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EQUIVALENCES AMONG RELATIONAL EXPRESSIONS*

A. V. AHOY’, Y. SAGIV AND J. D. ULLMAN

Abstract. Many database queries can be formulated in terms of expressions whose operands represent
tables of information (relations) and whose operators are the relational operations select, project, and join.

This paper studies the equivalence problem for these relational expressions, with expression optimization in

mind. A matrix, called a tableau, is proposed as a natural representative for the value of an expression. It is

shown how tableaux can be made to reflect functional dependencies among attributes. A polynomial time

algorithm is presented for the equivalence of tableaux that correspond to an important subset of expressions,

although the equivalence problem is shown to be NP-complete under slightly more general circumstances.

1. Introduction. Codd’s relational algebra is a high-level query language in which

questions can be posed simply and succinctly [9], 11]. Concepts from relational algebra
have been incorporated into the design of several new database query languages [13].

Expressions in relational algebra manipulate tables of information (called rela-

tions) by means of high-level operations such as select, project, and join. A disad-

vantage of relational algebra as a query language is that the efficiency with which a

query can be answered varies considerably with the manner in which the query is

formulated. The very flexibility of the language makes it easy to express queries that are
hard to implement or for which efficient implementations are hard to find.

Consequently, a number of papers [17], [19], [20], [21], [23], [25] have considered
transformations that "optimize" relational queries. Like most work in code "optimiza-
tion," however, these transformations improve expressions under some cost criterion,
but do not claim to produce an equivalent expression of least cost. Chandra and Merlin

[8] show how to perform true optimization on a large class of queries, but their

algorithm is exponential in the size of the query.
In this paper we consider the inherent computational complexity of determining

whether two queries are equivalent, with an eye toward globally optimizing queries
under a variety of cost measures. We restrict the relational algebra to include only the
three operators" select, project, and join. We show that the optimization problem for
even this restricted subset of relational algebra is computationally difficult (NP-
complete).

We introduce tableaux, two-dimensional representations of queries. Tableaux
may be viewed as a form of Zloof’s "Query-by-Example" language [27] and also as a
stylized notation for a subset of Chandra and Merlin’s "conjunctive queries" [8]. The
tableau immediately removes one objection (see [24], e.g.) to relational algebra as a
query language, since tableaux are nonprocedural representations of queries in exactly
the sense that relational calculus [9], [11] is nonprocedural.

We reduce the equivalence problem for queries to the analogous problem for
tableaux. One advantage of the tableau approach is that it allows us to deal with
functional dependencies mechanically, a feature not possessed by more direct tech-
niques. We then show how to minimize the number of rows in a tableau, an operation
that corresponds to minimizing the number of joins needed to evaluate a query. Since
join is typically a very expensive operator to implement, this approach is a good "first
crack" at reducing the cost of evaluating a query. Row minimization also serves to
eliminate common subexpressions from a query.
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Next we introduce "simple tableaux," a subclass of tableau for which we can show
the equivalence and optimization problems that were computationally difficult for
general tableaux are now tractable. Although the set of queries having simple tableaux
is a proper subset of the set of relational expressions, we nevertheless feel that most

practical queries that contain only selects, projects, and joins can be represented by
simple tableaux. We conclude the paper with a discussion of some remaining problems.

2. Basic definitions. In this section we define our restricted subclass of relational

expressions. We also show that there are several possible definitions of expression
equivalence.

2.1. Relation schemes and relations. We assume the data are stored in a set of
two-dimensional tables called relations. The columns of a table are labeled by distinct
attributes and the entries in each column are drawn from a fixed domain for that
column’s attribute. For the purposes of this paper we assume the ordering of the
attributes of a table is unimportant. Each row of a table is a mapping from the table’s
attributes to their respective domains. A row is often called a tuple or record. If r is a
relation that is defined on a set of attributes that includes A, and if/x is a tuple of r, then

tz (A) is the value of the A-component of
A relatian scheme is the set of attributes labeling the columns of a table. When

there is no ambiguity, we shall use the relation scheme itself as the name of the table. A
relation is just the "current value" of a relation scheme. The relation is said to be defined
on the set of attributes of the relation scheme.

Example 1, Suppose we have the two relation schemes PAT and PR, representing
two tables, one with columns P, A, and T, the other with columns P and R. (P stands for
Paper-number, A for Author, T for Title, R for Referee.) Figure 1 shows two relations
that might be current values of these relation schdmes.

P A

Brown
Blue

All About Horses
All About Dogs
All About Cats

FIG. 1. Two tables.

P R

Turtie
Snake
Turtle
Ox

2.2. Dependencies. Often the values of entries in relations satisfy certain con-

straints. Functional [4], [9] and multivalued [7], [14], [15], [26] dependencies are
examples of such constraints. In this paper we assume all dependencies are functional.

Our theory carries over to multivalued dependencies as well, although an efficient

equivalence test in that case is elusive.

A functional dependency is a statement X-, Y, where X and Y are sets of
attributes. A relation r satisfies this functional dependency if and only if for all/z and u

in r the following condition holds: If/z (A)= u(A) for all A in X, then (B)= u(B) for
all B in Y. That is, if two rows of r agree in the columns for X, then they must agree in the
columns for Y. Note that if r satisfies a given set of dependencies, then it may also satisfy
additional dependencies, e.g., if r satisfies A -> B and B --> C, it also satisfies A --> C.

For a set of attributes X, we define X*, the closure of X, as follows:

(1) x _x*.

(2) If Y
_
X*, and Y Z is a iven functional dependency, then Z X*.

(3) No attribute is in X* unless it so follows from (1) and (2).
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We write X Y if Y
_
X*. Essentially, X Y means that the functional dependency

X--> Y is in, or can be derived from, the given set of dependencies. Two sets of
dependencies are equivalent if, for all X, the set X* is the same under either set of
dependencies. It is well known that any set of dependencies is equivalent to a set in
which each right side consists of a single attribute, and we henceforth assume all sets of
functional dependencies are of this form.

2.3. Restricted relational expressions. In this paper we shall consider relational
expressions in which the only operators are select, project, and (natural) join. The
operands are relation schemes. The operators are defined as follows.

(1) Select. Let r be a relation on a set of attributes X, A an attribute in X, and c a
value from the domain of A. Then the selection A c, written O’A=c(r), is the set

{IX[ is in r and Ix (A)= c}

that is, the subset of r having value c for attribute A.
(2) Pro]ect. Let r be a relation on a set of attributes X. Let Y be a subset of X. We

define ry(r), the pro]ection of r onto Y, to be the relation obtained by removing all the
components of the tuples of r that do not belong to Y and identifying common tuples.
That is, Try(r)= {ulu has components for all and only the attributes of Y, and for some Ix
in r, u(A) Ix (A) for all A in Y}.

For example, if r is the second relation of Fig. 1, then rp(r)= {1, 2, 3}.
(3) Join. The join operator, denoted by tXl, permits two relations to be combined

into a single relation whose attributes are the union of the attributes of the two

argument relations. Let R and R2 be two relation schemes with current values rl and r2.
Then

rl IXl r2 {Ix [Ix is a tuple with components for all and only the attributes in R LI R2,
and there exist tuples r,1 in rl and u2 in r2, such that ul(A) Ix(A) for all A
in R and u2(A) Ix (A) for all A in R2}.

Example 2. If rl and r2 are the two relations of Fig. 1, then rl r2 is the relation

P A T R

Black
Black
Brown
Blue

All About Horses Turtle
All About Horses Snake
All About Dogs Turtle
All About Cats Ox

Even with these three simple operators we can pose a variety of interesting queries.
Here are two examples that refer to the database in Fig. 1.

(1) The query "List the author of the paper All About Dogs" can be represented
by the expression 7rA(tr T="All About Dogs" (PA T)).

(2) "List the authors and titles of all papers refereed by Turtle" becomes

"I’I’AT (O"R--"Turtle" (PATtPR )).
With these operators we can also define Cartesian product (if in a join the sets of

attributes for the two relations are made disjoint) and intersection (which is a special
case of the natural join where the two relations are over the same set of attributes). The
relational algebra of Codd [9], 11] includes other operators, and to make a "complete"
set we would need to add union, set difference and selections involving arithmetic

comparisons between two components of a tuple.
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2.4. Expression values. The notion that a relation is the "value" of a relation
scheme can be generalized to expressions. Let E be an expression with operand relation
schemes R1, R2,.’’ ,Rk. An assignment associates a relation ri with each relation
scheme Ri, 1 -< -<_ k. Given an assignment a of relations to relation schemes, the value
of E, denoted ,,,(E) or ,(E) if c is understood, is computed by applying operators to

operands in the following natural way.
(1) If E is a single relation scheme R, then ,(E)= r.
(2) (a) If E O’A=c(E1), then ,(E)= O’A=c(,(E)).

(b) If E- 7rx(El), then ,(E) 7rx(,(Ex)).
(c) If E E IxlE2, then ,(E)= ,(E)lxl ,(E2).

