,*) (*, D) (D,D,D)
,\C (*,*,*) (D, *, *) (*, D) (D,D,D)

The dependencies between these systems can be depicted in the Baren
dregt Cube (see Figure 13).

The systems in the Cube are related to many other type systems. The
overview below is taken from [5].

300

System
A-+

>.2

>.P

>.P2
).~

>.w
>.C

A Preliminaries

(D,•,•)ER

~O,O)ER

(*,o,o) E R

Figure 13: The Barendregt Cube

Related system Names, references
).T simply typed >.-calculus; [30], [4]

(Appendix A), [65] (Chapter 14)
F second order typed >.-calculus; [56],

[103]
AUT-QE1 [21]
LF2 [59]

[84]
POLYREC [102]
Fw [56]
cc Calculus of Constructions; [35]

Another PTS that occurs in this thesis is the Extended Calculus of Con-

1 A more precise study of AUT-QE, respecting the parameter structure of AUT-QE,
shows that AUT-QE can be positioned a little bit higher in the Cube: exactly inbetween
>.P and >.C. See Chapter 6, especially Section 6e4. -footnote by the author.

2 ln Chapter 6, Section 6e2, we show that the practical use of LF does not use the full
power of >.P. In the refinement of the Barendregt Cube presented there, we show that the
use of LF in practice corresponds to a system that is inbetween A-> and >.P. - footnote
by the author.

Ad Metaproperties of PTSs 301

structions ECC (see [86]). This is a PTS with

S = N;

A = {(n,n+l)lnEN};

R = {(m,O,O) I mEN} U {(m,n,r) I 0 ~ m,n ~ r}.

This is indeed an extension of .XC (write* for 0 and 0 for 1).

Ad Metaproperties of PTSs

Pure Type Systems have some important meta-properties, which we de
scribe below. The proofs can be found in [55] and [54]. Throughout
this section, 1- denotes derivability in a PTS with a certain specification
6 = (S,A,R).

Lemma A.21 (Restricted Weakening) If r 1- A: B, we may assume
the derivation of r 1- A : B to contain only applications of the rule (weak)
that are of the form

fl-u:B fi-C:8
r,x:C 1- u: B

where u E V U C.

Lemma A.22 (Free Variable Lemma) Let r = Xl:Al, ... , Xn:An be
legal, say r 1- B : C. Then

1. The Xi are distinct;

2. FV(B), FV(C) ~ DOM (r);

Lemma A.23 (Start Lemma) Let r be legal. Then

1. f 1- 81 : 82 for all (s1, 82) E A;

2. r 1- X :A for all (x:A) E r.

Lemma A.24 (Transitivity Lemma) Let r, ll be contexts. Assume r
is legal, r 1- x:A for all (x:A) Ell, and ll f- B: C. Then r 1- B: C.

302 A Preliminaries

Lemma A.25 (Thinning Lemma) If~ is legal, r ~ ~ and r I- A : B,
then ~ I- A : B.

Lemma A.26 (Substitution Lemma) If r, x:A, ~ I- B : C and r 1-
D: A then r, ~[x:=D]I- B[x:=DJ : C[x:=DJ.

Lemma A.27 (Generation Lemma)

1. If r I- c : C for a c E C then there is s E S such that C =f3 s and
(c:s) E A;

2. If r I- x : C then there is s E S and B ={3 C such that r I- B : s and
(x:B) E r;

3. Ifr I- (IIx:A.B) : c then there is (sl, S2, SJ) E R such that rI-A: SI,

r, x:A I- B : S2 and c ={3 SJ;

4. If r I- (>.x:A.b) : C then there is s E S and B such that r 1-
(IIx:A.B) : s; r, x:A I- b: B; and C =f3 (IIx:A.B);

5. If r I- Fa : C then there are A, B such that r I- F (IIx:A.B),
r I- a : A and C =f3 B[x:=a].

Lemma A.28 (Correctness of Types) If r I- A B then B s or
r I- B : s for some s E S.

Lemma A.29 (Subterm Lemma) If A is legal and B is a subterm of
A, then B is legal.

Lemma A.30 (Subject Reduction) If r I- A : B and A -+f3 A' then
rI-A': B.

Lemma A.31 (Strengthening Lemma) If r, x:A, ~ I- B : c and X ~
FV(~) U FV(B) U FV(C), then r, ~I- B: C.

The proof of this lemma is due to Van Benthem Jutting [12].

Lemma A.32 (Unicity of Types) If 6 is singly sorted, rI-A: B 1 and
rI-A: B2, then B1 =f3 B2.

Ad Metaproperties of PTSs 303

Lemma A.33 (Strong Permutation Lemma) If r, x:A, y:B, .0. I- C :
D and X¢ FV(B), then r,y:B,x:A,.0.1- c: D.

Definition A.34 (Topsort) A sorts is a topsort if there is nos' E S such
that (s, s') E A.

Lemma A.35 (Topsort Lemma) If s is a topsort and rI-A: s then A
is not of the form A1A2 or .\x:A1.A2.

Theorem A.36 (Strong Normalisation for ECC) Let A be a legal
term in the Extended Calculus of Constructions. Then A is strongly nor
malising.

As the systems of the Barendregt Cube are subsystems of ECC, all legal
terms in the systems of the Barendregt Cube are strongly normalising, too.

Appendix B

Type systems in this thesis

Ba The Ramified Theory of Types

Bal RTT

Definition B.l (Propositional functions, 2.3) We define a collection
P of propositional functions (pfs), and for each element f of P we simulta
neously define the collection FV(j) of free variables of f:

1. Ifi1, ... ,ia(R) EAUVthenR(i1, ... ,ia(R)) EP.

Fv(R(il, ... , ia(R))) ~f {i1, ... , ia(R)} n V;

2. Iff, g E P then f V g E P and -.f E P.

FV(j V g)~ FV(j) U FV(g); FV(-.j) ~f FV(j);

3. Iff E P and x E FV(j) then Vx[f] E P.

FV(Vx[f]) ~ FV(j) \ {x};

4. If n EN and k1, ... , kn E AU V UP, then z(k1, ... , kn) E P.

FV(z(kl, ... , kn)) ~f {z, k1, ... , kn} n V.
If n = 0 then we write z() in order to distinguish the pf z() from the
variable z;

5. All pfs can be constructed by using the construction-rules 1, 2, 3 and
4 above.

Ba The Ramified Theory of Types

Definition B.2 (Ramified types, 2.37)

1. 0° is a ramified type;

305

2. If t1\ ... , t~" are ramified types, and a E N, a > max(ab ... , an),
then (t11

, ••• , t~n t is a ramified type (if n = 0 then take a ?: 0);

3. All ramified types can be constructed using the rules 1 and 2.

If ta is a ramified type, then a is called the order of ta.

Definition B.3 (Predicative types, 2.41)

1. 0° is a predicative type;

2. If tia1 , ••• , tna" are predicative types, and a= 1 + max(ai, ... ,an)
(take a 0 if n = 0), then (t11

, ... , t~n t is a predicative type;

3. All predicative types can be constructed using the rules 1 and 2 above.

Definition B.4 (Contexts, 2.43) Let XI, ... , Xn E V be distinct vari
ables, and assume t11

, ... , t~n are ramified types. Then {XI :t11
, ••• , Xn :t~n}

is a context. The set {XI, ... , Xn} is called the domain of the context and
is denoted by dom({ X1 :t11

, ..• , Xn :t~n}).

