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Abstract In this paper, performance analysis of hybrid

localization based on radio-frequency (RF) and inertial

measurement unit (IMU) measurements for a single wire-

less capsule endoscopy (WCE) traveling the gastrointesti-

nal tract is studied. Specifically, the multiple body-

mounted sensors are considered which are located on the

front and back of a patient’s medical jacket and form the

uniform rectangular arrays (URAs). With the aim of

locating the WCE, two types of RF measurements, namely

time-of-arrival (TOA) and direction-of-arrival (DOA), are

estimated from the received signals at the URAs trans-

mitted by the WCE, which are integrated with the IMU

acceleration measurements via the standard extended

Kalman filter. Here, a posterior Cramér–Rao Bound

(PCRB) of the proposed TOA/DOA and IMU-based hybrid

localization is derived as fundamental limits on squared

position error, where the accuracies of TOA and DOA

measurements are entailed by means of CRB to account for

their dependency on the environmental parameters, while

the accuracies of the IMU measurements are addressed

with the acceleration measurement error standard devia-

tion. Numerical results are provided, sustained by simula-

tions which verify the millimeter accuracy of the TOA/

DOA and IMU-based hybrid localization within the regu-

lation of medical implant communication services and the

exactness of the PCRB.

Keywords Wireless capsule endoscopy (WCE) �
Localization � Time-of-arrival (TOA) � Direction-of-arrival
(DOA) � Inertial measurement unit (IMU) � Posterior
Cramér–Rao bound (PCRB)

1 Introduction

Wireless capsule endoscopy (WCE) has emerged as a

leading technology for diagnostic of gastrointestinal (GI)

and mucosal diseases without risk of side effects of the

traditional endoscopy such as breath difficulty, perforation

or tearing of the intestinal wall, post-procedural infection

and vomiting during the examination [1, 2]. Generally, the

WCE refers to a swallowable pill-size medical device to be

equipped with a tiny camera and illuminating systems to

capture the images of the interior of GI tract; radio fre-

quency (RF) transmission module to transmit the images

and RF signals to receivers located on or outside the body;

and a battery [3].

In order to facilitate the accurate diagnosis, the WCE

localization techniques are essential associated with the

captured image. They can be largely grouped into mag-

netic-based [4, 5], image-based [6, 7] and RF-based

methods [8–10], each of which has challenging issues for

implementation. In particular, the magnetic-based methods

are highly sensitive to the distance between the WCE and
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sensors when the permanent magnets are used [4], or

require an external energy resources to excite the magnetic

field when the electromagnetic waves are used [5]. In the

image-based WCE localization [6, 7], the low image

quality and frame rate caused by the constrained transmit

power of the WCE degrade the localization performance.

With the benefits of low hardware cost and applicability as

well as with the rapid technical developments by the

increasing interests on location-awareness in cellular net-

works [11–14], the RF-based methods have gained atten-

tion for the WCE localization via time-of-arrival (TOA)

[8, 9], time-difference-of-arrival (TDOA) [9], direction-of-

arrival (DOA) [10] or received signal strength (RSS) [8]

measurements. Nevertheless, the difficulties exist for in-

body tracking using RF signals due to the uniqueness of

body area networks, e.g., the inconsistency of RSS atten-

uation, propagation and refraction inside the body and the

restrictions on the use of high bandwidth and on transmit

power. To address these challenging issues, the hybrid

localization techniques are introduced by using the multi-

ple types of RF measurements and, by extension, com-

bining RF measurements with other types of position-

related measurements [8–10].

In this paper, we develop the hybrid localization based

on the RF and inertial measurement unit (IMU) measure-

ments for a single WCE traveling the GI tract and derive its

fundamental limits of localization accuracy in terms of a

performance measure called the squared position error

(SPE). To this end, the multiple body-mounted sensors are

considered which are located on the front and back of a

patient’s jacket during the examination and form the uni-

form rectangular arrays (URAs) as shown in Fig. 1. The

WCE is assumed to be equipped with the IMU to enable its

acceleration measurements in the body reference frame.

