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Abstract

Some years ago, Turi and Plotkin gave a precise mathematical formulation of a notion of structural
operational semantics: their formulation is equivalent to a distributive law of the free monad
on a signature over the cofree copointed endofunctor on a behaviour endofunctor. From such a
distributive law, one can readily induce a distributive law of the monad over the cofree comonad on
the behaviour endofunctor, and much of their analysis can be carried out in the latter terms, adding
a little more generality that proves to be vital here. Here, largely at the latter level of generality,
we investigate the situation in which one has two sorts of behaviours, with operational semantics
possibly interacting with each other. Our leading examples are given by combining action and
timing, with a modular account of the operational semantics for the combination induced by that of
each of the two components. Our study necessitates investigation and new results about products of
comonads and liftings of monads to categories of coalgebras for the product of comonads, providing
constructions with which one can readily calculate.

Keywords: Mathematical operational semantics, modularity, timed transition systems,
comonads, distributive laws.

1 Introduction

Turi and Plotkin, in their paper “Towards a mathematical operational se-
mantics” [17], gave a precise general mathematical formulation of a notion
of structural operational semantics, modelling GSOS, more precisely image-
finite Generalised Structural Operational Semantics. They started with a
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base category C with finite products, a “syntax” endofunctor Σ on C, and
a “behaviour” endofunctor B on C, and they modelled a GSOS rule by an
abstract operational rule, which they defined to be a natural transformation
Σ(B × Id) ⇒ BT , where T is the free monad on Σ, which they assumed ex-
ists. Under mild conditions, they showed that each abstract operational rule
gave rise to a distributive law of the monad T over the cofree comonad D on
B, allowing them to model the combination of operational and denotational
semantics. More delicately, it was shown in [11] and further explained and
exploited in [14] that to give an abstract operational rule is actually equiv-
alent to giving a distributive law of the free monad T on Σ over the cofree
copointed endofunctor on an endofunctor B, from which one can deduce Turi
and Plotkin’s distributive law of T over D. Here, we investigate modularity
at the level of generality proposed by Turi and Plotkin in the precise sense of
trying to combine two sorts of behaviour, i.e., start with endofunctors B and
B′ or more generally with comonads D and D′ and try, using more primitive
data, to induce a distributive law of T over the cofree copointed endofunctor
on B × B′ or more generally over the comonad D × D′ if the latter exists.

Our leading example involves timing. A time domain is a monoid (T, +, 0)
subject to two conditions (see Definition 2.1). A leading example is given
by the set of natural numbers with addition. A timed transition system is a
labelled transition system (P, T, �), where P is a set of processes, T is a time
domain, and �⊆ P×T×P is a time transition relation, i.e., it satisfies axioms
of determinacy, zero-delay, and continuity (see Definition 2.2. The concept of
timed transition system was at the heart of the first author’s thesis [10], was
summarised in [9], and was synthesised from various accounts of time in the
literature, such as [6,13,18]. Given a finite set A of actions, a time domain T
and a set P , a heterogeneous transition system (P, A, T,→, �) on P is given
by

• an image-finite transition system (P, A,→) and

• a timed transition system (P, T, �)

To the coalgebra cognoscenti, this situation begs for analysis: the first tran-
sition systems amounts to a coalgebra for an endofunctor B on Set [5]. The
timed transition system is more complex, but we can prove that it amounts
to a coalgebra for a comonad ET on Set, where ET is generated by the time
domain T and has a natural and succinct description (see Definition 2.5 and
Theorems 2.4 and 2.6). When the time domain is the set of natural numbers
with addition, the comonad ET is the cofree comonad on an endofunctor (see
Theorem 2.7), but that is atypical. So we always have a pair of monads D and
D′ on Set together with a D-coalgebra structure and a D′-coalgebra structure
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on the same set. Moreover, we can assume that D is the cofree comonad on
an endofunctor B and there is an important special case in which D′ is also a
cofree comonad on an endofunctor B ′. We analyse time in Section 2 and we
analyse the combination of transition systems in Section 3.

