
Using the Alloy Analyzer to Verify

Data Refinement in Z

Christie Bolton1,2

Department of Computer Science
University of Warwick

Coventry CV4 7AL, UK

Abstract

In the development of critical systems, standards dictate that it is necessary to first design, con-
struct and formally analyse abstract models of the system. Developers must then verify that the
final implementation is consistent with these more abstract specifications.
Z is an example of a state-based specification language. It has been shown to be effective in a variety
of cases—indeed it was developed as part of a joint collaboration between Oxford University’s PRG
and IBM Hursley for the specification of the CICS system. However, Z’s main weakness is that
it does not have the necessary tool support: whilst there are associated type checkers, there is no
tool for automatically verifying refinement in Z.
The contribution of this paper is to show how data refinement in Z can be automatically verified
using the Alloy Analyzer. The soundness and joint completeness of the simulation rules for Z
have already been established: here we translate them to Alloy. We then show how data types
expressed in Z can also be translated to Alloy, before presenting the assertions necessary for the
Alloy Analyzer to identify the retrieve relation and hence verify refinement. We present a simple
example in which the Alloy Analyzer successfully identifies the retrieve relation between two data
types thereby verifying simulation and hence refinement. We conclude the paper with a discussion
of the suitability of the Alloy Analyzer for such a task.

Keywords: Refinement, simulation, automatic verification, Alloy, Z.

1 This research was funded in part by the University of Warwick and in part by the UK
Ministry of Defence through QinetiQ. Many thanks are due to Gavin Lowe, Irfan Zakiuddin
and Daniel Jackson for their helpful comments and encouragement.
2 Email: christie@dcs.warwick.ac.uk

Electronic Notes in Theoretical Computer Science 137 (2005) 23–44

1571-0661 © 2005 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.04.023
Open access under CC BY-NC-ND license.

mailto:christie@dcs.warwick.ac.uk
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

1 Introduction

In the development of critical systems, standards dictate that it is necessary
to design, construct and formally analyse abstract models of the system [10].
Developers must then verify that the final implementation is consistent with
(or satisfies the properties captured by) these more abstract specifications.
Refinement is a technique that is used for verifying such a consistency. The
precise notion of refinement and the means for determining whether or not one
model is refined by another depends on the choice of specification language
and semantic model.

Z [14] is an example of a state-based specification language. It has a fully
formal semantics and relies heavily on mathematical constructs such as set the-
ory, logic and relational calculus. In addition, it employs a construct called
the schema for structuring the mathematics. There are two standard semantic
models associated with the Z notation [5]: the blocking (behavioural) interpre-
tation, in which operations cannot be called outside their preconditions, and
the non-blocking (contract) interpretation, in which operations can be called
outside their preconditions but no guarantees are made about subsequent be-
haviour. In this paper we consider also a third, the stable failures model,
which corresponds to histories refinement in Object-Z [12].

Z has been shown to be effective in a variety of cases—indeed it was de-
veloped as part of a collaboration between Oxford University’s PRG and IBM
Hursley for the specification of the CICS system. However, Z’s main weakness
is that it lacks the necessary tool support: whilst there are associated type
checkers [13,15,9], there is no tool for automatically verifying refinement in Z.

The main contribution of this paper is to show how data refinement in Z can
be automatically verified using the Alloy Analyzer [8], a SAT-based verification
tool. Moreover, in the process of this verification the Alloy Analyzer identifies
the associated retrieve relation: typically the most difficult part of verifying
refinement is not the application of the simulation rules but the identification
of the correct retrieve relation. A further contribution of this paper is to define
a notion of refinement within the Alloy language [8].

We translate the three sets of simulation rules—previously shown to be
both sound and jointly complete with respect to their respective refinement
orderings—to Alloy, and show the natural correspondence between data types
in Z and in Alloy. We present the Alloy commands necessary for identifying the
retrieve relation and verifying refinement, and we discuss the appropriate scope
for each type. Finally we use a simple example to illustrate the application of
our techniques.

We begin the paper by showing how abstract data types are modelled

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–4424

in Z. We then identify the refinement orderings with which we will be con-
cerned throughout the rest of the paper, together with their associated sets
of simulation rules . In Sections 3 and 4 we show how these data types and
simulation rules can be expressed equivalently in Alloy. We conclude Section 4
by defining the assertions necessary for enabling the Alloy Analyzer to iden-
tify the retrieve relation between two data types and hence verify simulation
and refinement. We illustrate these techniques in Section 5 through a simple
example. We conclude the paper with a discussion of the suitability of the
Alloy Analyzer for such a task.

2 The Z Notation

The Z notation is a state-based specification language that relies heavily on
mathematical constructs such as set theory, logic and relational calculus. In
addition, it employs a construct called the schema for structuring the math-
ematics when modelling systems. The schema incorporates a declaration of
variables and a predicate constraining those variables.

SchemaName
declaration

predicate

GenericSchemaName[X ,Y]
declaration

predicate

Generic schemas are used to define the same structure over a variety of types.

2.1 Abstract data types

An abstract data type comprises a notion of state with a collection of named
operations on the state space and a non-empty set of possible initial states.
For data types with an implicit or explicit notion of communication, separate
initialisation and finalisation operations might also be identified.