Definition B.5 (Ramified Theory of Types: RTT, 2.45) The judge
ments r 1- f : ta is inductively defined as follows:

1. (start) For all a:

For all atomic pfs f:

2. (connectives) Assume r 1- f:(t1I, ... ,t~n)a, 6.1- g:(u~1 , ••• ,u~)b,
and x < y for all x E dom(r) andy E dom(Ll). Then

(
b b)ma.x(a,b) r u 6. 1- f v g : t11

, ••. , t~n' UI
1

' ••. 'u;;: ;

rl- . (tal tan)a.
· I '· · ·' n '

306 B Type systems in this thesis

3. (abstraction from parameters) If r 1- f: (tr1, ... , t<:nm r\ t~m+\l is
a predicative type, g E A U P is a parameter of f, r 1- g : t~~"\1

, and
x < y for all x E dom(r), then

r 'l- h. (ta1 tam+l)ma.x(a,am+l+l)
· 1 '· · ·' m+l ·

Here, h is a pf obtained by replacing all parameters g' of f which
are a:r-equal to g by y. Moreover, r' is the subset of the context
r u {y : t~m_:i1 } such that dom(r') contains exactly all the variables
that occur in h;

4. (abstraction from pfs) If (tr1
' ••• 't<:nm)a is a predicative type, r 1-

/: (t}1
, ••• ,t<:nmt, x < z for all x E dom(f), and Yl < · · · < Yn are

the free vari.ables of f, then

r / 1- () (tal tam (tal tam)a)a+l
Z Yl' · · · ' Yn : 1 ' · · · ' m ' 1 ' · · · ' m '

where r' is the subset of r u { z:(t}1
, ••• 'tc:n,m t} such that dom(r') =

{yl, · · .,yn,z};

5. (weakening) If r, Ll are contexts, r ~ Ll, and r 1- f : ta, then also
Lll- j : ta;

6. (substitution) If y is the ith free variable in f (according to the order
on variables), and ru{y: tf'} 1- f: (tr1

, ••• ,t~nt, and r 1- k: tf'
then

r l 1- /[·-k] . (tal tai-1 tai+l ta,..)b
Y·- · 1 '· · ·' i-1 ' i+l '· · ·' n ·

Here, b = 1 + max(a1, ... , ai-l, ai+l, ... , am c), and

c max{j I Vx:t1 occurs in f[y:=k]}

(if n = 1 and {j I Vx:t1 occurs in f[y:=k]} = 0 then take b = 0) and
once more, r' is the subset of r U {y : tf;} such that dom(r') contains
exactly all the variables that occur in f[y:=k];

7. (permutation) If y is the ith free variable in f (according to the
order on variables), and r U {y:tf'} 1- f : (t}1

, •.• , t~"' t, and x < y'
for all x E dom(f), then

r ' 1- J[·- '] . (tal tai-l tai+l ta,.. ta;)a
Y·-Y · 1 '· · ·' i-1 ' i+l '· · ·' n ' i ·

Ba The Ramified Theory of Types 307

r' is the subset of r u {y:t~', y' :t~'} such that domf' contains exactly
all the variables that occur in f[y:=y'J;

8. (quantification) If y is the ith free variable in f (according to the
order on variables), and r U {y:t~'} 1- f : (t~1 , ••• , t~n t, then

Ba2 ARTT

r 1- \.J ·ta; [/] . (tal tai-l tai+l tan)a
vy.i · l, ... ,i-l'i+l'···,n ·

Definition B.6 (Terms of ARTT, 4.3) Let A, V and R be as in Chapter
2. Define the set T of terms of ARTT by:

T ··= *s I *N+ I DN+ I A I V I R I t I _L I
TT I >.V:T.T I ITV:T.T.

Definition B. 7 (Derivation Rules for ARTT, 4.9) Let s, s1, s2 range
over S = { *s, D1, ... , *1, *2, ... } , and let

R = {(*s,Dn,Dn) In~ 1} u
{(Dm, Dn, Dn) 11:::; m < n} U

{(*m,*n,*max(m,n)) !m,n~ 1}U

{ (* s, *m *n) I n ~ 1} U

{(Dm, *n, *n) j1 :::; m < n}.

The derivation rules for >.RTT are as follows:

(Axioms)

(Start)

(Weak)

1- *n : Dn
1- L : *s

1-J..:*l
1- a : t

1- R : L -+ ... -+ /, -+ *1
~
a(R) times "
fi-A:s

r,x:A 1- x:A
fi-M:N fi-A:s

r,x:AFM :N

(n ~ 1)

(a E A)
(R E R)

308 B Type systems in this thesis

(IT-form) rI-A : sl r, x:A I- B : S2

r I- (ITx:A.B) : S3

(IT-in)

(IT-el)

r, x:A I- b:B r I- (ITx:A.B) : s
r I- (.Xx:A.b) : (ITx:A.B)

r I- M : ITx:A.B r I- N : A

(Conv)
fi-A:B

(Incl)

Bb AUTOMATH

Bbl AUT-68

rI-M N: B[x:=NJ

r 1- B': s
rI-A: B'
rI-A: *n

rI-A: *n+l

B =(3 B'

Definition B.8 (Expressions, 5.1) We define the set [of AUT-68-ex
pressions inductively:

(variable) If x E V then x E £;

(parameter) If a E C, n EN (n = 0 is allowed) and "E1, ... , "En E [then
a("El,··· ,"En) E £;

(abstraction) If x E V, 2:: E [U {type} and !1 E [then [x:l:JO E £;

(application) If "E1, "E2 E [then (E2)"E1 E £.

We define also [+ ~f [U {type}.

Definition B.9 (Books and lines, 5. 7) An AUT-68-book is a finite list
(possibly empty) of (AuT-68)-lines (to be defined next). If l1 , ... , ln are
the lines of book SB, we write Q3 = h, ... , ln.

An AuT-68-line is a 4-tuple (r; k; "E1; "E2). Here,

• f is a Context, i.e. a finite (possibly empty) list XI :a1, ... , Xn:an,

where the XiS are different elements of V and the CKiS are elements of
[+·

'
• k is an element of V U C;

• "E1 can be (only):

Bb AUTOMATH 309

o The symbol (if k E V);

o The symbol PN (if k E C);

o An element of[. (if k E C);

• :E2 is an element of [.+. ·

Definition B.lO (Correct books and contexts, 5.10) A book~ and
a context r are correct if~; r 1- OK can be derived with the following rules

(axiom)

(context ext.)

(book ext.: varl)

(book ext.: var2)

(book ext.: pnl)

(book ext.: pn2)

(book ext.: defl)

(book ext.: def2)

0; 01- OK

~1, (f; x; -;a), ~2i f 1- OK
~t,(f;x;-;a),~2 ;f,x:al- OK

~;f 1- OK
~' (f;x;-; type); 01- OK

~; r 1- :E2 :type
~' (f; x; -; :E2); 0 1- OK

~;f I- OK
~' (f; k; PN; type); 0 1- OK

~; r 1- :E2 : type
~' (f; k; PN; :E2); 0 1- OK

~; r 1- :El : type

~; r 1- :E2 : type ~; r 1- :E1 : :E; ~; r 1- :E2 = 13d :E;
~' (f; k; :E1; :E2); 0 1- OK

For the (book ext.) rules, we assume that the introduced identifiers x E V
and k E C do not occur anywhere in~ and r.

Definition B.ll (Correct statements, 5.11) A statement~; r 1- :E: n
is correct if it can be derived with the rules below (the start rule uses the
notions of correct context and correct book as given in Definition 5.10).

310

(start)

(parameters)

B Type systems in this thesis

Q3;r1,x:o:,r2 1- oK
13; rl' x:o:, r2 I- x:a

Q3 :Q31,(xl:o:b··· ,xn:o:n;b;!l1;!l2),Q32
Q3;r f- l:;i:O:i[Xl, ... ,Xi-1 , ... ,l:;i-I](i = 1, ... ,n)

Q3;r I- b(E1, ... ,En): il2[x11 ... ,xn:=E1, ... ,l::n]

(abstr.l)
Q3; r I- 2::1 :type Q3; r, x:E1 I- !l1 :type

Q3; r I- [x:E1J!l1 : type

(abstr.2)
Q3; r I- E1 :type

(application)

(conversion)
Q3; r 1- E: n1

13; r FE: n2
When using the parameter rule, we assume that Q3; r I- OK, even if n 0.

Bb2 ,\68

Definition B.12 (Terms, 5.21.1) The terms of .X68 form a set T defined
by

T ::=vIc Is ITT I .XV:T.T I §V:T.T I TIV:T.T I ~V:T.T,
where Sis the set of sorts { *, D, 6}.

Definition B.13 (Contexts, 5.21.2) We define the notion of context
inductively:

• 0; 0 is a context; DOM (0; 0) = 0;

• If .6.; r is a context, x E V, x does not occur in .6.; rand A E T, then
.6.; r, x:A is a context (xis a newly introduced variable); DOM (.6.; r) =
DOM (.6.; r) U {X};

• If .6.; r is a context, b E C, b does not occur in .6.; r and A E T then
.6., b:A; r is a context (in this case b is a primitive constant; cf. the
primitive notions of AUTOMATH in Section 5al); DOM (.6., b:A; r) =
DOM(.6.;r)u{b};

Bb AUTOMATH 311

• If~; r is a context, bE C, b does not occur in~; r, A E T, and T E T,
then~. b:=T:A; r is a context (in this case b is a defined constant; cf.
the definitions of AUTOMATH in Section 5al); DOM (~, b:=T:A; f) =

DOM(~;r) U {b}.