With the goal of locating the WCE, two types of RF

measurements, namely TOA and DOA, are estimated at the

URAs from the received signals transmitted by the WCE,

which are then integrated with the IMU acceleration

measurements via the standard extended Kalman filter

(EKF). Differently from the prior works on the hybrid RF

and IMU-based localization [9, 10], we analytically derive

the fundamental limits on squared position error (SPE) of

the proposed scheme by adopting a Posterior Cramér–Rao

bound (PCRB). In the derivation, the accuracies of TOA

and DOA measurements are taken into account by means

of CRB to reflect their dependency on environmental

parameters, while the accuracies of IMU measurements are

entailed with the acceleration measurement error standard

deviation. Numerical results are provided via simulations,

which corroborate the exactness of the PCRB. Moreover, it

is validated that the millimeter accuracy of the proposed

TOA/DOA and IMU-based hybrid localization can be

obtained within the medical implant communication ser-

vices (MICS) regulation, which outperforms all the refer-

ence WCE localization schemes such as only RF (TOA/

DOA)-based, only IMU-based, and hybrid RF and IMU-

based schemes using only one type of RF measurements,

i.e., either TOA or DOA.

The rest of this paper is organized as follows. Section 2

presents the system model including the measurement and

dynamic model of the proposed scheme. In Sect. 3, we

design the TOA/DOA and IMU-based WCE hybrid local-

ization via the EKF, and then derive its PCRB in Sect. 4.

Numerical results are given in Sect. 5, and conclusions are

finally drawn in Sect. 6.

2 System and Signal Model

We consider a TOA/DOA and IMU-based WCE hybrid

localization system as illustrated in Fig. 1. We consider

NM sensors which are mounted on the front and back side

of the patient’s jacket to form the URA configuration with

a three dimensional range of LW � LL � LH cm. For the

Fig. 1 Illustration of the

considered set-up
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URAs, the inter-element distances along side the x and

z axes are denoted as Dx and Dz, and their reference posi-

tions are given as bF ¼ ½bx;F by;F bz;F�T for the front and

bB ¼ ½bx;B by;B bz;B�T for the back, respectively, which are

assumed to be perfectly known. The URAs communicate

with the transmitter within the WCE moving along a tra-

jectory pðtÞ ¼ ½pxðtÞ pyðtÞ pzðtÞ�T of the GI tract from the

mouth to rectum for t� 0. The observation time is assumed

to be partitioned into slots of duration d seconds, by which

the WCE’s trajectory pðtÞ can be sampled as

pk ¼ ½px;k py;k pz;k�T , pðkdÞ. We assume that the direct

signal can be resolvable, and the WCE and sensors are

synchronized, which allows us to obtain the TOA and DOA

measurements from the received signals at URAs. Note

that the asynchronism between the WCE and sensors may

be accounted by following the same approach in [11],

where the TDOA measurements can be applied in lieu of

TOA measurements, and we leave it for future work. We

also assume no patient’s body motion during the exami-

nation since the estimation error due to the patient’s

movement can be compensated by motion tracking via the

additional transmitters installed on the body, specially

shoulder or waist level [9]. Moreover, the WCE is assumed

to be equipped with the IMU to enable its acceleration

measurement in the body reference frame.

Under the above assumptions, the discrete-time received

signal of the URA i 2 fF;Bg at the kth time slot can be

written as

rk;i ¼ hk;iaðhk;i;/k;iÞsðkd� sk;iÞ þ nk;i; ð1Þ

where s(t) is a known signal to all the nodes with an unit

energy; nk;i , niðkdÞ with niðtÞ being the noise modeled

zero-mean additive white Gaussian processes at the URA

i with two-side power spectral density N0; and hk;i ¼ hLk;ih
S
k;i

is the amplitude of direct path between the WCE and URA

i at the time slot k with the large-scale fading coefficients

hLk;i and the small-scale fading coefficients hSk;i. Here, the

power of large-scale fading coefficients follows the stan-

dard channel model of IEEE 802.15.6 at MICS band [15]

and is given as

hLk;i

�
�
�

�
�
�

2

¼ Pt � PLðd0Þ � 10l log10ðdk;i=d0Þ þ N; ð2Þ

where Pt is the WCE’s constant transmit power; PLðd0Þ is
the pathloss at a reference distance d0 cm; dk;i is the

Euclidean distance between the the kth WCE state and

URA i; N is a zero-mean Gaussian random variable with

the variance r2s to represent the shadowing effect; and l is

the pathloss exponent, whose specifications are summa-

rized in Table 1 when d0 ¼ 5 cm is considered [16].