There are a variety of ways of capturing data types in Z [5]. Since the
purpose of this paper is to show how data types expressed in Z might be
automatically analysed using the Alloy Analyzer, we adopt the schema repre-
sentation since this is closest to our Alloy representation. For further clarity,
we consider only simple data types, those in which operations neither give
outputs nor receive inputs.

A simple abstract data type has three components: a set of private internal
states state of type State; a non-empty set init of possible initial states taken
from state; and a function ops mapping the name of each operation onto the
relation on the state space describing the effect of the operation. It can be
defined generically as follows:

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–44 25

ADT [State,Name]

state : P State

init : P State

ops : Name �→ (State ↔ State)

∅ ⊂ init ∧ init ⊆ state ∧
ops ∈ Name �→ (state ↔ state)

For any name n of an operation on the data type, that is for any n ∈ dom ops ,
the relation ops n defines the effect of n on the state space.

Note that when modelling an actual abstract data type rather than the
specification of a data type as given above, the type State may be introduced as
a basic type or as a compound type captured by another schema. Furthermore,
the operations may also be expressed as schemas.

2.2 Data refinement and simulation

Intuitively we understand that a model is a data refinement [4] of its specifica-
tion if the behaviour of the concrete model somehow conforms to the behaviour
of its more abstract specification: we may replace the abstract specification
with the concrete model. The measure of conformity depends on the choice
of semantic model.

There are two standard semantic models associated with the Z notation:
the blocking (behavioural) interpretation in which operations cannot be called
outside their preconditions, and the non-blocking (contract) interpretation in
which operations can be called outside their preconditions but no guarantees
are made about subsequent behaviour.

In this paper we will consider also a third semantic model, the stable fail-
ures semantic model for Z: in [3] it was shown that the simulation rules for
Object-Z [12], an object-oriented extension to Z, were unsound with respect
to the histories semantic model of Object-Z, and revised rules were proposed
in [2]. These revised rules are sound and jointly complete with respect to both
histories refinement within Object-Z and stable failures refinement [11] within
Communicating Sequential Processes (CSP) [6] and record the availability of
combinations of operations not just individual operations. Provided this is
the appropriate level of granularity and that the developer states clearly that
this is the framework within which they are working, there is no reason why
the stable failures model should not be adopted for Z.

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–4426

Within each of these models, we say that data type A is refined by data
type C—a second model of the same system with the same set of operations—
if the effect of every sequence of operations on C is a possible effect of the
same sequence of operations on A. Alternatively, refinement may be verified
inductively using sets of simulation rules [7] relating the concrete and ab-
stract models: if we can show operation by operation that the behaviour of A
simulates the behaviour of C , then refinement follows.

Where the data types have different state spaces we must find a retrieve
relation explaining how the state of one of the data types can be retrieved from
the state of the other. If some of the non-determinism of the more abstract
of the two data types has been resolved then we look to establish a forwards
simulation whereas if some of the non-determinism has been postponed then
we look to establish a backwards simulation.

2.3 Simulation rules

In this section we present the forwards and backwards simulation rules corre-
sponding to the three semantic models under consideration:

• Data refinement with the non-blocking interpretation [16];

• Data refinement with the blocking interpretation [1];

• Stable failures refinement [2].

To be consistent with the histories semantic model of Object-Z, our stable
failures model adopts a blocking interpretation. For each of these models, the
associated forwards and backwards simulation rules have been shown to be
sound and jointly complete with respect to the associated refinement ordering.

Simulation corresponding to data refinement with the non-blocking
interpretation

Here we present the forwards and backwards simulation rules correspond-
ing to data refinement within the non-blocking context as defined in [16].

Assuming that the primed components are associated with the more con-
crete model and that the unprimed components are associated with the more
abstract model—a convention that we will adhere to throughout the rest of
Section 2—the relational representation of the forwards simulation rules for

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–44 27

verifying data refinement with the non-blocking context are as follows

init ′ ⊆ r(| init |) (Fn 1)

∀ n : dom ops • r(| dom (ops n) |) ⊆ dom (ops ′ n) (Fn 2)

∀ n : dom ops • dom (ops n) � r o
9 (ops ′ n) ⊆ (ops n) o

9 r (Fn 3)

where X � R denotes relation R domain restricted to set X , R (|X |) denotes
the relational image of X under R and where R o

9 S denotes the sequential
composition of relations R and S : see [14].

The initialisation rule (Fn 1) states that for every initial concrete state
there is a matching initial abstract state. The applicability rule (Fn 2) insists
that the concrete operation is defined whenever the abstract operation would
be. Finally, the correctness rule (Fn 3) insists that whenever an abstract opera-
tion is applicable, the corresponding concrete operation produces only concrete
states for which an abstract equivalent is reachable via the abstract operation.

If a retrieve relation r such that the above rules hold can be found then the
more abstract data type forward simulates—and hence is data refined by—the
more concrete data type within the non-blocking context.

