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STORM is an ongoing European research project that aims at developing an integrated platform for monitoring, protecting, and
managing cultural heritage sites through technical and organizational innovation. Part of the scheduled preventive actions for
the protection of cultural heritage is the development of wireless acoustic sensor networks (WASNs) that will be used for
assessing the impact of human-generated activities as well as for monitoring potentially hazardous environmental phenomena.
Collected sound samples will be forwarded to a central server where they will be automatically classified in a hierarchical
manner; anthropogenic and environmental activity will be monitored, and stakeholders will be alarmed in the case of potential
malevolent behavior or natural phenomena like excess rainfall, fire, gale, high tides, and waves. Herein, we present an integrated
platform that includes sound sample denoising using wavelets, feature extraction from sound samples, Gaussian mixture
modeling of these features, and a powerful two-layer neural network for automatic classification. We contribute to previous
work by extending the proposed classification platform to perform low-level classification too, i.e., classify sounds to further
subclasses that include airplane, car, and pistol sounds for the anthropogenic sound class; bird, dog, and snake sounds for the
biophysical sound class; and fire, waterfall, and gale for the geophysical sound class. Classification results exhibit outstanding
classification accuracy in both high-level and low-level classification thus demonstrating the feasibility of the proposed approach.

1. Introduction

European countries display one of the richest cultural lega-
cies in the world. With millions of tourists drawn each year
to landmark cultural heritage sites, the economic and finan-
cial impact of European cultural heritage is considered to
be a priority for policymakers but also for the people of
Europe [1–4]. Therefore, the conservation of European cul-
tural heritage is critical in order to preserve the European
identity but also because cultural heritage may boost eco-
nomic impact. Alas, heritage sites are exposed to both
anthropogenic activity (noise, vandalism, and pollution)
and environmental phenomena or natural hazards that may
compromise their value. Therefore, preventive measures
need to be taken in order to mitigate the negative effects of
anthropogenic activity and climate change and preserve
cultural heritage artefacts and sites.

In this context, many European institutions have carried
out substantial work on preventive strategies aimed at pro-
tecting the EU cultural buildings and sites. One of the first
related projects, “Carta del Rischio” (“Risk Map”), was car-
ried out in Italy in the early 1990s and completed a long
and complex survey of territorial-based environmental and
human-caused risks in order to develop the first ever risk
map for cultural heritage across Italy [5]. Thereinafter, more
countries followed Italy’s example and created similar works.
An example is the HAR Programme (“Heritage at Risk”),
produced by the Historic England organization [6], which
resulted in two surveys at 1998 [former “Monuments At
Risk Survey (MARS) 1998”] and 2008, helping to establish
priorities for action and monument management. The
“Carta de Risco do Património Arquitectónico” produced
in Portugal by the Direcção-Geral dos Monumentos Nacio-
nais is a similar project but one that is specifically targeted
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to architectural monuments. The EMERIC programme in
Greece was a subproject of the CRINNO project for innova-
tive actions in the island of Crete and included an activity for
the tectonic and seismic risk assessment of the historical
centers of the main cities of Crete [7]. Finally, the PROHI-
TECH project investigated a series of available and novel
technologies for the protection of historical buildings against
earthquakes and other threats in the Mediterranean and
Balkan areas [8].

Our work is part of a larger project (“STORM”) that aims
in developing a complete platform of technical and mana-
gerial resources for cultural heritage sites’ safeguarding [4].
STORM will build upon previous work and combine
upgraded legacy sensor systems with novel sensing technolo-
gies, like wireless acoustic sensor networks (WASNs), in
order to provide a novel framework over which to determine
how vulnerable structures are affected by risks associated to
climatic conditions and anthropogenic activity. Part of the
protective mechanisms is the implementation of a WASN
platform that will monitor and continuously store sound
samples originating from acoustic nodes’ surroundings.
The collected samples may correspond to environmental
sounds regarding natural phenomena or human actions.
The WASN-captured data will be transmitted to a central
server to populate sound maps and create a database with
history of the occurred events, thus alarming stakeholders
in cases of potentially malevolent or hazardous events.
Herein, we designate as high-level sound classification the
act of classifying a sound sample to three classes, namely,
anthropogenic, biophysical (other than human), and geophys-
ical sound classes [9, 10]. We further contribute to previous
work by extending the proposed classification platform to
perform low-level classification too, that is, classify sounds
to further subclasses that include airplane, car, and pistol
sounds for the anthropogenic sound class; bird, dog, and
snake sounds for the biophysical sound class; and fire,
waterfall, and gale for the geophysical sound class. We
examine two different approaches regarding second-level
classification. The first approach is to directly classify each
sound sample to one of the nine available classes. The other
approach is to first classify each sound sample at high level
and then perform classification in a smaller set of available
classes depending on the high-level classification result. We
report results that indicate the latter method to perform
better. Furthermore, we present an integrated platform
that includes sound sample denoising using wavelets, fea-
ture extraction from sound samples, and Gaussian mix-
ture modeling of these features, as well as the proposed
two-layer neural network classifier for the automated classifi-
cation of incoming sound samples. Numerical results exhibit
satisfactory classification accuracy in both high-level and
low-level classification levels, thus demonstrating the feasi-
bility of the proposed approach.

The rest of the paper is organized as follows: First, a short
literature review of recent sound classification approaches is
given in Section 2, providing a justification of the classifica-
tion approach followed thereinafter. The proposed classifica-
tion platform is described in Section 3 along with the
necessary definition of the employed signal processing tools.

The simulation results are presented in Section 4, and the
conclusions are summarized in Section 5.

