
CONSISTENCY STRENGTH OF HIGHER CHANG’S
CONJECTURE, WITHOUT CH

SEAN D. COX

Abstract. We prove that (ω3, ω2) � (ω2, ω1) implies there is an
inner model with a weak repeat measure.

1. Introduction

The original Chang’s Conjecture states that for every structure A
on ω2 in a countable language, there is a substructure B ≺ A where
B ∩ ω1 is countable, yet |B| = ω1; this statement is abbreviated by
(ω2, ω1) � (ω1, ω). Chang’s Conjecture is a strengthening of the Down-
ward Löwenheim-Skolem Theorem, since it places more constraints on
the elementary substructures.

(ω2, ω1) � (ω1, ω) is equiconsistent with an ω1-Erdös cardinal (see [3]),
but shifting the cardinals in the statement upward results in a stronger
statement in terms of consistency strength. The generalizations (ωn+2, ωn+1) �
(ωn+1, ωn) for n ≥ 1 are consistent relative to a huge cardinal (argu-
ments due to Laver and Kunen; see [4]). The known lower bounds
for consistency strength are considerably lower: Schindler [12] proved
that “CH and (ω3, ω2) � (ω2, ω1)” implies there is an inner model of
o(κ) = κ+ω, and obtained stronger results in [10] when the bottom
cardinal of the conjecture is ≥ ω2 (also with an assumption on car-
dinal arithmetic). Without the CH assumption, Vickers [13] obtained
0-sword (a mouse with a measure of order 1) from (ω3, ω2) � (ω2, ω1);
a similar lower bound was obtained in [2] for a weaker form of Chang’s
Conjecture. Jónsson cardinals and algebras are also closely related to
Chang’s Conjecture: Vickers and Welch [14] used covering arguments
with the core model to show that K correctly computes successors of
Jónsson cardinals.
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In this paper we use covering arguments to improve Vickers’ result
about (ω3, ω2) � (ω2, ω1) to:

Theorem 1. Assume (ω3, ω2) � (ω2, ω1). Then there is an inner
model with a weak repeat measure (this has consistency strength between
o(κ) = κ+ and o(κ) = κ++).

The paper is organized as follows. Sections 2 and 3 provide back-
ground on Chang’s Conjecture and repeat measures, respectively. The
proof of Theorem 1 is split into two sections: Section 4 shows there
are mice with repeat measures, and Section 5 shows there is an inner
model with repeat measures. Section 6 has some final remarks.

2. Chang structures and the Chang filter

2.1. Chang structures. In this section we give some basic facts about
Chang structures and the Chang ideal. For a more general treatment,
and many other variations of Chang’s Conjecture, see Foreman [3]. In
this paper we deal with only the following special instances of Chang’s
Conjecture:

Definition 2. Let µ < λ < κ be regular cardinals. (κ, λ) � (λ, µ)
means that for every structure A with domain κ in a countable lan-
guage, there is an X ≺ A such that |X| = λ and |X ∩ λ| = µ. Such
a set X will be called a (κ, λ) � (λ, µ) Chang Structure, or simply
Chang Structure if it is clear from the context.

Next are some some standard arguments to show (κ, λ) � (λ, µ)
implies some apparently stronger statements. First, it is not necessary
to require the domain of A to be κ: suppose A is an L-structure with
domain H ⊃ κ; WLOG assume A = (H, (hn)n∈ω) is fully Skolemized
and the collection of hn’s are closed under compositions (so for every
X ⊂ H, SkA :=

⋃
n∈ω hn[X<ω] is a fully elementary substructure of A).

Let Dn := {~ξ ∈ [κ]<ω|hn(~ξ) ∈ κ}, and let X ≺ (κ, (hn � Dn)n∈ω) be a
Chang structure. Then Y := SkA(X) is an elementary substructure of
A of cardinality λ, and Y ∩ κ = X so |Y ∩ λ| = µ.

For the remainder of the paper we will always deal with structures
of the form A = (Hθ,∈,∆, κ, λ, µ, ...) where θ ≥ κ is regular and ∆ is a
well-ordering of Hθ. Such structures are convenient because they have
definable Skolem functions and model ZFC− in the expanded language
(i.e. where formulas in the language of A are allowed in the Separation
and Replacement Schema). Unless stated otherwise, all structures are
in a countable language.
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Claim 3. Assume (κ, λ) � (λ, µ) where cf(µ) < cf(λ). Let θ ≥ κ be
regular. Then for every structure A on Hθ there is an X ≺ A such
that:

• µ ⊂ X.
• |X| < λ
• If λ = µ+ then X ∩ λ is transitive.

Proof. WLOG A expands (Hθ,∈,∆, κ, λ, µ). Let Z be a Chang sub-
structure of A, and let X := SkA(Z ∪ µ). Clearly µ ⊂ X; we show
that sup(X ∩ λ) = sup(Z ∩ λ). Let x be an arbitrary element of
X ∩ λ; then x = h(p, η̄) for some Skolem function h which is definable
in A, some p ∈ Z, and some η̄ ∈ µ. Now s := sup({h(p, η)|η < µ} ∩ λ)
is definable in A from parameters p, µ, λ, so s is an element of Z;
and since cf(µ) < cf(λ) then s < λ. Thus s < sup(Z ∩ λ); and
x ≤ sup({h(p, η)|η < µ} ∩ λ), so x < sup(Z ∩ λ). This shows that
sup(X ∩ λ) ≤ sup(Z ∩ λ). The other inequality is trivial.