Conversely, assuming once more that the primed components are associ-
ated with the more concrete data type and that the unprimed components are
associated with the more abstract data type, if we can find a retrieve relation s
such that the following rules hold then the more abstract data type backward
simulates—and hence is refined by—the more concrete data type within the
non-blocking context of data refinement.

s(| init ′ |) ⊆ init (Bn 1)

∀ n : dom ops • state ′ \ dom ops ′ n ⊆ dom(s −� (dom ops n)) (Bn 2)

∀ n : dom ops • dom(s −� (dom ops n)) −� (ops ′ n) o
9 s ⊆ s o

9 (ops n) (Bn 3)

state ′ ⊆ dom s (Bn 4)

The symbols −� and −� respectively denote domain subtraction, and range
subtraction: see [14]. Rule (Bn 2), the complement constraint, is a point-
free way of expressing the condition that any concrete state for which every
corresponding abstract state is in the domain of an abstract operation must
lie within the domain of the corresponding concrete operation: equivalently,

∀ n : dom ops • ∀ c : state ′ • s (| {c} |) ⊆ dom(ops n) ⇒ c ∈ dom (ops ′ n).

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–4428

Simulation corresponding to data refinement within the blocking
interpretation

The forwards simulation rules for verifying data refinement within the
blocking, or behavioural, context as defined in [1] are very similar to those
for verifying refinement in the non-blocking context. Indeed, they differ only
in the third rule, the correctness rule. This is strengthened to requiring cor-
rectness of the concrete operation from all states not just those corresponding
to states for which the abstract operation is defined. This strengthening is
captured by the removal of the domain restriction in rule (Fb 3).

init ′ ⊆ r(| init |) (Fb 1)

∀ n : dom ops • r(| dom (ops n) |) ⊆ dom (ops ′ n) (Fb 2)

∀ n : dom ops • r o
9 ops ′ n ⊆ ops n o

9 r (Fb 3)

Like the forwards simulation rules, the backwards simulation rules for ver-
ifying data refinement within the blocking, or behavioural, context are very
similar to those for verifying refinement in the non-blocking context. Again
they differ only in the correctness rule which, as with the forwards simulation
rules, is strengthened. The correctness condition for backwards simulation
within the blocking context concerns all concrete states not only those that
correspond only to abstract states that lie within the domain of the operation.
This strengthening is captured by the removal of the domain subtraction in
rule (Bb 3).

s(| init ′ |) ⊆ init (Bb 1)

∀ n : dom ops • state ′ \ dom ops ′ n ⊆ dom(s −� (dom ops n)) (Bb 2)

∀ n : dom ops • (ops ′ n) o
9 s ⊆ s o

9 (ops n) (Bb 3)

state ′ ⊆ dom s (Bb 4)

Simulation rules for stable failures refinement

The forwards simulation rules for verifying stable failures refinement, as
defined in [2], are identical to the corresponding rules for data refinement with
the blocking interpretation: that is, rules Fsf 1, Fsf 2 and Fsf 3 are respectively

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–44 29

equivalent to rules Fb 1, Fb 2 and Fb 3.

init ′ ⊆ r(| init |) (Fsf 1)

∀ n : dom ops • r(| dom (ops n) |) ⊆ dom (ops ′ n) (Fsf 2)

∀ n : dom ops • r o
9 ops ′ n ⊆ ops n o

9 r (Fsf 3)

The backwards simulation rules concerning initialisation and correctness
are also identical to the corresponding rules for data refinement within the
blocking context: that is rules Bsf 1 and Bsf 3 are respectively equivalent to
rules Bb 1 and Bb 3:

s(| init ′ |) ⊆ init (Bsf 1)

∀X : P(dom ops) • state ′ \ ⋃ {n : X • dom ops ′ n} (Bsf 2)

⊆ dom(s −� ⋃ {n : X • dom ops n})

∀ n : dom ops • (ops ′ n) o
9 s ⊆ s o

9 (ops n) (Bsf 3)

state ′ ⊆ dom s (Bsf 4)

where the set
⋃ {n : X • dom ops n} is the union of all the states in the

domain of ops n for each n in X , and similarly for
⋃ {n : X • dom ops ′ n}.

The difference lies in applicability: whilst data refinement requires that if a
concrete state lies outside the domain of an operation then there must be a
corresponding abstract state that lies outside the domain of that operation,
stable failures refinement requires the stricter condition that each concrete
state must correspond to a single abstract state that lies outside the domains
of all the operations that the concrete state lies outside the domain of.

3 Capturing data types in Alloy

Alloy [8] is a structural modelling language. It has many of the features
of Z [14]; however, unlike Z, it is based on first order logic. Whilst this can
restrict expressibility, it facilitates automatic analysis which can be performed
by the associated constraint solver, the Alloy Analyzer.

Atoms and types may be introduced in Alloy using the keyword sig. We
introduce below the types AState, CState and Op that respectively model the
state spaces of the more abstract and more concrete data types and the set of
names of all operations.

sig AState {}

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–4430

sig CState {}

sig Op {}

None of these types have any attributes, although, as we will demonstrate
later, we can extend them and define subtypes that do have attributes.

