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Abstract

We present in this paper, semi-π, an extension of the π-calculus that allows processes to query
quantitative values of different actions and decide based on those values, whether an action is
feasible or not. Our measure of quantity is based on the general notion of semirings. Furthermore,
we develop a syntax-directed static analysis for the new language, which captures the properties
of name substitution and semiring value retrieval. Such properties allow us to solve quantitative
constraints controlling synchronisations in the analysed systems. We provide an example of a cost
analysis of communications in a simple adaptive routing algorithm.
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1 Introduction

In this paper, we present a syntax-directed static analysis of an extension of
the π-calculus [14] with semiring value retrieval capabilities and semiring con-
straints. The new language, termed semi-π, allows processes to query the cost
of communicating actions given certain information. Based on that cost, a
process can then decide through the use of semiring constraints, the kind of
behaviour it should perform next. For example, in the process,
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let ω1 = Svalue(x〈y〉, t) in let ω2 = Svalue(u〈y〉, t) in
[ω1 � ω2] x〈y〉 | [ω2 � ω1] u〈y〉

Then after retrieving the cost of actions, x〈y〉 and u〈y〉 at time, t, using the
let = Svalue() in and placing the results in ω1, ω2, we compare the two
costs using some ordering relation, �, and choose either output.

The static analysis then captures two properties of the analysed systems:
The first is name substitutions, which occur as a result of synchronising ac-
tions, the second is instantiations of actions’ costs, given certain context infor-
mation. Using these properties, it is possible to quantify name substitutions
based on the cost of actions that contributed to those substitutions. Such
properties have interesting applications in the analysis of adaptive network
routing, where a router calculates the output port of each packet based on the
cost of the different paths of its neighbours.

Our measure of cost is based on the notion of semirings. A semiring is a
tuple, (A, +,×, 1, 0), such that A is a set and 0, 1 ∈ A. Furthermore, + is the
additive operation, which is commutative and associative, with 0 as its unit
element, and × is the multiplicative operation, which is associative, with 1 as
its unit element and 0 as its absorbing element. A semiring has the property
that × distributes over +. Moreover, following [7], it is possible to define an
ordering relation based on +:

s � s′ ⇔ s + s′ = s

where we sometimes write s � s′ to mean s � s′ and s �= s′. This measure of
cost is general: there exist many instantiations of (A, +,×, 1, 0) in literature
that are Boolean, probabilistic, fuzzy, set-theoretic, weighted etc.

The rest of the paper is organised as follows. In Section 2, we discuss some
of the related work in the area of quantitative analysis of mobile systems.
In Section 3, we introduce the syntax of the semi-π language. In Section 4,
we define a domain-theoretic model as the basis of the standard semantics of
semi-π. In Section 5, we extend this semantics to capture name substitutions
and instantiations of semiring variables. In Section 6, we abstract the non-
standard semantics in order to obtain a computable static analysis. In Section
7, we demonstrate how the results of the abstract semantics yield a solution
to a constraint satisfaction problem involving the relationship between name
substitutions and costs of actions. In Section 8, we apply the analysis to a
simple example of an adaptive router. Finally, in Section 9, we conclude the
paper and discuss future work.
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2 Related Work

The work presented in this paper is a continuation of previous analyses [2,3,5,6],
which were designed to detect security properties based on the name substitu-
tion property in mobile and cryptographic/PKI systems modelled in different
versions of the π-calculus (e.g. the spi calculus [1] and Spiky [12]). The main
novelty of the current work is that the analysis deals with quantitative prop-
erties (e.g. cost of name substitutions) rather than qualitative properties (e.g.
security properties).

Other works in the area of quantitative analysis of mobile systems include
[8,9,13,17], in the area of the quantitative analysis of process algebraic models
have been carried out, using different approaches. Most of such works differ
from our approach in that a process has no “quantitative control” over its
future execution, as is the case with semi-π. Other quantitative analyses exist
[15,16] but these are usually designed for simpler, KLAIM-like, languages
without name-passing.

3 Semi-π

The syntax of the semi-π language is defined in Figure 1. In this syntax, names
constitute the infinite set, a, b, c, n, m, x, y, z . . . ∈ N . Processes, P, Q, R ∈ P,
are defined as follows. A guarded process, π.P , proceeds as P once it fires π,
where π is either input, x(y) or output, x〈y〉. In case of x(y), the message
received over x will replace y in P . Parallel composition, P | Q runs P and
Q by interleaving them. Restriction, (νn)P , creates a fresh name, n, within
the scope of P . Replication, !P , spawns as many copies of P as required by
the context. Matching, [x = y] P , proceeds as P if x is the same as y, else
it blocks. Similarly, the semiring constraint, [e1 � e2] P , proceeds as P if
e1 � e2, otherwise, it blocks. Expressions, e1, e2, are defined using semiring
variables, ω ∈ Ω, elements s ∈ A, applications of the additive operator, e1+e2,
and applications of the multiplicative operator, e1 × e2. The null process, 0,
is a process incapable of evolving any further. We usually omit trailing null
residues. Finally, let ω = Svalue(π, n) in P retrieves the semiring value
of an action, π, given some name, n, and instantiates ω with that value in
P . Intuitively, n acts as a context data that may be needed in order to give
more specific information about the action π (e.g. time of the action, relative
position of the action, the name of the user performing the action etc.).