In order to give a unified operational semantics, we first need to replace the
pair of comonads D and D′ by a combined comonad G for which a G-coalgebra
amounts to a set, more generally an object of a category, together with both
a D-coalgebra structure and a D′-coalgebra structure on it. We can readily
prove that, if the product D × D′ of comonads exists, that is the combined
comonad we require. But products of comonads do not always exist, and
when they do exist, they are typically awkward to calculate. So, in Section 3,
we prove that the product does the job we want, we give simple and general
sufficient conditions that imply the existence of such a product, and, taking
the dual of a result for monads in [2], we characterise the product in terms
with which one can readily calculate, providing that one of the comonads is
cofree on an endofunctor, which is true of all the examples we study. If both
comonads are cofree on endofunctors, life becomes much simpler, as the prod-
uct of comonads is then the cofree comonad on the product of endofunctors,
which in turn is given pointwise.

Turning to the combination of operational semantics for two behaviours, a
further delicacy arises [10]: it is not always the case that one has independent
pairs of behaviour, i.e., one might not have distributive laws

TD ⇒ DT

and
TD′ ⇒ D′T

that one seeks to combine into one of the form

T (D × D′) ⇒ (D × D′)T

That situation sometimes appears in practice, and we readily deal with it in
Section 4. But more generally, the time behaviour typically interacts with the
action behaviour: one most generally might start with data of the form

T (D × D′) ⇒ DT

and
T (D × D′) ⇒ D′T

So the bulk of Section 4, which is devoted to the derivation of a combined
operational semantics, gives necessary and sufficient conditions for the combi-
nation, necessarily allowing for the possibility of parametrised starting data.
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We regard the work of this paper as a natural development of [14], which
was a first attempt to take Turi and Plotkin’s definition of a mathematical
operational semantics and start to develop a theory of mathematical opera-
tional semantics, i.e., a body of constructions and theorems at the level of
generality of their definition that reflect and suggest computational practice
in examples.

2 Timed transition systems

The aim of this paper is to model the combination of behaviours in operational
semantics. In our leading class of examples, one of the behaviours is given by
time. So in this section, we briefly develop an account of timed processes as
explained more fully in the first author’s thesis [10] and in a paper summarising
part of the thesis [9]. Our analysis is consistent with and generalises much of
the literature on time, for instance [6,13,18].

Definition 2.1 [10, Definition 3.1] A time domain is a monoid (T, +, 0) sat-
isfying axioms of anti-symmetry and left-cancellation as follows:

(∀t, uεT ).t + u = 0 ⇒ t = u = 0

(∀s, t, uεT ).s + t = s + u ⇒ t = u.

There is a range of obvious examples, leading ones given by the set of nat-
ural numbers and by the set of non-negative real numbers, each with monoid
structure given by sum. There is, of course, an abundance of other examples
in the literature: see [9,10] for a list of references.

Definition 2.2 [10, Definition 3.5] A timed transition system is a labelled
transition system (P, T, �) where P is a set of processes, T is a time domain,
and �⊆ P × T ×P is called the time transition relation, satisfying axioms of
determinacy, zero-delay and continuity, which, respectively, are given by

p
t

� p′ ∧ p
t

� p′′ ⇒ p′ = p′′

p
0
� p

p
t+u
� p′ ⇔ (∃p′′).p t

� p′′ u
� p′

We call (P, T, �) a timed transition system over T . The reasons for the
axioms are explained in [9,10]. The key point to observe here is that this
is only about time: it does not involve any other possible behaviour. It has
proved to be useful to isolate the time behaviour from all the other possible
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behaviour of a process [9,10], but in this paper, we want to recombine two
such sorts of behaviour with theoretical support.

One of the basic results of [9,10] is that timed transition systems over T are
exactly equivalent to partial actions of the monoid T . To make this precise,
we proceed as follows.