Since our more abstract and more concrete representations of data types
may have different state spaces, it is convenient to introduce them as separate
types. We introduce first the more abstract data type.

sig DataTypeA {

state : set AState, // a set of abstract states

init : set state, // a subset of state

names : set Op, // the names of the operations

trans : names ->+ state -> state

// the relation on state for each operation

} {

some init // init is a non-empty set

}

We see the close correspondence between this definition and the generic defi-
nition of a data type in Z in Section 2.1. One interesting point to note is that,
unlike Z, the declarations can be self-referential: rather than declaring that
init is of type “set AState” and subsequently, in the constraints, stating
that it is a subset of state “init in state” we can simply include this in the
declarations “init : set state”.

For later convenience we introduce the attribute “names” not included
explicitly in the Z description, the set of the names of all operations on the
data type. This corresponds to “dom ops” in our Z description. The attribute
“trans” is a ternary relation. More specifically it is a total relation (->+)
from the set names to a relation 3 on the state space (state -> state). The
declaration “some init” states that the set init is non-empty.

The declaration for the more concrete data type, DataTypeC, is identical
except that the state space contains elements from the concrete state space
not the abstract state space: “state : CState”.

sig DataTypeC {

state : set CState, // a set of concrete states

init : set state,

names : set Op,

trans : names ->+ state -> state

} {

3 Note that whilst → denotes a function in Z, -> denotes a relation in Alloy.

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–44 31

some init

}

Finally, we introduce pairs: these comprise an abstract data type, its corre-
sponding concrete data type and a retrieve relation relating their state spaces,
insisting that the same set of operations are defined over both data types.

Since we use the type FwdsPair when looking to establish a forward simula-
tion, our retrieve relation (retr : AState -> CState) maps abstract states
onto concrete states. The type BkwdsPair is identical to FwdsPair except
that the retrieve relation maps concrete states onto abstract states.

sig FwdsPair {
abstract : DataTypeA,

concrete : DataTypeC,

retr : AState -> CState

} {
abstract.names

= concrete.names

}

sig BkwdsPair {
abstract : DataTypeA,

concrete : DataTypeC,

retr : CState -> AState

} {
abstract.names

= concrete.names

}

4 Using the Alloy Analyzer to verifying refinement and
simulation

The Alloy Analyzer is a SAT-based verification tool that is used to determine
automatically whether a model exists for a specified system given set bounds
on the domains of each basic type within the model. The tool translates the
system description to a SAT problem and an underlying SAT-solver checks
whether these constraints can be satisfied.

As observed above, sets of simulation rules can be used to verify refinement,
since one data type is refined by another precisely when the first simulates the
second. In this section we define Alloy versions of the simulation rules before
presenting the Alloy check for automatically verifying refinement. See the
Appendix and [8] for necessary notation.

4.1 Functions capturing the simulation rules

Here we introduce Alloy versions of the forwards and backwards simulation
rules corresponding to traditional data refinement within the non-blocking
context, traditional data refinement within the blocking context and stable
failures refinement within the blocking context as discussed in Section 2.3.

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–4432

Forwards simulation corresponding to data refinement within the
non-blocking interpretation

As observed in Section 2.3, some of the simulation rules for data refinement
within the non-blocking context are equivalent to those for stable failures re-
finement or data refinement within the blocking context. Therefore, to permit
re-use, we consider each rule separately.

First, recalling that pair.abstract, pair.concrete and pair.retr re-
spectively denote the concrete model, the abstract model and the retrieve
relation recorded by element pair of type FwdsPair, we translate Rule Fn 1
concerning initialisation. This states that pair.concrete.init, the concrete
initialisation, is contained in the relational image under the retrieve relation
of the abstract initialisation, that is (pair.abstract.init).(pair.retr).

fun RuleFn1 (pair : FwdsPair) {

pair.concrete.init in (pair.abstract.init).(pair.retr)

}

Next we consider rule Fn 2 concerning applicability. For brevity and clarity
we use the Alloy variant of the “let . . . within” clause to introduce abbrevia-
tions. Rule Fn 2 states that for all operations on the data types, the domain of
the concrete operation, or (C.trans[n]).CState, must contain the relational
image under the retrieve relation of the domain of the abstract operation, or
equivalently ((A.trans[n]).AState).R.

fun RuleFn2 (pair : FwdsPair) {

let A = pair.abstract, C = pair.concrete, R = pair.retr {

all n : A.names |

((A.trans[n]).AState).R in (C.trans[n]).CState

}

}

Finally we consider Rule Fn 3 concerning correctness, once more simplify-
ing matters by using the Alloy variant of the ‘let . . . within” clause.

fun RuleFn3 (pair : FwdsPair) {

let A = pair.abstract, C = pair.concrete, R = pair.retr {

all n : A.names {

all a : (A.trans[n]).AState |

(R.(C.trans[n]))[a] in ((A.trans[n]).R)[a]

}

}

}

This verifies correctness for each operation n. In particular it verifies that

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–44 33

for every abstract state a in the domain of abstract operation n, that is for
all abstract states in the set (A.trans[n]).AState, the relational image of a
under the sequential composition of the retrieve relation and concrete opera-
tion n, that is (R.(C.trans[n]))[a], is a subset of the relational image of a
under the sequential composition of the abstract operation n and the retrieve
relation, equivalently ((A.trans[n]).R)[a].