Moreover, in (1), sk;i and aðhk;i;/k;iÞ represent the

propagation delay and array response of direct path

between the kth WCE state and URA i, respectively, which

are defined as

sk;i ¼
dk;i

cavg
¼ 1

cavg
pk � bik k; ð3aÞ

aðhk;i;/k;iÞ ¼ axðhk;i;/k;iÞ � azð/k;iÞ; ð3bÞ

where cavg ¼ c=
ffiffiffiffiffiffiffiffi
�avg

p
is the propagation speed with the

speed of light c and the average relative permittivity �avg
[8]; � is the Kronecker product; and the azimuth steering

vector axðhk;i;/k;iÞ and elevation steering vector azð/k;iÞ
are given as

axðhk;i;/k;iÞ ¼ 1 ej
2p
k Dx cos hk;i cos/k;i � � � ej

2p
k DxðN�1Þ cos hk;i cos/k;i

h iT

;

ð4aÞ

azð/k;iÞ ¼ 1 ej
2p
k Dz sin/k;i � � � ej

2p
k DzðM�1Þ sin/k;i

h iT

; ð4bÞ

with k being the wavelength, and hk;i and /k;i being the the

azimuth angle and elevation angle, respectively, which are

defined based on trigonometric equations [17] with respect

to the positive x-axis and xy-plain as

hk;i ¼ tan�1 py;k � by;i

px;k � bx;i

� �

; ð5aÞ

/k;i ¼ tan�1 pz;k � bz;i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpx;k � bx;iÞ2 þ ðpy;k � by;iÞ2
q

0

B
@

1

C
A: ð5bÞ

2.1 Measurement Model

For the TOA measurements sk;i in (3a) and DOA mea-

surements fhk;i;/k;ig in (5) obtained at the URA i at the kth

time slot, we can write the measurement model as

yk;i ¼ ½sk;i hk;i /k;i�
T þ zk;i; ð6Þ

where zk;i is the zero-mean Gaussian white measurement

noise with the covariance matrix Zk;i ¼ Efzk;izTk;ig. In order

to compute the matrix Zk;i, we use the classical CRB [18]

based on the received signal rk;i in (1), where the depen-

dency of the accuracies of RF measurements on environ-

mental parameters is entailed. The error variance r2sk;i for

the TOA estimation sk;i can be calculated as

Table 1 Parameters for the implant to body surface pathloss model

Implant to body surface PLðd0Þ (dB) l rs

Deep tissue (dk;i [ 10 cm) 47.14 4.26 7.85

Near tissue (dk;i � 10 cm) 49.81 4.22 6.81
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r2sk;i ¼
1

8p2b2MNSNRk;i

; ð7Þ

where b ¼ ð
R1
�1 jfSðf Þj2df Þ1=2 is the effective bandwidth;

and SNRk;i ¼ jhk;ij2=N0 is the signal-to-noise ratio for the

direct path between the kth WCE’s location and URA

i. The error variances r2hk;i and r2/k;i
for the DOA estimation

hk;i and /k;i, respectively, can be given as

r2hk;i ¼
3k2

4p2D2
x sin

2 hk;i cos2 /k;iMNðN � 1Þð2N � 1ÞSNRk;i

;

ð8aÞ

r2/k;i
¼ k2

4p2MNSNRk;i

D2
x cos

2 hk;i sin
2/k;iðN�1Þð2N�1Þ

3

 

�DxDz coshk;i sin/k;i cos/k;iðM�1ÞðN�1Þ

þ
D2
z cos

2/k;iðM�1Þð2M�1Þ
3

!�1

:

ð8bÞ

The error variances r2sk;i ;r
2
hk;i

and r2/k;i
can be easily derived

by following [11, 12, 14, 18] whose details are not dis-

cussed here. By following [8, 9], the TOA and DOA

measurements are assumed to be independent, by which the

measurement covariance matrix Zk;i is then represented as

Zk;i ¼ diagfr2sk;i ; r
2
hk;i ; r

2
/k;i

g: ð9Þ

2.2 Dynamic Model

Next, we consider the WCE’s dynamic model. The diges-

tion system is known to have an irregular and variable

shape, which makes it difficult to model the WCE’s

mobility.