If λ = µ+ then for any β ∈ X ∩ µ+ there is a surjection φ : µ → β
such that φ ∈ X; so if µ ⊂ X (e.g. as we just constructed) then β ⊂ X.
So X ∩ µ+ is transitive. �

Corollary 4. Assume (κ, λ) � (λ, µ). Let L be a language of cardi-
nality ≤ µ. Then every L-structure A on κ has a Chang substructure.

Proof. Again for simplicity we work in Hκ; say A = (Hκ,∈, (fi)i<µ)
and is fully Skolemized (and the collection of (fi) are closed under
compositions). Let R := {(i, x, fi(x))|i < µ and x ∈ Hκ}. ⊂ Hκ. By
Claim 3 there is a Chang substructure X of (Hκ,∈, R) such that µ ⊂ X.
Then X is an elementary substructure of A. �

Note that if X is a Chang structure witnessing (µ++, µ+) � (µ+, µ)
and X ≺ (Hµ++ ,∈) then

(1) otp(X ∩ µ++) = µ+

To see (1): otherwise there would be a µ+-th element β of X ∩ µ++;
by elementarity there is an f ∈ X which is an injection of β into µ+.
But then |f [X ∩ β]| = µ+ and f [X ∩ β] ⊂ X ∩ µ+, which contradicts
that |X ∩ µ+| = µ.

The following first appeared in [6]:

Theorem 5. (Foreman, Magidor). Assume (µ++, µ+) � (µ+, µ).
Then there is a structure A on µ++ such that whenever X is a (µ++, µ+) �
(µ+, µ) Chang substructure of A, then sup(X ∩ µ+) has cofinality ≥
cf(µ).
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Lemma 6. If X is as in the conclusion of Theorem 5, then:

(2)
X∩µ++ is closed under increasing sequences of length
< cf(µ).

Proof. Let β < µ++ be a limit of X of cofinality < cf(µ). By (1),
otp(X ∩ µ++) = µ+; in particular cf(sup(X ∩ µ++)) = µ+ so there is
an element of X ∩ µ++ above β; let η be the least such element. Let
αX := X ∩ µ+. Since X ≺ (Hθ,∈) there is a bijection f ∈ X between
µ+ and η, and so f [αX ] ⊆ (X ∩ η) = (X ∩ β). Since cf(αX) = cf(µ)
and cf(β) < cf(µ) (by assumption) then there is a δ < αX such that
f [δ] intersects β cofinally often; note f [δ] is both an element and a
subset of X. So in fact f [δ] ⊂ β and sup(f [δ]) = β, so β is an element
of X. �

2.2. The strongly closed unbounded filter. Now we recall the
“strongly closed unbounded filter”; see Foreman [3] for a more gen-
eral treatment of the subject. Fix a large regular θ. For any structure
A on Hθ, let CA denote the collection of all X ⊂ Hθ such that X ≺ A.
The strongly closed unbounded filter on Hθ is the filter generated by
sets of the form CA; it is clearly countably closed (recall we assume A is
in a countable language unless otherwise stated). If S ⊂ P (Hθ) inter-
sects every set in the strongly closed unbounded filter, then S is called
weakly stationary. For example, the collection [Hθ]

ω of countable sub-
sets of Hθ is weakly stationary by the Downward Löwenheim-Skolem
Theorem. The strongly closed unbounded filter is normal; i.e. when-
ever S is weakly stationary and F : S →

⋃
S is regressive, then F is

constant on a weakly stationary set.
Furthermore, if S ⊂ P (Hθ) is weakly stationary then the restriction

of the strongly closed unbounded filter to S is the collection generated
by sets of the form CA ∩ S (we require S to be weakly stationary so
that this restriction will be proper). This restriction is normal.

2.3. The Chang filter. Under the assumption (µ++, µ+) � (µ+, µ),
the facts from section 2 guarantee that S is a weakly stationary set,
where:

(3)
S is defined to be the collection of Chang X ≺
(Hθ,∈,∆) such that X ∩ µ+ is transitive and
cf(X ∩ µ+) = cf(µ).

So the strongly closed unbounded filter can be restricted to S; this
restriction is called the Chang Filter and we will denote this filter
by F . F is normal and, by Corollary 4, is < µ+-complete. The
expression “almost every X ∈ S has property Q” will mean that
{X ∈ S|X does not have property Q} is in the dual of F . For the
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rest of the paper, the term “stationary” will be used in reference to the
Chang Filter F .

Definition 7. For a (κ, λ) � (λ, µ) Chang structure X, X ↑ will de-
note the collection of Chang elementary substructures of (Hθ,∈,∆, X∩
κ) such that µ ⊂ Y .

Since (µ++, µ+) � (µ+, µ)-Chang structures all have the same order-
type below µ++ (namely, µ+), we will not be able to build ⊂-increasing
chains of Chang Structures and form directed systems in the usual way;
e.g. if X, Y are Chang and X ∩µ++ ∈ Y then X ∩µ++ cannot be con-
tained in Y . The next lemma provides a remedy:

Lemma 8. Assume (µ++, µ+) � (µ+, µ) and let X be a Chang struc-
ture. For each Y ∈ X ↑ (see Definition 7) let λXY := sup(X∩Y ∩µ++);
then X ∩ λXY ⊂ Y .