Given these three definitions we can now introduce a function that defines
forwards simulation corresponding to data refinement within the non-blocking
context.

fun FwdsDataNonBlocking (pair : FwdsPair) {

RuleFn1(pair) && RuleFn2(pair) && RuleFn3(pair)

}

Given argument pair of type FwdsPair, this function returns the value true

precisely when Rules Fn 1, Fn 2 and Fn 3 all hold, or equivalently when the
more abstract model, pair.abstract, forwards simulates within the non-
blocking context the less abstract model, pair.concrete.

Backwards simulation corresponding to data refinement within the
non-blocking interpretation

As with forwards simulation, to permit re-use, we consider each rule sep-
arately. We consider first Rule Bn 1 concerning initialisation. This states
that the abstract initialisation pair.abstract.init contains the relational
image under the retrieve relation of the concrete initialisation, or equivalently
(pair.concrete.init).(pair.retr).

fun RuleBn1 (pair : BkwdsPair) {

(pair.concrete.init).(pair.retr) in pair.abstract.init

}

Next we translate Bn 2, the somewhat complicated backwards simulation
rule concerning applicability.

fun RuleBn2 (pair : BkwdsPair) {

let A = pair.abstract, C = pair.concrete, S = pair.retr {

all n : A.names |

(C.state - (C.trans[n]).CState)

in S.(AState - (A.trans[n]).AState)

}

}

Observe first that for given operation n, set AState - (A.trans[n]).AState

contains all abstract states outside the domain of operation n, and similarly

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–4434

for C.state - (C.trans[n]).CState. This rule then states that for each
operation n, all concrete states outside the domain of operation n correspond
to an abstract state outside the domain of n.

Next we consider Rule Bn 3, the backwards simulation rule concerning
correctness and Rule Bn 4 concerning applicability of the retrieve relation.

fun RuleBn3 (pair : BkwdsPair) {

let A = pair.abstract, C = pair.concrete, S = pair.retr {

all n : A.names {

all c : CState - S.(AState - (A.trans[n]).AState) |

((C.trans[n]).S)[c] in (S.(A.trans[n]))[c]

}

}

}

fun RuleBn4 (pair : BkwdsPair) {

(pair.retr).AState = pair.concrete.state

}

Rule Bn3 states that for each operation n and for each concrete state c that
corresponds to an abstract state outside the domain of n , that is each concrete
state c in the set S.(AState - (A.trans[n]).AState), any abstract state
that lies in the relation image of c under the sequential composition of the
concrete operation n and then the retrieve relation—that is any abstract state
in the set ((C.trans[n]).S)[c]—must also lie in the relation image of c

under the sequential composition of the retrieve relation and the abstract
operation, or equivalently the set (S.(A.trans[n]))[c].

RuleBn4 is slightly stronger than necessary insisting that the domain of
the retrieve relation contains precisely thoses states in the concrete domain
rather than at least those states. The additional strength removes unnecessary
non-determinism from the choice of retrieve relation.

Given these four definitions we can now introduce a function that defines
forwards simulation of data refinement within the non-blocking context.

fun BkwdsDataNonBlocking (pair : BkwdsPair) {

RuleBn1(pair) && RuleBn2(pair) &&

RuleBn3(pair) && RuleBn4(pair)

}

Given argument pair of type BkwdsPair, this function will return the value
true precisely when Rules Bn 1, Bn 2, Bn 3 and Bn 4 all hold, or equivalently
when pair.abstract, the more abstract model, backwards simulates within
the non-blocking context pair.concrete, the less abstract model.

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–44 35

Forwards simulation corresponding to traditional data refinement
within the blocking interpretation

As we have already observed, the forwards simulation rules concerning
initialisation and applicability corresponding to traditional data refinement
within the blocking interpretation, that is Rules Fb 1 and Fb 2, are equiva-
lent to the corresponding forwards simulation rules within the non-blocking
interpretation. We can therefore re-use the above definitions.

We now consider Rule Fb 3 concerning correctness. Once more we use the
Alloy variant of the “let . . . within” for brevity and clarity.

fun RuleFb3 (pair : FwdsPair) {

let A = pair.abstract, C = pair.concrete, R = pair.retr {

all n : A.names | R.(C.trans[n]) in (A.trans[n]).R

}

}

This states that for any operation n, the relation corresponding to the se-
quential composition of the retrieve relation and the concrete variant of the
operation, that is R.(C.trans[n]) must be a subset of (A.trans[n]).R, the
relation corresponding to the sequential composition of the abstract variant
of the operation and the retrieve relation. Equivalently, for all operations n

and for all abstract states c, if a is mapped onto c by applying the retrieve
relation and then the concrete operation n, then it must also be mapped onto
c by applying the abstract operation n and then the retrieve relation.

Recalling that Rules Fb 1 and Fb 2 are respectively equivalent to Rules
Fn 1 and Fn 2, we define as follows the function that holds for given argument
pair of type FwdsPair precisely when pair.abstract, the more abstract
model, forwards simulates pair.concrete, the less abstract model, within
the blocking context.

fun FwdsDataBlocking (pair : FwdsPair) {

RuleFn1(pair) && RuleFn2(pair) && RuleFb3(pair)

}

Backwards simulation corresponding to traditional data refinement
within the blocking interpretation

Once more only the rule concerning correctness differs from its correspond-
ing rule within the non-blocking context. Rule Bb 3 can be captured in Alloy
as follows.

fun RuleBb3 (pair : BkwdsPair) {

let A = pair.abstract, C = pair.concrete, S = pair.retr {

all n : A.names | (C.trans[n]).S in S.(A.trans[n])

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–4436

}

}

This states that for any operation n, the relation corresponding to the se-
quential composition of the concrete variant of the operation and the retrieve
relation, that is (C.trans[n]).S, must be a subset of S.(A.trans[n]), the
relation corresponding to the sequential composition of the retrieve relation
and the abstract variant of the operation.