Based on this definition of processes, we define systems, E, F ∈ E , as
pairs, (θ, P ), where θ(π, n) = sπ,n ∈ A is a state environment mapping every
communication action, π, and its context data, n ∈ N , to some corresponding
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P, Q, R ::= processes

π.P guards

P | Q composition

(νn)P restriction

!P replication

[x = y] P match

[e1 � e2] P semiring constraint

0 null

let ω = Svalue(π, n) in P semiring value retrieval

π ::= guards

x〈y〉 output

x(y) input

e ::= expressions

ω semiring variable

s semiring element

e1 + e2 additive operation

e1 × e2 multiplicative operation

E, F ::= systems

(θ, P ) state-process pair

Fig. 1. The syntax of the semi-π language

semiring value, sπ,n ∈ A. The value, sπ,n, in effect represents a quantification
of action π in light of the information given by n.

The standard notions of α-conversion as well as the free names, fn(P ), and
bound names, bn(P ), of a process, P , are defined as usual, where y is bound
to P in (νy)P and x(y).P . A name is free if it is not bound. Furthermore, we
refer to bsemiv(P ) as the set of bound semiring variables of P , i.e. ω in the
let ω = Svalue(π, n) in P process, and fsemiv(P ) as the set of free semiring
variables, i.e. variables occurring in expressions but not in bsemiv(P ). We
usually write semiv(P ) = fsemiv(P )∪ bsemiv(P ). From now on, we only deal
with systems that have a normal process.

Definition 3.1 A process, P , is said to be normal if the following holds:

• There are no occurrences of homonymous bound names or homonymous
semiring variables in P .
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• bn(P ) ∩ fn(P ) = {}.

• fsemiv(P ) = {} (no open expressions).

4 A Domain-Theoretic Model

The standard semantics of semi-π is defined in the domain-theoretic style
of [4,5,18]. Assuming that Pi⊥ is the semantic domain of processes, N is
the predomain of names and K is the set underlying any (pre)domain, then
concrete elements of Pi⊥ and N can be defined as in Figure 2.

Elements of N :

x ∈ N ⇒ x ∈ K(N)

Elements of Pi⊥ :

{|⊥|} ∈ K(Pi⊥)

∅ ∈ K(Pi⊥)

p, q ∈ K(Pi⊥) ⇒ p  q ∈ K(Pi⊥)

x ∈ K(N), p ∈ K(Pi⊥) ⇒ new(x, p) ∈ K(Pi⊥)

p ∈ K(Pi⊥) ⇒ {|tau(p)|} ∈ K(Pi⊥)

x, y ∈ K(N), p ∈ K(Pi⊥) ⇒ {|in(x, λy.p)|} ∈ K(Pi⊥)

x, y ∈ K(N), p ∈ K(Pi⊥) ⇒ {|out(x, y, p)|} ∈ K(Pi⊥)

x, y ∈ K(N), p ∈ K(Pi⊥) ⇒ {|out(x, λy.p)|} ∈ K(Pi⊥)

Fig. 2. Elements of Pi⊥ and N .

The definition of N is trivial: N is a flat predomain 2 . Therefore, it’s
structure is quite similar to N . On the other hand, Pi⊥ is defined as a
multiset of semantic elements, where {|⊥|} is the bottom element representing
the undefined process and ∅ is the empty multiset representing terminated or
deadlocked processes 3 . Other elements are defined as follows: p  q is the
standard multiset union of two elements, p, q. The singleton map, {| |}, takes
tuples representing input, output and silent actions and creates a singleton
multiset of each tuple. These tuples are in(x, λy.p) (input action), out(x, y, p)
(free output action), out(x, λy.p) (bound output action) and tau(p) (silent
action). In these tuples, x is the channel of communication, y is the message
or input parameter and p is the residue process. The use of λ-abstraction to
model the binding effect in input and bound output actions implies that these
actions have a meaning as a function, which when instantiated with a name,

2 A domain with no bottom where every two non-identifiable elements are non-comparable.
3 {|⊥|} � ∅ and ∅ is incomparable otherwise.
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the actual residue is yielded. Finally, the effects of restriction are modelled by
the new operator defined over elements p ∈ Pi⊥ as in Figure 3.

new(x, ∅) = ∅

new(x, {|⊥|}) = {|⊥|}

new(x, {|in(y, λz.p)|}) =

{
∅, if x = y

{|in(y, λz.new(x, p))|}, otherwise

new(x, {|out(y, z, p)|}) =

⎧⎪⎪⎨
⎪⎪⎩

∅, if x = y

{|out(y, λz.p)|}, if x = z �= y

{|out(y, z,new(x, p))|}, otherwise

new(x, {|out(y, λz.p)|}) =

{
∅, if x = y

{|out(y, λz.new(x, p))|}, otherwise

new(x, {|tau(p)|}) = {|tau(new(x, p))|}

new(x, (p1  p2)) = new(x, p1)  new(x, p2)

Fig. 3. The definition of new .

In general, new captures deadlocked situations arising from the attempt
to communicate over restricted non-extruded channels. It also turns a free
output into a bound output once a restricted message is directly sent over a
channel (scope extrusion). In all other cases, restriction has no effect and it
is simply passed to the residue or distributed over multiset union.