Definition 2.3 Given a monoid (M, +, 0) and a set X, a partial (right)
monoid action of M on X is a partial function α : X × M −→ X such
that for all x in X and m, n in M , with � being Kleene equality,

α(x, 0) � x

α(α(x, m), n) � α(x, m + n)

There are several possible ways to make partial M-actions into a category
M-pAct, but the one that proves most useful in this setting is by defining a
map from (X, α) to (X ′, α′) to be a total function f : X −→ X ′ such that for
all x in X and m in M

f(α(x, m)) � α′(f(x), m)

Theorem 2.4 To give a timed transition system (P, T, �) is to give a partial
T -action on P , the equivalence given by

p
t

� p′ ⇔ p′ � α(p, t)

The central result of [10] is Theorem 4.1, which asserts that for a time
domain T , the category T -pAct, which, by Theorem 2.4, amounts to a category
of timed transition systems, is comonadic over Set with comonad given as
follows.

Definition 2.5 Given a time domain (T, +, 0) and a set X, a T -evolution is
partial function e : T ⇀ X satisfying the following two axioms:

e(0) ↓

(∀t, uεT ).e(t + u) ↓⇒ e(t) ↓
We denote the set of all T -evolutions on X by ET X or, if T is clear from

the context, simply by EX.

Theorem 2.6 [10, Theorem 4.1] For any time domain (T, +, 0), the forgetful
functor from T -pAct to Set is comonadic, with comonad given by ET .
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Observe that, in general, ET is a comonad that is not the cofree comonad
on an endofunctor: see [10] for some examples. But in one leading example,
i.e., the case where T is the set of natural numbers, it is.

Theorem 2.7 [10, Theorem 4.2] cf [3] Let N denote the monoid of natural
numbers with sum. Then EN is the cofree comonad on the endofunctor on Set
given by 1 + −.

Theorems 2.6 and 2.7, together with their development in [9,10] mean
that the study of timed operational behaviour alone reduces to the study of a
distributive law of the free monad T on a signature over a behaviour comonad
ET , with one leading example given by the cofree comonad on a behaviour
endofunctor. This provides the backdrop for the analysis of combinations of
behaviours that we develop in further sections here. We need just one more
result from [10] in order to proceed.

Proposition 2.8 [10, Proposition 4.8] For any time domain T , the functor
ET is accessible, with rank given by any infinite regular cardinal greater than
the cardinality of T .

3 The product of comonads

In this section, we wish to consider the combination of timed behaviour, as
described in Section 2, with the ordinary behaviour relative to actions as
studied extensively in the coalgebra literature [5]. This allows us, in the
succeeding section, to study operational semantics for the combination. For
reasons of elegance, we shall make our theoretical analysis in terms of a pair
of comonads, with one or possibly both given cofreely on an endofunctor.

Definition 3.1 [10, Definition 7.1] Let A be a finite set of actions, let T
be a time domain, and let P be a set. A heterogeneous transition system
(P, A, T,→, �) on P consists of

• an image-finite labelled transition system (P, A,→) and

• a timed transition system (P, T, �)

We have seen in the previous section that a timed transition system amounts
to a ET -coalgebra for the comonad ET defined previously. And we have long
known that an image-finite labelled transition system is given by a B-coalgebra
for an endofunctor B, and, moreover, we may regard it as a D-coalgebra for
the cofree comonad D on B, which exists in all the leading examples [5]. So
a heterogeneous transition system amounts to a set together with a pair of
coalgebra structures for comonads D and D′, the former given by the cofree
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comonad on an endofunctor B. So, given comonads D and D′, we seek to ex-
hibit a heterogeneous transition system as a coalgebra for a comonad derived
from D and D′. In fact, if it exists, that combined comonad must be the prod-
uct D × D′ of comonads: be warned that that product is not given pointwise
in general, i.e., it is not given by the product of endofunctors. Moreover, it
need not always exist.

Definition 3.2 Given comonads D and D′ on a category C, define the cate-
gory (D, D′)-Coalg to be the pullback in the large category of categories given
by

(D, D′) − Coalg � D′ − Coalg

D − Coalg
�

UD

� C

UD′

�

where UD and UD′ are the forgetful functors.

Proposition 3.3 If the forgetful functor U : (D, D′)-Coalg −→ C has a right
adjoint G, then (D, D′)-Coalg is comonadic over C with comonad given by
G.