Proof. Let η ∈ X∩λXY ; since λXY is clearly a limit ordinal, then there
is an η′ ∈ (η, λXY )∩X∩Y . Since otp(X∩µ++) = µ+, then |X∩η′| = µ;
furthermore, X ∩ µ++ and η′ are both elements of Y , so there is an
F ∈ Y which maps µ onto X ∩ η′. Since µ ⊂ Y then range(F ) ⊂ Y
and so η ∈ Y . �

Lemma 9. Assume (µ++, µ+) � (µ+, µ) where cf(µ) > ω. Let T be a
stationary subset of S where S is defined in (3), and for every X ∈ T
let AX ⊂ X ∩ µ++ be a set of cardinality < cf(µ). Then there is a set
B of cardinality < µ and a stationary T ′ ⊂ T such AX ⊂ B ∈ X for
every X ∈ T ′.
Proof. WLOG assume AX is a set of ordinals. First, note that for each
X there is a BX ∈ X which covers AX . To see this: since cf(sup(X ∩
µ++)) = µ+, then sup(AX) < sup(X∩µ++). So there is an f ∈ X with
domain µ+ such that AX ⊂ range(f). Since cf(X ∩ µ+) = cf(µ) >
|AX |, then f−1[AX ] ⊆ ᾱ for some ᾱ < X ∩ µ+. Similarly there is a
g ∈ X which maps µ onto ᾱ, and g−1 ◦ f−1[AX ] is contained in some
ordinal β̄ < µ. Then f ◦ g[β̄] ∈ X is the covering set BX we seek.

Since the Chang ideal is normal, the regressive function X 7→ BX can
be used to obtain the stationary T ′ and the set B as in the statement
of the lemma. �

2.4. Using normal filters to build extenders over K. In this sec-
tion we point out a simple fact about normal filters (e.g. the strongly
closed unbounded filter), but which is very useful in building extenders
over K. If F is an extender on a sufficiently closed algebra P and
η < lh(F ), then (F )η denotes the ultrafilter {z ∈ P |η ∈ F (z)} (see [15]
for a detailed introduction to extenders).
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Lemma 10. Assume κ < ν are ordinals, P ⊂ P (κ) is a reasonably
closed algebra of subsets of κ, θ ≥ (2ν)+ is regular, S is a weakly
stationary collection of X such that X ≺ (Hθ,∈, ...), and F is some
normal filter on S. For each X ∈ S let σX : HX → Hθ be the inverse
of the Mostowski collapse of X. For any b ∈ X, bX will denote σ−1

X (b).
Suppose for each X ∈ S there is an extender FX : PX → P (νX).

For each η < ν, define the collection Gη ⊂ P by:

(4) z ∈ Gη iff z ∈ P and {X|zX ∈ (FX)ηX} ∈ F

Let G := 〈Gη|η < ν〉. Note since θ ≥ (2ν)+ then G ∈ X for almost
every X (so GX makes sense for such X, of course however X does
not have access to the definition in (4)). If Gη is an ultrafilter on P
for each η < ν, then for F-almost every X ∈ S, GX = FX .

Proof. By elementarity (GX)η is an ultrafilter on PX for every η < νX .
Now suppose for a contradiction that there are F -stationarily many
X such that GX 6= FX . So for such X there is an ηX < νX and a
zX ∈ PX such that zX ∈ (GX)ηX − (FX)ηX (so (zX)c ∈ (FX)ηX ). By
normality of F there is a pair z̄ ∈ P , η̄ < ν and an F -stationary
T such that σX(zX , ηX) = (z̄, η̄) for every X ∈ T . Since Gη̄ is an
ultrafilter (by assumption) and there are F -stationarily many X with
(zX)c ∈ (FX)η̄X , then zc ∈ Gη̄. But this means that (zX)C ∈ (FX)η̄X
for F -many X, which contradicts the fact that zX ∈ (GX)η̄X for every
X ∈ T . �

For example: if P = PK(κ) and FX is some (κX , o
KX (κX))-extender

on PKX (κX) (typically arising on the K side of the K vs. KX coit-
eration) and the definition of Gη in (4) always yields an ultrafilter on
PK(κ),1 then FX is an element of HX (for F -almost every X).

3. Repeat measures

The notion of a repeat measure was introduced by Radin [9] (to
preserve measurability under Radin forcing) and refined by Mitchell [8].
Here we discuss only weak repeat points and up-repeat points; see
Gitik [7] for more information.

Definition 11. A normal measure U on κ is a weak repeat measure iff
for every A ∈ U there is a normal measure W below U in the Mitchell
order such that A ∈ W.

1Note this is equivalent to: for each η < oK(κ) and z ∈ PK(κ), Tz := {X|zX ∈
(FX)ηX

} and Tzc := {X|(zX)c ∈ (FX)ηX
} are not both F-stationary.
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The Mitchell order of a weak repeat measure on κ is much larger
than κ+. For example, if the order of V is some ν < κ+ then there is
no smaller measure in the Mitchell order which concentrates on the set
{ξ < κ|o(ξ) = hν(ξ)}, where hν is the ν-th canonical function on κ.
Similarly if o(V) = κ+ then there is no smaller measure in the Mitchell
order which concentrates on {ξ < κ|o(ξ) = ξ+}. More generally, if ν is
an ordinal such that there is a function h : κ→ Ord which represents
ν in every normal ultrapower, then ν cannot be the order of a weak
repeat measure. Such ordinals ν are called uniformly representable.

We also recall the stronger notion of an up repeat measure:

Definition 12. A normal measure U on κ is an up repeat measure iff
for every A ∈ U there is a W above U in the Mitchell order such that
A ∈ W.

Lemma 13. Every up repeat measure is a weak repeat measure.

Proof. Suppose A ∈ U witnesses that U is not a weak repeat measure.
LetBA := {ξ < κ|There is no normal measure concentrating on A ∩ ξ}.
Then clearly BA ∈ U . Now supposeW is any normal measure above U
in the Mitchell order. Then ult(V,W) has a normal measure concen-
trating on A (namely U) soW concentrates on κ−BA. So BA /∈ W . �

Corollary 14. If U is a normal measure on κ which is not a weak
repeat measure, then there is an A ∈ U which is not an element of any
other normal measure on κ which is comparable to U in the Mitchell
order.