Definition B.14 {Derivation rules, 5.21.3)

{Axiom) ; 1- *: 0

(Start: v)

(Start: pe)

(Start: de)

{Weak: v)

~;r 1- A: 8

~;r,x:A F x: A
where s = *, 0

~;r 1- B: 81 ~;I- ,r.B: 8z
LSO,b:1r.B;F b: ,r.B

where s1 = *• 0

~; r 1- T: B: s1 ~; 1- r.B: sz
~. b:= § r.T):(, r.B ; 1- b:, r.B

where 81 = *• 0

~; r 1- M : N ~; r 1- A : s
LSO;r,x:A 1-M: N

where s = *• 0

(Weak: pe) ~;I- M: N ~;r 1- B: s1 ~;I- ,r.B: s2
50, b: ,r.B; 1-M: N

where s1 *• 0

(Weak: de)
~; 1- M : N ~; r 1- T : B : s1 ~; 1- , r.B : sz

~. b:=(§ r.T):(, r.B); 1- M : N
where s1 = *, 0

(TI-form) ~;ri-A:* ~;r,x:AI-B:*
~; r 1- (Tix:A.B) : *

(,-form) ~; r 1- A : Bl ~; r, x:A 1- B : Sz

~; r 1- (,x:A.B) : 6.
where s 1 = *, 0

(>.) ~;r 1- llx:A.B: * ~;r,x:A 1- F: B
~; r 1- (>.x:A.F) : (Tix:A.B)

~;r 1-M: llx:A.B ~;r 1- N: A
~; r 1- MN: B[x:=N]

312 B Type systems in this thesis

~;r 1-M: ~x:A.B ~;r 1- N: A
~; r 1- M N : B[x:=N]

~; r 1- M : A ~; r 1- B : s ~ 1- A =f3o B
LS; r 1-M: B (Conv)

The newly introduced variables in the Start-rules and Weakening-rules are
assumed to be fresh. Moreover, when introducing a variable x with a "pc"
rule or a "dc"-rule, we assume x E C, and when introducing x via a "v"-rule,
we assume x E V.

Be CD-PTSs and their subsystems

Bel PTSs with parameters and definitions

Definition B.15 (Terms, 6.1) The set Tp of parametric terms is defined
together with the set .Cv of lists of variables and the set .Cr of lists of
terms:

Tp ··- VIS I C(.Cr) I TpTp I >..V:Tp.Tp I
IIV:Tp.Tp I C(.Cv)=Tp:Tp IN Tp;
0 I (.Cv, V:Tp);
0 I (.Cr, Tp).

where V is a set of variables, C is a set of constants, and S is a set of sorts.

Definition B.16 The set of contexts is given by

Cp ::= 01 (Cp, V:Tp) I (Cp,C(.Cv)=Tp:Tp) I (Cp,C(.Cv):Tp).

Definition B.17 (C: parametric constants, 6.20) The typing relation

1-6 is the smallest relation on Cp x Tp x Tp closed under the rules in
Definition A.20 and the following ones (we write~= x1:B1, ... , xn:Bn):

r 1-6 b : B r, ~ 1-6 A : s

r, c(~) :A 1-6 b: B
(C-weak)

(C-app)

f1, c(~):A, f2 1-6 kBi[Xj:=bj]~:;,i (i = 1, ... , n)

f1, c(~):A, f2 1-6 A: s (if n = 0)

Be CD-PTSs and their subsystems 313

where 8 E Sand the c that is introduced in the C-weakening rule is assumed
to be r -fresh.

Definition B.18 (D: parametric definitions 6.21) The typing relation

1- 15 is the smallest relation on Cp x Tp x Tp closed under the rules in
Definition A.20 and the following ones:

r 1-15 b: B r, ~ 1-15 a : A

r, c(~)=a:A 1-15 b: B
(D-weak)

r 1 , c(~)=a:A, r2 1-15 bi : Bi[xj:=bj]~:,~ (i = 1, ... , n)

r1 r2 1-15 a : A
(D-app)

(D-form)

r1,c(~)=a:A,r2 c(b1, ... ,bn): A[xj:=bj]j=1

r, c(~)=a:A 1-15 B: 8

r 1-15 c(~)=a:A IN B : 8

(D-intro)
r, c(~)=a:A 1-15 b: B r 1- 15 c(~)=a:A IN B : 8

r 1- 15 c(~)=a:A IN b: c(~)=a:A IN B

(D-conv) r 1-15 b : B r 1-15 B' : 8 r 1- B =8 B'
r 1-15 b: B'

where 8 E S, and the c that is introduced in the D-weakening rule is
assumed to be r-fresh.

Definition B.l9 (Pure Type Systems with (parametric) constants
and (parametric) definitions, 6.22) Let 6 be a specification.

• A pure type system with (parametric) constants C-PTS is denoted as
.xc(6) and consists of a set of terms Tp, a set of contexts Cp, the

,6-reduction rule and the typing relation 1-c;

• A pure type system with (parametric) definitions D-PTS is denoted
as >.15(6) and consists of a set of terms Tp, a set of contexts Cp, ,6
and 8-reduction and the typing relation 1-15;

• A pure type system with (parametric) constants and {parametric) def
initions CD-PTS is denoted as >.615 (6) and consists of a set of terms
Tp, a set of contexts Cp, ,6 and 8-reduction and the typing relation
1-c 15, which is the smallest relation on C p x Tp x Tp that is closed
under the rules of Definition A.20 and the rules of 1-c and 1-15.

314 B Type systems in this thesis

Bc2 PTSs with restricted parameters and definitions

Definition B.20 (Parametric Specification, 6.64) A parametric spec
ification is a quadruple (S, A, R, P) such that (S, A, R) is a specification
(cf. Definition A.l7), and P ~ S x (S U {TOP}). The parametric specifica
tion is called singly sorted if the specification (S, A, R) is singly sorted.

Definition B.21 (C: restricted constants, 6.65) Let (S, A, R, P) be

a parametric specification. The typing relation f-e is obtained from the
relation f-C by replacing rule (<'S-weak) by the following rule (C-weak):

r f-e b: B r, ~i f-e Bi : si r, ~ f-e A : s

r, c(~) : A f-e b : B
(si,s) E P.

Definition B.22 (:0: restricted definitions, 6.66) Let (S, A, R, P)
be a parametric specification. The typing relation f-b is obtained from the

relation f-.8 by replacing rule (D-weak) by the following rules (D-weak):

r f-b b: B r, ~i f-b Bi : Si r, ~ f-b a : A : s

r, c(~)=a:A f-b b: B

r f-b b: B r, ~i f-b Bi : Si r, ~ f-b a: A: TOP

r, c(~)=a:A f-b b: B

(si,s) E P;

(si, TOP) E P.

Definition B.23 Let (S, A, R, P) be a parametric specification. The typ

ing relation f-eb is obtained from the relation f-c.B by replacing rule (<'S
weak) by rule (C-weak) and rule (D-weak) by rules (D-weak).

Definition B.24 (Pure Type Systems with Restricted Parameters
and Restricted Parametric Definitions, 6.68) Let (S, A, R, P) be a
parametric specification. The pure type system with restricted parameters
and restricted parametric definitions (CD-PTS) and parametric specifica
tion 6 is denoted ,\eb(6). The system consists of the set of terms Tp, the

set of contexts Cp, ,8-reduction, b-reduction, and the typing relation f-eb.

Bibliography

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit substi
tutions. Journal of Functional Programming, 1(4):375-416, 1991.

[2] S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editors. Hand
book of Logic in Computer Science, Volume 2: Background: Compu
tational Structures. Oxford University Press, 1992.

[3] T. Altenkirch. Constructions, Inductive Types and Strong Normal
ization. PhD thesis, University of Edinburgh, 1993.

[4] H.P. Barendregt. The Lambda Calculus: its Syntax and Semantics.
Studies in Logic and the Foundations of Mathematics 103. North
Holland, Amsterdam, revised edition, 1984.

[5] H.P. Barendregt. Lambda calculi with types. In [2], pages 117-309.
Oxford University Press, 1992.

[6] G. Barthe. Extensions of pure type systems. In M. Dezani-Ciancaglini
and G. Plotkin, editors, Second International Conference on Typed
Lambda Calculi and Applications, pages 16-31, Edinburgh, 1995.
Springer Verlag, Heidelberg.

[7] P. Benacerraf and H. Putnam, editors. Philosophy of Mathematics.
Cambridge University Press, second edition, 1983.

