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Abstract

Supervised learning techniques construct predictive
models by learning from a large number of training exam-
ples, where each training example has a label indicating
its ground-truth output. Though current techniques have
achieved great success, it is noteworthy that in many tasks
it is difficult to get strong supervision information like fully
ground-truth labels due to the high cost of data labeling
process. Thus, it is desired for machine learning techniques
to work with weak supervision. This article reviews some
research progress of weakly supervised learning, focusing
on three typical types of weak supervision: incomplete su-
pervision where only a subset of training data are given
with labels; inexact supervision where the training data are
given with only coarse-grained labels; inaccurate supervi-
sion where the given labels are not always ground-truth.

1 Introduction

Machine learning has achieved great success in vari-
ous tasks, particularly in supervised learning tasks such as
classification and regression. Typically, predictive mod-
els are learned from a training data set which contains
a large amount of training examples, each corresponding
to an event/object. A training example consists of two
parts: a feature vector (or called instance) describing the
event/object, and a label indicating the ground-truth out-
put. In classification, the label indicates the class to which
the training example belongs; in regression, the label is a
real-value response corresponding to the example. Most
successful techniques, such as deep learning [37], require
ground-truth labels be given for a big training data set; in
many tasks, however, it can be difficult to attain strong su-
pervision information due to the high cost of data labeling
process. Thus, it is desired for machine learning techniques
to be able to work with weak supervision.

Typically, there are three types of weak supervision. The
first is incomplete supervision, i.e., only a (usually small)

subset of training data are given with labels whereas the
other data remain unlabeled. Such situation occurs in vari-
ous tasks. For example, in image categorization the ground-
truth labels are given by human annotators; it is easy to get
a huge number of images from the internet, whereas only
a small subset of images can be annotated due to the hu-
man cost. The second type is inexact supervision, i.e., only
coarse-grained labels are given. Consider the image catego-
rization task again. It is desired to have every object in the
images be annotated; however, usually we only have image-
level labels rather than object-level labels. The third type is
inaccurate supervision, i.e., the given labels are not always
ground-truth. Such situation occurs, e.g., when the image
annotator is careless or weary, or some images are difficult
to be categorized.

Weakly supervised learning is an umbrella covering a va-
riety of studies which attempt to construct predictive mod-
els by learning with weak supervision. In this article, we
will introduce some progress about this line of research, fo-
cusing on learning with incomplete, inexact and inaccurate
supervision. We will treat these types of weak supervision
separately, but it is worth mentioning that in real practice
they often occur simultaneously. For the simplicity, in this
article we consider binary classification concerning two ex-
changeable classes Y and N. Formally, with strong super-
vision, the supervised learning task is to learn f : X +— )
from a training data set D = {(z1,y1),. -, (Tm,Ym)}
where X is the feature space, ) = {Y, N}, ; € X, and
y; € Y. We assume that (x;,y;)’s are generated according
to an unknown identical and independent distribution D; in
other words, (x;,y;)’s are i.i.d. samples. Figure 1 provides
an illustration of the three types of weak supervision we will
discuss in this article.

2 Incomplete Supervision

Incomplete supervision concerns about the situation
where we are given a small amount of labeled data,
which is insufficient to train a good learner, while abun-
dant unlabeled data are available. Formally, the task is



Figure 1. lllustration of three typical types of weak supervision. Bars denote feature vectors; red/blue
marks labels; “?” implies label may be inaccurate. Intermediate subgraphs depict some situations

with mixed types of weak supervision.

to learn f : & +— ) from a training data set D =
{(z1,91),---,(x1, Y1), Tix1,- .., T}, where there are [
number of labeled training examples (i.e., those given with
y;) and © = m — [ number of unlabeled instances; the other
conditions are the same as that of supervised learning with
strong supervision, as defined in the end of Section 1. For
the convenience of discussion, we also call the [ labeled ex-
amples as “labeled data” whereas the u unlabeled instances
as “unlabeled data”.