Finally we introduce the function that defines backwards simulation of
data refinement within the blocking context.

fun BkwdsDataBlocking (pair : BkwdsPair) {

RuleBn1(pair) && RuleBn2(pair) &&

RuleBb3(pair) && RuleBn4(pair)

}

Recalling that Rules Bb 1, Bb 2 and Bb 4 are respectively equivalent to Rules
Bn 1, Bn 2 and Bn 4 this function returns true when the backwards simulation
rules corresponding to data refinement within the blocking context all hold.

Simulation corresponding to stable failures refinement

Since the forwards simulation rules for stable failures refinement are identi-
cal to the corresponding rules for data refinement within the blocking context,
the function that captures forwards simulation corresponding to stable failures
refinement is as follows.

fun FwdsStableFailures (pair : FwdsPair) {

RuleFn1(pair) && RuleFn2(pair) && RuleFb3(pair)

}

It is identical to the corresponding function for capturing forwards simulation
corresponding to data refinement within the blocking context.

The backwards simulation rules corresponding to stable failures refinement
differ from their counter-parts corresponding to data refinement within the
blocking context only in the rule concerning applicability. Unlike Rule Bb 2,
Rule Bsf 2 records the availability of combinations of operations and can be
expressed in Alloy as follows.

fun RuleBsf2 (pair : BkwdsPair) {

let A = pair.abstract, C = pair.concrete, S = pair.retr {

all X : set (A.names) |

(C.state - (C.trans[X]).CState)

in S.(AState - (A.trans[X]).AState)

}

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–44 37

}

Where Rule Bb 2 considered individual operations n, this rule is applied to
sets of operations X.

Finally, recalling that Rules Bsf 1 and Bsf 4 are equivalent to Rules Bn 1
and Bn 4, and that Rule Bsf 3 is equivalent to Rule Bb 3, we can introduce the
function that defines backwards simulation corresponding to stable failures
refinement.

fun BkwdsStableFailures (pair : BkwdsPair) {

RuleBn1(pair) && RuleBsf2(pair) &&

RuleBb3(pair) && RuleBn4(pair)

}

Given argument pair of type BkwdsPair, this function returns true pre-
cisely when Rules Bsf 1, Bsf 2, Bsf 3 and Bsf 4 all hold, or equivalently when
pair.abstract, the more abstract model, backwards simulates pair.concrete,
the less abstract model.

4.2 Automatic analysis

In this section we identify the assertions necessary for enabling the Alloy
Analyzer to identify the retrieve relation between the state spaces of a pair
of data types. The actual data types under consideration must be uniquely
captured. As illustrated in Section 5, in order to do this, the developer will
need to extend the types Op, AState and CState to respectively include the
names of all operations on the data types, all the states in the abstract state
space, and all the states in the concrete state space.

For a forwards simulation we use the type SpecificFwdsPair to uniquely
capture the concrete and abstract models under consideration. For a back-
wards simulation we use the type SpecificBkwdsPair. 4

sig SpecificFwdsPair {

pair : FwdsPair

} {

// Predicates uniquely defining pair.abstract and pair.concrete.

}

sig SpecificBkwdsPair {

pair : BkwdsPair

4 The reason for using SpecificFwdsPair and SpecificBkwdsPair rather than extending
the types FwdsPair and BkwdsPair is so that we can fix the scope of each. When the Alloy
Analyzer allows the user to specify the number of each subtype to be considered this will
become unnecessary.

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–4438

} {

// Predicates uniquely defining pair.abstract and pair.concrete.

}

The functions for identifying forwards and backwards retrieve relations
corresponding to data refinement within the blocking context are then as
follows.

fun ShowRetrForFwdsDataBlocking (s : SpecificFwdsPair) {

FwdsDataBlocking (s.pair)

}

fun ShowRetrForBkwdsDataBlocking (s : SpecificBkwdsPair) {

BkwdsDataBlocking (s.pair)

}

The functions for verifying forwards and backwards simulation corresponding
to stable failures refinement and to data refinement within the non-blocking
context are analogous.

Finally, in order to execute these functions, we must include a run com-
mand and set the appropriate scope, or number of each type to be considered.
The scope should be as small as possible whilst guaranteeing exploration of the
entire system. A sensible strategy is to restrict the definitions of AState and
CState so that they are respectively equivalent to the abstract and concrete
state spaces of the data types under consideration.