We may also regard expression E as a function, mapping assignments of values for
its operands to values for the expression. That is, if E is an expression with operands
R1, RE,’’’, Rk, we define V(E) to be the mapping that sends each assignment a of
relations rt, rE, rk for R, RE, Rk to ua(E). Intuitively, two expressions Ex and

E2 are equivalent if V(Et) and V(E2) are the same mapping. However, we may not wish
to allow completely arbitrary sets of R’s and r’s. We have therefore isolated three
distinct notions of equivalence, which we shall discuss in turn.

2.5. Algebraic equivalence. If we do not fix the Ri’s, that is, allow each relation

scheme to be a variable set of attributes, we obtain a notion of algebraic equivalence.
For example, the commutative law of joins R t S S R is true independent of R and

S. It is not clear how the select operator can be brought into this framework, although
the project operator ’x can be covered if we regardX as a variable set of attributes. We
shall not discuss algebraic equivalence further in this paper.

2.6. Strong equivalence. We may, instead, regard each R1, R2,’’’, Rk as a

relation scheme with a fixed set of attributes, and call two expressionsE and E2 strongly
equivalent if V(E)-- V(E2) under this assumption. That is, we regard E and E2 as

equivalent if they define the same mapping. Strong equivalence appears to be the notion

underlying previous attempts at expression optimization, and is probably the notion

with which most people would feel secure.

2.7. Weak equivalence. A variety of papers such as [1], [4], [7] have viewed a

database as though a single universal relation exists at each instant of time. In this

framework we restrict assignments of values to relation schemes R, R2,"’, Rk by
insisting that there be some relation I on the set of attributes LI k

i= 1Ri such that the value

ri assigned to R is 71"Ri (I). We call such a relation I an instance ofthe universe, or just an
instance. If ,, (El)= ,,, (E2) for all assignments a obtained in this way from an instance,
then we say E and E2 are weakly equivalent, and write E E2.

The notion of weak equivalence is also well motivated. It is essential when we deal
with equivalences between expressions whose operands are different relation schemes.
For example, it allows the treatment of lossless joins, as in [1], [22], [26], and it is the
notion of equivalence underlying the normal form decompositions of [9], [10].

We shall deal with weak equivalence, which we hereafter call simply equivalence,
almost exclusively in this paper, ending with a demonstration of how our ideas carry
over to strong equivalence as well. The motivation for so doing is not our belief that

strong equivalence is an inferior notion; rather our ideas are more simply expressed
when (weak) equivalence is considered. In particular, we may take advantage of the

presence of universal instances to regard the value of an expression as a mapping from
instances to relations. That is, if I is an instance, ,t (E) is the value of expression E when
each argument R of E is replaced by ’rrR,(/).
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Example 3. Consider the expression E "rrAn(An NBC). Here, A, B and C are

attributes, and relation schemes are denoted by strings of attributes, i.e., AB stands for

{A, B}. if there is a univeral instance I over attributes A, B and C, in that order, then

the value ran for relation scheme AB is

{ablfor some c, abc is in I }

and the value of rnc for BC is

{bclfor some a, abc is in I}.

The value of AB NBC is

ranNrnc {abclfor some a’ and c’, abc’ and a’bc are in I}.

Finally, the value of E is

(*) {ablfor some a’, c’ and c, abc’ and a’bc are in I}

which is just

{ablfor some c, abc is in I}

as we may take a a’ and c c’ in (1). Thus, E is equivalent to the expression consisting
of the single relation scheme AB.

On the other hand, consider strong rather than weak equivalence. Then ran and

rnc can be independently chosen relations. The value of E is

{ablfor some c, ab is in rAn and bc is in rnc}

which is not necessarily equal to rAn. For example, if rAn {ab} and rnc , then the
value of E is , not {ab}. Note that these values for ran and rnc cannot come from one
instance.

2.8. The effect of data dependencies. Constraints, such as functional depen-
dencies, also affect the requirements for equivalence of expressions. For example,
functional dependencies may be applied to instances, and in the presence of a set of
functional dependencies we say that E1 =-E2 if ,t(E)= ,t(E2) for all instances I that

satisfy the functional dependencies. Similarly, functional dependencies may apply to

relations, and we defineE to be strongly equivalent to E2 in the presence of functional

dependencies, if ,,(E) ,,(E2) for all assignments a of relations ri to arguments R
such that the ri’s satisfy the dependencies.

3. Tableaux. In this section we show how to represent the mappings defined by
relational expressions by specialized matrices called "tableaux". Tableaux are similar
to the tabular queries of Query-by-Example [27] and the conjunctive queries of

Chandra and Merlin [8]. We shall see that for every query in our query language there is

a tableau with the same value, but unfortunately, the correspondence is not exact.

There are tableaux that do not correspond to any expression over the operators we
discuss (or, to our knowledge, over any other set of operators that have appeared in the

literature).

3.1. Definition of a tableau. A tableau is a matrix in which the columns correspond
to the attributes of the universe in a fixed order. The first row of the matrix is called the
summary of the tableau. The remaining rows are to be exclusively called rows.

The general idea is that a tableau is a shorthand for an explicit set description, such
as (*) above, used to define the value of an expression. The summary represents what
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appears to the left of the vertical bar, e.g., ab in (.) The rows represent the tuples
required to be in L such as abc’ and a’bc in (,)

To simplify later discussion we shall .dopt the following conventions regarding
tableaux. The symbols appearing in a tableau are chosen from:
(1) Distinguished variables, for which we use a’s, possibly with subscripts. These

correspond to the symbols to the left of the bar, as a and b in (*).
(2) Nondistinguished variables, for which we generally use b’s. These are the other

symbols appearing in set formers, such as a’ and c’ in (*).
(3) Constants, for which we use c’s or nonnegative integers.
(4) Blank.

The summary of a tableau may contain only distinguished variables, constants, and
blanks. The rows of a tableau may contain variables (distinguished and nondistin-

guished) and constants. We also require that the same variable not appear in two
different columns of a tableau, and that a distinguished variable not appear in a column
unless it also appears in the summary of that column.

Let T be a tableau and let $ be the set of all symbols appearing in T (i.e., variables
and constants). A valuation la for T associates with each symbol of S a constant, such
that if c is a constant in S, then t9 (c)= c. We extend t9 to the summary and rows of T as

follows. Let w0 be the summary of T, and wl, w2," ", wn the rows. Then p(wi) is the

tuple obtained by substituting p(v) for every variable v that appears in wi.

A tableau defines a mapping from instances to relations on a certain subset of

attributes, called the target relation scheme, in the following way. If T is a tableau and I
an instance, then T(I) is the relation on the attributes whose columns are nonblank in
the summary, such that

T(I)= {p(w0)[for some valuation p we have p(wi) in I for 1 -<_i -< n}.

Example 4. Let T be the tableau

A B C

al a2

al bl b3
b2 a2

b2 b b4

We conventionally show the summary first, with a line below it. We can interpret this

tableau as defining the following relation on AB

T(I)= {ala21(:lbl)(:lb2)(ib3)(lb4)such that alblb3 is in I and b2a21 is in ! and
b2bb4 is in I}

where I is any instance. For example, suppose I is the instance {111,222, 121}.
Consider the valuation p which assigns 1 to all the variables. Under this valuation,

the three rows of T each become 111, which is a member of L Therefore, p(ata2) 11 is

in T(I).
If p assigns 2 to b and a2, and 1 to the other variables, all rows become 121, so

p(aia2) 12 is in T(I).
If p assigns 2 to a 1, bl and b3, and 1 to the other variables, then p(a1blb3) 222 is in

I, p(b2a21)= 111 is in/, and p(bEblb4) 121 is in I, so p(ala2)=21 is in T(I).
Finally, if p assigns 1 to bE and b, and 2 to the other variables, then we see that 22 is

in T(I). Thus, T(I)={ll, 12, 21, 22}.
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Conventionally, we also regard as a tableau. This tableau represents the
function that maps every instance to the empty relation.

Tableaux are closely related to the conjunctive queries of [8]. The significant
differences between tableaux and conjunctive queries are that

(1) tableaux permit constants in the summary,
(2) columns of a tableau are associated with attributes, and
(3) tableaux do not permit symbols appearing in two different columns.

Condition (1) is needed to handle the select operator; condition (2) is required that we
may talk about dependencies and their effect on equivalence of expressions. Condition

(3) is assumed because it enables us to show that even restricted subsets of conjunctive
queries have hard optimization problems, and, more importantly, it enables us to isolate
a large subset of tableaux for which optimization is relatively easy.

3.2. Equivalence of tableaux. Two tableaux Tx and T are equivalent, written

T -= T, if for all I, T(I)= T(I). We say that T is contained in Tz, written T
_
T, if

for all I, T(I)_ T([). Note that a necessary, but not sufficierft, condition for both

T - T and T __. T is that the relations defined by T and T have the same target
relation scheme.

As we shall see, the questions of equivalence and containment of tableaux are in
the general case hard combinatorial problems. We can, however, state a basic and not

unexpected result, namely that consistent renaming of variables does not change the
value of a tableau, thus providing many obvious equivalences.