Proof. By the dual of Beck’s monadicity theorem [1], it suffices to prove
that U reflects isomorphisms and that (D, D′)-Coalg has and U preserves the
equalisers of U-split equaliser pairs. Reflection of isomorphisms is trivial: a
map in (D, D′)-Coalg is simply a map in C that preserves both coalgebra
structures, and if that map in C is an isomorphism, its inverse must preserve
both coalgebra structures. And for the second condition, any U-split equaliser
pair is sent to a UD-split equaliser pair in D-Coalg and a UD′-split equaliser
pair in D′-Coalg. So the split equaliser in C must lift, by the converse (easy)
part of Beck’s theorem to an equaliser in both D-Coalg and D′-Coalg, and so
the equalising map in C is a map in (D, D′)-Coalg and satisfies the equalising
property there. The functor U preserves it by construction. �

It is not easy to give a direct proof of the existence of a right adjoint to the
forgetful functor U : (D, D′)-Coalg −→ C, thus yielding comonadicity by the
proposition, under general conditions. But an indirect route is readily avail-
able to us via a slightly subtle use of results about accessible categories [12],
cf [4].

Theorem 3.4 If C is a locally presentable category and D and D ′ are accessi-
ble, the category (D, D′)-Coalg is locally presentable and the forgetful functor
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to C has a right adjoint.

Proof. First observe that coalgebra structure transports along isomorphism,
i.e., given a D-coalgebra (X, d) and an isomorphism f : X −→ X ′ in C, it
follows that X ′ possesses a (unique) D-structure making f an isomorphism
in D-Coalg. It follows that the category (D, D′)-Coalg is equivalent to the
following category: an object consists of a D-coalgebra (X, d), a D′-coalgebra
(X ′, d′), and an isomorphism in C between X and X ′. This latter category is
an iso-comma object

P � D′ − Coalg

∼=

D − Coalg
�

UD

� C

UD′

�

in the large category of categories. But the large category of accessible cat-
egories is closed under taking the category of coalgebras for an accessible
comonad (see [4]), and under iso-comma objects [12], and under equivalence
of categories. So (D, D′)-Coalg is an accessible category. Moreover, since D
and D′ are both accessible, D-Coalg and D′-Coalg are cocomplete and UD and
UD′ preserve colimits. So (D, D′)-Coalg is also cocomplete and the forgetful
functor to C preserves colimits. Thus (D, D′)-Coalg is a locally presentable
category and the forgetful functor to C preserves colimits; so the latter has a
right adjoint. �

Thus, for all examples of primary interest to us, e.g. for C = Set and D
and D′ being any of our leading examples, we do have a comonad. Much more
analysis of the significance of accessibility and the fact that it includes all ex-
amples of substantial interest to us appears in [4]. Unusually, but fortunately,
the fact that we know we have a comonad allows us to characterise it as the
product of D and D′.

Assume we have an arbitrary category C. Given an object X of C, consider
the functor

∐
C(X,−) X : C −→ C. It sends an object Y to the coproduct of

C(X, Y ) copies of X. For an arbitrary endofunctor H : C −→ C, it follows
from the Yoneda lemma that to give a natural transformation

χ :
∐

C(X,−)

X ⇒ H

is equivalent to giving a map x : X −→ HX. One can readily prove that
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the functor
∐

C(X,−) X possesses a natural comonad structure, and one has
the following equivalence, as used extensively for instance in the dual setting
in [8].

Proposition 3.5 For a comonad D on C, to give a map of comonads

χ :
∐

C(X,−)

X ⇒ D

is equivalent to giving a D-coalgebra structure (X, x) on the object X.

Using that proposition, one can immediately prove the following.