To address this problem, by considering that the sam-

pling rate for the WCE’s position is no more than one

second, i.e., d� 1, we assume the linear motion of the

WCE [9]. As a result, we have the kth state vector xk ¼
½pTk vTk �

T
with the velocity vector vk ¼ ½vx;k vy;k vz;k�T to

follow the state equations:

xkþ1 ¼ Axk þ Buk þ Gwk; ð10Þ

where the transition matrix A and the control input matrix

B are calculated as

A ¼ I3�3 dI3�3

03�3 I3�3

� �

and B ¼
1

2
d2I3�3

dI3�3

" #

; ð11Þ

respectively; G is a projection matrix to project the process

noise into the state vector; wk is zero-mean Gaussian white

process noise with the covariance matrix Wk ¼ Efwkw
T
k g;

and uk ¼ ½ux;k uy;k uz;k�T denotes the IMU measurement

vector, i.e., the measured acceleration of the WCE, which

is expressed as

uk ¼ ak � lb þ lu; ð12Þ

with ak ¼ ½ax;k ay;k az;k�T being the true acceleration of

WCE, lb being the IMU drift bias, and lu being the IMU

measurement noise consisting of zero-mean Gaussian

random variables with the variance r2lu . We assume that the

WCE’s biases can be calculated via calibration process

before the inspection, which allows us to consider only the

effect of the IMU measurement noise lu.

3 TOA/DOA and IMU-Based WCE Hybrid
Localization via EKF

In this section, we design the TOA/DOA and IMU-based

WCE hybrid localization via the standard EKF. The EKF is

conventionally adopted for the nonlinear observation and

dynamic model to forecast the next estimate using the first-

order error approximation via Taylor Series. By applying

the EKF to incorporate the TOA, DOA and IMU mea-

surements, we estimate the WCE’s location whose details

are discussed in the following.

Using the measurement model (6) and dynamic model

(10), the system state transition function is represented as

xkþ1 ¼ Axk þ Buk þ Gwk; ð13aÞ
ykþ1 ¼ hðxkþ1Þ þ zkþ1; ð13bÞ

where wk and zk0 are assumed to be uncorrelated so that

Efwkz
T
k0 g ¼ 0 for all k and k0. In (13b), hð�Þ is the obser-

vation nonlinear vector function that yields the TOA and

DOA measurements of all the URAs from the WCE’s state

predicted by IMU measurements. We define yk ¼
½yTk;F yTk;B�

T
and zk ¼ ½zTk;F zTk;B�

T
with the covariance matrix

Zk ¼ diagfZk;F;Zk;Bg by collecting all the corresponding

vectors of URAs related to the kth WCE’s state. The

WCE’s initial state x0 ¼ xu0 ¼ lx is given at the patient’s

mouth with the known mean Efx0g ¼ lx and covariance

matrix P0 ¼ Efðx0 � lxÞðx0 � lxÞTg. The summary of the

TOA/DOA and IMU-based hybrid localization is shown in

Algorithm 1.

In particular, at each kth iteration, the WCE’s next state

x
p
kþ1 and covariance P

p
kþ1 predicted by the IMU measure-

ment uk are given as

x
p
kþ1 ¼ Axuk þ Buk; ð14aÞ

P
p
kþ1 ¼ APkA

T þ Q; ð14bÞ
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respectively, where the matrix Q ¼ GWkG
T is the desired

process noise covariance matrix in (13a) and is computed

based on the continuous-time model of (14a) as [9, 10, 19]

Q ¼ r2lu

d3

3
I3�3

d2

2
I3�3

d2

2
I3�3 dI3�3

2

6
6
4

3

7
7
5
; ð15Þ

which depends on the variance r2lu of IMU measurement

noise lu.
Then, the Kalman gain Kkþ1 is calculated as

Kkþ1 ¼ P
p
kþ1H

Tðxpkþ1Þ Hðxpkþ1ÞP
p
kþ1H

Tðxpkþ1Þ þ Zkþ1

� 	�1
;