Proof. Let X ∈ U witness that U is not a weak repeat measure. By
Lemma 13, U is also not an up-repeat measure, so let Y ∈ U witness
this fact. Then A := X ∩ Y satisfies the conclusion of the claim. �

Since we will only deal with coherent sequences ~E of extenders (on
some premouse N), then Eν and Eζ are always comparable in the

Michell order. Suppose for simplicity that each extender Eν on ~E is
generated by a single normal measure Uν . We will call Uν a weak repeat
measure on N iff every A ∈ U is an element of some Uξ for ξ < ν. So if
Uν is not a weak repeat measure, there is an A ∈ Uν which distinguishes
Uν from all other Uξ.

4. Part 1 of the proof of Theorem 1: getting mice with
repeat measures

Assume (ω3, ω2) � (ω2, ω1). Throughout the rest of the paper, K
denotes the core model for non-overlapping extenders, built under the
assumption that 0-pistol does not exist. Basic facts about 0-pistol and
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K can be found in Chapter 8 of [15]. In particular, K is capable of
having a strong cardinal, but comparisons of mice are still linear. Note
that if 0-pistol exists, then there is a sharp for an inner model with a
strong cardinal, so the conclusion of Theorem 1 would hold and we’d
be finished.

Let S be the Chang-stationary collection of subsets of Hθ (for some
θ >> ω3) defined in (3); so for every X ∈ S, αX := X ∩ ω2 has
cofinality ω1. WLOG we assume X ≺ (Hθ,∈, E � θ) for all X ∈ S.
Let σX : HX → X ≺ Hθ be the inverse of the Mostowski collapse of
X, and and KX = σ−1

X (K|ω3). Note that αX = cr(σX), σX(αX) = ω2,
sup(σX [ω2]) = sup(X ∩ ω3) =: λX , and σX(ω2) = ω3.

For X ∈ S, consider the coiteration of KX with K. Let ΩX denote
the length of the KX vs. K coiteration, and

〈NX
i , π

X
i,j, ν

X
i , κ

X
i , τ

X
i , δ

X
i , (N

X
i )∗|i ≤ j ≤ ΩX〉

denote the objects on the K side of the coiteration; i.e. NX
i is the

i-th iterate, πXi,j the iteration map, νXi the iteration index, κXi the

critical point, τXi the smaller of the cardinal successors of κXi in the
i-th iterates, δXi the maximal segment of NX

i where τXi is a cardinal,
and (NX

i )∗ = NX
i ||δXi .

By (2), each X ∈ S has an ω-closed intersection with ω3, so Lemma
44 from [1] applies.2 So α+KX

X is not a cardinal in K, the K side of the
coiteration truncates to an ω1-sized mouse either at stage 0 or at stage
1, and the KX side of the coiteration is trivial. Let ιX0 ∈ {0, 1} denote
the first truncation stage. So |(NX

ιX0
)∗| < ω2. Since |(NX

ιX0
)∗| < ω2, and

|KX | < ω2, then |(NX
i )∗| < ω2 for every i ∈ [ιX0 ,ΩX), and ΩX < ω2.

Also, since the KX side is trivial in the coiteration, we have:

(5) νXi = oKX (κXi )

for every stage i of the coiteration.
Since the K side must win the coiteration and |KX | = ω2, then the

length of the K vs. KX coiteration is at least ω2. Since |(NX
i )∗| < ω2

for each i ∈ [ιX0 , ω2), the usual pressing down and pigeonhole arguments

2This was based on an argument of Mitchell.
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yield:3

(6)
For any stationary T ⊂ ω2, there is a stationary T ′ ⊂
T such that for all i < j in T ′, πXi,j(ν

X
i ) = νXj .

By (6) and basic properties of direct limits, DX := {κXi |πXi,ω2
(κXi ) =

ω2} is a club in ω2. Furthermore for every i ≥ 1 (N̂X
i )∗ projects to and

is sound above κXi , and continuity of σX on cof(ω) along with the Weak
Covering Lemma implies that τXi has uncountable cofinality. Thus by

Lemma 16 of [1], for every i < ω2, σX � τXi can be lifted to (̂NX
i )∗.

Pick a stage iX0 < ω2 such that there are no truncations at stages in
the interval [iX0 , ω2); so NX

i = (NX
i )∗ for all i ∈ [iX0 , ω2). For such i let

nXi denote the degree of κXi in NX
i , i.e. the maximal n ∈ ω such that

κXi is strictly less than the n-th projectum of NX
i (this is the degree of

the fine-structural ultrapower used at stage i). Then 〈nXi |iX0 ≤ i < ω2〉
is a nonincreasing sequence of natural numbers; WLOG suppose iX0
was chosen so that nXi has constant value nX for every i ∈ [iX0 , ω2).
Since the Chang ideal is countably complete (in fact < ω2 complete)
we will WLOG assume that nX is fixed at n for every X ∈ S. Let

σ̃Xi : N̂X
i →Σ(n)

̂̃NX
i denote the canonical lifting of σX � τXi . This

ultrapower ̂̃NX
i really is a premouse (not a protomouse), since κXi is

measurable in NX
i and so the top extender on NX

i (if there is one) has
critical point ≥ κXi (recall we assume 0-pistol does not exist so there

are no overlapping extenders). By Lemma 43 of [1], ̂̃NX
i is an initial

segment of K (the collapsing segment of K for τ̃Xi := sup[(σX [τXi ])).
Since DX is club in ω2 for every X ∈ S, for almost every stage i < ω2

we have κXi = i. This will simplify the following notation a bit. For

each such i, let FX
i := E

NX
i

νXi
, i.e. the extender used at stage i (with

critical point i). Let UX
i := (FX

i )i; i.e. UX
i is the (normal) ultrafilter

on the hypermeasure FX
i indexed by i.