2. Sound Classification Approaches

In the literature, sound classification is performed using
carefully selected sound features that feed a classifier tool
like a neural network. The selection of sound features
directly affects the performance of the classification proce-
dure and is a demanding task since recorded sounds are
typically nonstationary signals while there is also a super-
imposed background “noise” that originates from natural
ambient sounds. Furthermore, sound events are overlapping
in space and time and signals originating from neighboring
sensors are typically highly correlated [11]. A variety of
sound features have been proposed in the literature in order
to perform environmental sound monitoring. These features
may be either related to the time-domain representation of
the signal, for example, zero-crossing rate (ZCR), linear pre-
diction coefficients (LPC), audio signal energy function, and
volume, or to the frequency-domain representation, for
example, pitch, bandwidth, fundamental frequency, spectral
peak track, brightness, mel-frequency cepstral coefficients
(MFCC), and short Fourier transform coefficients. There
are also many statistical features like the variance, skew-
ness, kurtosis, median, and mean value, as well as various
complexity measures (entropies, information) of the signal
[12–17]. Other spectral features used in the literature include
the 4Hz modulation energy, percentage of low frames, spec-
tral centroid, spectral roll-off point, spectral frequency,
mean frequency, and high and low energy slopes [18–21].
Furthermore, automatic identification is necessary in order
to monitor large areas of interest while keeping the operating
costs low. Straightforwardly, researchers start up by deploy-
ing a network of wireless microphone sensors (WASN) over
a large area that capture and transmit environmental sound
data samples to a central server. These samples are parti-
tioned into frames and are being processed in order to iden-
tify the sound source that created them [11, 17, 22]. Most
often, soundmaps are created in order to visualize the audio
content of large areas, as for example in [23].

Although spectral features are useful in audio classifica-
tion, they do not provide any information about the temporal
evolution of the signal. Therefore, spectral features alone
are not enough to represent environmental audio signals
that are highly nonstationary in nature. Time-frequency
(TF) features have been introduced in order to capture
the temporal variation of the spectra of such signals. TF
features are effective for revealing nonstationary signal
aspects such as trends, discontinuities, and repeating pat-
terns. The usual approach is to extract spectral features for
each frame, allowing a certain percentage of overlap between
adjacent frames, to produce one of the well-known TF
representations like spectrograms, scalograms, or different
representations belonging to Cohen’s class. However, this
approach results in huge feature spaces. Different solutions
for the reduction of the resulting data have been proposed.
For example, spectrum flux, defined as the average variation
value of spectrum between two adjacent frames, can be used.
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An effective proposed solution is to use Gaussian mixture
models (GMMs) to estimate the probability distribution
function of spectral features over all frames. On the other
hand, Ghoraani and Krishnan proposed to construct a so-
called time-frequency matrix (TFM) of audio signals using
a matching pursuit time-frequency distribution technique
[18]. Chu et al. also used matching pursuit but with Gabor
atom signal representation in order to obtain effective TF fea-
tures [13]. We consider that the last two approaches impose a
prohibitive processing cost (at the embedded level) for
our distributed sensor nodes and propose to replace
matching pursuit and time-frequency features with proba-
bility distribution fitting of temporally varied frequency
features (in essence a 1D GMM as it will be explained in
detail in the following subsections). After careful consider-
ation and overview of the available literature, we chose to
use the following features in our platform: zero-crossing rate,
pitch, bandwidth, MFCCs, spectrogram coefficients, and a
variety of statistical features, namely, different complexity
measures (Shannon, Tsallis, wavelet, and permutation entro-
pies). In order to capture the temporal variation of spectral
features, we calculated the GMM of each one of them. Our
goals for this selection of features were to keep a high level
of performance and robustness together with ease of imple-
mentation and low complexity level. Numerical results that
are presented in Section 4 of this work justify this approach.

The sound classification task is based on the assumption
that every sound source exhibits a specific pattern of distrib-
uting its energy over frequency and time. A successful sound
classifier should be able to categorize sounds that belong to
nonconvex classes of the feature space. Sound classifiers
broadly fall under two varieties: discriminative and nondiscri-
minative. Examples of the former include the k-means classi-
fier, the polynomial classifier, the multilayer perceptron
(neural network), and the support vector machines; such
classifiers try to designate a boundary among training data
input and match its test input to a specific data class. On
the other hand, nondiscriminative classifiers like the hidden
Markov model (HMM) attempt to model the underlying dis-
tribution of the training data [15, 24, 25]. For the proposed
classification platform of the STORM project, we selected to
use a generic discriminative classifier, that is, a neural net-
work (NN), since NNs are well-known classifiers that have
been extensively used for signal and audio classification pur-
poses. Even though the ANN training needs a high process-
ing power, we assume this to be made available by a central
processing server while GMM modeling is adopted at a sen-
sor node level to keep transmission data volume, from sensor
node to server, to a minimum.

As long as the specific classes of sounds to be identified
are concerned, the available literature is specifically oriented
to sound classification for the purposes of environmental
monitoring. For example, often we are not interested in iden-
tifying a specific bird species or subspecies but rather identify
whether or not birds are present at a specific point of an area.
The first level of identification hierarchy consists in identify-
ing the general sound type, for example, whether it originates
from human (anthropogenic) or animal (biogenerated other
than human) activity or whether it is an ambient natural

sound (e.g., waterfall and fire). This categorization is very
popular in the respective literature [26–28]. The second level
of identification hierarchy consists in further identifying for
each sound type a more focused sound origin; for example,
whether an animal activity is actually a bird, a snake, or,
say, a dog. Deeper levels of identification hierarchy can also
be defined where for each next hierarchy step an even nar-
rower and more specific sound class is defined. In this con-
text, a first approach could be to directly detect the second-
level sound class. However, we propose to use a two-step
approach, where the sound is firstly broadly classified as
anthropogenic, animal, or natural ambient, and then it is fur-
ther classified in a more detailed manner. Numerical results
(see Section 4) indicate that this approach delivers much
higher performance compared to direct second-level (one-
step) sound classification.