Proposition 3.6 For comonads D and D′ on C, if the product of comon-
ads D × D′ exists, the category of coalgebras (D × D′)-Coalg is canonically
isomorphic to the pullback

(D, D′) − Coalg � D − Coalg

D − Coalg
�

UD

� C

UD′

�

Proof. To give a D×D′-coalgebra is equivalent to giving a map of comonads
of the form

χ :
∐

C(X,−)

X ⇒ D × D′

but that, by definition of product, is equivalent to giving a pair of maps

χ :
∐

C(X,−)

X ⇒ D χ′ :
∐

C(X,−)

X ⇒ D′

which in turn is equivalent to giving an object of (D, D′)-Coalg. All these
equivalences are natural, yielding the result. �

Comonads are characterised by their categories of coalgebras, and the
canonical isomorphism of the proposition commutes with the underlying func-
tors to C. So the proposition has a dual as follows.

Theorem 3.7 If the forgetful functor from (D, D′)-Coalg to C is comonadic
with comonad G, then the product of comonads D ×D′ exists and is given by
G.
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Proof. The canonical functor

(D, D′) − Coalg −→ D − Coalg

commutes with the forgetful functors to C. So, if (D, D′)-Coalg is of the form
G-Coalg, the functor must be of the form

δ − Coalg : G − Coalg −→ D − Coalg

for a map of comonads δ : G ⇒ D (see [1] for the dual result). Thus we
have projections δ and δ′. Now, given a comonad W , to give a comonad map
ω : W ⇒ D is equivalent to giving a functor from W -Coalg to D-Coalg that
commutes with the forgetful functors. Using the definition of (D, D′)-Coalg
as a pullback, we obtain a unique functor from S-Coalg to G-Coalg that
commutes with the forgetful functors and with δ-Coalg and δ′-Coalg, and
hence the desired unique map of comonads. �

Combining Proposition 3.3, Theorem 3.4, and Theorem 3.7, we can now
deduce the result we seek.

Corollary 3.8 If C is a locally presentable category and D and D′ are acces-
sible comonads on C, the product D×D′ exists and is given by the right adjoint
to the forgetful functor from (D, D′)-Coalg to C, exhibiting (D, D′)-Coalg as
(D × D′)-Coalg.

This corollary includes all examples that are likely to be of much interest
to us. But it does not give us a construction of the product D × D′ that we
can readily calculate. However, in the cases of primary interest to us, one of
the comonads, that given by the action behaviour, is the cofree comonad on
an endofunctor. And in that case, the dual of a result for monads in [2] does
give us a reasonable construction as follows.

Theorem 3.9 For any category C and any endofunctor B and comonad D for
which the cofree comonads B∞ and (BD)∞ on B and BD exist, the product
B∞ × D also exists and is given by the functor D(BD)∞ with a canonical
comonad structure.

The dual of this theorem appears in [2], and this theorem directly appears
in [10, Theorem 7.1]. We shall not include the detailed derivation here, al-
though it does contain results of independent interest here. We simply refer to
the development of Chapter 7 of the first author’s thesis [10]. Constructions
of cofree comonads on endofunctors abound in the coalgebraic literature, for
instance in [19] but see also [7,14]. In particular, if C is locally presentable
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and B and D are accessible, the cofree comonads B∞ and (BD)∞ exist [4],
and so the theorem holds.

More specifically still, recall that our leading example of a time domain is
given by that for natural numbers, and for that particular case, the comonad
ET is itself the cofree comonad on an endofunctor, namely 1 + −. So there is
some interest in the situation in which both D and D′ are cofree comonads on
endofunctors, B and B′. But that is a particularly simple case, because then,
the category B-coalg of coalgebras for the endofunctor B is isomorphic to the
category D-Coalg of coalgebras for the comonad D, and so, by a variant of
the above analysis, we have the following result.

Corollary 3.10 Given endofunctors B and B ′ on a category C with finite
products such that the cofree comonads B∞ and B′∞ exist, the product of
comonads B∞ × B′∞ exists and is given by (B × B ′)∞, where B × B′ is the
pointwise product of endofunctors, providing the cofree comonad on B × B ′

exists.