LEMMA 1. Let T be a tableau and 4’ a one-to-one correspondence that maps
distinguished variables to distinguished variables, nondistinguished variables to nondis-
tinguished variables, and constants to constants. I] we construct a tableau T’ ]rom T by
simultaneously substituting () for every occurrence of symbol , in T, then T T’.

Proof. This result follows immediately from the definitions. [:]

3.3. Representation of expressions by tableaux. In this section we show how to
construct a tableaux to represent any expression over the operators select, project, and
join. The construction proceeds inductively by first building tableaux for the individual
operands of an expression, and then combining these tableaux to form tableaux for
larger and larger subexpressions, until a tableau for the entire expression is found. The
rules for building a tableaux T for an expression E are:
(1) If E is a single relation scheme R, then the tableau T for E has one row and a

summary such that:
(i) If A is an attribute in R, then in the column for A, tableau T has the same

distinguished variable in the summary and row.

(ii) If A is not in R, then its column has a blank in the summary and a

nondistinguished variable in the row.
(2a) Suppose E of the form O’A=c(E1), and we have constructed T1, the tableau for El.

(i) If the summary for T has blank in the column for A, then T .
(ii) If there is a constant c’@ c in the summary column for A, then T . If

c c’, then T T1.
(iii) If Tx has a distinguished variable a in the summary column for A, the tableau

T for E is constructed by replacing a by c whenever it appears in T.
(2b) Suppose E is of the form "rrx(E), and T1 is the tableau for El. The tableau T for E

is constructed by replacing nonblank symbols by blanks in the summary of T1 for
those columns whose attributes are not in X. Distinguished variables in those
columns become nondistinguished.
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(2c) Suppose E is of the form EllXlE2 and T1 and T2 are the tableaux for E1 and E2,
respectively. Let $1 and $2 be the symbols of T1 and T2, respectively. By Lemma 1,
we may take $1 and $2 to have disjoint sets of nondistinguished variables, but
identical distinguished variables in corresponding columns.
(i) If T1 and T2 have some column in which their summaries have distinct

constants, then T- .
(ii) If no corresponding positions in the summaries have distinct constants, the

rows of the tableau T for E consist of the union of all the rows of T1 and T2.
The summary of T has in a given column

(a) The constant c if one or both of T1 and T2 have c in that column’s
summary. In this case we also replace any distinguished variable in
that column by c.

(b) The distinguished variable a if (a) does not apply, but one or both of

T1 and T2 have a in that column’s summary.
(c) Blank, otherwise.

THEOREM 1. The rules above construct for any restricted relational expression E a
tableau T such that ]or all instances I, vx(E)- T(I).

Proof. The proof is an induction on the number of operators in E.
Basis. Rule (1). If there are no operators in E, then E is a single relation scheme R,

and rule (1) clearly constructs the appropriate tableau T.
Induction. Rule (2a). E O’A=c(El). Let TI be the tableau for E.

(i) If the summary for T1 has blank in the column for A, then the expression E has
no meaning and is the correct tableau for E.

(ii) If there is a constant c’ c in the summary column for A, then for any I, v(Ex)
has only tuples with c’ in the component for A, and vx(E) is empty. Again, 3 is the

correct tableau for E. If c c’, then T1 is the correct tableau for E.
(iii) If T has a distinguished variable a in the summary column for A, and we

construct T for E by replacing a by c whenever it appears in T1, then we claim that for
all I, T(I) crA=c(Tl(I)). In proof, suppose p is a map from the symbols of T1 to a set of
constants C. Let w0, w1,..’, wn be the summary and rows of T, and let
Wo,’ w I, , w’, be the same for T. That is, w is wi with a replaced by c if a appears in

wi. Then,

T(I)= {p(W’o)lp(wl)is in I for 1 -<_ -<_ n}

(p(Wo)lp(a)= c and p(wi) is in I for 1 -< -< n}

O’A=c({[(Wo)[[9(Wi) is in I for I -< -<_ n})

O’A=c(TI(I)).

The third line above follows from the fact that w0 is known to have a in its column for A.
Rule (2b). E "a’x(E). A proof of the correctness of this case is straightforward

and is omitted.
Rule (2c). E Ex E2.
(i) If Tx and T2 have some column in which their summaries have distinct

constants, then V(E) maps all instances to , so 3 is the correct tableau for E.
(ii) If no corresponding positions in the summaries have distinct constants, we

claim that T(I)- Tx(I) T2(I) for all I. Let w0 be the summary of T. Let xj, 0-<_ <- n,
and y, 0_-< _-< hE, be the summaries and rows of T and T2, respectively. Then

TI(I) {p(Xo)lp(xi)is in I for 1 <_-i <_- n,},

T2(I) {p2(Yo)lp2(Yi)is in I for I <_- <_- n2},
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TI(I) T2(I)= (0(wo)lfor some pl and p2, p agrees with pl and/or p2, respectively, on
the attributes with nonblank symbols in Xo and yo, respectively, pl(Xi) is in I for
1 -<_ _-< n 1, and p2(yi) is in I for 1 _-< =< n2}.

As $1 and $2 have disjoint sets of nondistinguished variables, we may extend p to
agree with pl and p2 on all symbols present in T. Therefore

TI(I)N Tz(I) {p(Wo)lp(x) is in I for 1 __-< =< n and

p(y) is in I for I <- <-_ n2}.

Example 5. Let A, B and C be the attributes, in that order, and suppose we have
the expression "trAc(O’B-_o(ABBC)). By Rule (1), the tableaux for AB and BC are

A B C A B C

al a2

al a2 bl
and

a2 a3

b2 a2 a3

By Rule (2c), the tableau for AB NBC is

A B C

al a2 a3

al a2 bl
b2 a2 a3

By Rule (2a), the tableau for o’B=o(ABNBC) is

A B C

al 0 a3

al 0 bl
b2 0 a3

Finally, by Rule (2b), the tableau for ’n’AC(tr=o(AB lxlBC)) is

A B C

al a3

al 0 bl
b2 0 a3

It is interesting to note that Chandra and Merlin [8] prove an analogue of Theorem
1 and also its converse, using select, project and join operations that are suitably
generalized to take advantage of the fact that columns are not pinned down to particular
attributes, and also an operator called restriction, that in effect identifies two dis-

tinguished variables of the same relation. However, in our model the converse to

Theorem 1 is false. That is, there are tableaux that come from no expression, as the
following example shows.
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Example 6. The tableau

al a2

a b2
bl az
b ba

cannot be derived from any restricted relational expression. If there is such an
expression, suppose that the last two rows come from the first two relations joined. The
expression resulting from this join must later be joined with a relation from which the
first row, a lbz, is derived. Since b2 appears in rows 1 and 3, b2 must have been
distinguished at this later time, else the symbols in these positions could not be
identified with one another. Since a2 is currently distinguished, however, it must have
been so when the last join was performed, and symbols b2 and a2 would not be distinct.
A similar contradiction is obtained no matter which two rows we assume are grouped
first.

In fact, even had we introduced a restriction operator, we could not produce the
above tableau. In proof, note that if a tableau has a symbol appearing in two columns,
the operations on tableaux corresponding to select, project and join preserve that
property. Since the above tableau has no symbol in both columns, we know that
restriction could be of no help in forming it.

We know of no natural set of operators that characterizes tableaux exactly.
The construction rules above can also be used to define the operations select,

project and join on tableaux. The result of applying any one of these operations to
tableaux (not necessarily tableaux derived from expressions) is defined to be the tableau
described in the rule for that operation.

4. Testing equivalence of tableaux. In this section we shall give a method for
testing the equivalence of tableaux, thus providing an algorithm for testing the
equivalence of expressions.

4.1. Homomorphisms. Chandra and Merlin [8] give a necessary and sufficient
condition for the equivalence of conjunctive queries in terms of "homomorphisms,"
which are symbol-symbol mappings with certain properties. We shall prove the
analogous result here for tableaux. We shall then prove a dual formulation of the
equivalence test of [8] in terms of row-row mappings called "containment mappings."

Let T1 and T2 be two tableaux with sets of symbols $1 and $2. A homomorphism is a
mapping 4,’$1 -> $2 such that"

(i) If c is a constant, then 4,(c)= c.

(ii) If a is distinguished, then 6(a)either is distinguished or is the constant
appearing in the corresponding column of the summary of T2.

(iii) If w is any row of T1, then 4,(w) is a row of T2.
Then, intuitively, any time that we can map the rows of T2 into elements of an instance I,
the homomorphism b gives us a map from rows of T1 into I as well. Thus, Tz(I) TI(I)
for all I, so 72 71.

The converse holds as well. If T2_ T1, then we can make the rows of T2 be an
instance ! of the universe, by treating all symbols of $2 as distinct constants. The fact
that T2 T1 implies that T2(I) TI(I). The fact that the summary of T2, with blanks
deleted, is in T2(I), and hence in TI(I), implies that the homomorphism if:S1-> $2
exists. We may formalize the above as follows.
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THEOREM 2. Let Tx and T2 be two tableaux with sets ofsymbols Sl and S2. T2 T1 if
and only if they have the same target relation scheme, and there is a homomorphism
0:81-9"82.