There are two major techniques for this purpose, i.e.,
active learning [65] and semi-supervised learning [16,97,
102].

Active learning assumes that there is an “oracle”, such
as a human expert, can be queried to get ground-truth la-
bels for selected unlabeled instances. In contrast, semi-
supervised learning attempts to automatically exploit un-
labeled data in addition to labeled data to improve learn-
ing performance, where no human intervention is assumed.
There is a special kind of semi-supervised learning called

transductive learning whose main difference with (pure)
semi-supervised learning lies in their different assumptions
about test data, i.e., data to be predicted by the trained
model. Transductive learning holds a “close-world” as-
sumption, i.e., the test data are given in advance and the
goal is to optimize performance on the test data; in other
words, the unlabeled data are exactly test data. Pure semi-
supervised learning holds an “open-world” assumption, i.e.,
the test data are unknown and the unlabeled data are not
necessarily to be test data. Figure 2 intuitively shows the
difference between active learning, (pure) semi-supervised
learning and tranductive learning.

2.1 With Human Intervention

Active learning [65] assumes that the ground-truth labels
of unlabeled instances can be queried from an oracle. For
simplicity, assume that the labeling cost depends only on
the number of queries. Thus, the goal of active learning is
to minimize the number of queries such that the labeling
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Figure 2. Active learning, (pure) semi-supervised learning, and transductive learning

cost for training a good model can be minimized.

Given a small set of labeled data and abundant unlabeled
data, active learning attempts to select the most valuable
unlabeled instance to query. There are two widely used
selection criteria, i.e., informativeness and representative-
ness [43]. Informativeness measures how well an unlabeled
instance helps reduce the uncertainty of a statistical model,
whereas representativeness measures how well an instance
helps represent the structure of input patterns.

Uncertainty sampling and query-by-committee are rep-
resentative approaches based on informativeness. The for-
mer trains a single learner and then queries the unlabeled in-
stance on which the learner is with the least confidence [49].
The latter generates multiple learners and then queries the
unlabeled instance on which the learners disagree to the
most [1,67]. Approaches based on representativeness gen-
erally aim to exploit the cluster structure of unlabeled data,
usually by a clustering method [23, 57].

The main weakness of informativeness-based ap-
proaches lies in the fact that they rely seriously on labeled
data for constructing the initial model to select the query
instance, and the performance is often unstable when there
are only a few labeled examples available. The main weak-
ness of representativeness-based approaches lies in the fact
that the performance heavily depend on the clustering re-
sults dominated by unlabeled data especially when there
are only a few labeled examples. Thus, several recent ac-
tive learning approaches try to leverage informativeness and

representativeness [43, 82].

There are many theoretical studies about active learn-
ing. For example, it has been proven that for realizable
cases (where there exists a hypothesis perfectly separat-
ing the data in the hypothesis class), exponential improve-
ment in sample complexity can be obtained by active learn-
ing [22,24]. For non-realizable cases (where the data can-
not be perfectly separated by any hypothesis in the hypoth-
esis class because of noise) it has been shown that, without
assumption about noise model, the lower bound of active
learning matches the upper bound of passive learning [46];
in other words, active learning does not offer much help. By
assuming Tsybakov noise model, it has been proven that ex-
ponential improvement can be obtained for bounded noise
[7,38]; if some special data characteristics, such as multi-
view structure, can be exploited, exponential improvement
can even be achieved for unbounded noise [79]. In other
words, even for difficult cases, active learning still can be
helpful with delicate designs.

2.2 Without Human Intervention

Semi-supervised learning [16, 97, 102] attempts to ex-
ploit unlabeled data without querying human experts. One
might be curious about why data without labels can help
construct predictive models. For a simple explanation [55],
assume that data come from a Gaussian mixture model with



n mixture components, i.e.,
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© = {0;} are the model parameters. In this case, label

y; can be considered as a random variable whose distribu-
tion P(y;|x;, g;) is determined by the mixture component
g; and the feature vector ;. According to the maximum a
posterior criterion, we have the model
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The objective is accomplished by estimating the terms
P (y; = c|lg; = j,x;) and P (g; = j|z;) from the training
data. It is evident that only the first term requires label in-
formation. Thus, unlabeled data can be used to help im-
prove the estimate of the second term, and hence improve
the performance of the learned model.