4 Structural operational semantics for a combination of
behaviours

In this section, we reach the heart of the paper. We know, from Section 3, how
to characterise the category of coalgebras for a product of comonads under
mild conditions on the comonads and on the base category. We can further
characterise the product itself, under mild conditions, providing one of the
components is cofree on an endofunctor, as is the case for our leading examples.
We further have, from Section 2, a class of examples of why we would want
such a product of possible behaviours. But now we combine that analysis
with the Turi and Plotkin idea to model structural operational semantics in
terms of what are provably distributive laws [17,11,14]. The central facts for
us are our characterisation in Section 3 of the category (D × D′)-Coalg as
(D, D′)-Coalg together with the characterisation in [15] of a distributive law
of a monad T over a comonad D as a lifting of T to D-Coalg, further explored
in [11].

Theorem 4.1 Given a monad T , comonads D and D′, and distributive laws
λ : TD ⇒ DT and λ′ : T ′D ⇒ DT ′, there is a canonical distributive law of T
over D × D′ if the product of comonads D × D′ exists.

Proof. This follows from [15] together with Proposition 3.6. By the former,
the two distributive laws give liftings of T to D-Coalg and D′-Coalg respec-
tively. By the latter, these liftings yield a monad on (D×D′)-Coalg, as it is the
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pullback category P . So by the converse part of [15], we have the distributive
law of T over D × D′ that we seek. �

But this result is less general than one would like because one does not
always start with distributive laws λ : TD ⇒ DT and λ′ : T ′D ⇒ DT ′

or with anything that induces them [10]. The reason is that, in the leading
examples, the time information and the action information typically interact
with each other [10, Section 7.3.2]. So we consider the following question:
given a monad T and comonads D and D′, what are necessary and sufficient
data that separate D and D′ to some extent yet yield a lifting of the monad
T to the category (D, D′)-Coalg?

The following result was not explicitly stated in [15], but does follow from
the analysis therein, which in turn was based on the characterisation of D-
Coalg as a limit in [16].

Proposition 4.2 Given comonads (D, δD, εD) and (E, δE, εE) on a category
C and a functor H : C −→ C, to give a lifting of H to a functor from E-Coalg
to D-Coalg is equivalent to giving a natural transformation

α : HE ⇒ DH

subject to commutativity of the following two diagrams:

HE
α � DH HE

α � DH

HEE

HδE

�

αE
� DHE

Dα
� DDH

δDH

�
H

εDH

�

H
ε
E

�

Using two copies of this proposition and our characterisation of (D ×D′)-
Coalg as (D, D′)-Coalg in Proposition 3.6, we can readily deduce the follow-
ing.

Proposition 4.3 Given comonads D and D′ on a category C such that the
product D × D′ exists, and given a functor T : C −→ C, to give a lifting
of T to an endofunctor on (D × D′)-Coalg is equivalent to giving natural
transformations

λ : T (D × D′) ⇒ DT λ′ : T (D × D′) ⇒ D′T
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subject to the following four axioms:

T (D × D′)
λ � DT T (D × D′)

λ � DT

T (D × D′)(D × D′)

Tδ(D×D′)

�

λ(D × D′)
� DT (D × D′)

Dλ
� DDT

δDT

�
T

εDT

�

T
ε
(D×

D ′) �

T (D × D′)
λ′

� D′T T (D × D′)
λ′

� D′T

T (D × D′)(D × D′)

Tδ(D×D′)

�

λ′(D × D′)
� D′T (D × D′)

D′λ′
� D′D′T

δD′T

�
T

ε′DT

�

T
ε
(D×

D ′) �

Now suppose one has not just an endofunctor T but a pointed endofunctor
(T, η) that one wants to lift.

Proposition 4.4 Given comonads D and D′ on a category C such that the
product D × D′ exists, and given a pointed endofunctor (T, η) on C together
with a lifting of the endofunctor T to (D×D′)-Coalg (or equivalently with the
data of Proposition 4.3 subject to the axioms of the proposition), the unit η of
T lifts if and only if the following two diagrams commute:

D × D′ � D D × D′ � D′

T (D × D′)

η(D × D′)

�

λ
� DT

Dη

�
T (D × D′)

η(D × D′)

