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Abstract This paper presents a new and efficient method
for video data compression using quadratic Bézier curve fit-
ting. The method treats the luminance or color variations of
a spatial location in a sequence of frames as input points in
Euclidean space R1 or R3. The input points are approximated
using quadratic Bézier least square fitting. The output data
consists of quadratic Bézier control points and difference
between original and fitted data. Video data compression is
the main application of proposed method. It is shown that
entropy of output data is significantly less than the entropy
of input data. The method can be applied to 1-D space like
luminance and chrominance components separately or 3-D
color spaces such as RG B and Y CbCr .

Keywords Video data · Fitting · Approximation ·
Interpolation · Compression · Quadratic Bézier curve

1 Introduction

Spline and curve are widely used in computer-aided design
and computer graphics because of the simplicity of their
construction, accuracy of evaluation and their capability to
approximate complex shapes through curve fitting and inter-
active curve design [1]. Spline can fit large number of data
points with far less number of control points. Control points
can be encoded by some appropriate encoding technique.
During the decoding process, fitted data points are regener-
ated by spline interpolation of control points.

In order to understand how quadratic Bézier curve can
be used to fit video data, let first understand the nature of
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video data. Digital video data consists of sequence of frames
(images). Each frame consists of rectangular 2-D array of
pixels. One-dimensional luminance or 3-D RG B values in
a sequence of frames are associated with each pixel. Lumi-
nance or RG B values of a pixel can be considered as points in
Euclidean space R1 or R3, respectively. Let a video consists
of a sequence of n frames. Frame width and height are W
and H , respectively. Then for each spatial location (xi , y j ),
1 ≤ i ≤ W , 1 ≤ j ≤ H , we have temporal video data in
n frames, {p1, p2, . . . , pn}, i.e., p j = I j for luminance or
p j = (

R j , G j , B j
)

for RG B, where 1 ≤ j ≤ n. Figure1
shows RG B variation of a spatial location in 80 frames of a
video.

We considered temporal variations of luminance or color
values for each spatial location in a sequence of frames as
input data. The input data is fitted with far less number of
control points (output data) of quadratic Bézier curve. An
important factor in fitting of data via quadratic Bézier curve
is finding least number of control points. We achieved this
goal by least square fitting.

Organization of the rest of the paper is as follows: Related
work is discussed in Sect. 2, mathematical model of qua-
dratic Bézier curve is briefly described in Sect. 3. Section 4
elaborates the fitting strategy. Application of our method is
described in Sect. 5. Selected experiments and results are pre-
sented in Sect. 6. Section 7 analyzes results and gives insight
view of the proposed method. Final concluding remarks are
in Sect. 8.

2 Related work

Approximation and compression of data using paramet-
ric curves particularly cubic spline is explored by many
authors [3,6,8–10,14,15] et al. The method presented by [6]
approximates the video data using parametric line and
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Fig. 1 RGB temporal variations of a spatial location (50, 50) in 80
frames of a video sequence

Natural cubic spline by combining the group of pixel together
as a block and the applies fitting to block. The approach we
adopted in this paper is based on quadratic Bézier curve fitting
at pixel level. Pixel level fitting yields more precise control
of accuracy compare to block level fitting. In contrast to [6],
the scheme presented in this paper is lossless compression.
A video object encoding algorithm based on the curve fitting
trajectory of video object moving edges pixels is presented by
[3]. The algorithm of [3] is suitable, if the objects in the video
are not moving quickly such as in video conferencing or sur-
veillance. Our method does not encode the edges of objects
only; but it applies fitting to luminance/color variations of
every pixel. Non-spline based temporal correlation reduc-
tions methods are based on motion estimation via translating
block matching algorithms (BMAs) [2,7,12]. In a typical
BMA, a frame is divided into rectangular blocks of pixels.
Then the current (predicted) block is matched against blocks
in the previous frame, for a maximum motion displacement
of w pixels. The best match on the basis of a mean absolute
error (M AE) criterion yields displacement relative to current
block called motion vector. Predicted frame is obtained by
blocks in reference frame and corresponding motion vectors
[4,11,13]. In contrast to BMAs, we do not find matching pixel
or matching block. We adopted different approach of fitting
i.e., approximating the change in color or luminance values
of each pixel in a sequence of frames, at the fixed spatial loca-
tion (without translation of block/pixel), by quadratic Bézier
curve fitting then finding the difference between original and
approximating values. The approach used by [9] is based on
EdgeBreaker and principal component analysis (PCA), and it
exploits both spatial and temporal coherence. [14] presented
a method of image data compression using cubic convolution
spline interpolation. Another method of image compression
(medical images) using cubic spline is presented by [10].