When considering forwards and backwards simulations corresponding to
data refinement within the blocking context the following commands and
scopes should respectively be used

run ShowRetrForFwdsDataBlocking for 1

but 0 BkwdsPair, 0 SpecificBkwdsPair, x Op, y AState, z CState

run ShowRetrForBkwdsDataBlocking for 1

but 0 FwdsPair, 0 SpecificFwdsPair, x Op, y AState, z CState

where x is the number of operations on the data types, y is the size of the ab-
stract state space and z is the size of the concrete state space. This means that
for forwards simulation one SpecificFwdsPair, one FwdsPair, one DataTypeA
and one DataTypeC would be considered. We can consider individual pairs but
we must always consider the entire state space of each data type.

The commands and scopes for identifying the retrieve relations correspond-
ing to stable failures refinement and data refinement within the non-blocking
context are analogous.

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–44 39

When the appropriate function is executed, if a pair is found then the
retrieve relation has been found and simulation and hence refinement have
been verified.

5 Example

In this section we demonstrate the techniques discussed in the previous sec-
tions. We present a pair of simple data types in Z. We translate them to Alloy
and use the Alloy Analyzer to automatically identify the retrieve relation re-
lating their state space and hence to verify refinement. We adopt the semantic
model corresponding to data refinement within the blocking context.

5.1 Z description

Let data types A and C be defined as follows. They each have two operations
Op1 and Op2. Initially data type A offers a non-deterministic choice between
these operations and data type C nondeterministically will either deadlock or
offer a non-deterministic choice between Op1 and Op2. Both data types will
deadlock after any operation occurs.

Given the following definitions,

N ::= Op1 | Op2 StateA ::= a1 | a2 | a3 StateC ::= c1 | c2 | c3 | c4

data types A and C may be captured in Z in the following way (see [14]).

A =̂ [ADT [StateA,N] | state = {a1, a2, a3} ∧ init = {a1, a2} ∧
ops = {Op1 �→ {(a1, a3)},Op2 �→ {(a2, a3)}}]

C =̂ [ADT [StateC ,N] | state = {c1, c2, c3, c4} ∧ init = {c1, c2, c4} ∧
ops = {Op1 �→ {(c1, c3)},Op2 �→ {(c2, c3)}}]

We see that data type A may initially non-deterministically either be in state
a1 in which case operation Op1 is available, or state a2 in which case operation
Op2 is available. If either operations occurs the data type will end up in state
a3 and no operation will be available.

Similarly data type C may initially non-deterministically either be in state
c1 in which case operation Op1 is available, or state c2 in which case operation
Op2 is available, or in state c4 in which case neither operation is available. If
either operations occurs the data type will end up in state c3 and no operation
will be available.

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–4440

5.2 Alloy description

First we extend the type Op.

static part sig Op1, Op2 extends Op {}

This declares Op1 and Op2 to be elements of type Op. The keywords static

and part state that there is only one element of each subtype and that together
they partition Op

Similarly, we extend types AState and CState.

static part sig a1, a2, a3 extends AState {}

static part sig c1, c2, c3, c4 extends CState {}

Note that for more complex data types we could include attributes within
these subtypes.

We are going to look for a backwards simulation, so we consider the type
SpecificBkwdsPair. It uniquely captures data types A and C .

sig SpecificBkwdsPair {

pair : BkwdsPair

} {

let A = pair.abstract, C = pair.concrete {

A.state = AState && C.state = CState

A.init = a1 + a2 && C.init = c1 + c2 + c4

A.names = Op // Recall that A.names = C.names

A.trans = (Op1 -> a1 -> a3) + (Op2 -> a2 -> a3)

C.trans = (Op1 -> c1 -> c3) + (Op2 -> c2 -> c3)

}

}

We see that this corresponds precisely to the Z description of these data types.

Running the following check

run ShowRetrForBkwdsDataBlocking for 1

but 0 FwdsPair, 0 SpecificFwdsPair, 2 Op, 3 AState, 4 CState

the Alloy Analyzer immediately identifies a pair with the following backwards
retrieve relation:

{ (c1, a1), (c1, a2), (c2, a2), (c3, a3), (c4, a1), (c4, a2) }.

This is indeed a correct retrieve relation. We have demonstrated, albeit in
this simple case, how the Alloy Analyzer can identify a retrieve relation and
hence verify that data type A simulates, and thus is data refined by, data type
C within the blocking context.

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–44 41

6 Discussion

In this paper we have shown how the Alloy Analyzer can be used to identify
retrieve relations and hence to verify simulation and refinement in Z. We have
worked within the context of three semantic models: the first two traditionally
associated with Z and the third corresponding to the histories semantic model
for Object-Z.

Suitability of the Alloy Analyzer

The Alloy Analyzer was the natural choice of tool for automating the
verification of refinement in Z because of the close relationship between the
two languages, as evinced by the ease of translation of both data types and
simulation rules from Z to Alloy.

Although state-space explosion can be a potential problem for model-
checkers, the fact that we need consider only one concrete and one abstract
model at a time indicates that the techniques presented here may equally
be applied to large systems. Indeed, the author is currently working on an
industrial-scale case study, with complex data structures as well as inputs and
outputs to operations, and preliminary results are promising.

A novel application of the Alloy Analyzer

The Alloy Analyzer, like most model-checkers, is typically used to obtain
a negative result such as identifying a counter-example. Thus our use of
the tool to obtain a positive result—the verification of refinement—through
identification of a retrieve relation is of particular interest.