Figure 3 provides an intuitive explanation. If we have
to make prediction based on the only positive and negative
points, what we can do is just a random guess because the
test data point lies exactly in the middle between the two
labeled data points; if we are allowed to observe some un-
labeled data points like the gray ones in the figure, we can
predict the test data point as positive with high confidence.
Here, although the unlabeled data points are not explicitly
with label information, they implicitly convey some infor-
mation about data distribution which can be helpful for pre-
dictive modelling.

“+"?°=""?2  observing some !
unlabeled data
test data (gray points)
+ o - + o -

Figure 3. lllustration of the usefulness of un-
labeled data

Actually, in semi-supervised learning there are two basic
assumptions, i.e., the cluster assumption and the manifold
assumption, both are about data distribution. The former
assumes that data have inherent cluster structure, and thus,
instances falling into the same cluster have the same class

label. The latter assumes that data lie on a manifold, and
thus, nearby instances have similar predictions. The essence
of both assumptions lies in the belief that similar data points
should have similar outputs, whereas unlabeled data can be
helpful to disclose which data points are similar.

There are four major categories of semi-supervised
learning approaches, i.e., generative methods, graph-
based methods, low-density separation methods and
disagreement-based methods.

Generative methods [55, 58] assume that both labeled
and unlabeled data are generated from the same inherent
model. Thus, labels of unlabeled instances can be treated as
missing values of model parameters, and estimated by ap-
proaches such as the EM (expectation-maximization) algo-
rithm [27]. These methods differ by fitting data using differ-
ent generative models. To get good performance, one usu-
ally needs domain knowledge to determine adequate gener-
ative model. There are also attempts to combine advantages
of generative and discriminative approaches [33].

Graph-based methods [8, 92, 103] construct a graph,
where the nodes correspond to training instances and edges
correspond to relation (usually some kind of similarity or
distance) between instances, and then propagate label in-
formation on the graph according to some criteria; for ex-
ample, labels can be propagated inside different subgraphs
separated by minimum cut [8]. Apparently, the perfor-
mance will heavily depends on how the graph is constructed
[14,39,77]. Note that for m data points such approaches
generally require about O(m?) storage and almost O(m?)
computational complexity. Thus, they suffer seriously from
scalability; in addition, they are inherently transductive, be-
cause it is difficult to accommodate new instances without
graph reconstruction.

Low-density separation methods enforce the classifica-
tion boundary to go across the less dense regions in in-
put space. The most famous representatives are S3VMs
(semi-supervised support vector machines) [17,44,51]. Fig-
ure 4 demonstrates the difference between conventional su-
pervised SVM and S3VM. It is evident that S3VMs try to
identify a classification boundary which goes across the less
dense region while keeping the labeled data correctly clas-
sified. Such a goal can be accomplished by trying differ-
ent label assignments for unlabeled data points in different
ways, leading to complicated optimization problems. Thus,
much effort in this line of research is devoted to efficient
approaches for the optimization.

Disagreement-based methods [11,96,97] generate mul-
tiple learners and let them collaborate to exploit unlabeled
data, where the disagreement among the learners is cru-
cial to ensure the learning process to continue. The most
famous representative, co-training [11], works by train-
ing two learners from two different feature sets (or called
two views). In each iteration, each learner picks its most
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Figure 4. lllustration of the usefulness of un-
labeled data

confidently predicted unlabeled instances, and assigns its
predictions as pseudo-labels for the training of its peer
learner. Such approaches can be further enhanced by com-
bining the learners as an ensemble [94, 95]. Note that
disagreement-based methods offer a natural way to combine
semi-supervised learning with active learning: in addition
to letting the learners teach each other, some unlabeled in-
stances, on which the learners are all unconfident or highly
confident but contradictive, can be selected to query.