Proof [8] (If). Let I be an instance, and let p S C be a valuation, where C is a set
of constants, such that for each row w of T2, p(w) is an element of I. Then p 4’ S C is
a valuation that sends each row of TI to an element of I, by condition (iii). By conditions

(i) and (ii), if Sx and s2 are the summaries of TI and T2, respectively, with blanks deleted,
then p(s2) p(O(Sx)). Thus, any tuple in T2(I) is in T-I(I), so T2_ TI.

(Only if). Let p be a one-to-one correspondence between the symbols of T2 and
some set of constants, and let I be the instance consisting of all the elements p(w), for w
a row of T2. Then p(s2) is in T2(I), and since T2

_
T, it is also in TI(I). Thus, there is a

homomorphism :$1 S2 satisfying (i)-(iii) by the definition of the application of a
tableau to an instance and the fact that p is one-to-one, l1

4.2. Containment mappings. A containment mapping is a mapping from the rows
of one tableau to another that preserves distinguished variables and constants and does
not map any symbol to two different symbols. Formally, let T and T2 be tableaux, and
let 0 be a mapping from the rows of T to the rows of T2. We say 0 is a containment

mapping if"

(a) For each row of T, if row has a distinguished variable in some column A,
then row O(i) of T2 has a distinguished variable or constant in column A.

(b) If row of Tx has a constant c in column A, then row O(i) has c in column A.
(c) If rows and ] of T have the same nondistinguished variable in column A, then

rows O(i) and O(j ) have the same symbol in that column. That symbol could be constant,
distinguished, or nondistinguished. Also note that O(i)= O(j) is possible.

We may prove the following analogue to Theorem 2.
THEOREM 3. T2

___
T1 ifand only if they define the same target relation and there is a

containment mapping 0 from T1 to T2.
Proof (If). Let ff:Sl- $2 be a symbol-symbol mapping such that if symbol d

appears in column A of row r of T1, and symbol d’ appears in column A of row O(r)of
T2, then (d) d’. The map is consistent by condition (c). Conditions (i)-(iii) for ff are
immediate. That is, (a) implies (ii), (b) implies (i), and (iii) is implied by the definition of

ff from 0. Thus, ff is a homormorphism, and by Theorem 2, T2

__
T.

(Only if). By Theorem 2, there is a homomorphism ff:Sx- $2 satisfying (i)-(iii).
The existence of a map from the rows of T1 to the rows of T2 satisfying (c) follows from
(iii); (i) and (ii)imply (a) and (b).

As a containment mapping on rows induces a homomorphism satisfying (i)-(iii), we
shall sometimes fail to distinguish a containment mapping from its corresponding
homomorphism.

COROLLARY 1. rl T2 if and only if Tx and T2 have identical summaries up to

renaming of distinguished variables, and containment mappings exist in both directions.
In this case the possibility that row O(i) in condition (a) has a constant can be ignored,
since a constant cannot map back to a distinguished variable.

Example 7. The expression zrAn(AB NBC)of Example 3 has tableau

A B C

T1-- w
w2

al a2

a a2 bx
b2 a2 b3
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while the expression AB over set of attributes A, B and C has tableau

A B C

T2 al a2

W3 al a2

In one direction, the map that sends both wl and W2 to w3 is a containment mapping.
The induced homomorphism is:

in T1

al

b
b2
b3

in T2

al

In the opposite direction, we may map w3 to wl, showing the containment in the
opposite direction as well. Thus AB and 7rAB(ABBC) are equivalent.

For another example, let E1 =ABIACBC and E2 ABCtrc-o(BC). The
tableaux for E1 and E2 are, respectively,

A B C A B C

T1 Wl

w2

w3

al a2 a3

a a2 b
al b2 a3

b3 a2 a3

al a2 0

a a2 0

bl a2 0

Then T2
_

T1, since we may produce a containment mapping by sending wl, W2 and W3

to w4. We may alternatively map w3 to w5 if we like. However, in the opposite direction

there is no containment mapping, since the constant 0 cannot map to a variable. Thus
T1 T2. To prove this we may make an instance I from the rows of T1 by assigning, say,
1, 2," 6 to a, a2, a3, bl, bE and b3. Then T(I) contains 123, but T2(I) does not. I-I

An additional corollary to Theorem 3 gives a simple row elimination rule for
tableaux.

COROLLARY 2. Let Tbe a tableau, w some row of T, and suppose there is some other
row x of T such that in whatever column w and x disagree, w has a nondistinguished
variable that appears nowhere else in T. Then the tableau T’, obtained by deleting row w

from T, is equivalent to T.
Proof. We may map each row of T’ to itself in T, and we may map each row of T

other than w to itself, while mapping w to x. I-I
Example 8. In the first part of Example 7, row WE may be eliminated by w 1, which

immediately transforms T1 into T2 and proves their equivalence.
We state without proof two additional results for tableaux. There are analogous

results for conjunctive queries [8].
THEOREM 4. If T1 and T2 are equivalent tableaux, and neither is equivalent to a

tableau with fewer rows, then there is a one-to-one correspondence ot
T2 that is a containment map in both directions.

THEOREM 5. Given any tableau Twe can create a minimum row tableau equivalent
to T by deleting some rows o]: T.
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Theorems 4 and 5 imply that for every tableau T there is a minimum row tableau
equivalent to T that is unique up to renaming of symbols and reordering of rows;
moreover, this minimum row tableau can be found by removing some of the rows of T.
In 5 we shall see that it is, nevertheless, a computationally difficult task to determine
which rows of a tableau are redundant.

4.3. The effect of functional dependencies. When functional dependencies are
present, we can use them to transform tableaux to equivalent forms. This can be done in
the following way. Suppose X is a set of attributes, A is an attribute, and X-> A.
Suppose also that two rows and /" of T have identical symbols in all columns
corresponding to attributes of X. Let T’ be constructed from T as follows.
(a) If rows and j have two distinct constants in the column corresponding to A, then T’

is .
(b) Otherwise, make the symbols found in row and row of column A identical. If one

of them is a constant then the resulting symbol is the same constant; if both of them
are variables and one is distinguished, so is the resulting symbol.
LZMMA 2. If T’ is obtained from T as described above, then T(I)= T’(I) for every

instance I that satisfies the functional dependency X --> A.
Proof. Let dl and d2 be the symbols identified, and let d3 be the symbol that

replaces them in T’. Let S and S’ be the sets of symbols of T and T’ respectively.
Suppose that I is any instance that satisfies X--> A, and p" S--> C is a valuation under
which each row of T becomes a member of L Since I satisfies X--> A, we must have
p(dl) p(d2). Define an assignment p’:S’--> C as follows

p’(d)=p(d) if d#d3, and p’(d3) =p(dx).

The application of p and p’ to T and T’ respectively produces identical results, and
therefore T(I)_ T’(I).

The converse, that T’(I)_ T(I), is proved in a similar way. 71

Example 9. Consider the expression zrAc(AB NBC)N(AB NAD) whose syntax
tree is shown in Fig. 2.

’AC

/\
N AB AD

/\
AB BC

FIG. 2. Syntax tree for expression.

The tableau for this expression is

A B C D

al a2 a3 a4

al

al

al

bl b2
a3

b6
b9

b3
b5
b7
a4
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Suppose the functional dependencies B A and A C hold. Then B A implies
that a b4, and then A C implies that all of b2, a3, b6 and b9 are the same. Therefore
the above tableau is equivalent to:

A B C D

al a2 a3 a4

al bl a3 b3
al bl a3 b5
a a2 a3 b7
ax b8 a3 a4

By Corollary 2 to Theorem 3, the first row may be eliminated in favor of the second row
(or vice-versa), and then the remaining of these may be eliminated in favor of the third

row, leaving

A B C D

al a2 a3 a4

al a2 a3 b7
a b8 a3 a4

which implies that the given expression is equivalent to ABCNACD in the presence of
the dependencies B A C. I1

Suppose that T is a tableau and F is a given set of functional dependencies. Let
and ] be two rows of T, and let X be the set of all the attributes whose corresponding
columns have identical symbols in row and row ]. For every column in X*, we can

equate the symbols that appear in this column in row and row/" wherever they appear
in T. This process can be applied recursively until no more symbols can be equated. The
result is a tableau T’ that is equivalent to T for every instance in which F holds, by
Lemma 2. It is easy to show that T’ is unique for T up to renaming of variables, since the
above transformation on tableaux is a "Finite Church-Rosser System" [3]. Informally,
if two symbols can be equated, they will always be equatable, no matter what other
symbols are equated.

If no symbols of T may be equated because of a set of functional dependencies F,
we say Tsatisfies F. The result T’ of equating symbols of any tableau T according to the
above rules, until no more can be equated is called the limit of T with respect to F. By
using the algorithm of [5], [6] to compute X* for sets of attributes X, we can construct
the limit of T in time proportional to the square of the input size (the space needed to
write down F and T). The algorithm is essentially that given in 1 ]. In the next theorem
we show that in the presence of functional dependencies there is a weaker necessary and
sufficient condition for inclusion or equivalence among tableaux.