Using elements p ∈ Pi⊥, it is possible to denote the meaning of systems
in semi-π, with the semantic function, S([(θ, P )]) ρ φS δS ∈ Pi⊥, defined by
induction over the structure of P as in Figure 4. Since θ remains constant
throughout the interpretation, it is sufficient to interpret a system in terms of
elements of Pi⊥. This semantics introduces the following environments.

• The multiset, ρ, containing all processes composed in parallel with the anal-
ysed process, paired with a copy of θ. The standard singleton, {| |}, and
multiset union, , operations are overloaded to deal with elements of ρ.

• The special environment, φS : N → N , maps a name to another name that
substitutes it in the semantics. Initially, ∀n ∈ N : φS0(n) = n. In fact,
this environment will hold substitutions of input parameters by messages
received during communications. Since the standard denotational semantics
is a precise semantics, an input parameter can only be mapped to, at most,
one name in any possible choice of control flow (i.e. on either side of ).

• The special environment, δS : Ω → A⊥, which maps semiring variables to
semiring values. Initially, ∀ω ∈ Ω : δS0(ω) = ⊥ for any variable, ω.

The meaning of the composed systems in ρ is given by rule (R0) as the
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(S1) S([(θ,0)]) ρ φS δS = ∅

(S2) S([(θ, x(y).P )]) ρ φS δS = {|in(φS(x), λy.R([{|(θ, P )|}  ρ]) φS δS)|}

(S3) S([(θ, x〈y〉.P )]) ρ φS δS =

(
⊎

(θ,x′(z).P ′)∈ρ

{|tau(p)|} )  {|out(φS(x), φS (y),R([{|(θ, P )|}  ρ]) φS δS)|}

where, p = R([{|(θ, P )|}  ρ[(θ, P ′)/(θ, x′(z).P ′)]]) φS [z �→ φS(y)] δS

and, φS(x) = φS(x′)

(S4) S([(θ, [x = y] P )]) ρ φS δS =

{
R([{|(θ, P )|}  ρ]) φS δS , if φS(x) = φS(y)

R([ρ]) φS δS , otherwise

(S5) S([(θ, [e1 � e2] P )]) ρ φS δS ={
R([{|(θ, P )|}  ρ]) φS δS , if e1[δS(ω1)/ω1]ω1∈semiv(e1) � e2[δS(ω2)/ω2]ω2∈semiv(e2)

R([ρ]) φS δS , otherwise

(S6) S([(θ, P | Q)]) ρ φS δS = R([{|(θ, P )|}  {|(θ, Q)|}  ρ]) φS δS

(S7) S([(θ, (νx)P )]) ρ φS δS = new(x,R([{|(θ, P )|}  ρ]) φS δS)

(S8) S([(θ, let ω = Svalue(π, n) in P )]) ρ φS δS = R([{|(θ, P )|}  ρ]) φS δS [ω �→ θ(π, n)]

(S9) S([(θ, !P )]) ρ φS δS =
⊔
F

where, F = {{|⊥|},

R([ (
⊎

i=0...∞

{|(θ, P [bni(P )/bn(P )][semiv i(P )/semiv(P )])|})  ρ]) φS δS}

and, bn i(P ) = {xi | x ∈ bn(P )}, semiv i(P ) = {ωi | ω ∈ semiv(P )}

(R0) R([ρ]) φS δS =
⊎

(θ,P )∈ρ

S([(θ, P )]) (ρ\{|(θ, P )|}) φS δS

Fig. 4. The standard semantics of semi-π.

summation of the individual meaning of each system. Rule (S1) interprets the
meaning of a null process directly as the empty multiset, ∅. Rules (S2) and
(S3) deal with the cases of processes guarded by input and output actions af-
ter which the residues are composed with elements of ρ. Any communications
between matching input/output actions are dealt with in rule (S3), where φS

is updated accordingly. The interpretation is a summation of all such com-
munications and the no-communication case. This preserves the associativity
property of the parallel composition operator, P | Q. Rule (S4) interprets con-
ditional statements based on matching the φS-values of two names. Rule (S5)
interprets a semiring constraint based on the ordering relation, �, after clos-
ing two expressions under the δS environment. Rule (S6) is straightforward
allowing for two parallel processes to be composed with the rest of processes
in ρ, where θ is distributed over the two processes. Rule (S7) interprets a re-
striction using the new operation, defined earlier in Figure 3. In rule (S8), the
meaning of semiring retrieval is given by updating δS with the semiring value
of an action, π, given a name, n. Finally, rule (S9) defines the least fixed point
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meaning of a replicated process, !P , as the least upper bound of the poset, F ,
which contains the bottom element, {|⊥|}, and elements denoting any number
(up to infinity) of parallel compositions of the replicated process, P . Since the
semantic domain, Pi⊥, is infinite, F may contain infinite number of elements,
therefore, its least upper bound may not be computable within finite limits.
A labelling mechanism is also used in the rule to perform α-conversion on the
spawned copies, P , by subscripting all the bound names and semiring variables
of P . The renaming is necessary to maintain the normality of processes.