Finally, it is worthwhile noting that wavelet analysis has
also been used in environmental monitoring for audio signal
analysis or signal denoising [25]; herein, we selected to
employ wavelet for signal denoising where necessary.

In the following sections, we discuss the proposed sound
classification platform approach and present numerical
results that demonstrate its applicability in terms of high
achieved performance and robust sound classification results.

3. Classification Platform Overview

An overview of the proposed classification platform, together
with a discussion on its main components and their intercon-
nectivity, is included in the subsections below.

3.1. General Presentation of the Proposed Platform. The
functionality of the proposed platform is illustrated by
the flowchart depicted in Figure 1. Every time a sound sig-
nal is fed to the platform, there is a decision as to whether
the signal will be subject to denoising via wavelet analysis
(decomposition and reconstruction) or not. Afterwards,
the selected signal features are calculated either for the recon-
structed or for the original signal. The features list includes
the zero-crossing rate, the pitch, the bandwidth, the MFCCs,
the spectrogram coefficients, and a variety of complexity
measures including the Shannon, Tsallis, wavelet, and per-
mutation entropies. The zero-crossing rate, the pitch, the
bandwidth, and the entropies are scalar features and there-
fore very efficient in terms of computational cost during clas-
sification. On the contrary, the MFCCs and the spectrogram
coefficients are TF and thus multidimensional features. More
specifically, the signal sample is partitioned into frames and
the MFCCs and spectrogram coefficients are calculated for
each particular frame. Thereupon, if for example we employ
13 MFCCs and 16 spectrogram coefficients (a popular choice
in the literature) for each frame, and a signal is split into 2048
frames (also, a not uncommon case), then we need 2048 vec-
tors of 29 dimensions each (i.e., 59,392 elements); this is a
huge number of elements to be used as classifier input. The
approach adopted herein as a solution to this problem is to
perform a statistical fit of spectral features to a sum of Gauss-
ian probability distribution functions (PDFs) that are fully
characterized by only their mean and standard deviation
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values; this results to a dramatic reduction of the feature
space dimensionality.

Then, a decision is made as to whether sound classifica-
tion is going to be implemented as a two-step or one-step
procedure. In the former case, the sound is first classified to
a broad sound category or high-level hierarchy (anthropo-
genic, ambient natural sound, or animal-originated sound)
and then further classified to a more specific class. In
the latter case, the sound is directly classified to the more
specific class in a one-step procedure. In particular, for the
numerical results presented herein, we have used samples
from the following sound subclasses: (i) anthropogenic:
samples of airplanes’, cars’, and pistols’ sounds; (ii) ambient
natural sounds: samples of waterfall, gale, and fire sounds;
and (iii) animal-originated sounds: samples of crows’, dogs
barking, and snakes rattling sounds.

As an example of neural network implementation, con-
sider the high-level classification case. All calculated features
are fed to a properly configured NN, as shown in Figure 2.
We consider only feedforward artificial neural networks
(FANNs) with the training function being an error backpro-
pagation variant. The input layer of the network is used for
data entry and weighting. The weights that multiply each
data entry are subject to the network’s training that is per-
formed off-line and prior to classification. The weighted
input features are then forwarded to an intermediate layer
of neurons. The middle layer’s number of nodes is tuned
around the empirical rule-of-thumb value of one and a
half times the number of input layer nodes. These neurons
sum up all the weighted features and, essentially, configure
all possible convex classes of data in the feature space. The
output of the intermediate layer is then forwarded to three
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Figure 1: Proposed sound classification platform functionality.
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Figure 2: Neural network classifier for high-level sound classification.
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output neurons. These neurons at the output layer are
essentially combining convex classes in order to configure
nonconvex classes to classify the input data. Each output is
taking a value of “+1” or “−1” that corresponds to “true”
or “false” state, respectively.

It is worthwhile noting that 2nd-level classification is
implemented in a straightforward manner similar to the pro-
cedure described in Figure 2. More specifically, in the second
step there are three NNs, namely, the “anthropogenic sounds
NN,” the “animal sounds NN,” and the “geophysical sounds
NN”; each one of them is activated only when the respective
output of the NN in Figure 2 is true and is fed by the same
inputs as the NN of Figure 2. The anthropogenic sounds
NN has three output classes, namely, airplanes, cars, and pis-
tols; the animal sounds NN has the birds, dogs, and snakes
output classes; finally, the geophysical sounds NN has the
gale, rain, and waterfall output classes. This way, at the first
step the general class is designated while at the second step
the specific subclass of the input sound is identified. On the
other hand, as long as one-step second-level classification is
considered, there is only one NNwith input and intermediate
layer similar to that of Figure 2; however, in the specific case
there are nine output nodes (i.e., nodes for each one of the
subclasses of airplanes, cars, pistols, birds, dogs, snakes, gale,
rain, and waterfall) and classification to subclasses is per-
formed by one NN only. Both these cases are not presented
using a figure for the sake of brevity.

