CONSISTENCY STRENGTH OF HIGHER CHANG’S
CONJECTURE, WITHOUT CH

SEAN D. COX

ABSTRACT. We prove that (w3, ws) — (we,w;) implies there is an
inner model with a weak repeat measure.

1. INTRODUCTION

The original Chang’s Conjecture states that for every structure A
on ws in a countable language, there is a substructure B < A where
B N w is countable, yet |B| = wi; this statement is abbreviated by
(wg,w1) = (wq,w). Chang’s Conjecture is a strengthening of the Down-
ward Lowenheim-Skolem Theorem, since it places more constraints on
the elementary substructures.

(wa,w1) — (wq,w) is equiconsistent with an w;-Erdos cardinal (see [3]),
but shifting the cardinals in the statement upward results in a stronger
statement in terms of consistency strength. The generalizations (w192, Wn11) —
(Wnt1,wn) for n > 1 are consistent relative to a huge cardinal (argu-
ments due to Laver and Kunen; see [4]). The known lower bounds
for consistency strength are considerably lower: Schindler [12] proved
that “CH and (w3, ws) — (ws,wq)” implies there is an inner model of
o(k) = kT, and obtained stronger results in [10] when the bottom
cardinal of the conjecture is > wy (also with an assumption on car-
dinal arithmetic). Without the CH assumption, Vickers [13] obtained
0-sword (a mouse with a measure of order 1) from (w3, ws) = (wa,w1);
a similar lower bound was obtained in [2] for a weaker form of Chang’s
Conjecture. Jénsson cardinals and algebras are also closely related to
Chang’s Conjecture: Vickers and Welch [14] used covering arguments
with the core model to show that K correctly computes successors of
Jonsson cardinals.
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In this paper we use covering arguments to improve Vickers’ result
about (w3, ws) — (wo,w;) to:

Theorem 1. Assume (w3,ws) — (wo,w1). Then there is an inner
model with a weak repeat measure (this has consistency strength between

o(k) =kt and o(k) = kTT).

The paper is organized as follows. Sections 2 and 3 provide back-
ground on Chang’s Conjecture and repeat measures, respectively. The
proof of Theorem 1 is split into two sections: Section 4 shows there
are mice with repeat measures, and Section 5 shows there is an inner
model with repeat measures. Section 6 has some final remarks.

2. CHANG STRUCTURES AND THE CHANG FILTER

2.1. Chang structures. In this section we give some basic facts about
Chang structures and the Chang ideal. For a more general treatment,
and many other variations of Chang’s Conjecture, see Foreman [3]. In
this paper we deal with only the following special instances of Chang’s
Conjecture:

Definition 2. Let p < A < k be regular cardinals. (k,\) — (A, )
means that for every structure A with domain k in a countable lan-
guage, there is an X < A such that | X| = X and | X N A| = u. Such
a set X will be called a (k,\) — (A, u) Chang Structure, or simply
Chang Structure if it is clear from the context.

Next are some some standard arguments to show (k,\) — (A, )
implies some apparently stronger statements. First, it is not necessary
to require the domain of A to be k: suppose A is an L-structure with
domain H D xk; WLOG assume A = (H, (h,)ne,) is fully Skolemized
and the collection of h,’s are closed under compositions (so for every
X C H, Sk* :=,c,, hn[X =] is a fully elementary substructure of A).
Let D, := {€ € [k]<|hn(€) € £}, and let X < (5, (hy | Dy)new) be a
Chang structure. Then Y := Sk*(X) is an elementary substructure of
A of cardinality A, and Y Nk = X so [Y N A| = p.

For the remainder of the paper we will always deal with structures
of the form A = (Hy, €, A, Kk, A\, i1, ...) where 6 > k is regular and A is a
well-ordering of Hy. Such structures are convenient because they have
definable Skolem functions and model ZFC~ in the expanded language
(i.e. where formulas in the language of A are allowed in the Separation
and Replacement Schema). Unless stated otherwise, all structures are
in a countable language.
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Claim 3. Assume (k,A) = (A, p) where c¢f(p) < cf(N\). Let 0 > K be
reqular. Then for every structure A on Hy there is an X < A such
that:

o 1 C X.
o | X| <A
o If \=pu" then X N\ is transitive.

Proof. WLOG A expands (Hy, €, A, k, A\, u). Let Z be a Chang sub-
structure of A, and let X := Sk*(Z U p). Clearly u C X; we show
that sup(X N'A) = sup(Z N A). Let x be an arbitrary element of
X N A; then 2 = h(p,7) for some Skolem function h which is definable
in A, some p € Z, and some 77 € u. Now s := sup({h(p,n)|n < u} NA)
is definable in A from parameters p, u, A, so s is an element of Z;
and since cf(u) < c¢f(A) then s < A\ Thus s < sup(Z N A); and
x < sup({h(p,n)|n < p}NA), sox < sup(Z N A). This shows that
sup(X NA) < sup(Z N A). The other inequality is trivial.