5 Non-standard Semantics

Our main interest is to capture instantiations of input parameters and semir-
ing variables. Since the standard semantics of the previous section does not
provide this information, we need to extend it. For this purpose, we introduce
the two special environments, φE : N → ℘(N) and δE : Ω → ℘(A), mapping
a name to a set of names and a semiring variable to a set of semiring values,
respectively. Both of these mappings represent possible instantiations that
may occur during runtime. Initially, we have that ∀n ∈ N : φE0(n) = {n}
and ∀ω ∈ Ω : δE0(ω) = {}. Since there are no homonymous occurrences of
bound names and semiring variables (Definition 3.1), then the sets φE(y) and
δS(ω) will be at most singletons per choice of control flow for any name, y,
and semiring variable, ω.

Using these environments, we can define the non-standard semantic do-
main, D⊥ = Pi⊥ × (N → ℘(N))× (Ω → ℘(A))⊥, with the following ordering:

∀(p1, φE1, δE1), (p2, φE2, δE2) ∈ D⊥ :
(p1, φE1, δE1) �D⊥

(p2, φE2, δE2) ⇔ p1 � p2 ∧ φE1 ⊆ φE2 ∧ δE1 ⊆ δE2

where the bottom element is ⊥D⊥
= ({|⊥|}, φE0, δE0). We also define the unions

of φE and δE as follows:

(φE1 ∪φ φE2)(x) = φE1(x) ∪ φE2(x)

(δE1 ∪δ δE2)(ω)= δE1(ω) ∪ δE2(ω)

Now, we can define the non-standard semantics of semi-π using the function,
E([(θ, P )]) ρ φE δE ∈ D⊥, as shown in Figure 5. The semantics utilises a multi-
set, ρ, to hold all processes in parallel with the analysed process, sharing the
same copy of θ. The contents of ρ are interpreted in rule (R0), which uses 
to group the choice of standard elements, p ∈ Pi⊥, and operations, ∪φ and ∪δ,
to group the choice of non-standard elements, φE and δE , respectively. The
rest of the rules (E1)–(E9) deal with the individual cases of P . There are a few
interesting points to note. Name and semiring value instantiations, (φ′

E ,δ
′
E),
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(E1) E([(θ,0)]) ρ φE δE = (∅, φE , δE)

(E2) E([(θ, x(y).P )]) ρ φE δE = ({|in(x′, λy.p′)|}, φE , δE)

where, (p′, φ′
E , δE

′) = R([{|(θ, P )|}  ρ]) φE δE

and, φE(x) = {x′}

(E3) E([(θ, x〈y〉.P )]) ρ φE δE = ((
⊎

(θ,x′(z).P ′)∈ρ

{|tau(p′)|})  {|out(x′′, y′′, p′′)|},

(
⋃

φ

(θ,x′(z).P ′)∈ρ

φ′
E) ∪φ φE , (

⋃
δ

(θ,x′(z).P ′)∈ρ

δ′E) ∪δ δE)

where, (p′, φ′
E , δ′E) = R([{|(θ, P )|}  ρ[(θ, P ′)/(θ, x′(z).P ′)]]) φE [z �→ {y}] δE ,

(p′′, φ′′
E , δ′′E ) = R([{|(θ, P )|}  ρ]) φE δE

and, φE (x) = φE (x′) = {x′′}, φE(y) = {y′′}

(E4) E([(θ, [x = y] P )]) ρ φE δE =

⎧⎪⎪⎨
⎪⎪⎩

R([{|(θ, P )|}  ρ]) φE δE , if ∃z ∈ φE (x), z′ ∈ φE(y) :

z = z′

R([ρ]) φE δE , otherwise

(E5) E([(θ, [e1 � e2] P )]) ρ φE δE =⎧⎪⎪⎨
⎪⎪⎩

R([{|(θ, P )|}  ρ]) φE δE , if ∃e ∈ (fold YδE {e1} semiv(e1)),

e′ ∈ (fold YδE {e2} semiv(e2)) : e � e′

R([ρ]) φE δE , otherwise

(E6) E([(θ, P | Q)]) ρ φE δE = R([{|(θ, P )|}  {|(θ, Q)|}  ρ]) φE δE

(E7) E([(θ, (νx)P )]) ρ φE δE = (new (x, p′), φ′
E , δE

′)

where, (p′, φ′
E , δE

′) = R([{|(θ, P )|}  ρ]) φE δE

(E8) E([(θ, let ω = Svalue(π, n) in P )]) ρ φE δE = R([{|(θ, P )|}  ρ]) φE δE [ω �→ {θ(π, n)}]

(E9) E([(θ, !P )]) ρ φE δE =
⊔
F

where, F = {({|⊥|}, φE0, δE0),

R([ (
⊎

i=0...∞

{|(θ, P [bn i(P )/bn(P )][semiv i(P )/semiv(P )])|})  ρ]) φE δE}

and, bn i(P ) = {xi | x ∈ bn(P )}, semiv i(P ) = {ωi | ω ∈ semiv(P )}

(R0) R([ρ]) φE δE = (
⊎

(θ,P )∈ρ

p′,
⋃

φ

(θ,P )∈ρ

φ′
E ,

⋃
δ

(θ,P )∈ρ

δ′E)

where, (p′, φ′
E , δ′E) = E([(θ, P )]) (ρ\{|(θ, P )|}) φE δE

Fig. 5. The non-standard semantics of semi-π.

resulting in the residue of an input action are neglected in rule (E2). Such
instantiations are instead considered in rule (E3) during communications be-
tween matching input and output actions. In this rule, similar instantiations,
(φ′′

E ,δ
′′
E), occurring under unfired output actions are also neglected.