Finally, postclassification performance results are derived
in order to evaluate the applicability of our approach. For
each feature’s combination mentioned, above we imple-
mented one hundred NNs in order to capture the statistical
behavior of node weight assignment during training. For
each sound sample and network implementation, we store
the confusion matrix and the percentage of correct classifica-
tions. The performance of the network is thus evaluated by
performance metrics of independent (total correct classifica-
tions) as well as dependent (percentage of correct classifica-
tions given that a particular sound type is loaded) random
variable results.

3.2. Definition of Features

3.2.1. Zero-Crossing Rate. For discrete time signals, a zero-
crossing is said to occur if successive samples have different
signs [14]. The zero-crossing rate (ZCR) is defined as

ZCR = 1
2 N − 1

〠
N

n=2
sgn s n − sgn s n − 1 , 1

where n is the discrete time index, N is the total number
of time slots, s n is the signal value at time index n, and
sgn x is the sign function given by

sgn x =
1, s x ≥ 0

−1, s x < 0
2

3.2.2. Pitch. Pitch is a perceptual feature of the audio signal
that depends on the fundamental frequency of the audio
waveform. Pitch information can be extracted by using

either temporal or frequency analysis. The temporal analysis
method is based on the computation of the autocorrelation
function or the average magnitude difference function, while
with the frequency analysis method the pitch is determined
from the periodic structure in the magnitude spectrum of
the Fourier transform of an audio frame. The autocorrelation
function of a signal is given by

Rn i = 〠
N−i

n=1
s n ⋅ s n + i , 3

where i is the shift. A simple way to calculate the pitch is to
estimate imax that maximizes Rn i (i.e., Rn imax ≥ Rn i );
the pitch will then be equal to 1/imax ⋅ dt where dt is the
length of each time slot.

3.2.3. Spectrogram Coefficients. The spectrogram coefficients
of a discrete time signal s n are essentially the components
of the discrete Fourier transform of the signal; the spectrum
of such a signal is given by

F f = DFT s n , 4

where DFT s n is the discrete Fourier transform of the sig-
nal s n . The spectrogram is the evolution of the spectrogram
coefficients over time and is a TF feature of the signal.

3.2.4. MFCCs. Mel-frequency cepstral coefficients (MFCCs)
are very popular in speech/speaker feature extraction and
aim at representing the hearing properties of the human ear
by using a nonlinear scale of frequencies (i.e., the “mel-
frequency” in mel units versus the conventional frequency
i.e. measured in Hz) More specifically, the output of the
human ear (i.e., output to the auditory processing cells of
the human brain) is the convolution of the excitation signal
(i.e., the sound under investigation) and the vocal tract
filter. The mel transform essentially transforms the spectral
coefficients of the sound signal to the mel-frequency
domain; then, the cepstral coefficients (as opposed to the
spectral coefficients) of the mel-frequency signal components
are calculated.

An example of mel transformation is given by

M f =
f , 0 ≤ f ≤ 1 kHz

1127 ⋅ ln 1 +
f

700
, 1 kHz < f

, 5

while an example of a cepstral function calculation formula is
given by (the cepstral function is the real cepstrum as
opposed to the spectral function i.e. the real spectrum of
the signal)

c τ = IDTFT S M , 6

where IDTFT S M is the inverse discrete-time Fourier
transform of the cepstrum magnitude; S(M) is the cep-
strum magnitude of the discrete time signal s n (i.e., in
the mel-frequency domain).

MFCCs, like the spectrogram coefficients, are calculated
for each particular frame, and their evolution over time is
in essence a TF feature.
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3.2.5. Complexity Measures. There is a wide variety of signal
complexity metrics, including different kinds of entropic/
information measures. We focus on different entropies that
have recently been investigated as to their “insensitiveness”
to specific signal compression schemes. As it has recently
been shown [17], the precision of specific entropic/informa-
tion metrics remains reasonably unchanged by certain com-
pression schemes in the sense that the numerical values
obtained for these metrics when applied to a compressed sig-
nal are very close to the corresponding ones that are obtained
when applied to the specific signal in its unprocessed form. In
the present paper, we used the Shannon, Tsallis, wavelet, and
permutation entropies, the basic formulae of which are pre-
sented in the following.

Let sk = s tk be a discrete measured variable, with tk =
kT , k = 1, 2,… , K , and T being the sampling period. One
can then define a set of N disjoint but adjacent intervals
(bins) spanning the observed range of values of the
time-series sk , denoted as xn , n = 1, 2,… ,N . Let also
P = p x1 , p x2 ,… , p xN be a finite discrete probability
distribution, with ∑N

n=1p xn = 1, which describes the prob-
abilities for the samples of the time-series to belong to
each one of these N bins; the probability for a sample of
the time-series to belong to the nth bin can be denoted
as p xn . The informational content of the normalized
probability distribution P is given by Shannon’s information
measure as [29]

Hsh = −Ksh 〠
N

i=1
p xi log p xi , 7

where Ksh is a positive constant (it merely amounts to a
choice of a unit of measure; however, it is usually set equal
to 1). The choice of a logarithmic base corresponds to the
choice of a unit for measuring information [29].Hsh has been
forwarded by Shannon as a measure of information, choice,
and uncertainty. The decrease in Shannon entropy is attrib-
uted to an increase in the information content and order
and, equivalently, to a decrease in complexity. Shannon
entropy is recognized as a basic tool for the description of
the information, behavior, and complexity of physical, socio-
logical, economic, technological, and so on, systems and their
observables, like time-series of measurable quantities that
characterize them.