If A = pt then for any 8 € X Nyt there is a surjection ¢ : yu — (3
such that ¢ € X; soif p C X (e.g. as we just constructed) then 8 C X.
So X N u™ is transitive. O

Corollary 4. Assume (k,\) — (A, p). Let L be a language of cardi-
nality < p. Then every L-structure A on k has a Chang substructure.

Proof. Again for simplicity we work in Hy; say A = (Hy, €, (fi)i<yu)
and is fully Skolemized (and the collection of (f;) are closed under
compositions). Let R := {(i,z, fi(z))|i < pand z € H,}. C H,. By
Claim 3 there is a Chang substructure X of (H,, €, R) such that u C X.
Then X is an elementary substructure of A. O

Note that if X is a Chang structure witnessing (u*, u®) — (u™, p)
and X < (H,++, €) then

(1) otp(X N ') = p*

To see (1): otherwise there would be a p*-th element 5 of X N p*;
by elementarity there is an f € X which is an injection of 3 into pu*.
But then |f[X N S]] = pt and f[X N3] € X Nu™, which contradicts
that | X Nut| = p.

The following first appeared in [6]:

Theorem 5. (Foreman, Magidor). Assume (u™*,put) — (ut,p).
Then there is a structure A on u™ such that whenever X is a (u™t, pu™)
(ut, 1) Chang substructure of A, then sup(X N u") has cofinality >

cf ().
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Lemma 6. If X is as in the conclusion of Theorem 5, then:

(2) XN utt is closed under increasing sequences of length

<cf(p).

Proof. Let f < pt* be a limit of X of cofinality < c¢f(u). By (1),
otp(X N ptT) = pt; in particular ef (sup(X N pt™)) = pt so there is
an element of X N ut* above 3; let n be the least such element. Let
ax = X Nut. Since X < (Hy, €) there is a bijection f € X between
pt and n, and so flax] C (X Nn) = (X NG). Since cf(ax) = cf(u)
and cf(5) < cf(p) (by assumption) then there is a 0 < ax such that
f[6] intersects [ cofinally often; note f[d] is both an element and a
subset of X. So in fact f[0] C B and sup(f[d]) = [, so § is an element
of X. O

2.2. The strongly closed unbounded filter. Now we recall the
“strongly closed unbounded filter”; see Foreman [3] for a more gen-
eral treatment of the subject. Fix a large regular 6. For any structure
A on Hy, let C'4 denote the collection of all X C Hy such that X < A.
The strongly closed unbounded filter on Hy is the filter generated by
sets of the form C4; it is clearly countably closed (recall we assume A is
in a countable language unless otherwise stated). If S C P(Hy) inter-
sects every set in the strongly closed unbounded filter, then S is called
weakly stationary. For example, the collection [Hy|* of countable sub-
sets of Hy is weakly stationary by the Downward Lowenheim-Skolem
Theorem. The strongly closed unbounded filter is normal; i.e. when-
ever S is weakly stationary and F' : S — JS is regressive, then F' is
constant on a weakly stationary set.

Furthermore, if S C P(Hy) is weakly stationary then the restriction
of the strongly closed unbounded filter to S is the collection generated
by sets of the form C4 NS (we require S to be weakly stationary so
that this restriction will be proper). This restriction is normal.

2.3. The Chang filter. Under the assumption (™1, u™) — (ut, ),
the facts from section 2 guarantee that S is a weakly stationary set,
where:
S is defined to be the collection of Chang X <
(3) (Hg,€,A) such that X N u* is transitive and
cf(XNp') =cf(p).
So the strongly closed unbounded filter can be restricted to S; this
restriction is called the Chang Filter and we will denote this filter
by F. F is normal and, by Corollary 4, is < p*-complete. The
expression “almost every X € S has property Q7 will mean that
{X € S|X does not have property @} is in the dual of F. For the
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rest of the paper, the term “stationary” will be used in reference to the
Chang Filter F.

Definition 7. For a (k,\) — (A, u) Chang structure X, X T will de-
note the collection of Chang elementary substructures of (Hg, €, A, X N
k) such that p C Y.

Since (™, ut) — (ut, p)-Chang structures all have the same order-
type below p™t (namely, 1), we will not be able to build C-increasing
chains of Chang Structures and form directed systems in the usual way;
e.g. if X, Y are Chang and X Npu*tt € Y then X Npt* cannot be con-
tained in Y. The next lemma provides a remedy:

Lemma 8. Assume (u™+, u) — (u*, 1) and let X be a Chang struc-
ture. For eachY € X 1 (see Definition 7) let Axy = sup(XNY Nut™);
then X N Axy C Y.