THEOREM 6. Let T1 and T2 be tableaux with limits T’ and T with respect to a set of
functional dependencies F, Then TI(I)

_
T2(I) for all instances IsatisfyingFifand only if

T’I p_ T’.
Proof. By Lemma 2, TI(I) T (I) for all I satisfying F, and similarly for T2 and T.

Thus the "if" portion is immediate. The converse is similar to the "only if" portion of
Theorem 2. Here, we make T into an instance I by assigning distinct constants to all its

symbols. As T satisfies F, I satisfies F. If TI(I)_ T2(I), then T (I)_ T (I). The
existence of a homomorphism p from the symbols of T to those of T follows as in that
theorem. Thus by Theorem 2, T

_
T.
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COROLLARY. T1(I)= T2(I) for all instances I satisfying F if and only if T’ =- T’2.
Example 10. Let us continue Example 9, where the dependencies were B A and

A C. Consider the expression ABBCAD, whose tableau is

A B C D

al a2 a3 a4

al a2 bl b2
b3 a2 a3 b4
a b5 b6 a4

The limit of this tableau is

A B C D

al a2 a3 a4

a a2 a3 b2
al a2 a3 b4
al b5 a3 a4

which is equivalent to the limiting tableau of Example 9, since the first row may be
eliminated by Corollary 2 to Theorem 3. Thus the expression of Fig. 3 is equivalent to

ABBCAD if the dependencies BA and AC are given. Note that these
expressions .are not equivalent in general.

5. NP-Completeness results concerning tableau equivalence. The obvious way to

test the equivalence of two tableaux is to consider all possible containment mappings in

each direction. Since the number of mappings from n rows to n2 rows is n1, this

procedure takes exponential time. One might therefore be interested in finding a

procedure that takes less time. Using recent developments in complexity theory,
however, we can prove that a substantially better algorithm is not likely to exist.

We assume the reader is familiar with the notion of an NP-complete problem. This
class of problems was first considered in [12], [18]. There is strong evidence that these
problems are intractable in general, that is, there is no algorithm for any of these
problems which, on every input, will take less than exponential time. References [2],
[16] present the methodology and theory behind NP-completeness results, as well as

enumerating many of the known NP-complete problems.
In this section we show that the equivalence and containment problems for

tableaux are NP-complete even in the following special cases:

(1) The tableaux come from expressions that have no select operators, but there is
a set of functional dependencies that must be satisified.

(2) The tableaux come from expressions (including select operators), but no

dependencies need be satisfied.
(3) There are no constants in the tableaux, nor are there dependencies, but the

tableaux need not come from expressions.
Under the same conditions, the problem of determining whether T1

_
T2 for two

tableaux T1 and T2 is also NP-complete. Moreover, even if TI is a tableau with the same
summary as T2, and the rows of T1 are a subset of those of T2, it is NP-complete to

determine whether T =- T2. This implies that minimizing the rows of a tableau is also
very likely an exponential process in the worst case. Our NP-completeness results
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strengthen those in [8] since our restricted relational expressions are a subset of the class
of conjunctive queries.

5.1. The satisfiability problem. All the results use almost the same reduction from
the 3-satisfiability problem, shown NP-complete in [12]; see also [2], [16]. Let
F F1F2" Fq be a Boolean expression in conjunctive normal form, where the F’s are
clauses of three literals each, and Xl, x2, , xn are all the variables appearing in this
expression. We construct two tableaux T1 and T2, each with n +q columns, in the
following way. T1 has one row for each clause F. Let wi be the row that corresponds to

Fi. Let x1, x and x be the variables that appear in Fi, either complemented or
uncomplemented. Row w has the distinguished variable ai in the ith column and the
nondistinguished variables xl, xi2 and xi3 in columns q + il, q + i2 and q + i3, respec-
tively. The rest of the columns of w contain nondistinguished variables that appear
nowhere else. The summary of T has ai in the ith column, 1 _-< -<_ q, and blank in the

other columns.
T2 has seven rows for each row of Tt. Let wi be a row of Tt. Each of the seven rows

of T2 that correspond to w represents some truth assignment to the variables of F
under which F is true. Such a row has the distinguished variable a in the ith column and
one of the seven lists of constants c, ci2 and c in columns q + il, q + i2 and q + i3,
respectively, such that each c is zero or one, and the assignment of the set of values cij to

xij (1 <- ] _-< 3) results in F being true. The rest of the columns contain distinct nondistin-
guished variables. The summary of T2 is the same as that of T1.

Example 11. Consider the Boolean expression

(Xl + "2 + X3)(,’3 + X4 + Xs).

Then F1 (x +.12 + X3) and F2 (3 + x4 + xs); q is 2 and n is 5. T1 is:

F1 F2 Xl x2 x3 x4 x5

al a2

al bl x x2 xa b2 ba
b4 a2 bs b6 x3 x,, xs

The seven rows of T2 that correspond to the first row of T are

(al, b7, 1, 1, 1, bs, b9)

(al, blo, 1, 1, 0, b11, b12)

(al, 313, 1, 0, 1, b14, 315)

(al, 316, 1, O, O, 317, 318)

(a l, b9, 0, 1, 1, b2o, b21)

(al, 322, O, O, 1,323, b24)

(al, b25, 0, 0, 0, b26 b27).

A literal is a variable or negated variable.
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The rows of T2 that correspond to the second row of T1 are

(b28, a2, b29, b30, 1, 1, 1)

(b31, a2, b32, b33, 1, 1, 0)

(b34, a2, b35, b36, 1, 0, 1)

(b37, a2, b38, b39, 0, 1, 1)

(b40, a2, b41, b42, 0, 1, 0)

(b43, a2, b44, b45, 0, 0, 1)

(b46, a2, b47, b48, 0, 0, 0).

Note that the first seven rows do not include the combination 0, 1, 0, because if we

assign 0 to Xl and x3 and 1 to x2, then F1 (xl + f2 + x) gets the truth value 0. Similarly,
the last seven rows do not contain the combination 1, 0, 0. 13

5.2. A class of tableaux that come from expressions. It happens that T1 and T2 are

both obtainable from expressions by the construction preceding Theorem 1. These
observations are special cases of a more general result, which we state as the next

lemma. A repeated symbol in a particular column of a tableau is either

(1) a distinguished variable,
(2) a constant appearing in that column of the summary,
(3) a nondistinguished variable appearing in two or more rows.

Notice that a repeated symbol might appear in only one row if it is a distinguished
variable or a constant appearing in the summary.

LEMMA 3. IfTis a tableau with at most one repeated symbol in any column, and such
that any symbol appearing in the summary appears in at least one row in the same column,
then there is a relational expression E, such that Theorem 1 applied to E yields T.

Proof. For each row of T, let Ri be the relation scheme consisting of the attributes
in whose columns row has a repeating symbol or other constant. Construct expression

Ei by applying O’A--c to Ri for all attributes A whose column in row has a constant c

that does not appear in the same column of the summary. The tableau forE is a row like

row i, but with distinguished variables in place of all repeated symbols, and with a

summary containing the distinguished variable in exactly those columns in which row
has a repeated symbol.

Next, join all the Ei’s. The result is an expression with a tableau like T, but with

distinguished variables for all repeated symbols. Lastly, apply O’a=c for all A whose
column has in the summary a constant c, and project onto those attributes such that the
summary of T has a nonblank. The result is an expression with tableau T. I3

COROLLARY. T1 and T2 above come from expressions.

Proof. TI has only the a’s and (possibly) the x’s as repeated symbols; T2 has only
the a’s as repeated symbols.

Example 12. Consider T of Example 11 and suppose the columns correspond to

attributes A,A2,... ,AT. The repeated symbols are al, a2, and x3. The relation
schemes for the two rows are R AA5 and R2 A2A5. The expression correspond-
ing to T1 is "a’A1A2(AA5 A2As). 1"-I

5.3. NP-Completeness results for expressions.
LEMMA 4. Let T and T2 be constructedfrom a Boolean expression Fas above. Then

T1
_
T2 if and only ifF is satisfiable.
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Proof (If). Given an assignment that makes F true, we may construct a homomor-
phism 4’ from the symbols of T1 to those of T2 as follows.

O(ai)=ai,

4,(x) 0 or 1 depending on the value assigned to x to make F true.

We may then map each row w of T to that one of the seven corresponding rows that is

(w) when we extend to the rest of the nondistinguished variables. Since each
nondistinguished variable of T1 except for the x’s appears only once, we can always
extend ff in this manner. Thus T

_
T2 by Theorem 2.

(Only If). Suppose there is a containment mapping of T1 to T2. Because of the a’s,
each row of T must be mapped to one of the seven corresponding rows of T2. Each x is

mapped to either 0 or 1 consistently. The values chosen for the x’s satisfy F, because the
combinations of values making clauses false are not available as rows of T2. Thus F is

satisfiable.
THEOREM 7. Let U1 and U be two tableaux that are derived from restricted

relational expressions. The following problems are NP-complete:
(1) Does U1 U2?
(2) s u-- u?
(3) Let U2 be a tableau that is obtained by deleting some of the rows of U. Is

U=- U2?
Proof. All these problems are in NP, because all we have to do is to guess a

containment mapping and check whether it satisfies all the required conditions. Part (1)
is immediate from Lemma 4.