ð16Þ

where the sensitivity matrix HðxkÞ represents the Jacobian

matrix for (13b) which is defined as HðxkÞ ¼ ½HT
k;F HT

k;B�
T

with

Hk;i ¼

osk;i
opk

osk;i
ovk

ohk;i
opk

ohk;i
ovk

o/k;i

opk

o/k;i

ovk

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼

1

cavgdk;i
ðpk � biÞT 01�3

� sin hk;i
dk;i cos/k;i

cos hk;i
dk;i cos/k;i

0

" #

01�3

�
cos hk;i sin/k;i

dk;i
�
sin hk;i sin/k;i

dk;i

cos/k;i

dk;i

� �

01�3

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

ð17Þ

for i 2 fF;Bg. By using Kalman gain Kkþ1, the state and

covariance estimates are updated from their predictions

x
p
kþ1 and P

p
kþ1 in (14) to

xukþ1 ¼ x
p
kþ1 þ Kkþ1 ykþ1 � hðxpkþ1Þ

� 	

; ð18aÞ

Pkþ1 ¼ I6�6 � Kkþ1Hðxpkþ1Þ
� 	

P
p
kþ1: ð18bÞ

Finally, the (k þ 1)th WCE’s position can be obtained as

p̂kþ1 ¼ ½xukþ1�1:3 at each kth iteration of Algorithm 1, for

k ¼ 0; . . .;K � 1, where p̂k is the kth estimate of WCE’s

position.

4 Fundamental Limits of TOA/DOA and IMU-
Based WCE Hybrid Localization

Here, we derive the PCRB of the TOA/DOA and IMU-

based hybrid localization summarized in Algorithm 1 as

fundamental limits on localization accuracy. In Algorithm

1, since the posterior information from the previous state is

required, which makes the observations no longer inde-

pendent, we adopt the PCRB [20, 21]. The following

derivation of the PCRB is similar with Algorithm 1, except

the fact that the Fisher information matrix (FIM) is an

objective of recursion.

The SPE qk for the kth estimated position p̂k is defined

and lower-bounded by the PCRB trfJ�1
pk
g as follows:

qk ¼ E p̂k � pkk k2
n o

� trfJ�1
pk
g; ð19Þ

where Jpk is the equivalent FIM (EFIM) [11–14, 18] for the

estimate p̂k. To calculate the PCRB trfJ�1
pk
g in (19), we first

consider the joint probability density function (pdf) for (13)

as

pðXk;YkÞ ¼ pðx0Þ
Yk

n¼1

pðynjxnÞ
Yk

m¼1

pðxmjxm�1Þ; ð20Þ

where Xk ¼ ½xT0 � � � xTk �
T
and Yk ¼ ½yT0 � � � yTk �

T
. The condi-

tional probabilities pðxkjxk�1Þ and pðykjxkÞ follow from

(13a) and (13b), respectively. Let JðXkÞ be the 6k � 6k

FIM of Xk attained from the joint pdf in (20) and JðxkÞ be
the FIM of xk, which is the 6� 6 right-lower block of

JðXkÞ. When we decompose Xk into Xk ¼ ½XT
k�1 xTk �

T
,

JðXkÞ can be expressed as

JðXkÞ ¼
J11k J12k

J21k J22k

" #

¼
Ef�DXk�1

Xk�1
ln pðXk;YkÞg Ef�Dxk

Xk�1
ln pðXk;YkÞg

Ef�DXk�1
xk

ln pðXk;YkÞg Ef�Dxk
xk
ln pðXk;YkÞg

" #

;

ð21Þ

where we have defined the operator of the first- and sec-

ond-order partial derivatives as rx ¼ ½o=ox1 � � � o=oxn�T

and Dy
x ¼ rxrT

y , respectively, for the arbitrary vectors x ¼
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½x1 � � � xn�T and y ¼ ½y1 � � � yn�T . By applying the Schur

complement [22], the FIM JðxkÞ can be given as

JðxkÞ ¼ J22k � J21k ðJ11k Þ�1J12k ; ð22Þ

with J21k ¼ ðJ12k ÞT . Then, we can write the ðk þ 1Þth joint

pdf pðXkþ1;Ykþ1Þ as

pðXkþ1;Ykþ1Þ ¼ pðXk;YkÞpðxkþ1jXk;YkÞpðykþ1jxkþ1;Xk;YkÞ
¼ pðXk;YkÞpðxkþ1jxkÞpðykþ1jxkþ1Þ;

ð23Þ

which yields

JðXkþ1Þ ¼
J11k J12k 0
J21k J22k þ D11

k D12
k

0 D21
k D22

k

2

4

3

5; ð24Þ

where

D11
k ¼ Ef�Dxk

xk
ln pðxkþ1jxkÞg ¼ ATQ�1A; ð25aÞ

D12
k ¼ Ef�Dxkþ1

xk
ln pðxkþ1jxkÞg ¼ �ATQ�1; ð25bÞ

D21
k ¼ Ef�Dxk

xkþ1
ln pðxkþ1jxkÞg ¼ �Q�1A ¼ ðD12

k ÞT ;
ð25cÞ

D22
k ¼ Ef�Dxkþ1

xkþ1
ln pðxkþ1jxkÞg þ Ef�Dxkþ1

xkþ1
ln pðykþ1jxkþ1Þg

¼ Q�1 þ EfHðxkþ1ÞTZ�1
kþ1Hðxkþ1Þg:

