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Self-Adaptive Source Separation, Part I:
Convergence Analysis of a Direct Linear Network

Controled by the H́erault-Jutten Algorithm
Odile Macchi,Fellow, IEEE, and Eric Moreau,Member, IEEE

Abstract—It is known that self-adaptive separation of a linear
mixture of non-Gaussian independent sources can be achieved
with a feedback linear neural network that is adapted by the
Hérault-Jutten algorithm. Yet, realizability of the feedback re-
quires implementation constraints. In this paper, an equivalent
direct (without feedback) network is considered that is free of
these constraints while the self-adaptive rule is kept unchanged.
The separating states are shown to be equilibrium points. Their
stability status is studied in the case of two sources. Then, we
show that the algorithm is convergent in the “quasi”-quadratic
mean sense toward a separating state for a small enough step-size.

I. INTRODUCTION

I N THE SOURCE separation problem, several linear mix-
tures of unknown, random, zero-mean, and statistically

independent signals called sources are observed [1]–[13]. The
sources must be recovered without knowing the mixture pa-
rameters. This is a “self-learning” or an “unsupervised” inverse
problem. The inverse system has to be learned with the sole
knowledge of the observed mixtures. This problem is often
qualified blind1. It has many applications in diverse fields of
engineering and applied sciences, like communications, array
processing, airport surveillance (localizing and recognizing the
planes), etc.

The key property that makes separation possible is mutual
independence of the sources. In the independent component
analysis technique [1], by a linear transform, a new vector is
looked for with independent components that will hopefully
correspond to the sources.

The two different ways to deal with this problem are the
block approach and the adaptive one. In the block approach,
certain statistics of order 3 or more are calculated for the
observed mixture vector. Then, identification of the mixture
parameters follows. For instance, the contribution [2] is based
on the eigenvalue decomposition of a fourth-order cumulant
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of this approach.

matrix of the observations. In [1], a contrast criterion based
on th-order cumulants is maximized, corresponding
to zero cross-cumulants.

In this paper, like in [10]–[14], we adopt the adaptive
approach that solves the problem in real time. The first
successful method was a linear adaptive feedback structure
that has been investigated independently in two fields of
application. For instance, in the case of two sources and two
observations , it computes

(1)

On the one hand, this structure has been successfully used
under the denomination of “bootstrapped algorithm” in satel-
lite and radio communication [12], [13] using second-order
moments in the adaptation laws: minimum output power
and/or zero correlation together with output nonlinearities
called signal discriminators. On the other hand, this feedback
structure has been formulated in a neural network context
[5], [6], e.g., for speech enhancement in noise [7]. In the
latter approach, the structure is controlled by an unsupervised
local Hebbian learning rule. A nonlinear odd function is
applied to the outputs to produce independence and not only
decorrelation.

This paper uses the original updating rule of [5] and [6],
even though the structure is changed. Indeed, the joint system
(1) raises a problem of realizability. Moreover, it can yield
instability. To cope with this problem, it is assumed in [5]
and [12] that the sources are random processes in continuous
time. Then, oversampling makes the feedback realizable at
the price of an increased sampling rate, which is much beyond
Shannon’s requirement. Therefore, implementation complexity
is increased.

Thus, it is better to consider a direct structure as in [10] and
[11]. For two sources, it reads

(2)

The present Part I is devoted to this direct structure. Now,
one can design a mixed realizable direct-feedback structure as
in [10], which will benefit from the advantages of both the
direct and the feedback structures. It is the purpose of Part
II of this contribution to compare the direct, feedback, and
mixed structures.
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After stating the problem in Section II, we investigate
the separating states in Section III. Then, we consider the
particular updating rule imagined by Hérault and Jutten for
the feedback structure and apply it to the direct structure. Its
equilibrium states with their associated stability are studied for
the general case of sources with a particular emphasis on
the case of two sources (Section IV). Section V is devoted
to the study of the (average) deterministic algorithm, whereas
Section VI shows that the stochastic algorithm is convergent
in the “quasi”-quadratic mean sense toward the desired system
which separates the sources.