It is worth mentioning that although the learning perfor-
mance is expected to be improved by exploiting unlabeled
data, in some cases the performance may become worse af-
ter semi-supervised learning. This issue has been raised and
studied for many years [21]; however, only recently, some
solid progress are reported [52]. We now understand that
the exploitation of unlabeled data naturally leads to more
than one model option, and inadequate choice may lead to
poor performance. The fundamental strategy to make semi-
supervised learning “safer” is to optimize the worst-case
performance among the options, possibly by incorporating
ensemble mechanisms [95].

There are abundant theoretical studies about semi-
supervised learning [102], some even earlier than the name
of semi-supervised learning being coined [15]. In particu-
lar, a thorough study about disagreement-based methods is
presented recently [81].

3 Inexact Supervision

Inexact supervision concerns about the situation where
some supervision information is given, but not as exact as
desired. A typical scenario is when only coarse-grained
label information available. For example, in the prob-
lem of drug activity prediction [28], the goal is to build
a model to predict whether a new molecule is qualified
to make a special drug or not, by learning from a set

of known molecules. One molecule can have many low-
energy shapes, and whether the molecule can be used to
make the drug depends on whether the molecule has some
special shapes. Even for the known molecules, however, hu-
man experts only know whether the molecules are qualified
or not, instead of knowing what special shapes are decisive.

Formally, the task is to learn f : X — ) from a
training data set D = {(X1,v1),...,(Xm,Ym)}, Where
Xi =A{xa,....xim,} C Xiscalled a bag, x;; € X
(j € {1,...,m;}) is an instance, m, is the number of in-
stances in X;, and y; € Y = {Y, N}. X; is a positive bag,
ie., y; = Y, if there exists x;, which is positive, while
p € {1,...,m;} is unknown. The goal is to predict la-
bels for unseen bags. This is called multi-instance learn-
ing [28,31].

Many effective algorithms have been developed for
multi-instance learning. Actually, almost all supervised
learning algorithms have their multi-instance peers. Most
algorithms attempt to adapt single-instance supervised
learning algorithms to the multi-instance representation,
mainly by shifting their focus from the discrimination on
instances to the discrimination on bags [93]; some other
algorithms attempt to adapt the multi-instance representa-
tion to single-instance algorithms through representation
transformation [83, 100]. There is also a categorization [2]
which groups the algorithms into instance-space paradigm
where the instance-level responses are aggregated, bag-
space paradigm where the bags are treated as a whole, and
embedded-space paradigm where learning is performed in
an embedded feature space. Note that the instances are usu-
ally regarded as i.i.d. samples; however, [99] indicates that
the instances in multi-instance learning should not be as-
sumed as independent although the bags can be treated as
i.i.d. samples, and based on this insight, some effective al-
gorithms have been developed [98].

Multi-instance learning has been successfully ap-
plied to various tasks, such as image categoriza-
tion/retrieval/annotation [20, 73, 90], text categorization
[3, 66], spam detection [45], medical diagnosis [34],
face/object detection [30, 76], object class discovery [101],
object tracking [6], etc. In these tasks it is natural to regard
a real object (such as an image or text document) as a bag;
however, in contrast to drug activity prediction where there
are natural formation of instances in a bag (i.e., shapes of a
molecule), the instances need to be generated for each bag.
Bag generator specifies how instances are generated to con-
stitute a bag. Typically, many small patches can be extracted
from an image as its instances, whereas sections/paragraphs
or even sentences can be used as instances for text doc-
uments. Although bag generators have significant influ-
ence on learning performance, only recently, an extensive
study about image bag generators is reported [84], which
discloses that some simple dense-sampling bag generators



perform better than complicated ones. Figure 5 shows two
simple yet effective image bag generators.