ð25dÞ

Similarly with the previous step, by using the Schur com-

plement [22], the FIM Jðxkþ1Þ is represented as

Jðxkþ1Þ ¼ D22
k � 0 D21

k


 � J11k J12k

J21k J22k þ D11
k

" #�1
0

D12
k

� �

¼ D22
k � D21

k J22k þ D11
k � J21k ðJ11k Þ�1J12k

� �1

D12
k

¼ D22
k � D21

k JðxkÞ þ D11
k

� 	�1
D12

k

¼ Q�1 þ EfHðxkþ1ÞTZ�1
kþ1Hðxkþ1Þg

� Q�1A JðxkÞ þ ATQ�1A
� 	�1

ATQ�1:

ð26Þ

According to the matrix inversion lemma, we have the

following equality relationship

Qþ AJ�1ðxkÞAT
� 	�1¼ Q�1

� Q�1A JðxkÞ þ ATQ�1A
� 	�1

ATQ�1;

ð27Þ

which allows us to rewrite Jðxkþ1Þ as

Jðxkþ1Þ ¼ E Hðxkþ1ÞTZ�1
kþ1Hðxkþ1Þ

� �

þ Qþ AJ�1ðxkÞAT
� 	�1

: ð28Þ

Note that the expectation with respect to the channel in

(28) needs to be taken over Monte Carlo simulations. By

following (28), we calculate the FIM JðxkÞ recursively

until k ¼ K with initializing Jðx0Þ ¼ ðP0Þ�1
. Based on the

Schur complement [22], the PCRB trfJ�1
pk
g for the esti-

mated WCE’s position p̂k by Algorithm 1 is therefore

derived with the EFIM

Jpk ¼ ½JðxkÞ�ð1:3;1:3Þ � ½JðxkÞ�ð1:3;4:6Þð½JðxkÞ�ð4:6;4:6ÞÞ
�1½JðxkÞ�ð4:6;1:3Þ;

ð29Þ

for k ¼ 1; . . .;K, where ½��ða:b;c:dÞ is the sub-matrix of its

argument corresponding to from the ath to the bth rows and

from the cth to the dth columns. The process of the PCRB

calculation is summarized in Algorithm 2.

5 Numerical Results

In this section, we evaluate the performance of the TOA/

DOA and IMU-based WCE hybrid localization in Sect. 3

by comparing with the derived PCRB in Sect. 4 via Monte

Carlo simulations. For reference, we consider only RF

(TOA/DOA)-based localization, only IMU-based localiza-

tion, and two types of hybrid localizations, such as TOA

and IMU-based localization and DOA and IMU-based

localization. The reference hybrid localizations and their

PCRBs are similarly developed by following Sects. 3 and

4, where the measurement model yk;i ¼ ½sk;i� is considered
with the noise covariance matrix Zk;i ¼ r2sk;i and the sen-

sitivity matrix HðxkÞ consisting of Hk;i ¼
½osk;i=opk osk;i=ovk� in the TOA and IMU-based localiza-

tion, while, in the DOA and IMU-based localization, yk;i ¼
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½hk;i /k;i�T with Zk;i ¼ diagfr2hk;i ; r
2
/k;i

g and HðxkÞ consist-

ing of Hk;i ¼ ½ohk;i=opk ohk;i=ovk ; o/k;i=opk o/k;i=ovk� are
applied, for i 2 fF;Bg.