II. STATEMENT OF THE PROBLEM

We observe the outputs of an unknown
multidimensional linear system called “mixture,” which is
driven by unobserved realizations of random, zero-mean,
and statistically independent input sources
In matrix and vector notations, this model reads

(3)

where

vector of observations,
vector of sources
mixture matrix.

It is a noise-free, time-free model.
To recover a vector close to the source vectorknowing

the vector only, one should estimate some inverse of,
which is denoted in the sequel. The corresponding estimate
of is

(4)

where is an matrix. Clearly, this problem has no
solution when When , a subvector can be
extracted from with specific coordinates of which the
other will be linear combinations. Then separation is done
with the help of the subvector It will thus be assumed in
the sequel that

Finally, let designate the respective powers
of The normalized (unit power) sources

and the modified matrix with entries
yield the same observed vector

Therefore, it can be assumed in the sequel that all the sources
have unit power.

For this problem, the key assumption is joint independence
of the sources, which is a property that is much stronger
than decorrelation for non-Gaussian sources. However, the
requirement of independent components foris not suffi-
cient, on its own, to ensure that Let be any
arbitrary permutation matrix (with one and only one nonzero
element—which is a 1—in each row and each column), and
let Diag be any diagonal matrix. The vector

(5)

has components

(6)

Fig. 1. Direct architecture for the case of two sources.

where is the label of the column where the 1 of the
th row stands. Therefore, has independent components

proportional to the sources , provided none of the is
zero, i.e., the matrix is invertible. Conversely, it has been
shown in [1] for non-Gaussian sources that the linear mixture

cannot have independent components unless
Therefore, the matrix in (4) generates such a vectorif
and only if (iff)

(7)

Such a matrix will be called “separating.” Applied to the
mixture , the matrix restores the individual sources

up to certain specific nonzero gains (the coefficients
and up to a certain reordering (the permutation

With the help of the entries of the
inverse mixture matrix , it is easily seen that the
gains are

(8)

Since and are invertible, (7) shows that the separation
problem has no solution when is not invertible. Thus,
throughout this paper (Parts I and II), is assumed regular.

Since and are arbitrary, this independence problem is
an ill-posed problem with a number of unspecified (arbitrary)
parameters. The three structures investigated in Parts I and II
of this paper put constraints onto thenonzero gains For
the direct structure, this is obtained by fixing at the value 1 the
diagonal entries [cf. (2)]. As for the ordering of restored
sources, there is only a finite number of possibilities.

Finally, it is assumed that the sources have zero mean
and finite fourth-order moments:

E (9)

E (10)

E (11)

The sources can be characterized equivalently by their so-
called “kurtosis”:

(12)

which is very often used in the literature because they are null
for Gaussian variables.

III. T HE SEPARATING STATES

The direct architecture was presented in [12] and [10]. It is
depicted in Fig. 1 for two sources
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It obeys the input/output equation

(13)

where is the identity matrix. There are linear cells
with inputs and one output each and one input coefficient
constrained to 1. It is a single-layer feedforward network. It in-
volves multiplications, which is a low computational
complexity.

The separating states are those matricesfor which (5)
holds.

Case of Two Sources:For , it is clear that the
changed quantities

satisfy the relationship

(14)

Hence, by relabeling the sources if required, it can be assumed
that the entries of satisfy

(15)

For instance, this inequality holds when is dominant in
and in , i.e., when and Thanks
to the invertibility of , one can write

(16)

Hence, according to (13)

(17)

Comparison of the systems (1) and (17) shows that the
direct and feedback structures having the same vectors

yield the same outputs (resp. and )
up to the scale factor

(18)

In this sense, the structures are equivalent. This will reduce
the efforts by one half.

Now, there are two possible configurations.
First Configuration: When

(19)

there are two separating matrices corresponding to the permu-
tation matrices and

The vector of the first separating state (associated with
) is

(20)

with the outputs

(21)

where

(22)

is the determinant of We call the “natural” separating
state because it restoresand in the natural order. Channel
1, where is dominant, generates and similarly for

The second solution (associated with ) is the
“reversing” separating state:

(23)

with the outputs

(24)

Second Configuration:When

(25)

we must specify which one(s) among the coefficients is
(are) zero. According to (15), or mean that
the matrix has a row or a column that is null. Thus,is not
invertible; this is a case that must be excluded. Consequently,
(25) cannot hold unless

(26)

When is a lower triangular matrix. There is one
and only one separating state that is It corresponds to the
output

(27)

When is an upper triangular matrix, and the
(unique) solution is similar.