[8] Z.E.A. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. .Av,
a calculus of explicit substitutions which preserves strong normalisa
tion. Journal of Functional Programming, 6(5):699-722, 1996.

316 Bibliography

[9] L.S. van Benthem Jutting. A ':franslation of Landau's "Grundlagen"
in AUTOMATH. Technical report, Eindhoven University of Technol
ogy, 1976.

[10] L.S. van Benthem Jutting. Checking Landau's "Grundlagen'' in the
A utomath system. PhD thesis, Eindhoven University of Technology,
1977. Published as Mathematical Centre ':fracts nr. 83 (Amsterdam,
Mathematisch Centrum, 1979).

[11] L.S. van Benthem Jutting. Description of AUT-68. Technical Re
port 12, Eindhoven University of Technology, 1981. Also in [95], pp.
251-273.

[12] L.S. van Benthem Jutting. Typing in pure type systems. Information
and Computation, 105:30-41, 1993.

[13] S. Berardi. Towards a mathematical analysis of the Coquand-Huet
calculus of constructions and the other systems in Barendregt's cube.
Technical report, Dept. of Computer Science, Carnegie-Mellon Uni
versity and Dipartimento Matematica, Universita di Torino, 1988.

[14] E.W. Beth. The Foundations of Mathematics. Studies in Logic and
the Foundations of Mathematics. North-Holland, Amsterdam, 1959.

[15] R. Bloo. Preservation of Strong Normalisation for Explicit Substitu
tions. PhD thesis, Eindhoven University of Technology, 1997.

[16] R. Bloo, F. Kamareddine, and R. Nederpelt. The Barendregt Cube
with Definitions and Generalised Reduction. Information and Com
putation, 126{2):123-143, 1996.

[17] R. Bloo, F. Kamareddine, and R. Nederpelt. On ..\- and 1r-conversion
in the ..\-cube and the need for abbreviations. Submitted to APAL,
1997.

[18] V.A.J. Borghuis. Coming to Terms with Modal Logic: On the inter
pretation of modalities in typed ..\-calculus. PhD thesis, Technische
Universiteit Eindhoven, 1994.

317

[19] L.E.J. Brouwer. Over de Grondslagen der Wiskunde. PhD thesis,
Universiteit van Amsterdam, 1907. Dutch; English translation in
[63].

[20] N.G. de Bruijn. AUTOMATH, a language for mathematics. Technical
Report 68-WSK-05, T.H.-Reports, Eindhoven University of Technol
ogy, 1968.

[21] N.G. de Bruijn. The mathematical language AUTOMATH, its us
age and some of its extensions. In M. Laudet, D. Lacombe, and
M. Schuetzenberger, editors, Symposium on Automatic Demonstra
tion, pages 29-61, IRIA, Versailles, 1968. Springer Verlag, Berlin,
1970. Lecture Notes in Mathematics 125; also in [95], pages 73-100.

[22] N.G. de Bruijn. The Mathematical Vernacular, a language for math
ematics with typed sets. In P. Dybjer et aL, editors, Proceedings of
the Workshop on Programming Languages. Marstrand, Sweden, 1987.
Reprinted in [95] in combination with Formalizing the Mathematical
Vernacular (formerly unpublished, 1982), Examples of an MV Book.

[23] N.G. de Bruijn. Reflections on Automath. Eindhoven University of
Technology, 1990. Also in [95], pages 201-228.

[24] C. Burali-Forti. Una questione sui numeri transfiniti. Rendiconti del
Circolo Matematico di Palermo, 11:154-164, 1897. English transla
tion in [61], pages 104-112.

[25] G. Cantor. Beitdige zur Begriindung der transfiniten Mengenlehre
(Erster Artikel). Mathematische Annalen, 46:481-512, 1895.

[26] G. Cantor. Beitrage zur Begriindung der transfiniten Mengenlehre
(Zweiter Artikel). Mathematische Annalen, 49:207-246, 1897.

[27] A.-1. Cauchy. Cours d'Analyse de l'Ecole Royale Polytechnique.
Debure, Paris, 1821. Also as (Euvres Completes (2), volume III,
Gauthier-Villars, Paris, 1897.

[28] A. Church. A set of postulates for the foundation of logic (1). Annals
of Mathematics, 33:346-366, 1932.

318 Bibliography

[29] A. Church. A set of postulates for the foundation of logic (2). Annals
of Mathematics, 34:839-864, 1933.

[30] A. Church. A formulation of the simple theory of types. The Journal
of Symbolic Logic, 5:56-68, 1940.

[31] A. Church. The Calculi of Lambda Conversion. Princeton University
Press, 1941.

[32] A. Church. Comparison of Russell's resolution of the semantic anti
nomies with that of Tarski. The Journal of Symbolic Logic, 41:747-
760, 1976.

[33] A.B. Compagnoni. Higher-Order Subtyping with Intersection Types.
PhD thesis, Katholieke Universiteit Nijmegen, 1995.

[34] R.L. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, New Jersey, 1986.

[35] T. Coquand and G. Huet. The calculus of constructions. Information
and Computation, 76:95-120, 1988.

[36] H.B. Curry. Functionality in combinatory logic. Proceedings of the
National Academy of Science of the USA, 20:584-590, 1934.

[37] H.B. Curry. Foundations of Mathematical Logic. McGraw-Hill Series
in Higher Mathematics. McGraw-Hill Book Company, Inc., 1963.

[38] H.B. Curry and R. Feys. Combinatory Logic I. Studies in Logic and
the Foundations of Mathematics. North-Holland, Amsterdam, 1958.

[39] D.T. van Daalen. A description of Automath and some aspects of its
language theory. In P. Braffort, editor, Proceedings of the Symposium
APLASM, volume I, pages 48-77, 1973. Also in [95], pages 101-126.

[40] D.T. van Daalen. The Language Theory of Automath. PhD thesis,
Eindhoven University of Technology, 1980.

[41] R. Dedekind. Stetigkeit und irrationale Zahlen. Vieweg & Sohn,
Braunschweig, 1872.

319

[42] G. Dowek et al. The Coq Proof Assistant Version 5.6, Users Guide.
Technical Report 134, INRIA, Le Chesney, 1991.

(43] Euclid. The Elements. 325 B.C .. English translation in [60].

[44] S. Feferman. Toward useful type-free theories I. Journal of Symbolic
Logic, 49:75-111, 1984.

[45] G. Frege. Begriffsschrijt, eine der arithmetischen nachgebildete For
melsprache des reinen Denkens. Nebert, Halle, 1879. Also in [61],
pages 1-82.

[46] G. Frege. Grundlagen der Arithmetik, eine logisch-mathematische
Untersuchung iiber den Begriff der Zahl. , Breslau, 1884.

[47] G. Frege. Funktion und BegrijJ, Vortrag gehalten in der Sitzung vom
9. Januar der Jenaischen Gesellschaft fiir Medicin und Naturwis
senschaft. Hermann Pohle, Jena, 1891. English translation in [89],
pages 137-156.

[48] G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet,
volume I. Pohle, Jena, 1892. Reprinted 1962 (Olms, Hildesheim).

[49] G. Frege. Uber Sinn und Bedeutung. Zeitschrift fiir Philosophie und
philosophische Kritik, new series, 100:25-50, 1892. English transla
tion in [89], pages 157-177.

[50] G. Frege. Ueber die Begriffschrift des Herrn Peano und meine
eigene. Berichte iiber die Verhandlungen der Koniglich Siichsischen
Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-physika
lische Klasse 48, pages 361-378, 1896. English translation in [89],
pages 234-248.

[51] G. Frege. Letter to Russell. English translation in [61], pages 127-128,
1902.

[52] G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet,
volume II. Pohle, Jena, 1903. Reprinted 1962 (Olms, Hildesheim).

[53] C.L Gerhardt, editor. Die philosophischen Schriften von Gottfried
Wilhelm Leibniz. Berlin, 1890.

320 Bibliography

[54] J.H. Geuvers. Logics and Type Systems. PhD thesis, Catholic Uni
versity of Nijmegen, 1993.

[55] J.H. Geuvers and M.J. Nederhof. A modular proof of strong nor
malization for the Calculus of Constructions. Journal of Functional
Programming, 1(2):155-189, 1991.

[56] J.-Y. Girard. Interpretation fonctionelle et elimination des coupures
dans l'arithmetique d'ordre superieur. PhD thesis, Universite Paris
VII, 1972.