For part (2), let Ux T1NI T2 and Uz T2, where T and T2 are as above. Recall
that the join is defined for tableaux by Theorem 1. Also note that Ux is obtainable from
an expression if Tt and T2 are. Since T1 and T2 define mappings whose values are

relations with the same target relation scheme, the join is really intersection. Thus for
any L UI(I)= TI(I)f-) T2(I), and U U2 if and only if T1 T2. Thus, equivalence is

NP-complete by Lemma 4.
For part (3), simply observe that the rows of Uz constructed in part (2) are a subset

of the rows of
Parts (1) and (2) of Theorem 7 say that the problem of testing equivalence or

containment of expressions is almost certainly an intractable one, that is, no general
algorithms of less than exponential complexity exist. Part (3) says that the problem of
eliminating redundant rows of the tableau derived from one of these expressions is also
likely to be intractable.

5.4. NP-Completeness results for tableaux. We should note the critical role played
by constants in the proof of Lemma 4 and Theorem 7. However, if we are willing to
relax our constraint that the tableaux come from expressions, then constants are not
needed.

THEOREM 8. The problems of Theorem 7 are NP-complete for general tableaux that
have no constants.

Proof. In T2 defined previously, in each column replace 0 by a nondistinguished
variable arid 1 by another nondistinguished variable. The proof is then identical to
Theorem 7. Note that T2 does not in general come from any relational expression.

5.5. NP-Completeness results with functional dependencies. In the presence of
functional dependencies, we can prove similar results about tableaux that have only
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variables and correspond to expressions with operations project and join only. The key
idea is to use tableaux with q + 2n columns as follows. The first tableau is simply
obtained from T1 by adding another n columns that contain only distinct nondistin-
guished variables.

To generate the second tableau 72, we modify the last n columns of T2 as follows.
First we replace in every column each occurrence of the constant 1 by the same
nondistinguished variable, and each occurrence of the constant 0 is replaced by a
distinct (for that occurrence) nondistinguished variable. The resulting columns are the
(q + 1)st,. , (q + n)th columns of 2. Columns q + n + 1 through q + 2n of ’2 are
obtained by a similar modification on columns q + 1 through q + n of T2; each
occurrence of the constant 0 in a particular column is replaced by the same nondistin-
guished variable, and each occurrence of the constant 1 is replaced by a distinct
nondistinguished variable.

Both x and 2 correspond to expressions by Lemma 3. Let Ai be the attribute of
the ith column. Suppose that we consider only instances in which the functional
dependencies Ai+n Ai (q + 1 <= <_-q + n) hold. Using these dependencies we can
equate all the distinct variables, in the ith column (q + 1 =< _<- q + n), that stand for the
truth value 0. Notice that each column between q + 1 and q + n already has a single
symbol representing truth value 1. Therefore, 1(1) 72(I), for all instances I satisfy-
ing the dependencies, if and only if the Boolean expression F is satisfiable.

As a result of this reduction, we may conclude the following.
THEOREM 9. Given a set offunctional dependencies and two tableaux U1 and U2

that come from relational expressions with no select operations (and hence Ux and U2
have no constants), it is NP-complete whether, for all instances I satisfying the functional
dependencies,

() u()=_ u(I)
(2) UI(I) Uz(I)
(3) Ux(I)= Uz(I) given that the rows of Uz are a subset of the rows of U1.
Proof. Let T and T be the limits of 1 and . above with respect to the functional

dependencies given above. Then T x, and in each of columns q + 1 through q + n of
T, there is one nondistinguished variable where Tz, defined previously, has 0, and
another where Tz has 1. Other than this, the first q + n columns of T are the same as

Tz. As T has distinct nondistinguished variables in all positions of its last n columns, it
follows as in Lemma 4 that there is a containment mapping from T to T if and only if
the Boolean expression F is satisfiable. By Theorem 6, T

_
T if and only if for all I

satisfying the dependencies, x(I)- ’z(I). Thus F is satisfiable if and only if for all
instances I satisfying the dependencies, x(I)_ 2(I). Parts (2) and (3) follow as in
Theorem 7.

6. A polynomial-time equivalence algorithm for a subclass of tableaux. In this
section we define "simple tableaux," a large subclass of tableaux for which we can find a
polynomial-time algorithm to decide equivalence.

6.1. Simple tableaux. A tableau is simple if in any column with a repeated
nondistinguished variable there is no other symbol that appears in more than one row. It
is not easy to produce an expression with a nonsimple tableau. The expression
rAc(ABBC)N(ABBD) is in a sense a minimal expression that gives rise to a

nonsimple tableau. The tableau is shown in Fig. 3. The rows in the column for B have
repeated nondistinguished and distinguished variables.
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A B C D

1 a2 a3 a4

a b b2 b3
b,, b a bs
ai a2 b6 b7
b8 a2 ba a,,

FIG. 3. A nonsimple tableau.

Note that some simple tableaux do not come from expressions.
Intuitively, the algorithm for equivalence of simple tableaux works as follows.

Suppose first that no column has any repeated nondistinguished variables. When we are

dealing with equivalence, rather than containment, we can rule out containment

mappings in which a distinguished variable maps to a constant. Therefore, to check for
the existence of containment mappings in the situation where no nondistinguished
variable repeats, we have only to examine each row r to see whether there is another
row r’ in the other tableau such that r’ has a distinguished variable or identical constant

wherever r has a distinguished variable or constant.

However, simple tableaux admit repeated nondistinguished variables in a column,
provided there is not also another repeated symbol of any sort appearing in two rowsof
that column. Let T1 and T2 be equivalent simple tableaux and A a column of T1 with

repeated nondistinguished variable bl. As T1 and T2 are equivalent, there is a

containment mapping 01 from T1 to T2, and another containment mapping 02 from Tz
to T1. It is easy to check that the composition of containment mappings is a containment

mapping, so we may consider the containment mapping 02" 01 from T1 to itself, as
suggested in Fig. 4.

01

T T-2

02

FIG. 4. Composition of containment mappings.

Now let us look at the set of rows S of T1 that have bl in column A. There are two

cases:

(a) 02" 01 maps rows in S to two or more rows of

(b) 02" 01 maps all rows in S to a single row r.

In case (b) we can eliminate all rows in S (except r if it is in S) from T1, and the result will
be a tableau equivalent to T1. In case (a) we know that 02" 01(w) is in S for all w in $,
because by the hypothesis that T1 is simple, no pair of rows other than those in S have
the same symbol in the column for A. Moreover, 01 maps S to at least two rows, and
these rows must have the same nondistinguished variable in column A. For if they had a
distinguished variable or constant, 02 could not map them to rows in S. Thus in case (a)
there is a repeated nondistinguished variable b2 in column A of T2.

Our algorithm works as follows. We search for a column A in which one tableau
has a repeated nondistinguished variable in some set of rows S. If there exists a
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containment mapping 02 01 from T1 to itself that maps all of S to one row r, then we
eliminate S, and perhaps some other rows, to be determined later, in favor of r. If no
such mapping exists, then only case (a) can apply, if T1 T2. Then 01 and 02 must map
rows with bl to rows with b2, and vice-versa. In this case we may "promote" bl and b2 by
treating them as constants. Ultimately, we eliminate all repeated nondistinguished
variables, either by row elimination or by promotion. The resulting tableaux meet our
earlier requirements for an efficient equivalence test, since they have no repeated
nondistinguished variables. We now proceed to formalize the above argument.

6.2. low covering. We say that row x of a tableau covers row w if the following
hold.

(a) w and x have the same number of columns.
(b) If w has a distinguished variable in a given column, so does x. If w has a

constant in a given column, then x has the same constant in this column.
We say x covers a set of rows S if x covers every row in S.

Example 13. Let

at 0

al b2 bl b3
b4 b2 0 b3
a b2 b6 b7

d4 a5

a, b8 b9 a6

blo b8 as a6

Both Tt and T2 are simple tableaux. The third row of T1 is covered by the first row of
or the first row of T2. No row of T1 covers the second row of T2.

LEMMA 5. Let T and T2 be two simple tableaux without any repeated nondistin-

guished variables. Then T1 =- T2 ifand only if T1 and T2 have identical summaries (up to

renaming of distinguished variables), every row of T is covered by some row of T2, and
every row of T2 is covered by some row of T1.

Proof (If). We can map each row of T to a row of T2 that covers it. As there are no

repeated nondistinguished variables, this ,aapping is a containment mapping. Thus

T1 __. T2. In the same way, T2_ T1, so T1-- T..
(Only if). A containment mapping 0 from T to T2 surely maps distinguished

variables to distinguished variables and constants to identical constants. Thus for every
row r of T1, r is covered by O(r). The argument for the rows of T2 is the same.

6.3. Row closures. Suppose that T is a simple tableau. Let S be the set of all the
rows of T that contain a repeated nondistinguished variable in one particular column.
Let w be any row of T. The closure of S with respect to w, denoted CL,(S), is the
minimal set of rows that contains $ and satisfies the following condition:

if Xl is in CLw(S) and x2 is any row of T such that xl and X2 have the s,::ae repeated
nondistinguished variable in some column, and w has a different symbol in this

column, then x2 is in CLw(S).