The NM sensors are assumed to be located in the front

and back side of the patient’s jacket with LW ¼ LL ¼
LH ¼ 40 cm and their reference positions bF ¼ ½�20 20

�50�T (cm) and bB ¼ ½�20 � 20 � 50�T (cm), while the

WCE’s three-dimensional synthetic tract map is given in

Fig. 2, which is obtained based on human digestive image

in [9, 10]. The WCE initial conditions are p0 ¼ ½0 8 0�
(cm) and v0 ¼ ½0 0 0�T (cm/s), respectively, where the

initial state error variances are 5 cm2 for position and

0.1 cm2/s2 for velocity [10]. We set fc ¼ 405 MHz to be

consistent with MICS standard and noise level as

N0 ¼ �121 dBm/Hz [11]. The small-scale fading channel

coefficients hSk;i are assumed to be independent and zero-

mean complex Gaussian random variables with unit vari-

ance, while the large-scale fading follows the propagation

model in (2) with the parameters of Table 1 corresponding

to the distance dk;i between the kth WCE state and URA i,

for i 2 fF;Bg. We assume that the EKF sampling time is

d ¼ 1 s and the signal propagation speed inside human is

cavg ¼ 2:14� 108 m/s [8]. Unless stated otherwise, we

consider these parameters in the following. For the per-

formance comparison, the root mean square (RMS) error is

employed as

RMS error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

n¼1

p̂kðnÞ � pkð Þ2
v
u
u
t ; ð30Þ

where p̂kðnÞ is the estimated kth position of the WCE in the

nth Monte Carlo experiments with N being the total num-

ber of experiments, which is compared with the square root

of PCRB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trfJ�1
pk
g

q

. Then, their mean values are evaluated

by averaging across the WCE’s samples from the initial

time to the final time of the examination. It is reminded that

no patient’s body motion is assumed during the examina-

tion which can be justified by the fact that the estimation

error due to the patient’s motion can be mitigated by

tracking the overall movements with the additional instal-

lation of the transmitters on the body. Accordingly, the

WCE position estimated by the proposed algorithm can be

mapped into the body reference frame.

First, we illustrate the mean RMS errors as a function of

the WCE’s transmit power Pt with N ¼ M ¼ 5 in Fig. 3

and as a function of the number of body-mounted sensors

N ¼ M with Pt ¼ �16 dBm in Fig. 4, respectively, when

the acceleration measurement error standard deviation

rlu ¼ 0:03 cm/s and the effective bandwidth

b ¼ 300 MHz are considered. As the transmit power Pt

becomes larger and the number of sensors, namely NM,

increases, the localization accuracy of Algorithm 1 sig-

nificantly increases up to submillimeter accuracy due to the

improvement on the accuracy of RF measurements, and

approaches closely to the PCRB. Moreover, the proposed

Algorithm 1 outperforms all the reference localizations,

and all the hybrid localizations based on both RF and IMU

measurements, i.e., TOA and IMU-based, DOA and IMU-

based and TOA/DOA and IMU-based methods, provide the

higher localization accuracy than only RF-based and only

IMU-based localization. From this, the hybrid localization

using RF and IMU measurements can be seen to be pre-

ferred if the accuracies of the RF and IMU measurements

are acceptable.

Note that, in the following, theWCE’s transmit power is set

to be Pt ¼ �16 dBm due to the MICS regulation that a max-

imum transmit power of implanted medical devices is limited

to-16 dBm so as to prevent the interference with other users

of the same band. As shown in Fig. 3, the gap between the

numerical and analytical performance in the available transmit

power range Pt � � 16 dBm is small enough in not only the

TOA/DOA and IMU-based hybrid localization but also the

TOA and IMU-based and the DOA and IMU-based hybrid

localization, fromwhich the derivedPCRB is a proper criterion

to quantify the localization accuracy.

In addition, the further performance improvements can

be attained by increasing the effective bandwidth b in the

localization techniques based on time measurements such

as only RF-based, TOA and IMU-based and TOD/DOA

and IMU-based methods as illustrated in Fig. 5, where the

mean RMS errors are shown with the different values of

effective bandwidth b when N ¼ M ¼ 5;Pt ¼ �16 dBm

and rlu ¼ 0:03 cm/s are considered.

Figure 6 shows the mean RMS errors as a function of

the acceleration measurement error standard deviation rlu
with Pt ¼ �16 dBm, b ¼ 300 MHz and N ¼ M ¼ 5.

Compared to the above figures that show the dependency

of the performance of Algorithm 1 on the accuracy of RF

measurements, its dependency on the accuracy of IMU

measurements can be here observed. Both numerical and

analytical performances of schemes based on IMU mea-

surements are degraded as rlu increases, especially for

TOA and IMU-based localization. By incorporating the

IMU measurements with two types of RF measurements in

Algorithm 1, the robustness against the IMU measure-

ments’ error can be obtained while simultaneously the

localization accuracy is enhanced. In a similar manner, the

robustness against the inaccurate RF measurements can be

also attained by integrating with the IMU measurements in

the proposed scheme.