A notion of refinement for Alloy

Although the Alloy Language has been strongly influenced by Z, and as
such has the capability of modelling data types, it has no associated notion of
refinement. This work fills that gap.

Summary

This is an important contribution for the following reasons:

• Z is a powerful modelling language, but one of its main drawbacks is lack
of tool support. Here we address that issue.

• Typically, one of the hardest steps in the verification of refinement in Z
is identifying potential candidates for the retrieve relation: our techniques
mean that this step is no longer necessary.

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–4442

• Automatic verification of correctness is often perceived to be more credible
than hand-proofs: here we provide the sought after techniques for automatic
verification of refinement within Z.

• Developers familiar with Alloy but not Z could omit the steps involving Z
and define their data types directly in Alloy, before performing the verifica-
tion of data refinement.

References

[1] C. Bolton. On the Refinement of State-Based and Event-Based Models. D.Phil., University of
Oxford, 2002.

[2] C. Bolton and J. Davies. A Comparison of Refinement Orderings and their Associated
Simulation Rules. In J. Derrick, E. Boiten, J. Woodcock, and J. von Wright, editors,
Proceedings of REFINE’02: The BCS Refinement Workshop. Elsevier Science Publishers, 2002.

[3] C. Bolton and J. Davies. Refinement in Object-Z and CSP. In M. Butler, L. Petre, and
K. Sere, editors, Proceedings of Integrated Formal Methods (IFM ’02), 2002.

[4] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-oriented Proof Methods and
their Comparison. Cambridge Tracts in Theoretical Computer Science, 1998.

[5] J. Derrick and E. Boiten. Refinement in Z and Object-Z. Springer, 2001.

[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[7] C. A. R. Hoare, J. He, and J. W. Sanders. Prespecification in Data Refinement. Information
Processing Letters, 1987.

[8] D. Jackson, I. Shlyakhter, and M. Sridharan. A Micromodularity Mechanism. In Proceedings
of the ACM SIGSOFT Conference on Foundations of Software Engineering/European Software
Engineering Conference (FSE/ESEC ’01), 2001.

[9] I. Meisels and M. Saaltink. The Z/EVES Reference Manual, 1997.

[10] UK Ministry of Defence. Requirements for the Procurement of Safety Critical Software in
Defence Equipment (00-55 / Issue 2), 1997.

[11] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall Series in Computer
Science, 1998.

[12] G. Smith. The Object-Z Specification Language. Kluwer Academic Publishers, 2000.

[13] J. M. Spivey. The fuzz Manual, 1988.

[14] J. M. Spivey. The Z Notation: a Reference Manual. Prentice-Hall International, 1992.

[15] I. Toyn. CADiZ web pages, 2002. http://www-users.cs.york.ac.uk/~ian/cadiz/.

[16] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement. Prentice Hall
International Series in Computer Science, 1996.

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–44 43

http://www-users.cs.york.ac.uk/~ian/cadiz/

A Alloy notation

In this section we present the Alloy notation necessary for Sections 3, 4 and
5. For further details see [8].

Relations play a fundamental role in the Alloy language, and the . operator
on relations occurs in many guises.

• Using . to obtain the value of an attribute: Given an element pair of type
BkwdsPair, the set pair.concrete.init contains the possible initial states
of the more concrete model captured by pair.

• Using . to obtain the relational image: Given an element pair of type
BkwdsPair, the set (pair.abstract.init).(pair.retr) is the relational
image of the abstract initialisation pair.abstract.init under the retrieve
relation pair.retr. 5

• Using . to obtain the domain or range of an operation: Given an element
pair of type BkwdsPair, the sets (pair.concrete.trans[n]).CState and
CState.(pair.concrete.trans[n]) are respectively the domain and the
range of the concrete operation n.

• Using . to denote sequential composition: Given an element pair of type
BkwdsPair, the relation (pair.abstract.trans[n]).(pair.retr) is the
sequential composition of the abstract operation n and the retrieve relation.

The union of sets or individual atoms 6 is captured by the + operator:
thus the set a1 + a2 contains the elements a1 and a2, whilst the tuples
(Op1,a1,a3) and (Op2,a2,a3) are contained in the set

Op1 -> a1 -> a3 + Op2 -> a2 -> a3.

Similarly, set difference is represented by the - operator: given an element
pair of type BkwdsPair, the set containing those elements of the concrete
state space that lie outside the domain of concrete operation n is described as
follows pair.concrete.state - (pair.concrete.trans[n]).CState.

Logical conjunction is represented by the && operator and set containment
is represented by the operator in.

5 Note that relational image can also be expressed using square brackets. For instance,
given pair of type BkwdsPair, the relation pair.abstract.trans[n] describes the abstract
operation n.
6 Recall that the Alloy language does not distinguish between sets and single elements

C. Bolton / Electronic Notes in Theoretical Computer Science 137 (2005) 23–4444

	Introduction
	The Z Notation
	Abstract data types
	Data refinement and simulation
	Simulation rules

	Capturing data types in Alloy
	Using the Alloy Analyzer to verifying refinement and simulation
	Functions capturing the simulation rules
	Automatic analysis

	Example
	Z description
	Alloy description

	Discussion
	References
	Alloy notation