[57] K. Godel. Uber formal unentscheidbare Satze der Principia Mathe
matica und verwandter Systeme I. Monatshefte fi.ir Mathematik und
Physik, 38:173-198, 1931. German; English translation in [61], pages
592-618.

[58] K. Godel. Russell's mathematical logic. In P.A. Schlipp, editor, The
Philosophy of Bertrand Russell. Evanston & Chicago, Northwestern
University, 1944. Also in [7], pages 447-469.

[59] R. Harper, F. Honsell, and G. Plotkin. A framework for defining log
ics. In Proceedings Second Symposium on Logic in Computer Science,
pages 194-204, Washington D.C., 1987. IEEE.

[60] T.L. Heath. The Thirteen Books of Euclid's Elements. Dover Publi
cations, Inc., New York, 1956.

[61] J. van Heijenoort, editor. From Frege to Godel: A Source Book in
Mathematical Logic, 1879-1931. Harvard University Press, Cam
bridge, Massachusetts, 1967.

[62] A. Heyting. Mathematische Grundlagenforschung. Intuitionismus.
Beweistheorie. Ergebnisse der Mathematik und ihrer Grenzgebiete.
Springer Verlag, Berlin, 1934.

[63] A. Heyting, editor. Brouwer: Collected Works, volume 1. North
Holland, Amsterdam, 1975.

[64] D. Hilbert and W. Ackermann. Grundzi.ige der Theoretischen Logik.
Die Grundlehren der Mathematischen Wissenschaften in Einzel-

321

darstellungen, Band XXVII. Springer Verlag, Berlin, first edition,
1928.

[65] J.R. Hindley and J.P. Seldin. Introduction to Combinators and >.
calculus, volume 1 of London Mathematical Society Student Texts.
Cambridge University Press, 1986.

[66] W.A. Howard. The formulas-as-types notion of construction. In [112],
pages 479-490, 1980.

[67] P.B. Jackson. Enhancing the Nuprl Proof Development System and
Applying it to Computational Abstract Algebra. PhD thesis, Cornell
University, Ithaca, New York, 1995.

[68] B. Jacobs. Quotients in simple type theory. Draft version of 30 March
1994.

[69] F. Kamareddine and T. Laan. A Correspondence between Nuprl
and the Ramified Theory of Types. Technical Report 96-12, TUE
Computing Science Notes, 1996. Also as Technical Report TR-1996-
18, Department of Computing Science, University of Glasgow, 1996.

[70] F. Kamareddine and T. Laan. A reflection on Russell's ramified types
and Kripke's hierarchy of truths. Journal of the Interest Group in
Pure and Applied Logic, 4(2):195-213, 1996.

[71] F. Kamareddine and R. Nederpelt. On stepwise explicit substitution.
International Journal of foundations of Computer Science, 4:197-
240, 1993.

[72] F. Kamareddine and R.P. Nederpelt. A unified approach to type
theory through a refined >.-calculus. Theoretical Computer Science,
136:183-216, 1994.

[73] F. Kamareddine and R.P. Nederpelt. Canonical typing and IT
conversion in the Barendregt Cube. Journal of Functional Program
ming, 6(2):245-267, 1996.

[74] S.C. Kleene and J.B. Rosser. The inconsistency of certain formal
logics. Annals of Mathematics, 36:630-636, 1935.

322 Bibliography

[75] J.W. Klop. Term rewriting systems. In [2], pages 1-116. Oxford
University Press, 1992.

[76] G.T. Kneebone. Mathematical Logic and the Foundations of Mathe
matics. D. Van Nostrand Comp., London, New York, Toronto, 1963.

[77] A.N. Kolmogorov. Zur Deutung der Intuitionistischen Logik. Math
ematisches Zeitschrift, 35:58-65, 1932.

[78] S. Kripke. Outline of a theory of truth. Journal of Philosophy, 72:690-
716, 1975.

[79] T. Laan. A formalization of the Ramified Type Theory. Technical Re
port 94-33, TUE Computing Science Reports, Eindhoven University
of Technology, 1994.

[80] T. Laan. A Modern View on the Ramified Theory of Types. In
J.C. van Vliet, editor, Proceedings CSN 95, pages 122-133, Amster
dam, 1995. Stichting Mathematisch Centrum.

[81] T. Laan. The Evolution of Type Theory in Logic and Mathematics.
PhD thesis, Eindhoven University of Technology, 1997.

[82] T. Laan and R.P. Nederpelt. A modern elaboration of the Ramified
Theory of Types. Studia Logica, 57(2/3):243-278, 1996.

[83] E. Landau. Grundlagen der Analysis. , Leipzig, 1930.

[84] G. Longo and E. Moggi. Constructive natural deduction and its mod
est interpretation. Technical Report CMU-CS-88-131, Carnegie Mel
lono University, Pittsburgh, USA, 1988.

[85] Z. Luo. ECC and extended Calculus of Constructions. Department
of Computer Science, University of Edinburgh.

[86] Z. Luo. A problem of adequacy: conservativity of calculus of con
structions over higher-order logic. Technical Report ECS-LFCS-90-
121, University of Edinburgh, 1990.

[87] Z. Luo and R. Pollack. LEGO Proof Development System: User's
Manual. Technical Report ECS-LFCS-92-211, University of Edin
burgh, 1992.

323

[88] P. Martin-Lor. An intuitionistic theory of types: predicative part. In
H.E. Rose and J.C. Shepherdson, editors, Logic Colloquium '73, pages
73-118, Amsterdam, 1975. North-Holland. Studies in Logic and the
Foundations of Mathematics 80.

[89] B. McGuinness, editor. Gottlob Frege: Collected Papers on Mathe
matics, Logic, and Philosophy. Basil Blackwell, Oxford, 1984.

[90] R. Milner, M. Tofte, and R. Harper. Definition of Standard ML. MIT
Press, Cambridge (Massachusetts)/London, 1990.

[91] R.P. Nederpelt. Strong Normalization in a Typed Lambda Calculus
with Lambda Structured Types. PhD thesis, Eindhoven University of
Technology, 1973. Also in [95], pages 389-468.

[92] R.P. Nederpelt. Presentation of natural deduction. Recueil des
travaux de l'lnstitut Mathematique, Nouvelle serie, 2(10):115-126,
1977. Symposium: Set Theory. Foundations of Mathematics, Beograd
1977.

[93] R.P. Nederpelt. Type systems basic ideas and applications. Pro-
ceedings of CSN 1990, pages 367-383, 1990. Stichting Mathematisch
Centrum, Amsterdam.

[94] R.P. Nederpelt. The fine-structure of lambda calculus. Technical Re
port 92-07, Computing Science Notes, Eindhoven University of Tech
nology, 1992.

[95] R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected
Papers on A utomath. Studies in Logic and the Foundations of Math
ematics 133. North-Holland, Amsterdam, 1994.

[96] M.J. O'Donnell. Computing in Systems Described by Equations, vol
ume 58 of Lecture Notes in Computer Science. Springer Verlag, 1977.

[97] G. Peano. Arithmetices principia, nova methodo exposita. Bocca,
Turin, 1889. English translation in [61], pages 83-97.

[98] G. Peano. Formulaire de Mathematique. Bocca, Turin, 1894-1908.
5 successive versions; the final edition issued as Formulario Mathe
matico.

324 Bibliography

[99] W. Peremans. Ups and downs of type theory. Technical Report 94-14,
TUE Computing Science Notes, Eindhoven University of Technology,
1994.

[100] W. Van Orman Quine. Set Theory and its Logic. Harvard University
Press, Cambridge, Massachusetts, 1963.

[101] F.P. Ramsey. The foundations of mathematics. Proceedings of the
London Mathematical Society, 2nd series, 25:338-384, 1926.

[102] G.R. Renardel de Lavalette. Strictness analysis via abstract interpre
tation for recursively defined types. Information and Computation,
99:154-177, 1991.

[103] J.C. Reynolds. Towards a theory of type structure, volume 19 of
Lecture Notes in Computer Science, pages 408-425. Springer, 1974.

[104] A.C.M. van Rooij. Analyse voor Beginners. Epsilon Uitgaven,
Utrecht, 1986.

[105] J.B. Rosser. Highlights of the history of the lambda-calculus. Annals
of the History of Computing, 6(4):337-349, 1984.

[106] B. Russell. Letter to Frege. English translation in [61], pages 124-125,
1902.

[107] B. RusselL The Principles of Mathematics. Allen & Unwin, London,
1903.

[108] B. Russell. Mathematical logic as based on the theory of types. A mer
ican Journal of Mathematics, 30:222-262, 1908. Also in [61], pages
150-182.