From now on:

(7) Assume all mice extenders have only one generator

3Under the additional assumption of CH, Schindler [12] showed that if T ′ is

a stationary subset of cof(ω) as in (6) and i ∈ T ′ ∩ Lim(T ′), then Ē := E
NX

i

νX
i

must have order ≥ (κXi )+ω in the mouse NX
i . This used the fact that under

CH, [X]ω ⊂ X for every X ∈ S (see the discussion following Theorem 62 of [5]), so
[HX ]ω ⊂ HX . If the order of Ē were < (κXi )+ω, Schindler showed that the collection
of generating sequences for Ē could be reconstructed inside the countably closed
structure HX , and thus Ē ∈ HX . This would imply that Ē is on the KX sequence,
a contradiction.
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If (7) fails, then there are mice with much stronger cardinals than
repeat points. If F is a mouse extender with two generators, then
iterating F Ord-many times yields an inner model W which models

GCH, has a coherent sequence ~E of extenders, and o
~E(κ) = κ++ for

a proper class of κ. For such κ, all sufficiently large measures on κ in
the Mitchell order are weak repeat measures.

Now we prove Theorem 1; in fact we prove:

Theorem 15. For almost every X ∈ S and almost every i ∈ S2
0 , UX

i

is a weak repeat measure in the mouse NX
i .

Proof. Suppose for a contradiction that there is an F -stationary set
S ′ ⊂ S of Chang structures such that for every X ∈ S ′:

(8)
TX := {i ∈ S2

0 |UX
i is NOT a weak repeat measure in NX

i }
is stationary in ω2.

By (6) there is a stationary T ′X ⊂ TX such that the extenders used
at stages in T ′X lie on a common thread; i.e. for every pair i < j in T ′X ,
πXi,j(ν

X
i ) = νXj . WLOG assume min(T ′X) > iX0 ; recall iX0 was chosen to

be a sufficiently large stage so there are no truncations at stages in the
interval [iX0 , ω2).

For each X ∈ S ′ pick a µX which is an element and limit of the
stationary set T ′X ; recall that since DX is club in ω2 we can WLOG
assume that κXµX = µX . Let

(9)

• NX := NX
µX

, FX := FX
µX

, and UX := UX
µX

; by
(7) UX generates FX
• τX be the cardinal successor of µX in KX ;
• σ̃X := σ̃XµX and ÑX := ÑX

µX
(so σ̃X : NX →

ÑX is the canonical lifting of σX � τX to NX).

Then

(10) µX ∩T ′X is a generating sequence for the measure UX

Since µX ∈ T ′X ⊂ TX , UX is not a weak repeat measure in NX . So
by Corollary 14 there is a set aX ∈ UX which uniquely identifies UX ;
i.e. aX ∈ UX but is not an element of any other normal measure on
NX ’s sequence.4

Since stage µX is past all truncations on the K side of the coiteration,
then PNX (µX) = PKX (µX) (so aX ∈ KX). Since νXµX = oKX (µX) (see

4More precisely: aX is not an element of any normal measure which generates
an extender on NX ’s coherent extender sequence.
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5), then:

(11)
No extender on KX ’s extender sequence is generated
by a measure which concentrates on aX .

By applying the Fodor Lemma to the Chang-positive collection S ′,
we may WLOG assume that σX(aX) and σX(µX) have fixed values
for every X ∈ S ′; say (a, µ) = σX(aX , µX) for every X ∈ S ′. So by
elementarity of σX and (11):

(12)
No extender on K’s extender sequence is generated
by a measure which concentrates on a.

We will construct a normal K-measure on µ which concentrates on a
and yields a wellfounded ultrapower. By Corollary 29 of [1], such a
measure would generate an extender on K’s extender sequence, which
will contradict (12) and complete the proof of Theorem 15.

For each X ∈ S ′ let EX be a countable subset of T ′X ∩ µX which
is cofinal in µX ; note by (10), EX is a generating sequence of UX .
By Lemma 9, there is a stationary S ′′ ⊂ S ′ and a countable set E
such that for every X ∈ S ′′, E ′X := σX [EX ] ⊂ E ∈ X. For every
X ∈ S ′′ and Y ∈ S ′′ ∩X ↑, let σXY := σ−1

Y ◦ σX � τX ; note this map is
defined on all of τX because Y ∈ X ↑. So for such pairs X, Y we have
EY ⊂ range(σXY ).

The following construction, through Claim 16, is similar to the con-
struction which begins at the bottom of page 85 in [1]; but for the
reader’s convenience we include most details here. Consider any pair
X, Y such that X ∈ S ′′ and Y ∈ S ′′ ∩X ↑. Using an interpolation-like

argument with the map σ̃X , and the fact that N̂X is sound above µX ,
construct the following maps (here we omit the “hats” on the book-
keeping premice):

• σ̃XY : NX →Σ
(n)
0
ÑXY which is n-cofinal and extends σXY � τX ;5

the ultrapower really is a premouse since the top extender on
NX (if there is one) has critical point ≥ µX .
• σ′XY : ÑXY →Σ

(n)
0
ÑX which extends σY � τY .6

5Since we are working past all truncations—i.e. µX is not a truncation stage—
then τX is a cardinal in NX (similarly for Y ) and lifting σXY � τX to NX is possible.
For a similar argument where there may be truncations, see [1].