Proof. Let n € X N Axy; since Axy is clearly a limit ordinal, then there
isann’ € (n, \XY)NXNY. Since otp(X Np™+) = pt, then | X Ny'| = p;
furthermore, X N u*™* and 7’ are both elements of Y, so there is an
F €Y which maps p onto X N#'. Since p C Y then range(F) C Y
andson €Y. U

Lemma 9. Assume (u™1, u™) — (ut, u) where cf (u) > w. Let T be a
stationary subset of S where S is defined in (3), and for every X € T
let Ax C X Nt be a set of cardinality < cf(u). Then there is a set
B of cardinality < p and a stationary T" C T such Ax C B € X for
every X € T'.

Proof. WLOG assume Ay is a set of ordinals. First, note that for each
X there is a Bx € X which covers Ax. To see this: since cf(sup(X N
ptt)) = pt, then sup(Ax) < sup(XNpt™). So thereis an f € X with
domain p* such that Ay C range(f). Since cf(X Nut) = cf(p) >
|Ax/|, then f~'[Ax] C & for some @ < X N u*. Similarly there is a
g € X which maps p onto @, and ¢! o f71[Ax] is contained in some
ordinal 3 < p. Then f o g[3] € X is the covering set Bx we seek.
Since the Chang ideal is normal, the regressive function X — By can
be used to obtain the stationary 7" and the set B as in the statement
of the lemma. O

2.4. Using normal filters to build extenders over K. In this sec-
tion we point out a simple fact about normal filters (e.g. the strongly
closed unbounded filter), but which is very useful in building extenders
over K. If F is an extender on a sufficiently closed algebra P and
n < Ih(F'), then (F'), denotes the ultrafilter {z € P|n € F(z)} (see [15]
for a detailed introduction to extenders).
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Lemma 10. Assume k < v are ordinals, P C P(k) is a reasonably
closed algebra of subsets of k, 8 > (2")% is regular, S is a weakly
stationary collection of X such that X < (Hy, €,...), and F is some
normal filter on S. For each X € S let ox : Hx — Hy be the inverse
of the Mostowski collapse of X. For any b € X, bx will denote o' (b).

Suppose for each X € S there is an extender F~X : Px — P(vy).
For each n < v, define the collection G, C P by:

(4) z€G,iff € P and {X|z2x € (F*),} € F

Let G := (G,|n < v). Note since § > (2")" then G € X for almost
every X (so Gx makes sense for such X, of course however X does
not have access to the definition in (4)). If G, is an ultrafilter on P
for each n < v, then for F-almost every X € S, Gx = F*X.

Proof. By elementarity (Gx), is an ultrafilter on Px for every n < vx.
Now suppose for a contradiction that there are F-stationarily many
X such that Gx # F¥. So for such X there is an ny < vx and a
zx € Py such that zx € (Gx)yx — (F¥),y (so (2x)° € (F¥),5). By
normality of F there is a pair Z € P, 7 < v and an F-stationary
T such that ox(zx,nx) = (z,7) for every X € T. Since G; is an
ultrafilter (by assumption) and there are F-stationarily many X with
(zx)¢ € (FX);x, then 2¢ € G;. But this means that (2x)¢ € (F¥);,
for F-many X, which contradicts the fact that zx € (Gx)z, for every
XeTl. O

For example: if P = PX (k) and FX is some (rx, 0%X (kx))-extender
on PEx(kx) (typically arising on the K side of the K vs. Kx coit-
eration) and the definition of G, in (4) always yields an ultrafilter on
PX(k),! then F¥ is an element of Hx (for F-almost every X).

3. REPEAT MEASURES

The notion of a repeat measure was introduced by Radin [9] (to
preserve measurability under Radin forcing) and refined by Mitchell [8].
Here we discuss only weak repeat points and up-repeat points; see
Gitik [7] for more information.

Definition 11. A normal measure U on k is a weak repeat measure iff
for every A € U there is a normal measure VW below U in the Mitchell
order such that A € W.

!Note this is equivalent to: for each n < o (k) and 2z € PX(k), T, := {X|zx €
(FX)x} and The == {X|(2x)¢ € (FX), } are not both F-stationary.



CONSISTENCY STRENGTH OF HIGHER CHANG’S CONJECTURE 7

The Mitchell order of a weak repeat measure on k is much larger
than x*. For example, if the order of V is some v < k% then there is
no smaller measure in the Mitchell order which concentrates on the set
{€ < Klo(§) = h,(§)}, where h, is the v-th canonical function on k.
Similarly if o(}V) = k™ then there is no smaller measure in the Mitchell
order which concentrates on {{ < klo(¢§) = 1}, More generally, if v is
an ordinal such that there is a function h : kK — Ord which represents
v in every normal ultrapower, then v cannot be the order of a weak
repeat measure. Such ordinals v are called uniformly representable.

We also recall the stronger notion of an up repeat measure:

Definition 12. A normal measure U on k is an up repeat measure iff
for every A € U there is a VW above U in the Mitchell order such that
AeWw.

Lemma 13. Every up repeat measure is a weak repeat measure.