[109] M. Schonfinkel. Uber die Bausteine der mathematischen Logik. Math
ematische Annalen, 92:305-316, 1924. Also in [61], pages 355-366.

[110] K. Schutte. Beweistheorie. Die Grundlehren der Mathematischen
Wissenschaften in Einzeldarstellungen, Band 103. Springer Verlag,
Berlin, 1960.

[Ill] J.P. Seldin. Personal communication, 1996.

325

[112] J.P. Seldin and J.R. Hindley, editors. To H.B. Curry: Essays on Com
binatory Logic, Lambda Calculus and Formalism. Academic Press,
New York, 1980.

[113] P. Severi. Normalisation in Lambda Calculus and its Relation to Type
Inference. PhD thesis, Eindhoven University of Technology, 1996.

[114] P. Severi and E. PolL Pure type systems with definitions. In A. Nerode
and Yu.V. Matiyasevich, editors, Proceedings of LFCS'94 (LNCS
813), pages 316-328, New York, 1994. LFCS'94, St. Petersburg, Rus
sia, Springer Verlag.

[115] T. Streicher. Semantics of Type Theory. Birkhauser, 1991.

[116] W.W. Tait. Infinitely long terms of transfinite type. In J.N. Cross
ley and M.A.E. Dummett, editors, Formal Systems and Recursive
Functions, Amsterdam, 1965. North-Holland.

[117] A. Tarski. Der Wahrheitsbegriff in den formalisierten Sprachen. Stu
dia Philosophica, 1:261-405, 1936. German translation by L. Blauw
stein from the Polish original (1933) with a postscript added.

[118] J. Terlouw. Een nadere bewijstheoretische analyse van GSTT's. Tech
nical report, Department of Computer Science, University of Nijme
gen, 1989.

[119] R. de Vrijer. A direct proof of the finite developments theorem. The
Journal of Symbolic Logic, 50(2):339-343, 1985.

[120] H. Weyl. Das Kontinuum. Veit, Leipzig, 1918. German; also in:
Das Kontinuum und andere Monographien, Chelsea Pub.Comp., New
York, 1960.

[121] A.N. Whitehead and B. Russell. Principia Mathematica, volume I,
II, III. Cambridge University Press, 19101 , 19272 . All references are
to the first volume, unless otherwise stated.

[122] R.L. Wilder. The Foundations of Mathematics. Robert E. Krieger
Publishing Company, Inc., New York, second edition, 1965.

326 Bibliography

[123] E. Zermelo. Untersuchungen iiber die Grundlagen der Mengenlehre.
Math. Annalen, 65:261-281, 1908.

[124] J. Zucker. Formalization of classical mathematics in Automath. In
Colloque International de Logique, Clermont-Ferrand, pages 135-145,
Paris, CNRS, 1977. Colloques Internationaux du Centre National de
la Recherche Scientifique, 249.

Subject Index

A

abstraction 224
from parameters 55, 57
from propositional functions 55,

57
abstraction principle 18, 37, 57, 58
a-equality 42, 75
ocr-equality 54
analysis 16, 17, 85
Appn predicate 103
application 138, 224
argument 18, 37
arity 31
atomic proposition 31, 56
AUTOMATH 126, 160~219, 280~282,

300
AUT-QE 212
description of 163~ 177
as a PTS 177~184

axiom in PTS 136
axiom of reducibility 87-89, 91

B

Barendregt convention 230, 294
Barendregt Cube 268, 298, 303

refined 268, 275~282
Begriffsschrift 14, 17-25

$-reduction 295
binding 228
block opener 164
book 161, 164, 166

correct 171
bottom-up approach 95
Brouwer-Heyting-Kolmogorov inter

pretation 121, 127, 130
bureaucratic logic 89

c
c-ap plication

C-application 241
c-weakening

C-weakening 241
C-weakening

restricted 268
calculus of constructions 127, 143,

158, 300
extended 300, 303

CD-PTS see Pure Type System
with restricted parametric
constants and restricted para
metric definitions

CD-PTS see Pure Type System
with parametric constants
and parametric definitions

328

Church-Rosser 141, 143, 175, 191,
247, 296

classicallogic 128
closure 294
combinator

F 121
K 123
p 121
s 123

completion 258, 262
conservation of knowledge 99
conservativity of rytw over RTT 112
constant 181, 228, 233

declaration 230
defined 232
parametric 227, 241
primitive 232

constant function 59, 94
context 230, 298

correct 171

domain 54
Ramified Type Theory 54, 58,

59
sound 233

correct 257
conversion 139
coq 160
correctness 171
correctness of contexts 257
correctness of types 142, 144, 302
Cours d 'Analyse 17
course-of-values 20-21, 28
C-PTS see Pure Type System with

parametric constants
currying 6, 18, 44, 46, 293

D

D-application 242

d-equality 174

D-weakening

restricted 269

D-weakening 242

declaration 230

definiendum 230

definiens 230

Subject Index

definition 15, 161, 182-184, 190,
217, 220, 230

global 214, 228, 233

hierarchy of parameters and 235

impredicative 87

local 214, 229, 233

parametric 227, 241

definitional equality 173-176

definition 175

8-reduction 175, 190, 239

dependent function type 129

deramification 84-118

history 85-92

derivation

Ramified Type Theory 60

diamond property 193

domain 228

D-PTS see Pure Type System with
parametric definitions

D-PTS see Pure Type System with
definitions

DPTS see Pure Type Systems with
definitions

E

Edinburgh Logical Framework 127,
279, 300

elementary judgement 31, 56
elementary proposition 31
Elements 15
embedding

RTT in KTT 109
RTT .in .A-Church 66

existence of substitution 73, 145
expression

AUTOMATH 164
extended calculus of constructions

300, 303

F

F-combinator 121
F-object 121
first order logic 36, 57, 221-222,

282-287
formal system 19
Formulaire 24
free variable 36-37, 63, 64, 165,

228, 232, 293
free variable lemma 63, 82, 141,

143, 301
free variable theorem

first 63
second 64

fully applied 68
function

constant 59, 94
definition of 18
as first-class citizen 28
generalisation of notion of 14

329

of more arguments 18, 293
as proof of implication 121
propositional 29-4 7

abstraction from 55, 57
as .A-term 33-35, 39-44
definition of 32
free variable 32, 36-37
higher order 36, 95, 290
legal 56, 75-81
parameters 41
in PTS-style 146
recursive parameter 41

Function and Concept 19-20
function type 129

G

generation lemma 142, 143, 257,
270, 302

Glasgow University v
global definition 214, 228, 233
Grundgesetze der Arithmetik 14,

20
Grundlagen der Arithmetik 20

I

identifier 164
implication 121, 134
impredicative definition 87
impredicative types 87
individual symbol 31, 56
intuitionism 120
intuitionistic logic 120-121, 128
intuitionistic mathematics 120
1-operator 94

330

J

judgement

K

elementary 31, 56
Ramified Type Theory 60

K-axiom 122
K-combinator 123
knowledge

conservation of 99
Kripke's theory of truths 84, 97-

101
definition 97

KTT see Kripke's Theory of Truths

L

.\-calculus 292-296

.\-formation 138

.\I-terms 59, 94

.\68 184-211
definition 184
meta-properties of 187
relation to AUT-68 207

.\w 158

.\RTT 136-141
derivation rules 140
meta-properties 141-145

language 90
least upper bound theorem 86
legal 56, 75-81, 139, 243
level

proofs 155
topsorts 155
within AUTOMATH 156

Subject Index

within bool-style PAT 157
within PTS-tradition 156, 157

levels
within .\RTT 154
within RTT 154

LF 127, 279, 300
line 166
local definition 214, 229, 233
logic

firstorder 36,57, 221-222,282-
287

formalisation of 17
logical connectives 55, 57

Brouwer-Heyting-Kolmogorov in
terpretation 121, 127

logical truth

M

for Kripke's theory of truths 97
for Ramified Type Theory 102

mathematical vernacular 160
matrix 39
meta-language 90
ML 277

N

NaDSet 1 105
Nuprl 89, 128, 160
NWO v

0

order 51, 85, 95-118, 128
concept vs. definition 95
removal of 84

p

Russell's definition of 95
semantic classification 117
syntactic classification 95

P-combinator 121
PAL 162, 282
paradox

Achilles 25
Burali-Forti 25, 90
Cantor 25
Epimenides 25
liar's 25, 90
logical 90
Richard 90
Russell 21-23, 39, 67, 90
semantical 90
syntactical 90

paradox threat 15-17
in the Begriffschrift 20
in the Grundgesetze 20-26
in Kripke's Theory of Truths