6σ′
XY is defined by [ξ, f ]σXY

7→ σ̃X(f)(σY (ξ)), where f is a good Σ(n−1)
1 (N̂X)

function with dom(f) = µX and ξ ∈ σXY (µX). It can be shown this is well-defined
and has the desired properties.
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The following diagram depicts the situation; hereQX refers toKX |τX .

ÑX

NX

σ̃X
==|||||||| σ̃XY // ÑXY

σ′
XY

bb

QX σXY
// QY

The expansions of ÑXY and NY are both sound above µY and coit-
erate above µY . It is straightforward to show that ÑXY is a (proper)

initial segment of NY (note µ+ÑXY
Y = sup(σXY [τX ]) < τY ).

Recall that EY is a cofinal subset of range(σXY ) ∩ µY , so σ−1
XY [EY ]

is a cofinal subset of µX .

Claim 16. σ−1
XY [EY ] is eventually contained in DX ∩ µX .

Proof. Every element of N̂X is of the form h̃n+1dNX (ξ, pdNX ) for some ξ <

µX , and similarly for N̂Y . Let h̃n+1
X and h̃n+1

Y denote the good uniform

Σ
(n)
1 Skolem functions h̃n+1

NX
(−, pNX ) and h̃n+1

NY
(−, pNY ), respectively (see

[15] for the definition). NXY is an element of NY , so there is an

ηXY < µY from which the partial function h̃n+1
XY := h̃n+1

N̂XY
(−, σ̃XY (pdNX ))

is defined in NY ; i.e. h̃n+1
XY = h̃n+1

Y (ηXY ). Let β be any element of EY
such that β > σXY (min(DX)) and β > ηXY . Then β̄ := σ−1

XY (β) ∈ DX .

If not, then by Lemma 24 of [1], there is some ξ̄ < β̄ such that h̃n+1
X (ξ̄)

is in the interval [β̄, µX) (note µX is past all truncations, so NX is

the direct limit). Let ζ̄ := h̃n+1
X (ξ̄), ξ := σ̃XY (ξ̄), and ζ := σ̃XY (ζ̄).

Since σ̃XY is Σ
(n)
0 preserving and n-cofinal, then it is Σ

(n)
1 preserving,

so h̃n+1
XY (ξ) is defined and equals ζ, and ζ is in the interval [β, µY ). But

ζ = h̃n+1
XY (ξ) = h̃n+1

Y (ηXY )(ξ) and ≺ ξ, ηXY �< β. So ζ witnesses that

h̃n+1
Y [β] ∩ [β, µY ) 6= ∅. This contradicts Lemma 24 of [1] and the fact

that β ∈ DY ∩ µY . �(Claim 16)

Let V GX := {κXi ∈ DX ∩ µX |πXi,µX (νXi ) = νXµX}; we will call these
the “very good critical points for X.” Note that EX ⊆ T ′X ⊆ V GX and
V GX generates the ultrafilter UX (i.e. for every z ∈ PNX (µX), z ∈ UX
⇐⇒ z contains a tail end of V GX ⇐⇒ z ∩ V GX is unbounded in
µX).

For the remainder of the proof, the notation z =∗ w will denote
eventual equality; i.e. sup(z) = sup(w) =: s and there is some ξ < s
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such that z − ξ = w − ξ. The notation z ⊆∗ w will mean that z is
eventually contained in w.

Claim 17. For every X ∈ S ′′, V GX =∗ DX ∩ aX .

Proof. V GX ⊂ DX by definition. Pick î so that νXµX and aX are in

range(πX
î,µX

). Let j be any stage ≥ î such that κXj ∈ DX . So for such

j, aX = πXj,µX (aX ∩ κXj ). Let π denote πXj,µX .

If κXj ∈ V GX then νXj = π−1(νXµX ) and by elementarity, UX
j con-

centrates on aX ∩ κXj . So κXj ∈ π(aX ∩ κXj ) = aX . This shows
V GX ⊆∗ DX ∩ aX .

Now assume j ≥ î is such that κXj ∈ DX∩aX . Then UX
j (the measure

applied at stage j) concentrates on aX∩κXj (note aX ∈ range(π)). Then

π(UX
j ) concentrates on aX ; since UX is the only normal measure in NX

which concentrates on aX then π(UX
j ) = UX . Then π(νXj ) = νXµX and

so κXj ∈ V GX . �(Claim 17)

Now by Claims 16 and 17, for each X ∈ S ′′ and Y ∈ S ′′ ∩X ↑:

(13)
EY ⊂ range(σXY ), EY ⊆ V GY =∗ DY ∩ aY , and
σ−1
XY [EY ] ⊆∗ DX ∩ aX =∗ V GX

Define a collection W ⊂ PK(µ) by:

(14)
z ∈ W iff {X ∈ S ′′|z ∈ X and zX := σ−1

X (z) ∈ UX}
is an element of the Chang filter F .

Note that, for a given z ∈ PK(µ) and X ∈ S ′′ with z ∈ X, one of zX
or zcX must be in UX ; this is because PKX (µX) = PNX (µX) and UX is
an ultrafilter on PNX (µX).

Claim 18. W is normal with respect to K.