(a) SB (b) SBN

Figure 5. Image bag generators. Suppose
each image is of size 8 x 8 and each blob is
of size 2 x 2. SB will generate 16 instances
for the image, by regarding each patch con-
sisted of the four blobs as one instance, and
sliding without overlap. SBN will generate
9 instances for the image, by regarding the
patch consisted of the twenty blobs as one
instance, and sliding with overlap.

The original goal of multi-instance learning is to predict
labels for unseen bags; however, there are studies trying to
identify the key instance which enables a positive bag to
be positive [51, 53]. This is quite helpful in tasks such as
locating regions-of-interest in images without fine-grained
labeled training data. It is noteworthy that standard multi-
instance learning [28] assumes that each positive bag must
contain a key instance, whereas there are studies which as-
sume that there is no key instance and every instance con-
tributes to the bag label [19, 87], or even assume that there
are multiple concepts and a bag is positive only when the
bag contains instances satisfying every concept [85]. More
variants can be found in [31].

Early theoretical results [5, 9, 54] show that multi-
instance learning is hard for heterogeneous case where each
instance in the bag is classified by a different rule, while it
is learnable for homogeneous case where all instances are
classified by the same rule. Fortunately, almost all practi-
cal multi-instance tasks belong to the homogeneous class.
These analyses assume that instances in the bags are inde-
pendent. Analysis without assuming instance independence
is more challenging and appears much later, disclosing that
in homogeneous class there are at least some cases learn-
able for arbitrary distribution over bags [63]. Nevertheless,
in contrast to the flourishing studies in algorithms and ap-
plications, theoretical results on multi-instance learning are
very rare because the analysis is quite hard.

4 Inaccurate Supervision

Inaccurate supervision concerns about the situation
where the supervision information is not always ground-
truth; in other words, some label information may suffer
from errors. The formulation is almost the same as what
has been shown in the end of Section 1, except that the y;’s
in the training data set may be incorrect.

A typical scenario is learning with label noise [32].
There are many theoretical studies [4, 10,35], among which
most assumes random classification noise, i.e., labels are
subject to random noise. In practice, a basic idea is to iden-
tify the potentially mislabeled examples [13], and then try
to make some correction. For example, a data editing ap-
proach [56] constructs a relative neighborhood graph where
each node corresponds to a training example, and an edge
connecting two nodes with different labels is called a cut
edge. Then, a cut edge weight statistic is measured, with
the intuition that an instance is suspectable if it is asso-
ciated with many cut edges. The suspected instances can
be either removed or relabeled, as illustrated in Figure 6.
It is worth mentioning that such approaches generally rely
on consulting neighborhood information, and thus, they are
less reliable in high-dimensional feature space because the
identification of neighborhood is usually less reliable when
data are sparse.

Figure 6. Identify and remove/relabel suspi-
cious points

An interesting recent scenario of inaccurate supervision
occurs with crowdsourcing [12], a popular paradigm to out-
source work to individuals. For machine learning, crowd-
sourcing is commonly used as a cost-saving way to collect
labels for training data. Specifically, unlabeled instances are
outsourced to a large group of workers to label. A famous
crowdsourcing system, Amazon Mechanical Turk (AMT),
is a market where the user can submit a task, such as an-
notating images of trees versus non-trees, to be completed
by workers in exchange for small monetary payments. The
workers usually come from a large society and each of them



is presented with multiple tasks. They are usually inde-
pendent and relatively inexpensive, and will provide labels
based on their own judgments. Among the workers, some
may be more reliable than others; however, the user usu-
ally does not know this in advance because the identities of
workers are protected. There may exist “spammers” who
assign almost random labels on the tasks (e.g., robots pre-
tend to be a human for the monetary payment), or “adver-
saries” who give incorrect answers deliberately. Moreover,
some tasks may be too difficult for many workers. Thus,
it is non-trivial to maintain learning performance using the
inaccurate supervision information returned by the crowd.