The mean RMS error as a function of the width LW of

URAs is shown in Fig. 7 with Pt ¼ �16 dBm, N ¼ M ¼
5; rlu ¼ 0:03 cm/s, LL ¼ LH ¼ 40 cm, bF ¼ ½�LW=2 20
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�50�T (cm) and bB ¼ ½�LW=2 � 20 � 50�T (cm). In

Fig. 7, it is observed that the choice of the size and con-

figuration of sensors noticeably affects both the numerical

and analytical performance of Algorithm 1. Therefore, the

optimal sensor configuration needs to be selected so as to

provide the minimal localization error (Here, the optimal

width is LW ¼ 40 cm in both numerical and analytical

results), for which it is expected that the PCRB can provide

the insight into the choice.

In Table 2, we describe the comparative accuracy of the

WCE localization methods in terms of the mean drift per

each meter traveled by the WCE with N ¼ M ¼
5;Pt ¼ �16 dBm, b ¼ 300 MHz, and rlu ¼ 0:03 cm/s.

The mean drift in traveled length is calculated as the

summation of the mean errors of the estimated kth WCE’s

Fig. 2 Three-dimensional

synthetic tract map of the WCE

(N ¼ M ¼ 5)

Fig. 3 Mean RMS error as a function of the WCE’s transmit power

Pt with N ¼ M ¼ 5; b ¼ 300 MHz and rlu ¼ 0:03 cm/s

Fig. 4 Mean RMS error as a function of the number of sensors

N (¼M) with Pt ¼ �16 dBm, b ¼ 300 MHz and rlu ¼ 0:03 cm/s
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position across the Monte Carlo experiments divided by the

summation of the traveled length until kth WCE position,

where the summation is operated from the initial to the

final time of the experiment, i.e., from k ¼ 1 to k ¼ K. The

exceptional performances of the proposed TOA/DOA and

IMU-based hybrid localization as well as of the other ref-

erence RF and IMU-based hybrid schemes are striking,

which verifies their applicability to the capsule endoscopy

inspection in real life. For instance, Algorithm 1 can

achieve the mean drift of 0.157 cm per each meter traveled

by the WCE, and the reference RF and IMU-based schemes

also provide the mean drift less than 1 cm.

6 Concluding remarks

In this paper, we have studied the performance of TOA/

DOA and IMU-based WCE hybrid localization for a single

WCE traveling the GI tract. Particularly, two types of RF

measurements, namely TOA and DOA, are combined with

the IMU acceleration measurements via the EKF, which

enables the high-performance WCE tracking. The funda-

mental limits on localization accuracy of the proposed

TOA/DOA and IMU-based hybrid localization are derived

by means of the PCRB, where the dependency of the

accuracies of TOA and DOA measurements on environ-

mental parameters is taken into account based on the CRB,

while the accuracies of IMU measurements are addressed

with the acceleration measurement error standard devia-

tion. Numerical results validate the millimeter accuracy of

the TOA/DOA and IMU-based hybrid localization within

the MICS regulation and the exactness of the derived

PCRB. It is noted that patient’s body motion may create the

estimation error, but it can be alleviated by motion tracking

via the additional transmitter installed on the body. In

addition, the proposed scheme can be readily extended with

other sensor configurations or different types of position-

related measurements. Therefore, interesting open prob-

lems concern the study about the optimal configuration of

sensors to maximize the localization accuracy and the

β

Fig. 5 Mean RMS error as a function of the effective bandwidth b
with N ¼ M ¼ 5;Pt ¼ �16 dBm and rlu ¼ 0:03 cm/s

σμ

Fig. 6 Mean RMS error as a function of the acceleration measure-

ment error standard deviation rlu with Pt ¼ �16 dBm, b ¼ 300 MHz

and N ¼ M ¼ 5

β
β

β
β

β
β

Fig. 7 Mean RMS error as a function of the width LW of URAs with

Pt ¼ �16 dBm, N ¼ M ¼ 5;rlu ¼ 0:03 cm/s, LL ¼ LH ¼ 40 cm,

bF ¼ ½�LW=2 20 � 50�T (cm) and bB ¼ ½�LW=2 � 20 � 50�T (cm)
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performance analysis of the hybrid RF and IMU-based

localization under the asynchronous assumption between

the WCE and sensors.
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