Proof. Suppose not; so there is a g : µ→ PK(µ) such that g ∈ K and
g(ξ) ∈ W for every ξ < µ, yet ∆g /∈ W . By the definition of W , this
means that T := {X ∈ S ′′|g ∈ X and (∆g)X /∈ UX} is F -stationary.
Now g ∈ K|τ so for each X ∈ T , gX is an element of KX |τX = NX |τX .
UX is normal with respect to NX , so since ∆gX /∈ UX there is some ξX
such that gX(ξX) /∈ UX . The map X 7→ σX(ξX) is regressive on T , so

by the normality of F there is an F -stationary T ′ ⊆ T and an ordinal ξ̂
such that σX(ξX) = ξ̂ for everyX ∈ T ′. In other words, σ−1

X (g(ξ̂)) /∈ UX
for every X ∈ T ′. But this contradicts that g(ξ̂) ∈ W . �(Claim 18)

Claim 19. W is an ultrafilter on PK(µ).

Proof. It is clear that W is a filter, since F is a filter and each UX is
an ultrafilter over PKX (µX). The issue is showing that W is maximal.
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Suppose to the contrary, and let z ∈ PK(µ) be a counterexample; so
neither z nor µ− z is an element of W . Let T := {X ∈ S ′′|z ∈ X} and
for X ∈ T let zX denote σ−1

X (z). So both Tz := {X ∈ T |zX ∈ UX} and
Tzc := {X ∈ T |(zX)c ∈ UX} are F -stationary.

Fix an X ∈ Tz and a Y ∈ Tzc ∩ X ↑ (recall X ↑ is an element of
the Chang Filter F). Since (zc)Y ∈ UY then it contains a tail end of
UY ’s generating sequence EY . This fact, combined with (13), implies
that (zc)X = σ−1

XY ((zc)Y ) intersects V GX cofinally often in µX . Since
V GX generates UX , then (zc)X ∈ UX . This is a contradiction because
X ∈ Tz. �( Claim 19)

Claim 20. ult(K,W ) is wellfounded.

Proof. Note oK(η) < µ for every η < µ; this follows from the fact that
for every X ∈ S ′′, µX is measurable in NX and so for every η < µX ,
oNX (η) = oKX (η) < µX (recall we assume there are no overlapping
extenders).

So by Corollary 19 of [1], it suffices to show that ult(K|τ,W ) is
wellfounded, where τ = µ+K . Suppose not; then there is a 〈gn|n ∈ ω〉
such that gn ∈ K|τ and An := {ξ < µ|gn+1(ξ) < gn(ξ)} ∈ W for every
n ∈ ω. Since τ = µ+K we can WLOG assume gn : µ→ µ. Let Cn ∈ F
witness that An ∈ W . Let C be the collection of Chang structures Z
with 〈gn|n ∈ ω〉 ∈ Z. Pick any X ∈ C ∩

⋂
n∈ω Cn. Then 〈(gn)X |n ∈ ω〉

witnesses that ult(NX , UX) is illfounded (note each (gn)X is an element
of KX |τX = NX |τX). This is a contradiction since UX generates an
extender on the mouse NX .

�(Claim 20)

So W is normal with respect to K and ult(K,W ) is wellfounded.
Note from the proofs that the normality of W was essentially due to the
normality of the Chang Filter F , and the wellfoundedness of ult(K,W )
was essentially due to the countable completeness of F . By Corollary 29
of [1], W generates an extender on K’s extender sequence. Clearly W
concentrates on a (since each UX concentrates on aX). This contradicts
(12) and completes the proof of Theorem 15. �(Theorem 15)

Finally, we note that if i is any of the elements of S2
0 where UX

i is
a repeat measure, then σ̃Xi (UX

i ) is a repeat measure in ÑX
i . As noted

before, ÑX
i is an initial segment of K (it is the collapsing segment for

sup(σX [τXi ])).
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5. Part 2 of the proof of Theorem 1: getting a proper
class model with a repeat measure

In this section we prove that there is an inner model of ZFC +
“There is a repeat measure.” Note that if there exists a mouse N
which has a repeat measure U on κ and one more measure W above
U in the Mitchell order, then iterating W out of the universe yields an
inner ZFC model with many repeat measures.

So for the rest of the paper:

(15)
Assume that for every mouse N , if ν indexes a repeat
measure in N then ν is the largest measure in N (in
the Mitchell order).

Under this assumption we will show that K has a repeat measure on
ω3.

By Theorem 15, for almost every X ∈ S there is an ω-club CX ⊂
ω2 ∩ cof(ω) such that for every i ∈ CX , νXi indexes a repeat measure
in NX

i . For each such X pick a µX = κXµX such that µX ∈ Lim(CX) ∩
cof(ω) (so µX ∈ CX). Similarly to the proof of Theorem 15 let V GµX

:= {κXi ∈ DX ∩ µX |πXi,µX (νXi ) = νXµX} (the “very good stages” for X
corresponding to µX). Then V GµX is a generating sequence for the

measure (which generates) U
NX
µX

νXµX
. By assumption (15), νXµX indexes

the only repeat measure in NX := NX
µX

. This allows V GµX to be
characterized as follows:

(16)

V GµX is the set of κXi ∈ DX such that for every

a ∈ UNX
i

νXi
there is a measure in NX

i indexed below νXi
which concentrates on a; and this is the same as the

set of κXi ∈ DX such that for every a ∈ UNX
i

νXi
there is

a measure in KX which concentrates on a.

Now consider any choice X 7→ µX (for X ∈ S) where µX is an
arbitrary element of Lim(CX) ∩ cof(ω) (for X ∈ S). As in the proof
of Theorem 15, for each X ∈ S pick a countable EX which is a cofinal
subset of V GX . By Lemma 9 there is a stationary S ′ and a fixed set
F such that EX ⊂ F ∈ X for every X ∈ S ′. Then whenever X ∈ S ′
and Y ∈ S ′ ∩X ↑, then EY ⊂ range(σXY ) and as before, σXY [EY ] is
eventually contained in DX∩µX (note the pressing down automatically
fixes σX(µX) at some µ for all X ∈ S ′).