Proof. Suppose A € U witnesses that U is not a weak repeat measure.
Let By := {¢ < k|There is no normal measure concentrating on A N¢}.
Then clearly B4 € U. Now suppose W is any normal measure above U
in the Mitchell order. Then ult(V, W) has a normal measure concen-
trating on A (namely /) so W concentrates on k—By. So Ba ¢ W. O

Corollary 14. If U is a normal measure on Kk which s not a weak
repeat measure, then there is an A € U which is not an element of any
other normal measure on k which is comparable to U in the Mitchell
order.

Proof. Let X € U witness that U is not a weak repeat measure. By
Lemma 13, U is also not an up-repeat measure, so let Y € U witness
this fact. Then A := X NY satisfies the conclusion of the claim. [

Since we will only deal with coherent sequences E of extenders (on
some premouse N), then £, and E. are always comparable in the
Michell order. Suppose for simplicity that each extender E, on E is
generated by a single normal measure U,. We will call U,, a weak repeat
measure on N iff every A € U is an element of some Ug for { < v. So if
U, is not a weak repeat measure, there is an A € U, which distinguishes
U, from all other Uk.

4. PART 1 OF THE PROOF OF THEOREM 1: GETTING MICE WITH
REPEAT MEASURES

Assume (w3, wz) — (we,wq). Throughout the rest of the paper, K
denotes the core model for non-overlapping extenders, built under the
assumption that O-pistol does not exist. Basic facts about 0-pistol and
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K can be found in Chapter 8 of [15]. In particular, K is capable of
having a strong cardinal, but comparisons of mice are still linear. Note
that if O-pistol exists, then there is a sharp for an inner model with a
strong cardinal, so the conclusion of Theorem 1 would hold and we’d
be finished.

Let S be the Chang-stationary collection of subsets of Hy (for some
§ >> ws) defined in (3); so for every X € S, ax := X Nwy has
cofinality w;. WLOG we assume X < (Hyp,€,FE | 0) for all X € S.
Let ox : Hxy — X < Hjy be the inverse of the Mostowski collapse of
X, and and Ky = a)}l(K]wg). Note that ax = cr(ox), ox(ax) = w,
sup(ox|ws]) = sup(X Nws) =: Ax, and ox(ws) = ws.

For X € S, consider the coiteration of Kx with K. Let 2x denote
the length of the Kx vs. K coiteration, and

(N v 708 (VY < 5 < )

AR N B S I A » Vg

denote the objects on the K side of the coiteration; i.e. N is the
i-th iterate, 7T1X] the iteration map, v the iteration index, s the

critical point, 77 the smaller of the cardinal successors of X in the

i-th iterates, 6 the maximal segment of N;X where 7;¥ is a cardinal,

and (N7*)* = N[0

By (2), each X € S has an w-closed intersection with ws, so Lemma
44 from [1] applies.? So a ™ is not a cardinal in K, the K side of the
coiteration truncates to an w-sized mouse either at stage 0 or at stage
1, and the K side of the coiteration is trivial. Let (5t € {0,1} denote
the first truncation stage. So \(NL%(()*\ < wq. Since ](NL%(()*] < weq, and
|Kx| < wa, then |(NX)*] < wy for every i € [1X,Qx), and Qx < wo.
Also, since the Ky side is trivial in the coiteration, we have:

(5) v = 0" (k7)

for every stage i of the coiteration.

Since the K side must win the coiteration and |Kx| = ws, then the
length of the K vs. K coiteration is at least wy. Since |(N/X)*| < wy
for each i € [1f,ws), the usual pressing down and pigeonhole arguments

2This was based on an argument of Mitchell.
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yield:?
6 For any stationary T C ws, there is a stationary 7" C
(6) T such that for all i < j in T, 7%5(1%) = vX.
By (6) and basic properties of direct limits, DX = {Km, (5Y) =

wa} is a club in wg Furthermore for every i > 1 (NZX )* projects to and
is sound above k2, and Contlnulty of ox on cof(w) along with the Weak
Covering Lemma 1mphes that 7% has uncountable cofinality. Thus by

Lemma 16 of [1], for every i < wq, ox | 7 can be lifted to (N;X)*.

Pick a stage if < wy such that there are no truncations at stages in
the interval [if,ws); so N¥ = (NX)* for all i € [if,ws). For such i let

n:X denote the degree of /-@ZX in N7, ie. the maximal n € w such that

X is strictly less than the n-th projectum of N;* (this is the degree of

the fine-structural ultrapower used at stage 7). Then (nX|iff < i < ws)

is a nonincreasing sequence of natural numbers; WLOG suppose i

was chosen so that n;* has constant value ny for every i € [if,ws).
Since the Chang ideal is countably complete (in fact < wy complete)
we will WLOG assume that ny is fixed at n for every X € 5. Let

o NX — 5 N denote the canonical lifting of ox | 7. This
ultrapower NiX really is a premouse (not a protomouse), since k% is
measurable in NX and so the top extender on N;* (if there is one) has

critical point > k¥ (recall we assume O-pistol does not exist so there

—

are no overlapping extenders). By Lemma 43 of [1], NZ-X is an initial

segment of K (the collapsing segment of K for 7% := sup[(ox[rX])).