In rule (E4), the matching process is resolved based on whether there exist
φE-values of the matched names that are equal, or not. Since the semantics
is precise, these values can only be singleton sets per choice of control flow.
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A similar argument is true in rule (E5), where either expression may assume
only a single value when closing it under δE . Hence, the semiring constraint
is either satisfied, or not. In this rule, we define the following operation:

fold f e {x1, . . . , xn} = f(xn, . . . , f(x1, e) . . .)

applied to function, YδE , which instantiates each variable in a set of expressions
to generate a new set of children expressions, as follows:

YδE (ω, {e1, . . . , en}) = (
⋃

s∈δE(ω)

{e1[s/ω]}) ∪ . . . ∪ (
⋃

s∈δE (ω)

{en[s/ω]})

The rule for replication, (E9), defines the least fixed point meaning of a
replicated process as the least upper bound of the (possibly infinite) poset,
F . The computation of this least fixed point may not terminate within finite
limits due to the infinite size of D⊥. Also, any spawned copies of !P are α-
converted using the labelling mechanism, introduced in the previous section
to maintain the process normality requirement.

The following theorem states that the non-standard semantics of semi-π is
correct with respect to the standard semantics.

Theorem 5.1 (Correctness of the Non-Standard Semantics)
∀P, θ, ρ, φS , φE , δS , δE : (S([(θ, P )]) ρ φS δS = p) ∧ (E([(θ, P )]) ρ φE δE =
(p′, φ′

E , δ
′
E)) ⇒ p = p′

Intuitively, the theorem states that for any system, (θ, P ), it is possible to
extract its standard meaning, as interpreted by S([(θ, P )]) ρ φS δS , from its
non-standard meaning, as interpreted by E([(θ, P )]) ρ φE δE . In other words,
the former is equal to the first element of the triple generated by the latter.

6 Abstract Semantics

As we mentioned earlier in the previous section, the non-standard semantics
of semi-π contains least fixed point calculations that may not be computable
due to the infinite nature of the concrete semantic domain. Therefore, in this
section, we introduce a couple of abstractions that help limit the size of the
semantic domain to a finite level. First, we need to introduce the definitions
of abstract semiring, abstract expression, β and ��.

Definition 6.1 An abstract semiring, (A�, +�,×�, 1�, 0�), is a semiring such
that |A�| < ∞.

Definition 6.2 An abstract semiring expression, e�, is obtained from a stan-
dard expression, e, by replacing every occurrence of s, +, ×, 1 and 0, by their
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abstract forms, s�, +�, ×�, 1� and 0�, respectively, and keeping occurrences of
ω in e.

Definition 6.3 define the abstraction, β : A → A�, to return an abstract
semiring value, β(s) = s�, corresponding to the concrete value, s. We leave
out the definition of β here, since this is application-dependent.

Definition 6.4 Define s� �� s′� as s� +� s′� = s�. We may write s� �� s′� to
indicate that s� �� s′� and s� �= s′�.

Next, we introduce a finite predomain of tags, Tag , ranged over by t, t′ etc.
Given a process, P , we place distinct tags on all messages of output actions of
P , except those occurring as π in let ω = Svalue(π) in n. For example, tag-
ging !(ν x)y〈x〉.y〈y〉.y(z).y〈z〉 results in !(ν x)y〈xt〉.y〈yt′〉.y(z).y〈zt′′〉. Copies
of tags can be renamed by subscripting them with the number of their copy.
Hence, the replication above when spawning two copies, becomes:

!(ν x)y〈xt〉.y〈yt′〉.y(z).y〈zt′′〉 |

(ν x1)y〈x
t1
1 〉.y〈y

t′
1〉.y(z1).y〈z

t′′
1

1 〉 | (ν x2)y〈x
t2
2 〉.y〈y

t′
2〉.y(z2).y〈z

t′′
2

2 〉

We also define the following two functions:

• value of ({t1, . . . , tn}) = {x1, . . . , xm}, which when applied to a set of tags,
it returns the corresponding messages. For example,

value of ({t, t1, t2, t
′, t′1, t

′
2, t

′′, t′′1, t
′′
2}) = {x, x1, x2, y, z, z1, z2}

• tags of (P ) = {t1, . . . , tn}, which when applied to a process, P , it returns
the set of tags in P . For example,

tags of (!(ν x)y〈xt〉.y〈yt′〉.y(z).y〈zt′′〉) = {t, t′, t′′}

Now, we define the following abstraction function for names, tags and semiring
variables, which places an upper limit, k, on the total number of copies of
names, tags and semiring variables that can be captured during the analysis.
In general, selecting k is non-decidable and relies, to a great extent, on user’s
experience and the specific program being analysed.

Definition 6.5 Define the abstraction function, αk : N × (N + Tag + Ω) →
(N � + Tag� + Ω�), as follows:

∀z ∈ (N + Tag + Ω) : αk(z) =

⎧⎨
⎩ zk, if z = zi ∧ i > k

z, otherwise
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Note that N � = N\{xj | j > k}, Tag� = Tag\{tj | j > k} and Ω� =
Ω\{ωj | j > k}. Using the αk abstraction function and the abstract semir-
ing, (A�, +�,×�, 1�, 0�), we can define the abstract environments, φA : N � →
℘(Tag�) and δA : Ω� → ℘(A�). Due to the imprecise nature of the abstract
semantics, both φA(x) and δA(ω) may be larger than singleton sets. This im-
precision results from the inability to distinguish between the different copies
of input parameters, tags and semiring variables beyond the kth copy, and the
use of the abstract semiring, (A�, +�,×�, 1�, 0�).