Recall from the proof of these facts that σ̃XY : NX → ÑXY is the
canonical lifting of σXY � τX to NX , ÑXY is an element of NY , and NY

is sound above µY . Let ηXY < µY be the parameter from which ÑXY is
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defined in NY , i.e. ÑXY = h̃n+1dNY (ηXY , pNY ). Given any element b of NX ,

let ib < µX be a stage such that b ∈ range(πXib,µX ) and such that NX
ib

is sound above κXib (in our case, any ib ≥ 1 will suffice since there is a

truncation by stage 1). Then b = h̃n+1
NX

(ξb, pNX ) for some ξb < κXib . Since

σ̃XY is Σ
(n)
1 preserving, then b̃ := σ̃XY (b) = h̃n+1

ÑXY
(σXY (ξb), σXY (pNX )).

So b̃ is an element of h̃n+1
NY

[{ηXY } ∪ {σXY (ξb)} ∪ {pNY }]. In particular,

if κYj > max(ηXY , σXY (ξb) then b̃∈ h̃n+1
NY

[κYj ∪ {pNY }], and the latter is

just the range of the iteration map πYj,µY . So we have just shown:

(17)
If b ∈ range(πXib,µX ) and κYj is such that κYj ≥
σXY (κXib ) > ηXY , then σ̃XY (b) ∈ range(πYj,µY ).

Note also that if b ∈ NX |τX then σ̃XY (b) = σXY (b).

Claim 21. For every X ∈ S ′ and every Y ∈ X ↑ ∩S ′: σ−1
XY [EY ] is

eventually contained in V GX .

Note this will imply that UX = U
NX
µX

νXµX
and UY = U

NY
µY

νYµY
cohere, since

EY ⊂ V GY is a generating sequence for UY and V GX is a generating
sequence of UX

Proof. Pick any κYˆ̀ ∈ EY which is > ηXY and such that σ−1
X [EY − κYˆ̀ ]

is contained in DX .
Pick any κY

ĵ
∈ EY above κYˆ̀ . Suppose for a contradiction that κX

î
:=

σ−1
XY (κY

ĵ
) ∈ DX − V GX .

By (16) there is some âX ⊂ κX
î

which witnesses that UX
î

is not a

repeat measure (i.e. UX
î

is the only measure on the NX
î

sequence which

concentrates on âX). Let aX := πX
î,µX

(âX). Then:

• KX has no measure concentrating on âX ;
• κX

î
∈ aX

By elementarity of σXY , KY has no measure concentrating on âY :=
σXY (âX) (⊂ κY

ĵ
). Since κY

ĵ
∈ V GY , then UY

ĵ
is a repeat measure so

(recall νY
ĵ

= oKY (κY
ĵ

) = σXY (oKX (κX
î

)) = σXY (νX
î

)):

(18) UY
ĵ

does not concentrate on âY

By (17), ãY := σ̃XY (aX) = σXY (aX) is an element of range(πY
ĵ,µY

).

So πY
ĵ,µY

(âY ) = aY ; also, since κX
î
∈ aX then κY

ĵ
∈ aY . But then the

measure applied at stage ĵ must have concentrated on aY , contradicting
(18). �(Claim 21)
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Define a filter W on PK(µ) by:

(19)
z ∈ W iff σ−1

X (z) ∈ UX for almost every X ∈ S ′ with

z ∈ X. (here UX = U
NX
µX

νXµX
).

Note that if z ∈ K ∩X then zX ∈ KX |τX , so zX ∈ NX
µX

; so one of zX
or its complement is an element of UX .

The proof that W defines an ultrafilter and is on K’s sequence is
exactly the same as the proof of Claims 18, 19, and 20. Now we just
need to see that W is a repeat measure. If not, there is some A ∈ PK(µ)
which uniquely identifies W . Let BA be the collection of ξ < µ such
that no K measure concentrates on A∩ξ; then BA ∈ W . Pull this down
to some NX so AX ∈ UX and (BA)X ∈ UX too; but by elementarity
of σX , (BA)X is the collection of ξ < µX such that no KX measure
concentrates on AX ∩ ξ; since KX and NX agree below µX , this is the
same as the collection of ξ such that no NX measure concentrates on
AX ∩ ξ. So:

(20) {ξ < µX |No NX measure concentrates on AX ∩ ξ} ∈ UX

But AX ∈ UX and UX is a weak repeat measure in NX , so there is
some U ′ below UX in NX ’s Mitchell order such that AX ∈ U ′. Thus:
(21)
{ξ < µX |There is an NX measure which concentrates on AX∩ξ} ∈ UX

which contradicts (20).

6. Final remark

There is still a tremendous gap between a weak repeat measure and
the best known upper bound for the consistency of (ω3, ω2) � (ω2, ω1),
which is a huge cardinal (due to arguments of Kunen and Laver). The
known model obtained from a huge cardinal, however, also has a precip-
itous (in fact saturated) ideal on ω2. Now (ω3, ω2) � (ω2, ω1) together
with a precipitous ideal on ω2 implies at least that there is an inner
model with a Woodin cardinal. This is because:

• (ω3, ω2) � (ω2, ω1) implies that �ω2 fails
• If there is a precipitous ideal on ω2 and no inner model with

a Woodin cardinal, then by a result of Schindler [11] the core
model K computes ω+

2 correctly. Since K has a �ωV2
sequence,

this will then be a �ωV2
sequence in V .

So it is natural to ask:
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Question. Is it possible, starting with significantly less than a huge
cardinal, to obtain a model of (ω3, ω2) � (ω2, ω1) which does not have
a precipitous ideal on ω2?
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