LEMMA 6. Let Tbe a simple tableau and S the set ofrows ofTthat contain a repeated
nondistinguished variable in column A. Let w be a row of T, and let 0 be defined by

w ]’or all x in CLw (S),
O (x )

x otherwise.

Then 0 is a containment mapping of T to T if and only if w covers CLw(S).
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Proof (Only if). This portion is immediate from the definition of a containment
mapping and of the covering relation.

(/f). Suppose not. By the definition of the covering relation, we know that 0 maps
distinguished variables to distinguished variables, and constants to identical constants.
Thus there exist rows y and z of T such that y and z have the same symbol d in some
column B, and differing symbols in rows 0(y) and O(z) of column B. Let us consider
three cases.

Case 1. Neither y nor z is in CLw(S). Clearly 0(y) and O(z) have the same symbol,
d, in column B, so no violation occurs.

Case 2. y is in CLw(S) and z is not (or vice-versa). It is not possible that d is a
nondistinguished variable, for it is repeated, and then by the definition of closure, z
would be in CLw(S). (Note that w 0(y) must differ in column B from z 0(z), so w
does not have d in column B.) If d is a distinguished variable or constant, then as w
covers CLw(S) and y is in CLw(S), it follows that w has d in column B. But then
0(y)=w and O(z)=z each have the same symbol d in column B, contrary to
assumption.

Case 3. y and z are in CLw(S). Then O(y)=O(z)= w, so no violation of the
containment mapping condition can be found. [-I

Let us define a w-chain to be a sequence of rows Zl, z2, , Zk, k >- 1, such that for
1 _-< < k, there is some column in which zi and Zi+l have the same nondistinguished
variable, and in which w does not have this variable. Then, by definition of closure, z is
in CLw(S) if and only if there exists a w-chain Zl, z2," , Zk, such that Zk is in S.

LEMMA 7. Suppose A and B are two columns of a simple tableau T with repeated
nondistinguished variables in sets of rows St and $2, respectively. Suppose x covers
CLx(Sl) and 01 is the containment mapping that sends CLx(Sl) to x and other rows to

themselves. Let T’ be T with the rows of CLx(S1)-{x} eliminated. Let $3

SE-(CLx(S1)-{x}). It follows that if S3 contains two or more rows, and in T’, w covers
CLw(S3), then in T, w covers CLw(S2).

Proof. Case 1. Suppose x is not in CLw(S3) in T’. We prove by induction on the
length of a w-chain in T from y to some z in $2, that in T’, y is in CLw(S3).

Basis. Length 1. Here y is in $2, since it has the same nondistinguished variable
as z in column B. Suppose y is not in $3. Then y is in CL(S1). Since $3 has at least two
elements, we may assume that z is in $3-{x} and, therefore, z is not in CLx(S1). Then x
must have the same nondistinguished variable as y and z in column B, else z would be in
CL(S1). Therefore x is in $2, and as x is certainly not in CLx(S1) -{x}, it follows that x is
in $3, a contradiction.

Induction. Let there be a chain of length k > 1, say y z 1, z2, , Zk Z from y to
Z. By the inductive hypothesis, Z2 is in CLw(S3) in T’. Now there is a column such that y
and Z2 have the same nondistinguished variable, and w has a different symbol there. If x
has the repeated nondistinguished variable in that column, then x is in CLw(S3). As we
assume x not to be in CLw(S3), if y is in CLx(S1), then Z2 is in CL(S1), and therefore not

in CL(S3). It follows that y is present in T’ and therefore in CL(S3) in T’. Thus
w coverg CLw(S2) in T, and the lemma follows.

Case 2. x is in CLw(S3) in T’. Let 02 be the containment mapping on T’ that sends
members of CLw(S3) to W and other rows of T’ to themselves. Then 0201 is a
containment mapping on T. We claim that 0201 maps all of CLw(S2) to W. Let y be in

CL,(S2). If y is in CL(S1), then 01 maps y to x, and 02 maps x to w.
If y is not in CL(S1) but is in CLw(S2), then there is in T a w-chain y

Zl, z2, , zn, where zn is in $2. An induction similar to the one above shows that y is in
CLw(S3) in T’. We prove the inductive step. If Z2 is in CLw(S3), then so is y. Therefore
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assume 2’2 is in CL,(S1)-{x}. Consider the column in which y and z2 have some

nondistinguished variable, and w differs. If x does not have the repeated nondistin-

guished variable in this column, then y is in CL,,(S1). But in the opposite case, as x is in

CLw(S3), it follows that y is also, proving the induction.

As 0201 is a containment mapping that sends all of CL,,,(S2) to w, it must be that w
covers CLw(S2) in T. The present lemma then follows from Lemma 6.

Consider again a simple tableau T. Let S be the set of all the rows with a repeated
nondistinguished variable in a particular column. If we can find a row w that covers

every row in CL,,,(S), then we can reduce T to an equivalent tableau T’ by deleting all
the rows of CL,,,,(S) (except w, if w is in S ) from T. This reduction rule can be applied
repeatedly, to any column of T’ that has a repeated variable, until we get a tableau that
cannot be reduced further.

Example 14. Let

al a2

al a2 bl b2 b3
a b4 b7 b5 b3
b6 a2 b7 b2 b8
b9 a2 blo blx b3

T is a simple tableau. Let S {1, 3}2 be the set of all the rows with variable b2.
CLI(S)={1, 2, 3}. That is, we begin with CLI(S)= S {1, 3}. Then, as row 2 has in

column 3 the same repeated nondistinguished variable as row 3, but row 1 does not have
this symbol, we add 2 to CLI(S). Row 4 has only distinguished variables and nonre-
peated nondistinguished variables, except in column 5. But rows 1 and 4 have the same
symbol there, so we cannot add 4 to CLI({1, 2, 3}).

The first row covers every row in this closure and, therefore, T can be reduced to

al a2

a a2 b b2 ba
b9 a2 bo bl b3

Now, consider all the rows with the repeated variable b3mthese are all the remaining
rows, and the first row covers them. Thus the above tableau is reduced to

al a2

a a2 b b2 b3

6.4. Promotion of repeated nondistinguished variables. We shall now prove that if
for no w can CL(S) be eliminated by Lemma 6, then the repeated nondistinguished
variable that gave rise to S can be promoted to a constant.

1 means the first row, etc.
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LEMMA 8. Let T1 and T2 be simple tableaux, and letA be a column with a repeated
nondistinguished variable bl appearing in set ofrows S of T. Suppose also that there is no
row w such that w covers CLw(S). Then:

(a) ff Tx T2, then there is a repeated nondistinguished variable bE in the A column

of T.
(b) If bE exists, and T’I and T are the tableaux that result from T and T2 by

replacing bx and bE by the same constant, a constant that appears nowhere else,
then T’ and T’2 are simple, and TI =- T2 if and only if T’ =- T’2.

Proof (a). As TI --- T2, let 01 and 02 be containment mappings from T1 to T2 and
back, respectively. Let S’ be the set of rows of T2 such that S’= {01(w)lw is in S}, and let
S" {02" O(w)lw is in S}. Then S" has two or more members, and so does S’. The rows
of S’ have some one symbol d in column A. If d is a distinguished variable or constant,
then as 02 is a containment mapping, the rows of S" all have a distinguished variable or
constant in column A. As there are at least two rows in S", we violate our assumption
that T is simple. Therefore d is a repeated nondistinguished variable of T2.

(b) We know containment mappings between Tt and T2 exist, if T =- T2. If these
mappings did not map bt to bE and vice-versa then there would be a containment
mapping from T to itself that mapped S to one row, since no repeated symbols but b
and bE exist in their columns. We would thus violate our assumption that no w covers

CL,(S). It follows that the containment mappings between T and T2 also serve for T
and T. Conversely, containment mappings between T and T surely serve for Tl and
T2. The fact that T and T are simple is obvious.

6.5. The algorithm. We say a simple tableau is in reducedform if it has no repeated
nondistinguished variables. Lemmas 6 and 8 can be used to put simple tableaux in
reduced form, and Lemma 5 can be used to test the equivalence of two such tableaux.
The algorithm is summarized in Fig. 5. The procedure REDUCE(T, T2) puts T1 in
reduced form and also returns false if T1 T2 is detected. REDUCE returns true if it
does not detect that T T2; note that TI may still not be equivalent to T2 in this case.

THEOREM 10. The algorithm of Fig. 5 correctly decides the equivalence of simple
tableaux in O(sat2) time if the tableaux have a maximum of s rows and columns.

Proof. Lines (1)-5) apply Lemma 6. The only important detail is that after looking
at each column A and row w once, we need not reconsider A and w if they fail the test of
line (4)once. In proof, note that by Lemma 7 applied once for each application of
Lemma 6, no new opportunities for reduction are created as reductions are made.