The abstract semantic domain, D�
⊥ = (N � → ℘(Tag �)) × (ω� → ℘(A�)),

has the following ordering based on subset inclusion (with ∪φ, ∪δ defined as
in the previous section, but over abstract rather than concrete environments):

∀(φA1, δA1), (φA2, δA2) ∈ D�
⊥ : (φA1, δA1) �D

�
⊥

(φA2, δA2) ⇔

φA1 ⊆ φA2 ∧ δA1 ⊆ δA2

The bottom element, ⊥
D

�
⊥

, is the pair, (φA0, δA0), mapping every abstract

name to the empty set and every abstract semiring variable to the empty
set, respectively. Using D�

⊥, the abstract semantics of semi-π is defined by a

function, A([(θ, P )]) ρ φA δA ∈ D�
⊥, as shown in Figure 6.

The multiset, ρ, holds as usual all the processes composed in parallel with
the interpreted process, along with a copy of θ. The rules of the abstract
semantics are described informally as follows. Rules, (A1) and (A2), for null
processes and input actions do not change the values of φA and δA, since
no communications take place in these rules. In rule (A3), the meaning of
an output action is composed from the two cases of no-communications and
communications with matching input actions in ρ. A communication is fired
whenever the sets of values of two channels, as given by φA, have a non-empty
intersection. The effect of the communication is reflected by adding the tag
of the output message to the φA-value of the input parameter.

In rule (A4), the matching of two names leads to either choosing process,
P , or not, based on the presence of at least one φA-value for each of the
matched names that are equal. A similar argument follows in rule (A5), when
resolving semiring constraints. The definition of fold is similar to that of the
previous section, however, we redefine YδA as follows:

YδA(ω�, {e�
1, . . . , e

�
n}) = (

⋃
s�∈δA(ω�)

{e�
1[s

�/ω�]}) ∪ . . . ∪ (
⋃

s�∈δA(ω�)

{e�
n[s�/ω�]})

In rule (A8), we use the abstraction, β, to abstract a concrete semiring value
as returned by θ(π, n) to an element of the abstract set, A�. The rule for
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(A1) A([(θ,0)]) ρ φA δA = (φA, δA)

(A2) A([(θ, x(y).P )]) ρ φA δA = (φA, δA)

(A3) A([(θ, x〈yt〉.P )]) ρ φA δA = ((
⋃

φ

(θ,x′(z).P ′)∈ρ

φ′
A) ∪φ φA, (

⋃
δ

(θ,x′(z).P ′)∈ρ

δ′A) ∪δ δA)

where, (φ′
A, δ′A) = R([{|(θ, P )|}  ρ[(θ, P ′)/(θ, x′(z).P ′)]]) φA[z �→ φA(z) ∪ {t}] δA

and, ∃t ∈ φA(x), t′ ∈ φA(x′) : value of(t) = value of(t′)

(A4) A([(θ, [x = y] P )]) ρ φA δA ={
R([{|(θ, P )|}  ρ]) φA δA, if ∃t ∈ φA(x), t′ ∈ φA(y) : value of(t) = value of(t′)

R([ρ]) φA δA, otherwise

(A5) A([(θ, [e1 � e2] P )]) ρ φA δA =⎧⎪⎪⎨
⎪⎪⎩

R([{|(θ, P )|}  ρ]) φA δA, if ∃e� ∈ (fold YδA {e�
1} semiv(e�

1)),

e′� ∈ (fold YδA {e�
2} semiv(e�

2)) : e� �� e′�

R([ρ]) φA δA, otherwise

(A6) A([(θ, P | Q)]) ρ φA δA = R([{|(θ, P )|}  {|(θ, Q)|}  ρ]) φA δA

(A7) A([(θ, (νx)P )]) ρ φA δA = R([{|(θ, P )|}  ρ]) φA δA

(A8) A([(θ, let ω = Svalue(π, n) in P )]) ρ φA δA =

R([{|(θ, P )|}  ρ]) φA δA[ω �→ δA(ω) ∪ {β(θ(π, n))}]

(A9) A([(θ, !P )]) ρ φA δA =
⊔
F

where, F = {(φA0, δA0),R([
⊎

i=0...∞

{|(θ, ren(P, i, αk))|}  ρ]) φA δA}

and, ∀x ∈ bn(P ), t ∈ tags of(P ), ω ∈ semiv(P ) :

ren(P, i, αk) = P [αk(xi)/x][αk(ti)/t][αk(ωi)/ω]

(R0) R([ρ]) φA δA = (
⋃

φ

(θ,P )∈ρ

φ′
A,

⋃
δ

(θ,P )∈ρ

δ′A)

where, (φ′
A, δ′A) = A([(θ, P )]) (ρ\{|(θ, P )|}) φA δA

Fig. 6. The abstract semantics of semi-π.

replicated processes, (A9), attaches abstract subscripts to bound names, tags
and semiring variables of the spawned processes according to the copy number
of each process. This will only maintain the distinction requirement up to the
kth copy, since after that, copies will be identified. Therefore, this semantics
will necessarily be approximate and the size of D�

⊥ will necessarily be finite.
The rule also defines a least fixed point meaning of the replication as the least
upper bound of a poset, F , containing the bottom element, ⊥

D
�
⊥

. Since the

semantic domain, D�
⊥, is finite in nature, F may only contain a finite number

of φA, δA elements. As a result, the calculation of the least fixed point is
guaranteed to terminate. This is stated more formally as follows.