Another statistical representation of a time-series results
from the probabilistic analysis of its spectrum. In this
approach, instead of analyzing a time-series in terms of the
probability of occurrence of its amplitude values, as in the
case of Shannon entropy, a time-series is analyzed in terms
of the distribution of its energy to frequencies or scales. The
Shannon-like total wavelet entropy, or wavelet energy
entropy, is defined in this context by [30]

HWT = −〠
j<1
pjln pj, 8

where pj = Ej/Etot expresses the probability distribution of
the energy at different scales of the wavelet spectrum of
a signal as it results after the application of the continuous

wavelet transform (CWT) on it; it holds that ∑ jpj = 1 and
the distribution pj can be considered as a time-scale

density [30]. Note that the energy at resolution j is Ej =
∑k Cj,k

2, while the total energy is Etot =∑−1
j=−N∑k Cj,k

2,

and the signal is considered to be expanded as y t =
∑−1

j=−N∑kCj,kψj,k t , where j = −1, −2,… , −N is the number
of resolution levels, corresponding to octave scales [30]. Like
the other entropies, wavelet entropy decreases as a result of
complexity decrease and order increase.

Symbolic dynamics refers to the mapping of the observ-
ables of a complex system (the real values of a time-series)
to a sequence of symbols attempting to access useful infor-
mation ([31] and references therein). The entropic analysis
within the context of symbolic dynamics examines the prob-
abilities of appearance of these symbols rather than the prob-
abilities of appearance of the actual real values of the original
time-series, thus providing a different kind of statistical rep-
resentation of the system under analysis. Recently, a new
form of symbolic mapping and a corresponding complexity
metric has been proposed in the form of permutation
entropy (PE) [32]. According to this approach, a time-
series is first embedded to am-dimensional space by building
vectors Yk, each of which contains m values of the original
time-series such that every two neighboring vector elements
have a time distance equal to L in the original time-series.
For every vector Yk, its m real values are then arranged in
an increasing order. This way, each vector Yk is uniquely
mapped onto a new vector π = j1, j2,… , jm , where π is
one of m possible permutations of the vector of indices of
Yk’s elements 1, 2,… ,m . If each of the m permutations is
considered as a symbol, then the procedure allows the map-
ping of the original continuous time-series to a symbolic
sequence [33]. The relative frequency of appearance of each
possible permutation π in the time-series, as obtained during
the sorting process of all vectors Yk, is denoted as [34]

p π =
the number of π permutations found

K − m − 1 L
, 9

while PE is defined according to the Shannon entropy way as

Hm = −〠p π ln p π , 10

where the sum runs over allm permutations of orderm [33].
PE is a measure of regularity in the time-series. When the
time-series is so irregular that all m possible permutations
appear with the same probability p π = 1/m (completely
random), then Hm reaches the maximum value ln m . On
the other hand, with increasing regularity, that is, reduced
complexity, Hm decreases. For convenience, we usually
employ the normalized permutation entropy, by normalizing
Hm by ln m to handle entropy values in the interval 0, 1 .

Long-range spatial interactions or long-range memory
effects may be observed in a vast variety of complex systems
influencing their behavior. A very interesting class of such
systems is formed by those characterized by nonextensive
statistics. These systems share a very subtle property: they
violate the main hypothesis of Boltzmann-Gibbs (B-G)
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statistics, that is, ergodicity. Inspired by multifractal con-
cepts, Tsallis [35, 36] has proposed a generalization of the
B-G statistical mechanics that covers systems that violate
ergodicity, that is, systems of the microscopic configurations
which cannot be considered as (nearly) independent. This
generalization is based on nonadditive entropies, Sq, charac-
terized by an index q which leads to a nonextensive statistics
[36] as in

Sq = k
1

q − 1
1 − 〠

N

i=1
p xi

q , 11

where p xi are the probabilities associated with the value
bins xi, as was previously defined for the Shannon entropy
case, N is their total number, q is a real number, and k is
Boltzmann’s constant. The value of q is a measure of the
nonextensivity of the system. Notice that in the limit
where q→ 1, nonextensive statistics converges to the stan-
dard, extensive, B-G statistics [35]. Note that the parameter
q itself is not a measure of the complexity of the system but
measures the degree of nonextensivity of the system. The
value of q represents the strength of the long-range correla-
tions governing the dynamics of the system [37]. The cases
q > 1 and q < 1 correspond to subextensivity or superexten-
sivity, respectively. On the other hand, the time variations
of the Tsallis entropy, Sq, for a given q quantify the dynamic
changes of the complexity of the system. Lower Sq values
characterize signals with lower complexity.

3.3. Wavelet Denoising. Denoising refers to processing a
noisy signal aiming at the reduction of unwanted noise in
such a way that this reduction is as high as possible while at
the same time the useful signal is distorted as less as possible.
One way to reduce the noise contaminating a signal is to
decompose the noisy signal into a number of decomposition
levels using the discrete wavelet transform (DWT) and an
appropriate orthogonal wavelet basis [38] and then to recon-
struct it using only the components that correlate to the use-
ful signal. This is possible by (hard or soft) thresholding that
reduces those components’ coefficients that correspond to
noise [39].

Both the decomposition and the reconstruction processes
were performed usingMallat’s fast algorithm [38]. According
to this algorithm, a hierarchical multiresolution analysis of
the signal is performed by using a set of consecutive low-
and high-pass filters followed by a decimation; the outputs
of these filters are usually referred to as the approximation
coefficients and the detail coefficients, respectively. At each
level of decomposition, the output of the low-pass filter of
the previous level of decomposition (or the original signal
for the first level) is fed to a new pair of low- and high-pass
filters, the frequency band of which is the half of those of
the previous level. As such, the output of each filter can
be decimated (downsampled) by a factor of 2. Using this
hierarchical approach results in a good time resolution at
high frequencies (low scales) and good frequency resolution
at low frequencies (high scales).