Cubic spline is more appropriate for image compression but
less feasible for video data compression due to its computa-
tional cost. We used low degree quadratic Bézier curve, and
therefore it is more efficient than cubic spline. Contour data
compression method using Curvature Scale Space technique
and Hermite curves is proposed by [15]. Proposed method of
[8] uses multilevel B-Splines to approximate scattered data.
[17,5,18] used spline for shape coding of objects in video
data. Our method is not limited to shape coding of objects,
but it provides a way to code every pixel in the video includ-
ing background, foreground and objects. Due to large size
of video data, it is also desirable that fitting process is auto-
mated. In our scheme, the user has just to initialize a single
parameter, then the rest of the steps are fully automated.

3 Quadratic Bézier curve (QBC)

Quadratic Bézier curve (QBC) is a C0 continuous curve. A
QBC segment is defined by three control points, i.e., P0, P1

and P2, as shown in Fig. 2. P0 and P2 are called end con-
trol points (EC P), while P1 is called a middle control point
(MC P). A QBC passes through its end control points, while
a middle control point is used to control the shape of the
curve. To generate continuous quadratic Bézier curves that
interpolate k +1 points, k curve segments are used. Equation
of a QBC segment can be written as follows:

Q(ti ) = (1 − ti )
2 P0 + 2ti (1 − ti ) P1 + t2

i P2, (1)

where ti is a parameter of interpolation , 0 ≤ ti ≤ 1. In
order to generate n points between P0 and P2 inclusive, the
parameter ti is divided into (n − 1) intervals between 0 and
1 inclusive, and Q(ti ) is evaluated at n values of ti . Since a
QBC passes through its first and last control points, there-
fore Q(0) = P0 and Q(1) = P2. Figure 3 shows multi-seg-
ment quadratic Bézier curves, where the 2-D data, i.e., (x, y)
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Fig. 2 A quadratic Bézier curve segment
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Fig. 3 Multi-segment quadratic Bézier curves in 2-D and 3-D space

values and 3-D data, i.e., (x, y, z) values are taken from non-
video source.

4 Fitting strategy

This section describes the strategy of our algorithm to fit
the video data by quadratic Bézier curve. Fitting process is
applied to temporal data of each spatial location individually.
Let n is the number of frames in a video sequence, let W and
H are width and height of a frame respectively. Let lumi-
nance or color value of a spatial location (x, y), 1 ≤ x ≤ W ,
1 ≤ y ≤ H , at frame i is pi , where 0 ≤ pi ≤ 255
and 1 ≤ i ≤ n. We have to approximate the n values
of each spatial location by quadratic Bézier curve. Now
we describe the fitting process of an arbitrary spatial loca-
tion (xi , yi ). The temporal data of (xi , yi ) in n frames is
O = {p1, p2, . . . , pn}. As an input to algorithm the user
specifies breakpoint interval δ. Luminance or color values
of a spatial location after every δth frames are taken as a
breakpoint (control point), e.g., δ = 8 then set of break-

points is B P = {p1, p9, p17, p25, . . . , pn} (luminance or
color values of last frame is always taken as a breakpoint).
The fitting process divides the data into segments based on
breakpoints, i.e., S = {S1, S2, . . . , Su−1}. A segment is a
set of all points (luminance or color values) between two
adjacent breakpoints, e.g., S1 = {p1, p2, . . . , p9}, S2 =
{p9, p10, . . . , p17}.