1

Since Dy is club in wy for every X € S, for almost every stage i < wo

we have kX = i. This will simplify the following notation a bit. For

X
each such i, let FX := EVNX , i.e. the extender used at stage i (with

7

critical point 7). Let U := (F/X);; i.e. U is the (normal) ultrafilter
on the hypermeasure F;* indexed by i.

From now on:

(7) Assume all mice extenders have only one generator

3Under the additional assumption of C'H, Schindler [12] showed that if 7" is

— X

a stationary subset of cof(w) as in (6) and ¢ € T N Lim(T”), then F := Ei\iz
must have order > (k)™ in the mouse N;X. This used the fact that under
CH, [X]¥ C X for every X € S (see the discussion following Theorem 62 of [5]), so
[H X] C Hx. Ifthe order of E were < (x;X)*%, Schindler showed that the collection
of generating sequences for E could be reconbtructed inside the countably closed

structure Hy, and thus E € Hy. This would imply that E is on the Kx sequence,
a contradiction.
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If (7) fails, then there are mice with much stronger cardinals than
repeat points. If F' is a mouse extender with two generators, then
iterating F' Ord-many times yields an inner model W which models
GCH, has a coherent sequence E of extenders, and o (k) = k1T for
a proper class of k. For such k, all sufficiently large measures on & in
the Mitchell order are weak repeat measures.

Now we prove Theorem 1; in fact we prove:

Theorem 15. For almost every X € S and almost every i € Sz, UX
is a weak repeat measure in the mouse N;X.

Proof. Suppose for a contradiction that there is an F-stationary set
S’ C S of Chang structures such that for every X € 5"

(8) Ty := {i € SZ|U* is NOT a weak repeat measure in N;X}
is stationary in ws.

By (6) there is a stationary 7% C Ty such that the extenders used
at stages in T% lie on a common thread; i.e. for every pair i < j in T%,
75 (vX) = v WLOG assume min(T) > i ; recall i was chosen to
be a sufficiently large stage so there are no truncations at stages in the
interval [iy, ws).

For each X € S’ pick a pux which is an element and limit of the
stationary set T%; recall that since Dy is club in wy we can WLOG

assume that /@ffx = pyx. Let

oNX::Nj;,FX::FX andUX::U/f;;by

Bx?
(7) Ux generates F'x
(9) e 7x be the cardinal successor of pux in Kx;
e 0x == 55){ and Ny = le; (so 6x : Nx —

Ny is the canonical lifting of oy | 7x to Nx).
Then
(10) pux NTY is a generating sequence for the measure Ux

Since uxy € T% C Tx, Ux is not a weak repeat measure in Nx. So
by Corollary 14 there is a set ax € Ux which uniquely identifies Ux;
i.e. ax € Uy but is not an element of any other normal measure on
Nx’s sequence.?

Since stage py is past all truncations on the K side of the coiteration,
then PM¥(ux) = P*¥(ux) (so ax € Kx). Since v,y = 0" (ux) (see

4More precisely: ax is not an element of any normal measure which generates
an extender on Nx’s coherent extender sequence.
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5), then:

(11) No extender on Kx’s extender sequence is generated
by a measure which concentrates on ay.

By applying the Fodor Lemma to the Chang-positive collection S’,
we may WLOG assume that ox(ax) and ox(ux) have fixed values
for every X € S’; say (a,u) = ox(ax,pux) for every X € S’. So by
elementarity of ox and (11):

No extender on K'’s extender sequence is generated

(12) by a measure which concentrates on a.

We will construct a normal K-measure on g which concentrates on a
and yields a wellfounded ultrapower. By Corollary 29 of [1], such a
measure would generate an extender on K'’s extender sequence, which
will contradict (12) and complete the proof of Theorem 15.

For each X € S’ let Ex be a countable subset of T% N pux which
is cofinal in uy; note by (10), Ex is a generating sequence of Uy.
By Lemma 9, there is a stationary S” C S’ and a countable set F
such that for every X € S”, EY = ox[Fx]| C E € X. For every
XeS"andY € S"NX T, let oxy := 0y ooy | Tx; note this map is
defined on all of 7x because Y € X 1. So for such pairs X,Y we have
Ey C range(oxy).