Theorem 6.6 (Termination of the least fixed point calculation)
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The calculation of rule (A9) terminates.

Proof Sketch: We give a sketch of the proof of the termination property.
Two requirements must be satisfied. First, the semantic domain must be
finite. This is satisfied by the definition of D�

⊥ and the fact that the number
of names, tags and semiring values remains finite. The second requirement
is to prove that R([

⊎
i

{|(θ, ren(P, i, αk))|} ]) φA δA �
D

�
⊥

R([
⊎
i+1

{|(θ, ren(P, i +

1, αk))|} ]) φA δA (i.e., proving that the meaning is monotonic with respect to
an increment in the number of copies of (θ, P )). To prove this, we simplify the
inequality into R([E]) φA δA � R([E  {|(θ, ren(P, i + 1, αk))|}]) φA δA, where
E =

⊎
i

{|(θ, ren(P, i, αk))|}. This result can be proven by induction over the

rules of A. In particular, the most interesting rules are those of (A3) and
(A8), where the values of φA and δA change. The proof relies on the fact that
any communications and semiring value retrievals taking place in R([E]) φA δA
will necessarily take place in R([E{|(θ, ren(P, i, αk))|}]) φA δA, since the latter
is a larger system than the former, and larger systems always induce at least
as much communications and semiring value retrievals as the smaller ones. �

The safety of the abstract semantics can now be established formally in
the following theorem.

Theorem 6.7 (Safety of the abstract semantics of semi-π)

∀θ, P, ρ, φE , φA, δE , δA, x, ω, αk, β,
E([(θ, P )]) ρ φE δE = (p, φ′

E , δ
′
E),A([(θ, P )]) ρ φA δA = (φ′

A, δ′A) :

(∃y ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = αk(y)) ∧
(∃s ∈ δE(ω) ⇒ ∃s� ∈ δA(αk(ω)) : s� = β(s))

⇒

(∃y ∈ φ′
E(x) ⇒ ∃t ∈ φ′

A(αk(x)) : value of ({t}) = αk(y)) ∧
(∃s ∈ δ′E(ω) ⇒ ∃s� ∈ δ′A(αk(ω)) : s� = β(s))

The safety theorem above states that values present in the final envi-
ronments resulting from the concrete non-standard semantics will always be
present, as abstract tags and elements of the abstract semiring, in the envi-
ronments resulting from the abstract semantics.

7 Analysing the Satisfaction of Semiring Constraints

Semiring constraints in fact allow us to define a Constraint Satisfaction Prob-
lem (CSP) [10, §2.1.1], as follows:

C = ({ω1, . . . , ωn}, {A1, . . . ,An}, {e1 � e2, . . . , ek � ek+1})
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where ωi=1...n ∈
k+1⋃
j=1

semiv(ej). The solution to this problem is obtained by tak-

ing “good” instantiations of the semiring variables, ω1 . . . ωn, i.e. instantiations
that satisfy the set of constraints, {e1 � e2, . . . , ek � ek+1}. Hence, a solution
is defined as a set, Sol(C) = {ω1 �→ s1 ∈ A1, . . . , ωn �→ sn ∈ An}. Further-
more, we refer to the set of all solutions as SOL(C) = {Sol1(C), . . . , Solm(C)}.

From the set, SOL(C), it is possible to relate a solution to the property of
name substitutions as follows. Assume that C is a context, i.e. it is a process
with a hole, P [.]. This allows us to write a process with a string of semiring
constraints as C[[e1 � e2] . . . [ek � ek+1] P ]. Then, we have the following two
environments:

φA1 = fst(A([(θ, C[P ])]) ρ φA δA)

φA2 = fst(A([(θ, C[0])]) ρ φA δA)

Which result from replacing [e1 � e2] . . . [ek � ek+1] P once by P and once
by 0. Now, we define the difference between the two environments as follows:

φP
A = φA1\φA2

The φP
A environment represents the effect reflected in name substitutions of

satisfying the set of constraints, {e1 � e2, . . . , ek � ek+1}.

The following definition formalised name substitution/CSP dependency.