3.4. Definition of GMM. A mixture model is used in statistics
in order to represent the presence of data subpopulations
within an overall population without the need to identify
such subpopulations explicitly. We are using Gaussian mix-
ture models in order to statistically fit MFCC and spectro-
gram coefficient evolution over time to a PDF. A Gaussian
mixture model (GMM) essentially dictates that the empirical
PDFs of these coefficients are the weighted sum of Gaussian
PDFs of different mean values and standard deviations.
In the proposed platform, the user selects the number of
Gaussian PDFs to configure the GMM, and the expecta-
tion maximization algorithm is used in order to calculate
their parameters.

The PDF of a GMM is defined by

p x = 〠
G

i=1
wig mi, σi , 12

where G is the total number of Gaussian PDFs participat-
ing in the GMM, wι is the weight of the ith Gaussian
PDF, and g mi, σi is a Gaussian PDF of mean mι and
standard deviation σι.

It is worthwhile noting that, after multiple statistical fits
of the empirical data to GMMs, we decided to abandon the
GMM in favor of a simple Gaussian fit since the latter per-
forms comparably with the former with respect to classifica-
tion while being much less computationally intensive.

4. Numerical Results

In this section, we present numerical results on the perfor-
mance of the proposed classification platform for several
test configurations. We first examine the fundamental
first-level classification and assess the performance of the
proposed sound features in order to focus on the most
high-performing and robust among them. Then, we present
results on second-level classification and compare one-step
versus two-step implementations.

For the numerical results presented herein, we have used
feedforward artificial neural networks with one intermediate
hidden layer. The neural network training and performance
metric functions are a scaled conjugate backpropagation var-
iant and a mean-square error function, respectively, while the
output threshold function is a sigmoid function. The inter-
mediate hidden neuron layer has a varying size according
to the number of features used for classification. In the case
where scalar features only are used, the number of features
is 12 and the number of hidden nodes is 18, while in the case
of MFCCs and spectrogram coefficients, the respective fig-
ures take a value of 26 features and 42 nodes in the one hand
and 64 features and 85 nodes in the other hand, respectively.
Furthermore, combinations of features were also used. For
the scalar features and MFCC combination, there were 38
features and 40 nodes; for the scalar features and spectro-
gram coefficients, there were 76 features and 75 nodes; for
the MFCCs and spectrogram coefficient combination, there
were 90 features and 65 nodes; and, finally, for the scalar fea-
tures plus MFCCs plus spectrogram coefficient combination,
there were 102 features and 140 nodes. It is worthwhile
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noting that the number of hidden layer nodes was optimized
after an exhaustive series of trial runs for varying numbers of
hidden nodes.

4.1. Neural Network Performance with Selected Features
Input: First-Level Classification. Numerical results obtained
using three different classes, namely, anthropogenic, geo-
physical, and animal sounds, are presented in this subsection.
Each of these classes was populated with sounds of three dif-
ferent subclasses. More specifically, we used airplane, car,
and pistol sounds for the anthropogenic class; gale, waterfall,
and fire sounds for the geophysical class; and dog, snake, and
crow sounds for the animal sounds. For each subclass, we
used a number of 15 different sample recordings of the spe-
cific sound type that were extracted from the “505 Digital
Sound Effects” audio database [40].

From the list of available features, there exists a set of fea-
tures (zero-crossing rate, pitch, and entropies) that are scalar
and computationally light. Therefore, we group these fea-
tures together under the label of “scalar features.” On the
other hand, as long as the MFCCs are concerned, we selected
to use a set of 13 time-varying MFCCs for each sound sample
and a simple GMM model for each one of them; this results
to a set of 26 scalar feature inputs to be fed to the ANN (13
MFCCs; one mean and one standard deviation parameter
for each one of them, thereupon a total of 26 scalar parame-
ters). Similarly, we used 13 spectrogram coefficients with
simple GMMmodeling resulting to another 26 scalar feature
inputs. Thereupon, it makes sense to partition the proposed
features to three subsets (ZCR-pitch-entropies/MFCCs with
GMMmodeling/spectrogram coefficients with GMMmodel-
ing) and compare their performance. The results for the aver-
age and standard deviation of correct classifications are
tabulated in Table 1. In the case where only the scalar features
are used, the achieved accuracy is 98%; this figure is satisfac-
torily high and directly comparable (higher) to the respective
figures of using scalar features in combination with either
MFCCs, spectrograms, or both (see Table 1). Also, the

respective standard deviation of accuracy is 8.69%, which is
the smallest in Table 1.

Furthermore, confusion matrices are an information-rich
and concise way to demonstrate the performance of a classi-
fication technique. Confusion matrices demonstrate the per-
formance of a classification platform by illustrating the
correct and incorrect classification results of all input sam-
ples while also illustrating the nature of the latter by depicting
the type of incorrect classifications. Table 2 depicts a confu-
sion matrix that demonstrates the performance of the pro-
posed platform using only scalar features; it demonstrates
that the overall classification accuracy is exceptional with a
small number of classification errors that originate mostly
from mistakenly classifying anthropogenic sound samples
to the geophysical class.