The following construction, through Claim 16, is similar to the con-
struction which begins at the bottom of page 85 in [1]; but for the
reader’s convenience we include most details here. Consider any pair
X,Y such that X € S” and Y € "N X 1. Using an interpolation-like
argument with the map o, and the fact that Ny is sound above ux,
construct the following maps (here we omit the “hats” on the book-
keeping premice):

o oxy : Nx s Nxy which is n-cofinal and extends oxy | 7x:°

the ultrapower really is a premouse since the top extender on
Nx (if there is one) has critical point > px.

e 0%y : Nxy —om Nx which extends oy | 7.9

(
="

5Since we are working past all truncations—i.e. px is not a truncation stage—
then 7y is a cardinal in Ny (similarly for V') and lifting oxy [ 7x to N is possible.
For a similar argument where there may be truncations, see [1].

b5y is defined by [€, floxy — dx(f)(oy(€)), where f is a good Egn_l)(@)
function with dom(f) = px and € € oxy (pux). It can be shown this is well-defined
and has the desired properties.
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The following diagram depicts the situation; here @ x refers to Kx|7x.

Ny
ox ¥ ) oy
oxXYy L
NX """""""""""" > NXY
Ox ————Qy

The expansions of N xy and Ny are both sound above py and coit-
erate above uy. It is straightforward to show that Nyy is a (proper)
initial segment of Ny (note pi™*Y = sup(oxy[rx]) < 7v).

Recall that Ey is a cofinal subset of range(oxy) N iy, so oxy[Ey]

is a cofinal subset of ux.

Claim 16. oy [Fy] is eventually contained in Dx M pix.

Proof. Every element of N} is of the form ﬁ%tl (&, p@) for some £ <
X

1x, and similarly for Ny. Let A%t and R denote the good uniform

2(1") Skolem functions A (=, pny ) and hit ' (—, pay, ), respectively (see

[15] for the definition). Nxy is an element of Ny, so there is an

nxy < py from which the partial function A’} = h’]ifil\(—, oxv(Pry))
XY

is defined in Ny; i.e. A%t = A2+ (nxy). Let 3 be any element of Ey
such that 8 > oxy(min(Dx)) and 3 > nxy. Then 8 := oy (8) € Dx.
If not, then by Lemma 24 of [1], there is some £ < 3 such that ﬁ}“(@
is in the interval [3,ux) (note px is past all truncations, so Nx is
the direct limit). Let ¢ := A%TH(E), € == xy(£), and ¢ := Gxy ().
Since gxy is Z(()n) preserving and n-cofinal, then it is Zgn) preserving,
so h41(€) is defined and equals ¢, and € is in the interval [3, yuy ). But
¢ = hHE) = M (nxy)(€) and < €,nxy =< (. So ¢ witnesses that
A B N B, my) # 0. This contradicts Lemma 24 of [1] and the fact
that 5 € Dy N uy. O(Claim 16)

Let VGx = {x € Dx N px|n, (%) = v }; we will call these
the “very good critical points for X.” Note that Ex C T% C VGx and
VGx generates the ultrafilter Uy (i.e. for every z € PV (uy), z € Ux
<= z contains a tail end of VGx <= 2z N V(Gx is unbounded in
Hx).

I*Zor the remainder of the proof, the notation z =* w will denote
eventual equality; i.e. sup(z) = sup(w) =: s and there is some { < s
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such that z — & = w — &. The notation z C* w will mean that z is
eventually contained in w.

Claim 17. For every X € S”, VGx =* Dx Nax.

Proof. VGx C Dx by definition. Pick i so that fox and ax are in

mnge(ﬂ;.xux). Let j be any stage > ¢ such that r3 € Dx. So for such

: _ X X X
j,ax =73, (ax Nk;). Let m denote 77}, .

If Kj( € VGx then ij = W‘l(yfx) and by elementarity, U]-X con-
centrates on ayxy N k¥. So /{jX € m(lax N ,%]X) = ayx. This shows

j .

VGX Q* DX N ax. R

Now assume j > ¢ is such that /ﬁf € DxNax. Then U]-X (the measure
applied at stage j) concentrates on axNk} (note ax € range(m)). Then
(U JX ) concentrates on ax; since Uy is the only normal measure in Nx
which concentrates on ax then m(U;¥) = Ux. Then n(v;*) = v and
so k) € VGx. O(Claim 17)

Now by Claims 16 and 17, for each X € S” and Y € "N X 1:
Ey C range(oxy), By C VGy =* Dy Nay, and
U};[Ey] C* DxNax =* VGx
Define a collection W C PX(u) by:
ze Wiff {X € 8"z € X and 2x = o' (2) € Ux}
is an element of the Chang filter F.

Note that, for a given z € PX(u) and X € S” with 2z € X, one of zy
or 2§ must be in Ux; this is because PXX(uy) = PV¥*(ux) and Uy is
an ultrafilter on Px (ux).

(13)

(14)

Claim 18. W is normal with respect to K.