Definition 7.1 Given a system, (θ, C[[e1 � e2] . . . [ek � ek+1] P ]), an abstract
interpretation, A([(θ, C[[e1 � e2] . . . [ek � ek+1] P ]))]) ρ φA δA = (φ′

A, δ′A), and
a difference environment, φP

A, then every substitution, [x� �→ {a�
1, . . . , a

�
n}] ∈

φP
A, is dependent on reaching one or more of the solutions, SOL(C�), such that:

C� =

({ω� | ω� ∈
k+1⋃
j=1

semiv(e�
j)}, {set

� | set� = δ′A(ω�)}, {e�
1 �� e�

2, . . . , e
�
k �� e�

k+1})

The property states that a name substitution can only occur subject to the
satisfaction of the CSP over the abstract constraints. Since we are dealing with
normal processes only, with no occurrences of homonymous semiring variables
or bound names, it is possible to relate every ω� to some abstract action, π�,
and name, z�, by observing a subprocess, let ω = Svalue(π, z) in P , in the
syntax of the analysed process. This will allows us to relate name substitutions
to the cost of actions under certain circumstances.
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8 Example: Adaptive Router

We consider in this section an example of a simplified adaptive router. The
system consists mainly of a process, Router, which is connected to an n number
of other routers through channels, outi, for i = 1 . . . n. The router repeatedly
accepts a message (the destination) after which it queries the state θ for the
cost of routing the message over each of its output connections. One may
think of θ as implementing some algorithm for the calculation of the shortest
path, for example Dijkstra’s [11]. Using these costs, the router decides which
connection is best to send the message over. The specification of the system
is shown in Figure 7, in which it runs the router process for the case of five
connections.

Router(n)
def

= !route(dest).

let ω1 = Svalue(out1〈dest〉, dest) in

...

let ωn = Svalue(outn〈dest〉, dest) in

let ω1+n = Svalue(out1(x1), dest) in

...

let ωn+n = Svalue(outn(xn), dest) in

n∏
i=1

(
max({1,...,n}\i)⊙

j=min({1,...,n}\i)

[(ωi × ωn+i) � (ωj × ωn+j)] ) outi〈dest
t〉

System
def

= (θ,Router(5) | route〈our destt
′

〉 |
5∏

i=1

outi(xi))

Fig. 7. The Specification of the Routing Protocol.

Here, we use the special symbol,

(
k⊙

i=1

[ei � e′i] ) P

as a shorthand for,

[e1 � e′1] . . . [ek � e′k] P

We start the analysis of this system by first adopting the assumptions:

• The concrete semiring is the weighted semiring, (R+,min, +, +∞, 0).

• θ holds values for the different actions, as follows:
θ(out1〈our msg, our dest〉, our dest) = 30
θ(out2〈our msg, our dest〉, our dest) = 3
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θ(out3〈our msg, our dest〉, our dest) = 3
θ(out4〈our msg, our dest〉, our dest) = 1010
θ(out5〈our msg, our dest〉, our dest) = 60
θ(out1(x1, y1), our dest) = 100
θ(out2(x2, y2), our dest) = 5
θ(out3(x3, y3), our dest) = 10000
θ(out4(x4, y4), our dest) = 50000
θ(out5(x5, y5), our dest) = 5

• The abstract semiring is ({low,medium, high},min,max, high, low). Addi-
tionally, we define β as follows:

∀r ∈ R
+ : β(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

low, if r < 10

medium, if 10 ≤ r ≤ 100

high, if r > 100

• We assume a non-uniform analysis with the abstraction function is α5.

• We allow ourselves to abuse the notation by using parameterised non-
recursive definitions, like Router(n).

Next, we run the abstract interpretation for the following systems:

A([ System ]) {||} φA0 δA0 = (φA, δA)
A([ System[0/string] ]) {||} φA0 δA0 = (φ′

Ai, δ
′
Ai)

A([ System[outi〈msg, dest〉/string] ]) {||} φA0 δA0 = (φ′′
Ai, δ

′′
Ai)

where,

string
def

= (
max({1,...,n}\i)⊙

j=min({1,...,n}\i)

[ωi × ωn+i � ωj + ωn+j] ) outi〈msg, dest〉

for all the cases of i ∈ {1, . . . , 5}. As a result, it is now possible to construct
the following difference environments:

φP
Ai = φ′′

Ai\φ
′
Ai for each value of i ∈ {1, . . . , 5}

Examining these difference environments, we find that the only environment
which is not empty is φP

A2 = {(x2, {t2})}, where value of({t2}) = {dest2}. This
implies that only the second set of constraints and the second output are ca-
pable of influencing the routing of the message to its destination. The reason
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is because β(ω21
)×β(ω71

) constitutes in fact the best abstract semiring value
among all the other possible values (based on a min ordering). Consequently,
our CSP-based Property 7.1 as defined in the previous section allows us to
state that the name substitution, {(x2, {t2})}, is dependent reaching the solu-
tion that β(ω22

) = β(ω72
) = low in every constraint, and that for the each of

the remaining semiring variables, that at least one variable occurring in each
constraint will reach one of the abstract values of medium or high. Put more
precisely, the costs of out2〈our dest〉 and out2(x2) are the best.

9 Conclusion and Future Work

We have presented a static analysis of semi-π: an extension of the π-calculus
that incorporates capabilities for the retrieval of semiring values of communi-
cation actions and then allows these values to be reasoned about in semiring
constraints. The analysis captures the property of name substitutions and
instantiations of semiring variables using semiring values. The results of the
analysis allow us to relate name substitutions to the satisfaction of semiring
constraints, and ultimately, to the cost of communication actions. We applied
the analysis to a simple adaptive routing example.

In the future, we are planning to implement the analysis in a functional
programming language, like SML. Such languages are quite suitable to the
syntax-directed approach adopted in the definition of our analysis. Moreover,
we are planning to apply the analysis to more interesting adaptive network
routing algorithms and adaptive power-saving in small devices. Another in-
teresting extension would be to model the cost of cryptographic operations,
in languages like the spi calculus.
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