Each segment is fitted (approximated) by a quadratic
Bézier curve. The first and the last breakpoints of a segment
are taken as end control points (EC P) i.e., P0 and P2 of qua-
dratic Bézier curve, while middle control point (MC P) i.e.,
P1 is obtained by least square method. Least square method
gives the best value of the middle control point that minimizes
the squared distance between the original and the fitted data.
If there are m data points in a segment, and Oi and Q(ti )
are values of original and approximated points, respectively,
then we can write the least square equation as follows:

U =
m∑

i=1

[Oi − Q(ti )]2. (2)

Substituting the value of Q(ti ) from Eq. (1) in Eq. (2) yields:

U =
m∑

i=1

[pi − (1 − ti )
2 P0 + 2ti (1 − ti )P1 + t2

i P2]2. (3)

To find value of P1 differentiating Eq. (3) partially with
respect to P1 yields:

∂U

∂ P1
= 0. (4)

Solving Eq. (4) for P1 gives:

P1 =
∑m

i=1

[
pi − (1 − ti )2 P0 − t2

i P2
]

∑n
i=1 2ti (1 − ti )

. (5)

Once all the three control points, i.e., P0, P1 and P2 are
known, then approximated data of a segment using Bézier
curve is obtained using Eq. (1). Same procedure is repeated
for each segment. This yields n values of approximated data,
Q = {q1, q2, . . . , qn}.

Let us take an example of a segment S4, the input data
is OS4 = {221, 224, 222, 223, 226, 225, 225, 225, 224} with
δ = 8. We take first and last point of OS4 as end control points
of quadratic Bézier curve, i.e., P0 = 221 and P2 = 224,
while middle control point, i.e., P1 = 227 is determined by
least square method using Eq. 5. Next, we have to find the
interpolated data using Eq. 1. The number of points in OS4 is
9; therefore we divide the parameter ti into 8 uniform space
intervals or 9 values, i.e.,

ti = {0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0} .

By substituting the values of P0, P1 and P2 in Eq. 1 and
evaluating it at each value of ti we obtain the interpolated
data, QS4 = {221, 222, 223, 224, 225, 225, 225, 225, 224}.
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Fig. 4 Quadratic Bézier curve least square fitting to luminance values
of spatial location (50, 50) in 150 frames of a video sequence

Note that the first and last points of input data and interpo-
lated data are always same, because Q(ti = 0) = P0 and
Q(ti = 1) = P2. Interpolated points other than first and last
points may or may not have the same values as corresponding
points of input data.

The above described fitting process is applied to lumi-
nance or color variations in temporal dimension of each
spatial location separately. Figure 4 shows quadratic Bézier
curve least square fitting to luminance values of a spatial
location in 150 frames of a video sequence. Since breakpoint
interval, i.e., δ is same for all segments of all spatial locations.
Therefore, collectively all the end control points after every
δ frame constitute a keyframe of end control points (KFE).
Similarly, collectively all the middle control points between
two adjacent KFE constitute a keyframe of middle control
points (KFM).

The output data produced by our method that need to be
store is: (1) keyframes of end control points, i.e., KFE, (2)
keyframes of middle control points, i.e., KFM and (3) the dif-
ference between original and quadratic Bézier approximated
(interpolated) frames other than keyframes, i.e., frame dif-
ference (FD). In order to reconstruct the original video data
without any loss, first interpolated frames are generated using
KFE and KFM, then adding FD to interpolated frames repro-
duces the original video frames.

5 Application

The most important application of our method is data com-
pression. A fundamental approach of prevalent video data
compression techniques such as MPEG-1, MPEG-2 and
H.263. [4,16] is to reduce the entropy of data by applying
Discrete Cosine Transform. Data with reduced entropy can

be encoded with less numbers of bits. In our method, the
overall entropy of KFE, KFM and FD is much less than
the entropy of original video data; consequently, it can be
encoded with less number of bits. This less entropy of out-
put data is mainly due to the fact that quadratic Bézier curve
approximates the original video data with quite good level
of accuracy. Because least square technique gives the opti-
mal value of middle control point that minimizes the squared
distance between original video data and approximated data.
If we take any arbitrary value of middle control point, then
the fitting accuracy would be much less, and the pixel val-
ues of approximated data would spread to very large domain
(range), this would increase the entropy. Consequently due
to our least square fitting technique, the difference between
original and quadratic Bézier approximated data has values
confined in very small domain (range) compared to the values
in original video data. Therefore, the method we presented
can be used for lossless video compression for video archives.
It is also possible to use our method for lossy video data com-
pression by using it as a preprocessing step of existing lossy
video coding methods.