Proof. Suppose not; so there is a g : u — P¥(u) such that g € K and
g(&) € W for every £ < p, yet Ag ¢ W. By the definition of W, this
means that 7' := {X € §"|g € X and (Ag)x ¢ Ux} is F-stationary.
Now g € K|7 so for each X € T, gx is an element of Kx|rx = Nx|rx.
Ux is normal with respect to Nx, so since Agx ¢ Ux there is some {x
such that gx({x) ¢ Ux. The map X — ox(&x) is regressive on T', so
by the normality of F there is an F-stationary 7" C T" and an ordinal é
such that ox(€x) = ¢ for every X € T". In other words, ox (g(f)) ¢ Ux

~

for every X € T'. But this contradicts that ¢g(§) € W.  O(Claim 18)
Claim 19. W is an ultrafilter on P¥ ().

Proof. 1t is clear that W is a filter, since F is a filter and each Uy is
an ultrafilter over PXX (ux). The issue is showing that W is maximal.
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Suppose to the contrary, and let z € PX(u) be a counterexample; so
neither z nor p — z is an element of W. Let T := {X € S”|z € X} and
for X € T let zx denote ox'(2). So both T}, := {X € T|zx € Uy} and
T.. :={X € T|(2x)° € Ux} are F-stationary.

Fixan X € T, and a Y € T,e N X T (recall X T is an element of
the Chang Filter F). Since (z°)y € Uy then it contains a tail end of
Uy’s generating sequence Ey. This fact, combined with (13), implies
that (2¢)x = oxy((2°)y) intersects V Gy cofinally often in px. Since
VG x generates Uy, then (2¢)x € Ux. This is a contradiction because
X eT.. O( Claim 19)

Claim 20. ult(K, W) is wellfounded.

Proof. Note o (n) < u for every n < pu; this follows from the fact that
for every X € S”, ux is measurable in Ny and so for every n < ux,
oNx(n) = ofx(n) < ux (recall we assume there are no overlapping
extenders).

So by Corollary 19 of [1], it suffices to show that wlt(K|r, W) is
wellfounded, where 7 = u™. Suppose not; then there is a (g,|n € w)
such that g, € K|t and A, := {£ < plgnt1(§) < gn(&)} € W for every
n € w. Since 7 = pt we can WLOG assume g, : y — pu. Let C,, € F
witness that A, € W. Let C be the collection of Chang structures Z
with (g,|n € w) € Z. Pick any X € CN(,c, Cn- Then ((g,)x|n € w)
witnesses that ult( Ny, Ux) is illfounded (note each (g,)x is an element
of Kx|tx = Nx|rx). This is a contradiction since Ux generates an

extender on the mouse Nyx.
O(Claim 20)

So W is normal with respect to K and wlt(K, W) is wellfounded.
Note from the proofs that the normality of W was essentially due to the
normality of the Chang Filter F, and the wellfoundedness of ult(K, W)
was essentially due to the countable completeness of F. By Corollary 29
of [1], W generates an extender on K’s extender sequence. Clearly W

concentrates on a (since each Ux concentrates on ax). This contradicts
(12) and completes the proof of Theorem 15. O(Theorem 15)

Finally, we note that if i is any of the elements of S? where U is
a repeat measure, then ;X (U;Y) is a repeat measure in N;X. As noted
before, N¥ is an initial segment of K (it is the collapsing segment for

sup(ox(7'])).
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5. PART 2 OF THE PROOF OF THEOREM 1: GETTING A PROPER
CLASS MODEL WITH A REPEAT MEASURE

In this section we prove that there is an inner model of ZFC +
“There is a repeat measure.” Note that if there exists a mouse N
which has a repeat measure U on x and one more measure VW above
U in the Mitchell order, then iterating WV out of the universe yields an
inner ZF'C' model with many repeat measures.

So for the rest of the paper:

Assume that for every mouse N, if v indexes a repeat
(15) measure in N then v is the largest measure in N (in
the Mitchell order).

Under this assumption we will show that K has a repeat measure on
ws.

By Theorem 15, for almost every X € S there is an w-club Cx C
wy N cof(w) such that for every i € Cx, v indexes a repeat measure
in NX. For each such X pick a ux = /@ffx such that px € Lim(Cx) N
cof(w) (so px € Cx). Similarly to the proof of Theorem 15 let VG,
= {w € Dx Npx|ry, () =vi } (the “very good stages” for X
corresponding to px). Then VG, is a generating sequence for the

X

N
measure (which generates) U <*. By assumption (15), v, indexes
i

the only repeat measure in Nx := le;. This allows VG, to be
characterized as follows:

VG, is the set of k;* € Dx such that for every

NX . . .
a € U x there is a measure in NX indexed below v:X

(16) which concentrates on a; and this is the same as the
X
set of k¥ € Dx such that for every a € Uli\; there is

a measure in Ky which concentrates on a.

Now consider any choice X +— puyx (for X € ) where py is an
arbitrary element of Lim(Cx) Ncof(w) (for X € S). As in the proof
of Theorem 15, for each X € S pick a countable Ex which is a cofinal
subset of VGx. By Lemma 9 there is a stationary S’ and a fixed set
F such that Ex C F € X for every X € S’. Then whenever X € 5’
and Y € 8'N X 1, then Ey C range(oxy) and as before, oxy[Ey] is
eventually contained in DxNuyx (note the pressing down automatically
fixes ox(px) at some p for all X € 7).