Many studies attempt to infer ground-truth labels from
the crowd. The majority voting strategy, with theoretical
support in ensemble methods [95], is widely used in prac-
tice with good performance [69,70], and thus often used as a
baseline. It is expected that if worker quality and task diffi-
culty can be modelled, better performance can be achieved,
typically by weighting different workers for different tasks.
For this purpose, some approaches try to construct proba-
bilistic models and then adopt the EM algorithm for the es-
timation [62,86]. Minimax entropy principle has also been
used [95]. Spammer elimination can be accommodated in
probabilistic models [61]. General theoretical conditions
about eliminating low-quality workers have been given re-
cently [80].

For machine learning the crowdsourcing step is gener-
ally used to collect labels, whereas the performance of the
model learned with these data, rather than the quality of
labels themselves, is more concerned. There are many
studies about learning from weak teachers or crowd la-
bels [26, 75], which is closely related to learning with la-
bel noise (introduced in the beginning of this section); a
distinction lies in the fact that for crowdsourcing setting,
one can conveniently draw crowd labels for an instance re-
peatedly. Thus, in crowdsourcing learning it is crucial to
consider the cost-saving effect, and an upper bound for the
minimally-sufficient number of crowd labels, i.e., the min-
imal cost required for effective crowdsourcing learning, is
given [78]. Many studies work on task assignment and bud-
get allocation, trying to balance between accuracy and label
cost. For this purpose, non-adaptive task assignment mech-
anisms which assign tasks off-line [47, 74], and adaptive
mechanisms which assign tasks online [18,41], have both
been studied with theoretical supports. Note that most stud-
ies adopt the Dawid-Skene model [25] which assumes that
the potential cost for different tasks is the same, whereas
more complicated cost settings are rarely explored.

Designing effective crowdsourcing protocol is also im-
portant. In [91], an unsure option is provided, such that
workers are not forced to give a label when they feel with
low confidence; this option helps improve the labeling re-
liability with theoretical support [29]. In [68], a “double

or nothing” incentive compatible mechanism is proposed
to ensure workers to behave honestly based on their self-
confidence; this protocol is provable to avoid spammers
from the crowd, under the assumption that every worker
wants to maximize their expected payment.

5 Conclusion

Supervised learning techniques have achieved great suc-
cess when there is strong supervision information like large
amount of training examples with ground-truth labels. In
real tasks, however, collecting supervision information re-
quires costs, and thus, it is usually desired to be able to do
weakly supervised learning.

This article focuses on three typical types of weak su-
pervision: incomplete, inexact and inaccurate supervision.
Though they are discussed separately, in practice they often
occur simultaneously, as illustrated in Figure 1, and there
are some relevant studies on such “mixed” cases [60,66,88].
In addition, there are some other types of weak supervision.
For example, time-delayed supervision, which is mainly
tackled by reinforcement learning [72], can also be regarded
as weak supervision. Note that due to page limit, this arti-
cle actually serves more like a literature index rather than
a comprehensive review. Readers interested in some de-
tails are encouraged to read the corresponding references.
Note that recently more and more researchers are attracted
to weakly supervised learning, for example, partially super-
vised learning focuses mostly on learning with incomplete
supervision [64], and there are some other discussion about
weak supervision [36,40].

To simplify the discussion, this article focuses on binary
classification, although most discussions can be extended
to multi-class or regression learning with slight modifica-
tions. Note that more complicated situations may occur
with multi-class tasks [48]. It will become even more com-
plicated if multi-label learning [89] is considered, where
each example can be associated with multiple labels simul-
taneously. Taking incomplete supervision for an example:
in addition to labeled/unlabeled instances, multi-label tasks
may encounter partially labeled instance, i.e., a training in-
stance is given with ground-truth for a subset of its labels
[71]. Even if only labeled/unlabeled data are considered,
there are more design options than single-label setting; for
example, for active learning, given a selected unlabeled in-
stance, in multi-label tasks it is possible to query all labels
of the instance [50], a specific label of the instance [59], or
relevance ordering of a pair of labels for the instance [42].
Nevertheless, no matter what kind of data and tasks are
concerned, weakly supervised learning becomes more and
more important.
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