4.2. Second-Level Classification of Sounds into Specific
Subclasses: One-Step versus Two-Step Implementation. In this
subsection, we demonstrate the performance of the proposed
platform in the more demanding problem of second-level
classification, that is, classifying sounds into more specific
subclasses. Table 3 lists the performance of one-step second-
level classification accuracy achieved by the proposed plat-
form in various combinations of the aforementioned fea-
tures. One-step second-level classification means that the
classification of a sound sample into a specific subclass is per-
formed directly by the neural network, that is, the network
has 9 outputs and is directly fed with the signal features.
The performance metrics include the average correct classifi-
cations and the respective standard deviation.

On the other hand, two-step second-level classification
means that the classification into specific subclasses is per-
formed in two steps. First, a sound is classified to a generic
class using a 3-output neural network, as indicated in
Figure 2. Then, according to the result of this first-level clas-
sification, the sound is fed to one of three subsequent neural
networks each of which is optimized for classifying sounds of
either anthropogenic, animal, or natural origin. The accuracy

Table 1: Summary of classification performance of neural network with selected features: one-level classification.

Scalar
features

MFCCs
Spectrogram
coefficients

Scalar
feature +
MFCCs

Scalar features +
spectrogram
coefficients

MFCCs +
spectrogram
coefficients

Scalar features +
MFCCs +
spectrogram
coefficients

Average correct classifications 98.00% 91.06% 88.27% 97.42% 97.57% 91.82% 96.85%

Standard deviation of correct
classifications

8.79% 14.30% 16.20% 9.90% 8.91% 16.61% 9.76%

Number of features/hidden
layer nodes

12/18 26/42 64/85 38/40 76/75 90/65 102/140

Table 2: Confusion matrix of classification results using scalar features only.

Geophysical samples to: Animal samples to: Anthropogenic samples to: Correctly classified samples

Geophysical class 4446 123 92 4446

Animal class 0 5062 0 5062

Anthropogenic class 54 15 4408 4408

Total samples 4500 5200 4500 13,916/14,200 = 98.00%
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of each secondary network corresponds to the percent of cor-
rect second-level classification given that first-level classifica-
tion is correct. These results are tabulated in Table 4. It is
interesting to point out that both Tables 3 and 4 confirm that
a balanced choice of features for reasonably good classifica-
tion accuracy and reduced complexity is either to use the sca-
lar features only or to use the scalar features in combination
with MFCCs. Another interesting result is that second-level
classification in two steps exhibits much higher accuracy of
classification compared to one-step implementation.

Figure 3 demonstrates the comparative results of clas-
sification accuracy to the second level of hierarchy using
either one-step or two-step implementation. It is interest-
ing to point out that the accuracy achieved in the latter
case is much higher compared to the former, for all types of
features that were used (scalar, MFCCs, spectrogram coeffi-
cients, and combinations among them). Furthermore, the
standard deviation of results in the two-step implementation

case is much lower compared to the one-step implementa-
tion case; this implies that two-step implementation is
more robust in terms of achieved accuracy compared to
one-step implementation.

4.3. Confusion Matrices of First- and Second-Level
Classification with Selected Features. Since scalar features
are the most computationally effective yet yield satisfactorily
accurate results, we consider the case of using only scalar fea-
tures in order to combine both low computational cost and
good enough accuracy. The computational effectiveness of
using scalar features only is pointed out by the facts that (i)
scalar features are easiest to calculate among all proposed fea-
tures and (ii) the resulting neural network is fed with the
minimum number of features and therefore exhibits the min-
imum number of hidden layer nodes. We also considered the
case of scalar features combined with MFCCs (not presented
herein) since the latter are the feature of choice most widely

Table 3: Summary of classification performance of neural network with selected features: second-level classification, one-step
Implementation.

Scalar
features

MFCCs
Spectrogram
coefficients

Scalar
features +
MFCCs

Scalar features +
spectrogram
coefficients

MFCCs +
spectrogram
coefficients

Scalar features +
MFCCs + spectrogram

coefficients

Average correct
classifications

80.07% 79.55% 66.99% 85.34% 85.67% 75.77% 85.98%

Standard deviation of
correct classifications

26.45% 23.77% 26.00% 23.38% 21.69% 23.42% 22.74%

Number of features/
hidden layer nodes

12/24 26/40 64/95 38/60 76/110 90/100 102/140

Table 4: Summary of classification performance of neural network with selected features: second-level classification, two-step
implementation.

Scalar
features

MFCCs
Spectrogram
coefficients

Scalar
features +
MFCCs

Scalar features +
spectrogram
coefficients

MFCCs +
spectrogram
coefficients

Scalar features +
MFCCs +
spectrogram
coefficients

Average correct
classifications

94.33% 87.80% 80.69% 96.73% 94.27% 86.99% 94.27%

Standard deviation of
correct classifications

14.98% 11.12% 27.56% 16.96% 19.64% 26.92% 19.94%

Number of features/hidden
layer nodes

12/18/18 26/42/40 64/85/100 38/40/70 76/75/140 90/65/135 102/140/150

(a)
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Two step std.

0.00
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Figure 3: Comparison of second-level classification hierarchy results using one-step and two-step implementations.
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used in the literature; however, numerical results demon-
strated that using only scalar features is computationally
much lighter and yields results that are comparable to those
obtained by MFCCs or a combination of the two.

Confusion matrices are included in Tables 5–8, demon-
strating the performance of the proposed platform using only
scalar features. The network runs at these tables are different
to the ones corresponding to the tables presented in Subsec-
tions 3.1 and 3.2. Table 5 illustrates the confusion matrix in
the case of second-level classification in one step, that is, with
one NN only with 9 outputs. The table clearly demonstrates

the error sources in the various subclasses. It is evident that
the main source of errors in one-step classification is due to
sounds mistakenly classified as airplanes.