Recall from the proof of these facts that oxy : Nx — ny is the
canonical lifting of oxy | 7x to Ny, Nyy is an element of Ny, and Ny
is sound above py. Let nyy < py be the parameter from which ny is
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defined in Ny, i.e. Nyy = B’lﬁl (nxv,pny ). Given any element b of Ny,

X
i 4y ) and such that N}
in our case, any i, > 1 will suffice since there is a

let 7, < px be a stage such that b € range(m
is sound above £, (i

truncation by stage 1). Then b = h"*l(&, Py ) for some & < kX Since
(") preserving, then b := Gy (b) = h ntl  (oxv (&), oxy (pvy)-
So b is an element of h"+1[{77XY} U {axy(&,)} U {pNY }. In particular,

if /4: > mazx(nxy,oxy (&) then be h”“[fz U{pny }], and the latter is
JUSt the range of the iteration map 7r] 4y - 0 we have just shown:

6XY is E

'

If b € range(r),. ) and &} is such that s} >
Fuy)

17
(17) oxy (K; ) > nxy, then axy (b) € Tange(ﬁj’w :

Note also that if b € Nx|7x then dxy (b) = oxy ().

Claim 21. For every X € S" and every Y € X 1 NS': oy [Ey] is
eventually contained in VGx.

NY
Note this will imply that Ux = U Nix and Uy = Uy cohere, since

i
Ey C VGy is a generating sequence for Uy and VGXYZS a generating

sequence of Ux

Proof. Pick any m}/ € By which is > nxy and such that o' [Fy — /{?]
is contained in Dx.

Ple any H € Fy above /4; . Suppose for a contradiction that /<;

By (16) there is some dX C 7' which witnesses that UX is not a
repeat measure (i.e. U%.X is the only measure on the NEX sequence which
concentrates on ay). Let ax := Ti‘xux(&x)' Then:

e K x has no measure concentrating on ay;
° li;.X € ax

By elementarity of oxy, Ky has no measure concentrating on ay :=
oxy(ax) (C /4;;/) Since K,j}./ € VGy, then UY is a repeat measure so

(recall Vj}./ = oK‘/(/@?) = oxy (0"¥ (1)) = oxy (11Y)):
(18) U;/ does not concentrate on ay

By (17), ay = dxy(ax) = oxy(ax) is an element of mnge( Yo
So W;/W (ay) = ay; also, since l'iz. € ax then Iij € ay. But then the

measure applied at stage j must have concentrated on ay, contradicting
(18). O(Claim 21)
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Define a filter W on PX (1) by:

z € W iff o' (2) € Ux for almost every X € S’ with
X

(19) z € X. (here Ux = Ui}fﬁx).

X
Note that if z € K N X then zx € Kx|7x, so zx € Ni;; so one of zx
or its complement is an element of Ux.

The proof that W defines an ultrafilter and is on K’s sequence is
exactly the same as the proof of Claims 18, 19, and 20. Now we just
need to see that T is a repeat measure. If not, there is some A € PX(p)
which uniquely identifies WW. Let B4 be the collection of £ < p such
that no K measure concentrates on ANE; then B4 € W. Pull this down
to some Nx so Ax € Ux and (Ba)x € Ux too; but by elementarity
of ox, (Ba)x is the collection of £ < px such that no Kx measure
concentrates on Ax N ¢&; since Ky and Ny agree below px, this is the
same as the collection of ¢ such that no Nx measure concentrates on
AX N f So:

(20) {€ < ux|No Ny measure concentrates on Ax N¢} € Uy

But Ax € Ux and Uy is a weak repeat measure in Ny, so there is
some U’ below Ux in Nx’s Mitchell order such that Ay € U’. Thus:
(21)

{€ < pux|There is an Ny measure which concentrates on AxN¢} € Ux

which contradicts (20).

6. FINAL REMARK

There is still a tremendous gap between a weak repeat measure and
the best known upper bound for the consistency of (w3, ws) — (wq,w1),
which is a huge cardinal (due to arguments of Kunen and Laver). The
known model obtained from a huge cardinal, however, also has a precip-
itous (in fact saturated) ideal on ws. Now (w3, ws) — (w2, w1) together
with a precipitous ideal on ws implies at least that there is an inner
model with a Woodin cardinal. This is because:

o (w3,wy) = (wq,w) implies that O, fails

e If there is a precipitous ideal on w, and no inner model with
a Woodin cardinal, then by a result of Schindler [11] the core
model K computes w; correctly. Since K has a L.y sequence,

this will then be a [,y sequence in V.

So it is natural to ask:
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Question. Is it possible, starting with significantly less than a huge
cardinal, to obtain a model of (w3, ws) — (wq,wr) which does not have
a precipitous ideal on wq?
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