6 Experiments and results

We have applied our method on several naturally recorded
and synthetically created video sequences. Table 1 provides
details of environment of experiments. We compared the
entropy and encoding time of our method with full search
(FS) and diamond search (DS) motion estimation methods.
We did not apply any method to remove the spatial redun-
dancy (such as DCT), since at this stage only temporal
redundancy removal is considered. For motion estimation
methods, we took reference frame interval 8, macro-block
size 16 × 16 and range of search window ±7 in both hor-
izontal and vertical directions. We compute the entropy of
original video data, entropy of motion estimation methods
(reference frames, motion compensated residual frames and
motion vectors) and the entropy of video data represented by
our method (KFE, KFM and FD). The entropy of a single
video frame is computed as follows:

Entropy = −
J∑

j=1

P(a j ) log P(a j ), (6)

where J is the unique number of symbols (pixel values) in
the source (frame), P(a j ) is the probability of the occurrence

Table 1 Environment of experiments

Hardware Inter Core Duo 2.4 GHz

Operating system Windows XP SP3

Programming language MATLAB 7.0.4 SP2
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Table 2 Details of input video sequences

Video name Video no. Format Size Frames

Hall and monitor V1 Luminance 352 × 288 96

Foreman V2 Luminance 352 × 288 96

Dinosaur V3 RGB 352 × 288 96

Cloud V4 RGB 352 × 240 96

Mobile and calendar V5 RGB 352 × 240 96

Fig. 5 Hall and Monitor sequence

Fig. 6 Foreman sequence

of symbol a j . The entropy of complete video sequence is the
mean of entropies of all the frames.

Table 2 gives the details of selected input video sequences
whose results are presented in this paper. Figures 5–9 show
the 21th frame of input video sequences. Table 3 gives the
details of entropy and encoding time comparison of our
method with full search motion estimation method. In terms
of entropy, our method performed better for three video
sequences, while FS and DS methods preformed better for
two video sequences. In terms of encoding time, our method

Fig. 7 Dinosaur sequence

Fig. 8 Cloud sequence

Fig. 9 Mobile and Calendar sequence

performed better than FS but less than DS for all the video
sequences.

7 Discussion

Dinosaur and Cloud are synthetically created video sequen-
ces, while Hall & Monitor, Foreman and Mobile & Calen-
dar are naturally recorded video sequences. Hall & Monitor
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Table 3 Entropy and encoding time comparison

Video E A EB EC ED TB/TD TC/TD
no. (bpp) (bpp) (bpp) (bpp)

V1 7.233 4.182 4.184 3.918 1.430 0.171

V2 7.228 4.316 4.350 5.124 1.441 0.198

V3 7.163 3.085 3.086 2.736 3.270 0.278

V4 7.567 4.341 4.342 4.032 3.012 0.288

V5 7.627 6.137 6.140 6.653 2.842 0.272

E A Entropy of original video data, EB Entropy of video data by full
search method, EC Entropy of video data by diamond search method,
for EB and EC macro-block size 16 × 16, search range=7, and δ = 8,
ED Entropy of video data by our method, δ = 8. Time ratios: TB/TD ,
TC/TD ; TB Encoding time by full search method, TC Encoding time
by diamond search method, TD Encoding time by our method

and Foreman sequences have only luminance component,
while the other three sequences have RGB components. Our
method reduces the entropy of all types of video sequences.
The reduction in entropy for synthetically created video
sequences is higher than that in naturally recorded video
sequences. Because, usually temporal variations of synthetic
video sequences show lesser fluctuations and can be fitted
with less number of control points. The method we presented
can be applied to 3-D color spaces such as RG B, Y CbCr or
H SV or 1-D space like luminance or chrominance compo-
nents separately. The only parameter that has to be set is δ.
From experiments, we found that appropriate range of δ is
from 8 to 12.

8 Conclusion

We presented an efficient method for video data compression
using quadratic Bézier curve fitting. The method approxi-
mates the luminance or color variations of fixed spatial loca-
tions in a sequence of frames by quadratic Bézier curve. We
described the least square technique to minimize the squared
distance between the original and the fitted video data. Exper-
imental results show that the method yields very good results
both in terms of entropy reduction and encoding time for both
naturally recorded and synthetically created video sequences.

9 Future work

H.264, which is one of the most modern compression tech-
niques, has lossless macroblock coding features. Since the
proposed method is also for lossless video compression, the
future work includes incorporation of our method in H.264
coding and improving it.
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