Lines (6)-(10) implement Lemma 8, so the resulting Tt is in reduced form. The test
of line (14) then decides the issue by Lemma 5, if line (7) has not already detected that

T T2.
For the running time of Fig. 5, we note that the loop of lines (1)-(5) is executed st

times. Computation of CL(S) at line (4) takes time O(sEt), since O(st) is sufficient to

check if any rows can be added to the closure, and at most s rows can be added. Thus the
loop of (1)-(5) takes O(s3t2) time. Clearly O(st) time suffices for the loop of (6)-(10), so
REDUCE takes O(s3t2) time.

In the main procedure, lines (12) and (13) take O(s3t2) time by the foregoing
argument. Line (14) takes O(sEt) time, so the entire algorithm takes o(sat2) time.

COROLLARY. Ifn is the size of the input (i.e., n is the space needed to write down T1
and T2), then the algorithm of Fig. 5 takes O(n 3) time.

Proof. Note that st could be replaced by n in the above analysis, and s _-< n is
obvious.
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(1)
(,2)

(3)
(4)

(6)

(7)

(8)
(9)

(lO)

(11)

(12)

(13)

(14)
(15)

(16)

procedure REDUCE(T, T2);
begin

for each column A of T and row w of Tt do
if A has a repeated nondistinguished variable b then

begin
let $ be the set of rows in which b appears;
if w covers CL(S)then

remove the rows in CLw(S)-{w} from T
end

for each column A of T in which a repeated
nondistinguished variable b remains do
begin

if the column for A in T2 has no repeated nondistinguished
variable then

return false;/,T T:*/
let b: be the repeated nondistinguished variable in column A of T2;
make bl and b2 be the same new constant;

end;
return true

end REDUCE;
begin/, main procedure ,/

if- REDUCE(T, T2) then return false;
/, as a side effect, T is reduced */
if -REDUCE(T2, T) then return false:

/, as a side effect, T2 is reduced ,/
/, note that lines (6)-(10)of REDUCE are not needed here ,/

if every row of T1 is covered by a row of T2, and vice versa then
return true

else
return false

end

FIG. 5. Polynomial algorithm to test equivalence of simple tableaux.

Note that the coverage of each row of T by a row T is a sufficient, but not a
necessary, condition for T

___
T (even when both T and T are in reduced form).

Also observe that the results of Section 5 imply that containment is NP-complete for
simple tableaux.

7. Extension to strong equivalence. The equivalence and containment results of

the previous sections also apply to strong equivalence. We shall state these results here
without proof. In each case the proof is analogous to that of the corresponding result
about weak equivalence. We can use a modified form of tableau to represent values of

expressions as mappings from their operands, rather than from an instance of the
universe. The modifications that must be made are"

(1) rows are tagged with the relation from which they come,
(2) rows have blanks in columns corresponding to attributes that are not part of the

relation with which the row is tagged.
Suppose T is such a tableau, with set of symbols S, summary Wo and rows

wx, w2,’’’, w,,. Suppose R,R2,.’’" ,Rk are the available relation schemes, and
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rl, r2, rk are corresponding relations. Let wi be tagged by Rh, for 1 _-< _-< n. Then

T(rl, r2," ’’, rk) (p(Wo)lfor some p :S D

we have p(wi) in rh for 1 -< -< n}.

7.1. The strong equivalence test. Tagged tableaux can be constructed from
expressions exactly as in Theorem 1. The only modification is that the tableau for a

relation scheme R has blank, rather than a nondistinguished symbol, in columns that do
not correspond to attributes of R. We shall state the following analog of Corollary 1 to
Theorem 2.

THEOREM 11. Two tableaux are strongly equivalent ifand only ifcontainment maps
that preserve tags exist in both directions.

Example 15. Consider the expression E ZrAB(ABBC) from Example 3. The
tagged tableau for AB is

A B C

al a2

al a2 (AB)

and for BC it is

A B C

a2 a,3

a2 a3 (BC)

The tagged tableau for ABBC is

A B C

al a2 a3

al a2

a2 a3

(AB)
(BC)

and for E it is

A B C

al a2

al a2

a2

(AB)
(BC)

Note that a tag-preserving containment mapping from the tableau for AB to the above
tableau exists, implying that AB

_
rrAB(ABBC) in the strong sense. However, no

tag-preserving containment mapping exists in the other direction, since the tableau for
AB has no row tagged (BC). Thus E is not strongly equivalent to AB, although we saw
in Example 5 that these expressions are weakly equivalent.

7.2. Functional dependencies. We may apply functional dependencies to tagged
tableaux exactly as in Theorem 6. The two rows involved need not have the same tag,
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provided we understand that functional dependencies apply to two or more relations
jointly. For example, suppose that ABC andABD are relation schemes, and A B is a
functional dependency. Then it is not permissible to have alblcl in ABC and alb2dl in
ABD. If we do not make this prohibition, then functional dependencies may only be
applied to rows with the same tag.

7.3. Polynomial-time reductions between weak and strong equivalence. We can
prove general results which show that the questions of weak and strong equivalence are
almost the same problem.

LEMMA 9. Let El and E2 be expressions. Then in time polynomial in the size of
and E we can construct expressions E’ and E such that E’ and E’a are strongly
equivalent if and only ifE andE are weakly equivalent.

Proof. Let R, Rz, , Rk be all the arguments ofE and E2, and let R LI i__Ri.
Construct E and E by replacing each operand Ri by rR,(R). Then T behaves as a
univeral relation, and a proof that E is strongly equivalent to E if and only if E1 and

E2 are weakly equivalent is immediate from definitions.
LEMMA 10. LetE and Ea be expressions. Then in time polynomial in the size ofE

and Ea we may construct expressions E’ and E’a that are weakly equivalent ifand only if
F_, and Ea are strongly equivalent.

Proof. Let G be a new attribute and let R 1, Ra, , Rk be the operands ofE and

E2. Let R Rt.J{G} for all i. Construct E and E from E1 and Ea by replacing
operand R by rR,(o’a-(R)). Then the projection of the universal instance onto R,
followed by selection of G and projection to remove the G column yields a relation
that is independent of any other relation derived from that instance by selection of
another value of G. !-I

7.4. Complexity results for strong equivalence.
THEOREM 12. Strong equivalence is NP-complete in each of the following cases.

(i) Tableaux are not required to come from expressions but may not have constants,
nor may there be functional dependencies.

(ii) Tableaux are permitted to have constants, but must come from expressions and
there may be no functional dependencies.

(iii) Functional dependencies are permitted, but tableaux must come from expres-
sions and may not have constants.

Proof. The construction of Lemma 9 preserves the absence of constants and the
property that a tableau comes from an expression. The absence of functional depen-
dencies is surely preserved. Note that the construction of Lemma 9 may be applied to
tableaux as well as expressions, by simply filling out blanks in rows by new nondistin-
guished variables, so part (i) has meaning. The theorem then follows immediately from
Theorems 7, 8, and 9.

THEOREM 13. Strong equivalence is decidable in polynomial timefor expressions that
have simple tableaux.

Proof. The construction of Lemma 10 preserves simplicity of tableaux, as the
column for G has only constants.

Let T be any tableau tagged with relation schemes. For each repeated symbol s, let
TAG(s) be the set of tags of rows that contain s. A global repeated nondistinguished
variable is a nondistinguished variable b such that TAG(b) contains two or more tags. A
tableau is quasi-simple if the following hold.

(a) If b is a global repeated nondistinguished variable in column A, then for every
repeated symbol s, s - b, in column A, TAG(b) TAG(s).

(b) For each tag the set of all the rows with this tag is a simple tableau.
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Note that a simple tableau is also quasi-simple. Condition (a) implies that a global
repeated nondistinguished variable cannot be eliminated by row covering, and there-
fore it can be promoted to a constant immediately. Using condition (b), we can now
minimize each set of rows with the same tag separately, using the algorithm for simple
tableaux.

This approach can also be used whenever a tableau has a pattern of constants

and/or distinguished variables that decompose each tableau to several disjoint sets of

rows, such that no rows in one set can be mapped to a row in any other set.

8. Conclusions and open problems. Using tableaux, we have developed a "crank"
that can be turned to tell whether two expressions over the set of relational operators
select project, and (natural) join, are equivalent. The "crank" is capable of accounting
for the effect of functional dependencies and works for either weak or strong
equivalence. Although the "crank" requires exponential time in the general case, we
have isolated an important special case for which a polynomial time equivalence
algorithm was developed.

We have not considered the natural next step, which is to develop tools for the
efficient optimization of expressions, given an arbitrary cost criterion. Our NP-
completeness results suggest that any method involving canonicalization of expressions
is likely to require considerable computational effort for general expressions, so the
optimization problem appears to be very hard. However, the following problems
appear appropriate for examination.

(1) How far can we extend the class of expressions for which equivalence is

efficiently decidable?

(2) Can the equivalence test be made to work in even exponential time when there
are multivalued dependencies [7], [14], [15], [26] that must be satisfied? A doubly
exponential algorithm follows from the techniques of 1 for multivalued dependencies.

(3) Find a complete axiom system to transform an expression into any equivalent
one. Note that the number of steps needed to go between equivalent expressions might
be polynomial in their size without violating the NP-completeness results or proving
P NP, as finding the right sequence of steps might be hard.
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