�

λ′
� D′T

D′η

�

Proof. We already have the data for the unit, and the naturality condition
is trivial. The only question is of finding necessary and sufficient conditions
for each component of the natural transformation to be a map in (D, D′)-
Coalg; but we know that the maps in (D, D′)-Coalg are given by maps in
C that respect both coalgebra structures, so it is a routine matter to check
a necessary and sufficient condition for that condition: such a result appears
in [15], which is essentially gleaned from [16], but it is also easy to see directly,
given as in the statement. �

Finally, given a monad (T, µ, η), we seek necessary and sufficient condi-
tions for the multiplication to lift. This is the one point that is not so easy:
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the lifting of the functor part of the monad, as in Proposition 4.3, yields a dis-
tributive law τ : T (D×D′) ⇒ (D×D′)T . And one needs to use that induced
distributive law in the diagrams required to commute in order to make the
multiplication lift. The conditions are easy to write if one is willing to use that
distributive law, but it does make for potentially tricky calculation in verify-
ing that examples satisfy the condition, as that distributive law is induced by
more primitive data. Fortunately, in particular cases, commutativity of the
diagrams is fairly routine to verify.

Proposition 4.5 Given comonads D and D′ on a category C such that the
product D×D′ exists, and given a monad (T, µ, η) on C together with a lifting
of the pointed endofunctor (T, η) to (D × D′)-Coalg (or equivalently with the
data of Propositions 4.3 and 4.4 subject to the axioms of the propositions), the
multiplication µ of T lifts if and only if the following two diagrams commute:

TT (D × D′)
Tτ� T (D × D′)T

λT � DTT

T (D × D′)

µ(D × D′)

�

λ
� DT

Dµ

�

TT (D × D′)
Tτ� T (D × D′)T

λ′T� D′TT

T (D × D′)

µ(D × D′)

�

λ′
� D′T

D′µ

�

Proof. The proof is similar to that for Proposition 4.4, using the universal
property of the pullback (D, D′)-Coalg and giving a necessary and sufficient
condition for the components of a natural transformation to lift from C to
each of D-Coalg and D′-Coalg. The above diagrams emerge fairly routinely,
but one does need to think directly in terms of liftings, as the use of τ in both
diagrams implies. �

The presence of τ in Proposition 4.5 but not in Proposition 4.4 means that
the lifting of multiplication, as opposed to the lifting of the unit of a monad,
depends upon both λ and λ′ for each lifting, i.e., for lifting to each of D-Coalg
and D′-Coalg.
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Evidently, Propositions 4.3, 4.4 and 4.5 can be combined to yield one
theorem involving eight diagrams. But it is obvious how to do that, so we
leave that to any interested reader.

There are special cases of Proposition 4.5. It is common to start with a
distributive law of the form

TD ⇒ DT

for the action behaviour while only having a natural transformation of the
form

T (D × D′) ⇒ D′T

for the time behaviour. That reduces the complexity of some of the diagrams
a little, with the distributive law above often coming via the well-trodden
paths of [17,11,14], but one still needs the second of our two diagrams in
Proposition 4.5 involving τ .

In a slightly different direction, one can consider cases in which one or both
of D and D′ is the cofree comonad on an endofunctor, say D cofree on B. Then
D-Coalg is determined by the simpler universal property that characterises
B-coalg, and so one can avoid the coherence axioms required for the lifting
of a functor. Life is also simpler because one can use our characterisation of
the product of comonads. So, to lift a functor T to B-coalg, one merely needs
any natural transformation, subject to no axioms at all, of the form

α : TD′(BD′)∞ ⇒ BT

and such can be readily constructed, for instance, from any natural transfor-
mation of the form

β : T (Id × B)D′ ⇒ BD′T

For applying D′ to the counit (BD′)∞ ⇒ Id yields a natural transformation
D′(BD′)∞ ⇒ D′. And one has the canonical composite

D′(BD′)∞ ⇒ (BD′)∞ ⇒ BD′

and thus a natural transformation of the form D′(BD′)∞ ⇒ (Id × B)D′,
as products of endofunctors are given pointwise (assuming of course that C
has products), and so applying T to this, and composing with β and with
another embedded counit yields a natural transformation of the form α as
above: TD′(BD′)∞ ⇒ T (Id × B)D′ ⇒ BD′T ⇒ BT .
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