Tables 6–8 illustrate the results of second-level classifica-
tion in two-step implementation. For example, Table 6 dis-
plays the confusion matrix in the case of anthropogenic
sounds. Assuming that an anthropogenic sound has already
been correctly classified as such in the first step, Table 6 dem-
onstrates the results of the second step only. This means that
in order to calculate the overall accuracy of second-level
classification with two-step implementation, we need to

Table 5: Second-level classification, one-step implementation, and scalar features only-confusion matrix.

Airplane
samples
classified

to:

Car
samples
classified

to:

Pistol
samples
classified

to:

Crow
samples
classified

to:

Dog
samples
classified

to:

Snake
samples
classified

to:

Fire
samples
classified

to:

Gale
samples
classified

to:

Waterfall
samples

classified to:

Correctly
classified
samples

Airplane 1444 330 495 373 414 363 359 513 294 1444

Car 11 1125 0 0 0 0 1 2 15 1125

Pistol 0 0 990 0 0 0 0 13 0 990

Crow 0 0 0 1309 0 0 0 1 0 1309

Dog 5 15 0 3 1586 13 0 2 0 1586

Snake
rattle

0 0 0 0 0 1123 0 0 0 1123

Fire 3 15 0 0 0 0 1125 0 0 1125

Gale 24 0 0 1 0 0 0 965 0 965

Waterfall 13 15 15 14 0 1 15 4 1191 1191

Total
samples

1500 1500 1500 1700 2000 1500 1500 1500 1500
10,858/

14,200 = 76.46%

Table 6: Second-level classification, two-step implementation, and scalar features only-confusion matrix results for second step classification
of anthropogenic sounds to subclasses.

Airplane samples
classified to:

Car samples
classified to:

Pistol samples
classified to:

Correctly
classified samples

Airplane 1485 30 30 1485

Car 4 1470 0 1470

Pistol 11 0 1470 1470

Total samples 1500 1500 1500 4425/4500 = 98.33%

Probability of correct classification of anthropogenic sounds
during the first step (Table 2, row 3, column 3)

4408/4500 = 97.96%

Total accuracy of two-step classification for anthropogenic Sounds 96.32%

Table 7: Second-level classification, two-step implementation, and scalar features only-confusion matrix results for second-step classification
of animal sounds to subclasses.

Crow samples
classified to:

Dog samples
classified to:

Snake rattle samples
classified to:

Correctly
classified samples

Crow 1683 1 16 1683

Dog 17 1999 45 1999

Snake rattle 0 0 1439 1439

Total samples 1700 2000 1500 5121/5200 = 98.48%

Probability of correct classification of animal sounds
during the first step (Table 2, row 2, column 2)

5062/5200 = 97.96%

Total accuracy of two-step classification for animal sounds 96.47%
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multiply any given probability with the probability that an
anthropogenic sound is correctly classified during the first
step. The latter probability can be found by dividing the
number of correctly classified anthropogenic sound samples
to the total number of anthropogenic sound samples. These
numbers are equal to 4408 and 4500 respective (row 3,
column 3 of Table 2). Similar calculations are also included
in Tables 7 and 8.

Table 6 demonstrates that the main source of errors in
the case of anthropogenic sounds and two-step implementa-
tion is the classification of different sounds to the airplane
class. This result agrees with the results tabulated in
Table 5. Furthermore, Table 7 demonstrates that a similar
trend is present in the case of animal sounds but for dog
sounds. However, Table 8 illustrates that both fire and water-
fall sounds are more prone to classification errors compared
to gale sounds. Finally, the comparison of Tables 6–8 to
Table 5 verifies that two-step implementation is much more
accurate compared to one-step second-level classification.

5. Conclusions

STORM is an ongoing project aiming at developing a plat-
form for safeguarding cultural heritage sites across Europe.
Part of the project objectives is to deploy wireless acoustic
sensor networks over different historical and archaeological
sites across Europe (the Diocletian Baths in Rome, Italy; the
Mellor Heritage site in Manchester, UK; and the Roman
Ruins of Tróia in Portugal) that will be used to monitor the
sites and alarm stakeholders in the case of potential hazard-
ous events. In this context, the proposed sound classification
platform is a first step towards the accomplishment of this
goal. The literature review revealed a number of popular
approaches for sound feature selection together with denois-
ing techniques and classification methods. In this paper, we
presented the development of an integrated classification
platform and evaluated its performance while the proposed
classifier is extended to include the capability of classifying
sounds within a hierarchy of two levels. First-level classifica-
tion, or classifying sounds into generic classes like anthropo-
genic, animal, and geophysical, is sometimes critical; the
proposed platform has been shown to deliver highly accurate
results in this case. Also, it has been shown that the proposed
scalar features are simple and computationally light, yet very
accurate. As long as second-level classification is concerned,

we showed that two-step classification may be more efficient
compared to one-step implementation; in the presented
numerical results, the achieved accuracy of the former was
much higher compared to the latter. Furthermore, a confu-
sion matrix analysis revealed that the main sources of errors
are due to anthropogenic sounds mistakenly classified as geo-
physical sounds (first-level classification) or due to anthropo-
genic sounds mistakenly classified as airplanes (second-level
classification). There is also a significant source of errors in
second-level classification with other animal sounds mistak-
enly classified as dog sounds. In the future, we plan to apply
the proposed classification approach in sound samples with
varying signal-to-ratio values, as well as study the effect of
noise on each sound feature separately and integrate our
findings in the STORM platform at sensor and server level.
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