116
paradoxical expression 116

· parallel reduction 191
parameter 162, 177, 220-290

hierarchy of definitions and 235
imitated by .\-abstraction 271-

274
motivation 220-224

philosophical 222
restrictive use of 266

parameters
abstraction from 55, 57
of a propositional function 41

parametric closure 271

parametric rules 267
parametric specification 268

331

singly sorted 268
parametrically conservative 271
Pascal 220, 268
PAT see propositions as types, proofs

as terms
permutation 56, 58, 64, 142, 144,

303
IT-application 162, 217
IT-conversion 217
IT-elimination 138
IT-formation 133, 138, 178
IT-introduction 138
IT-reduction 162, 217
POLYREC 300
predicate 230
predicative types 53, 57, 58
prehistory 14-26
Principia Mathematica 27-83, 88
programming 220
proof 155
proofs as terms 119-159, 161

bool-style 126
prop-style 127

proposition 29, 32
atomic 31, 56
elementary 31

propositional function 29-4 7
abstraction from 55, 57
as ,\-term 33-35, 39-44
definition of 32
free variable 32, 36-37
higher order 36, 95, 290
legal 56, 7 5-81
parameters 41
in PTS-style 146

332

recursive parameter 41
propositions as types 119-159, 161

bool-sty le 126
prop-style 127

PTS see Pure Type System
Pure Type System 128, 136-140,

Q

298-303
completion 258, 262
with definitions 214, 233, 270
with parametric constants 241
with parametric constants and

parametric definitions 242
with parametric definitions 241
with restricted parametric con

stants and restricted para
metric definitions 269

quantification 51, 56, 58, 135
quasi full 262

R

ramification 85
Ramified Type Theory 47-63

context 54
domain 54

formalisation 53-56
informal 28
in KTT 101-116
levels within 154
in PAT style 128-150
properties 63-7 4
in PTS-sty le 128-150
restrictiveness 85-87, 113-116

ramified types 28, 51-53, 85

Subject Index

in PTS-style 133-150
real numbers 85
recursive parameter 41
refined Barendregt Cube 275-282
relation symbol 31
removal of orders 84
Rivista di Matematica 24
RTT see Ramified Type Theory
Russell Paradox 67
Russell paradox 21-23, 39, 90

s
S-axiom 122
S-combinator 123
same type, being of the 48
scheme 223
second order typed .A-calculus 300
self-application 16
set theory 14, 25
simple type theory 84, 92-95
Simple Type Theory

in PAT-style 158
simple types 47-51

definition 50
simply typed .A-calculus 66, 93, 158,

300
singly sorted 268, 298
SOBU v
sort 129
sound context 233
specification 298

parametric 268
singly sorted 268

singly sorted 298
start lemma 301
start rule 54, 137

strengthening lemma 63, 82, 302
strip lemma 296
stripping lemma 143
strong normalisation 66-73, 82, 143,

145, 202, 253, 303
strong permutation lemma 303
STT see Simple Type Theory
subject reduction 82, 142, 144, 198,

217, 302
for 6-reduction 198

substitution 37-47, 55, 58, 143,
230, 295

calculation rules 46
consecutive 44
definition in RTT 44
existence of 73
RTT VS. KTT 105
simultaneous 44
well-definedness 66-73

substitution lemma 142, 245, 302
RTT VS. KTT 105

substitutivity 215, 245-246
subterm lemma 74, 82, 302
su bterm property 73-7 4
system-F 300

T

telescope 214
term

parametric 227
terms 139
thinning lemma 142, 143, 302
topsort 144, 155, 269, 303
topsort lemma 142, 303
transitivity lemma 301
truth predicate 97

Typt predicate 103
types 139

u

impredicative 87
of individuals 50
inhabited 140
predicative 53, 57, 58
of propositions 50
ramified 28, 51-53, 85

in PTS-style 133-150
simple 47-51

definition 50

Uber Sinn und Bedeutung 23
unicity of types 65, 82, 302

v
variable 31, 164, 181

declaration 230

333

free 32, 36-37, 63, 64, 165,
228, 232, 293

higher order 57, 95
list of 227

variable convention 230, 294
vicious circle principle 28, 39, 90,

91, 333

w
weakening 55, 58, 137, 143, 177

restricted 301

Name Index

A

Achilles 25
Ackermann 84, 90
Altenkirch 127

B

Baeten ii, vi
Barendregt vi
Van Benthem Jutting v, 161, 177,

179
Berardi 128
Bleeker, A. v, vi
Bleeker, E. ii, vi
Bloo vi, 162, 211, 217
Borghuis v
Broekhuysen vi
Brouwer 120
De Bruijn 126, 160~161
Burali-Forti 25, 90

c
Cantor 3, 14, 25, 29
Cauchy 17
Church 4, 12, 21, 42, 66, 84, 92,

93, 151, 152, 158, 291
Curry 8, 21, 42, 121, 126, 293

D

Van Dalen vi
Dedekind 17, 85

E

Epimenides 25
Euclid 15

F

Feys 8, 42, 121, 126
Franssen v
Frege 4, 11, 14, 17~25, 29, 47, 293,

338, 340

G

Geuvers v, 279
Gilmore 105
Godel 29, 91, 151, 152, 158

H

Hendriks v1
Heyting 121, 161
Hilbert 84, 90
Howard 124, 126

K

Kamareddine v, 162, 165, 211, 217
Kleene 42, 291
Kolmogorov 121
Kripke 12, 84, 96, 97, 113, 339,

341

L

Laan, J. vi
Laan, S. vi
Laan, T. i, ii, vi, 342
Landau 161
Leibniz 85
Luo 127

M

Martin-10£ 191, 296

N

Nederpelt ii, v, vi, 162, 165, 211,
217, 298, 342

0

O'Donnell 176

p

Peano 14, 23-25, 29
Poincare 91
Poll 13, 162, 212, 220, 339, 341

Q

Quine 91

335

R

Ramsey 12, 49, 84, 90, 158, 338,
341

Rem i
Richard 90
Rosser 21, 42, 291
Russell 4, 5, 11, 14, 21, 27-29, 48,

67, 88, 158, 290, 291, 338,
340

s
Schonfinkel 6, 18, 293
Seldin 21
Severi v, 13, 144, 162, 212, 220,

339, 341
Streicher 127
De Swart 342
De Swart ii, v, vi

T

Tait 191, 296
Tarski 96
Terlouw 128

v
De Vrijer 253

w
Weyl 88, 89
Whitehead 5, 11, 290

z
Zeno 25

336

Zermelo 3
Zucker 161
Zwanenburg v

Name Index

List of Figures

1 Functionalisation and instantiation are each others inverse . 8

2 Substitution via ,8-reduction 44
3 Comparison of the properties of RTT and modern typed .:\-

calculus 82

4 Levels within RTT. 154
5 Levels within ARTT . 154
6 Levels of ARTT in PTS tradition . 156
7 Levels of ARTT in bool-style PAT 156

8 Example of an AUTOMATH-book. 169
9 'Ifanslation of Example 5.9 . . . 192

10 The hierarchy of parameters and definitions 235
11 The refined Barendregt Cube 278
12 LF, ML, .:\68, and .XQE in the refined Barendregt Cube 283

13 The Barendregt Cube 300

Summary

In this thesis we provide insight in the evolution of the notion of type in
logic and mathematics during the last one hundred and twenty years. We
want to stress that we do more than merely giving a historical overview.
We not only describe the type systems that have been developed in this
period, but also describe them in a modern terminology. This terminology
meets comtemporary requirements on formality and accuracy. In this way,
the systems can be described within one framework, making a comparison
between the systems possible.

We chronologically follow the development of type theory, starting with
Frege (1879). Some important, though less-known type systems are stud
ied. They are described in a modern terminology without violating the
original philosophy behind them. This results in a modern and historically
correct description of the various systems. We also discuss some important
developments in type theory and their influence on modern type theory.

The most important basics of current type theory, functional abstraction
and function application, can already be found in the theories of Frege. His
notion of abstraction is incorporated in Bertrand Russell's Ramified Type
Theory (RTT) (1908) which was constructed as a solution for the logical
paradoxes that arose at the turn of the century. The thesis provides a
formalisation of RTT. It appears that the notion of function application is
only introduced at an informal level in the original system. Using techniques
of .\-calculus we give an accurate definition of function application as is
present in RTT.

RTT has two hierarchies: one of types and one of orders. Ramsey (1926)
shows that the logical paradoxes can also be avoided when using a simple
type theory, without a hierarchy of orders. However, the thesis shows that
orders still play an important role in logic. It describes a close relation

339

between the orders of RTT and the truth levels in Kripke's Theory of Truth
(1975). Kripke's truth levels can be seen as a semantical interpretation of
the notion of order in RTT.

After having translated RTT in modern terminology, we describe RTT
in so-called "propositions-as-types" style. This gives RTT a position in the
framework of Pure Type Systems (PTSs), in which many modern type
systems have already been classified.

The type theory at the basis of the proof checker AUTOMATH has al
ready been described before in the PTS framework. However, no attention
has been paid to the definition and parameter mechanisms, which play
prominent roles in AUTOMATH. The thesis gives a detailed description of
AUTOMATH. Then we extend the framework of PTSs with a parameter
mechanism. This mechanism is constructed in such a way that it can be
combined with the extension of PTSs with definitions as described by Severi
and Poll. In the refined framework, PTSs with definitions and parameters,
we not only classify various AUTOMATH systems, but also other important
type systems, like LF and ML.

Samenvatting

Het proefschrift beoogt inzicht te geven in de ontwikkeling van het begrip
type in logica en wiskunde in de afgelopen honderd-twintig jaar. Hierbij
wordt nadrukkelijk meer gedaan dan (een vorm van) geschiedschrijving.
Type-systemen die in deze periode zijn ontwikkeld worden dan ook niet
aileen beschreven, ze worden ook vertaald naar een moderne terminologie,
die voldoet aan de eisen die heden ten dage aan formele type-systemen
gesteld worden. Daardoor kunnen deze systemen binnen een en hetzelfde
kader worden geplaatst, zodat een onderlinge vergelijking tussen deze sys
temen mogelijk wordt.

Het proefschrift volgt, chronologisch, de ontwikkeling van de type-theo
rie sinds Frege (1879). Een aantal belangrijke, doch minder bekende type
systemen wordt bestudeerd. Deze systemen worden beschreven in een te
genwoordig gebruikelijke terminologitegenwoordig gebruikelijke terminolo
gie, zonder dat de oorspronkelijke filosofie achter het systeem geweld wordt
aangedaan. Hierdoor wordt een moderne, maar historisch verantwoorde
beschrijving van de diverse type-systemen gegeven. Ook een aantal be
langrijke ontwikkelingen binnen de type-theorie wordt beschreven en hun
invloed op de hedendaagse type-theorie wordt besproken.

Het blijkt dat abstractie (een van de belangrijkste pijlers van de moderne
type-theorie, functie-abstractie en functie-applicatie) reeds te vinden is in
de theorie van Frege. Het abstractie-begrip van Frege wordt overgenomen
door Bertrand Russell in diens Vertakte Type-theorie (VTT) (1908), die
ontstaat als reactie op de logische paradoxen die rond de eeuwwisseling
ontdekt werden. Het proefschrift geeft een formalisering van VTT. Met
name het begrip functie-applicatie blijkt in het oorspronkelijke systeem
slechts op informeel niveau aanwezig te zijn. Met behulp van technieken
uit de moderne ,\-calculus kan een accurate formulering gegeven worden

341

van de functie-applicatie zoals die aanwezig is in VTT.
VTT bestaat uit twee hierarchieen: een van types en een van ordes. Door

Ramsey (1926) wordt aangetoond dat de logische paradoxen ook vermeden
kunnen worden met een enkelvoudige type-theorie, waarin geen hierarchie
van ordes zit. Het proefschrift laat echter zien dat het begrip orde nog
steeds een belangrijke plaats inneemt in de logica. Het proefschrift legt
een nauwkeurig verband tussen de ordes uit VTT en de waarheidsniveaus in
Kripkes Theory of Truth (1975). Het blijkt dat Kripkes waarheidsniveaus
kunnen worden gezien als een semantische interpretatie van het orde-begrip
uit VTT.

Behalve de vertaling van VTT in moderne terminologie beschrijft het
proefschrift VTT ook in zogenaamde "propositions-as-types" -stijl. Hier
door krijgt VTT een plaats binnen het raamwerk van "Pure Type Systems"
(PTSs), een framework waarbinnen reeds vele moderne type-systemen zijn
geclassificeerd.

De type-theorie die ten grondslag ligt aan de proof checker AUTOMATH
is reeds eerder geplaatst in het raamwerk der PTSs, maar daarbij is geen
aandacht geschonken aan het definitie-mechanisme en het parameter-me
chanisme, die in AUTOMATH prominent aanwezig zijn. In het proefschrift
wordt eerst een nauwkeurige beschrijving van AUTOMATH gegeven. Daarna
wordt het raamwerk van PTSs uitgebreid met een parameter-mechanisme.
Dit raamwerk is zo opgesteld, dat de uitbreiding gecombineerd kan worden
met de uitbreiding van PTSs met definities zoals omschreven door Severi en
Poll. In het fijnere raamwerk dat zo verkregen wordt, PTSs met definities
en parameters, worden niet aileen de verschillende AUTOMATH-systemen
geclassificeerd. Ook andere belangrijke type-systemen, zoals de systemen
die ten grondslag liggen aan LF en ML, kunnen met dit fijnere raamwerk
nauwkeuriger beschreven worden.

Curriculum Vitae

5 February 1970
Born in Etten-Leur

1982-1988
Secondary school: VWO, Macropedius College, Gernert

1988-1993
Master's degree (cum laude) in mathematics,

Catholic University of Nijmegen.

1993-1997
PhD, Eindhoven University of Technology and Tilburg University.

Supervisors: dr. R.P. Nederpelt and prof. dr. H.C.M. de Swart.

Titles in the IP A Dissertation Series

The State Operator in Process Algebra
J. 0. Blanco
Faculty of Mathematics and Computing Science, TUE, 1996-1

Transformational development of data-parallel algorithms
A. M. Geerling
Faculty of Mathematics and Computer Science, KUN, 1996-2

Interactive Functional Programs: Models, Methods, and Implementation
P.M. Achten
Faculty of Mathematics and Computer Science, KUN, 1996-3

Parallel Local Search
M. G. A. Verhoeven
Faculty of Mathematics and Computing Science, TUE, 1996-4

The Implementation of Functional Languages on Parallel Machines with
Distrib. Memory

M. H. G. K. Kesseler
Faculty of Mathematics and Computer Science, KUN, 1996-5

. Distributed Algorithms for Hard Real- Time Systems
D. Alstein
Faculty of Mathematics and Computing Science, TUE, 1996-6

Communication, Synchronization, and Fault- Tolerance
J. H. Hoepman
Faculty of Mathematics and Computer Science, UvA, 1996-7

Reductivity Arguments and Program Construction
H. Doornbos
Faculty of Mathematics and Computing Science, TUE, 1996-8

Functorial Operational Semantics and its Denotational Dual
D. Turi
Faculty of Mathematics and Computer Science, VUA, 1996-9

Single-Rail Handshake Circuits
A. M. G. Peeters
Faculty of Mathematics and Computing Science, TUE, 1996-10

A Systems Engineering Specification Formalism
N. W. A. Arends
Faculty of Mechanical Engineering, TUE, 1996-11

Normalisation in Lambda Calculus and its Relation to Type Inference
P. Severi de Santiago
Faculty of Mathematics and Computing Science, TUE, 1996-12

Abstract Interpretation and Partition Refinement for Model Checking
D.R.Dams
Faculty of Mathematics and Computing Science, TUE, 1996-13

Topological Dualities in Semantics
M. M. Bonsangue
Faculty of Mathematics and Computer Science, VUA, 1996-14

Algorithms for Graphs of Small Treewidth
B. L. E. de Fluiter
Faculty of Mathematics and Computer Science, UU, 1997-01

Process-algebraic Transformations in Context
W. T. M. Kars
Faculty of Computer Science, UT, 1997-02

A Generic Theory of Data Types
P. F. Hoogendijk
Faculty of Mathematics and Computing Science, TUE, 1997-03

	Voorblad
	Stellingen
	Acknowledgements
	Contents
	Introduction
	1. Prehistory
	2. Type theory in Principia Mathematica
	3. Deramification
	4. Propositions as types and proofs as terms
	5. Automath
	6. Pure type systems with parameters
	Appendices
	Bibliography
	Subject Index
	Name Index
	List of Figures
	Summary
	Samenvatting
	Curriculum Vitae