IV. A DAPTATION LAW

We return to the general case of sources and use the
vector

(28)

to characterize the matrix in (13). Adaptation is usually
performed in a discrete recursive way, i.e.,is incremented
along

(29)

where is a positive step-size. We use the following adapta-
tion law [10] for the element of :

(30)

This is the mere transposition to the direct structure of the
updating rule used in [5] and [6] for the feedback structure for
which it has turned out successfully. It is built up solely with
the system outputs. Therefore, it makes sense to use the same
increment with the two different structures. The rest of this
Part I will bring full justification for this adaptation choice. In
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(30), is evaluated taking the previous value
to calculate and This yields a stochastic algorithm.

We will denote the expectation of the increment. It is
conditioned on the state of :

(31)

and the result depends on The deterministic algorithm
associated with (29) and (30) [“deterministic H´erault Jutten”
(DHJ)] is

(32)

Consider a separating state corresponding to certain matri-
ces and Clearly, thanks to independence of the

(33)

Since the are zero-mean

(34)

It means thatseparating states are equilibria of the determin-
istic algorithm (32). However, the converse is not true: Some
equilibrium points of (32) might not be separating states, as
will be discussed later.

The next issue is stability of these equilibria. A first ap-
proach is the so-called “ordinary differential equation” (ODE)
technique [16], [17], which replaces the recurrence (32) by a
differential equation according to

(35)

This system is locally stable near an equilibrium pointiff
the corresponding tangent linear system

(36)

is stable, where is the matrix of partial derivatives with
entries

(37)

and is the rank of an entry in the definition (28) of
According to (31)

(38)

Moreover, it follows from (13) that

(39)

where is the Kronecker symbol. Accordingly

if
E if

E if
(40)

With the help of (13) and (40), the matrix can thus be
evaluated. For instance, with

(41)

Then, it is possible to test the local stability of the ODE system
(35) at the equilibrium states The procedure is to
calculate the roots of the characteristic polynomial associated
with the matrix and to check whether or not all of them
have a positive real part. This procedure is indeed feasible but
tedious.

A simpler (but partial) answer is to test the real part of the
sum of eigenvalues. It is well known that this sum is the trace
of Hence, we have a necessary condition for stability of
the equilibrium state :

Trace (42)

It follows from (40) that

E (43)

Moreover, if this equilibrium state is indeed a separat-
ing state associated with a specific permutation

, it follows that

(44)

(45)

where the last equality follows from independence of the
and from (8)–(10). Based on (45), it is possible to test the
necessary (but insufficient) stability condition (42) at each
separating equilibrium

The rest of this paper is devoted to the case of

V. THE DETERMINISTIC ALGORITHM

Stability and convergence of the deterministic algorithm
(31) and (32) toward a separating state is a prerequisiste for
the stochastic algorithm (29) and (30) itself to be stable and
convergent. Therefore, we first investigate the deterministic
algorithm.

A. Equilibrium States

Under the fourth-order moment condition

(46)

the equilibrium states of the DHJ algorithm associated to
the feedback structure are investigated in [18] and [19] and
recalled in Part II of this paper. The equivalence (18) between
the direct and feedback structures having the same vector
can be used to avoid solving the system (34). Therefore, the
results below hold:

First Configuration: [i.e., according to
(19)]. There are two separating equilibria, namely,

[see (20) and (23)] plus, in general,2 two
nonseparating equilibria and (for which the outputs

and remain mixtures of the sources and
2when a certain equality relates the fourth-order momentsA2

1
andA2

2
to one

of the two lines of the matrixGGG, there is only one nonseparating equilibrium.
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Second Configuration:[i.e., ac-
cording to (25) and (26)]. There is one separating equilibrium

plus, in general, the two nonseparating equilibria
and

B. Local Stability in and

Consider the stability in the natural separating statefirst.
For any vector , we define the deviation from optimality

(47)

By the definition (13) of the direct structure, the output
corresponding to a fixed (nonoptimal) vector is

(48)

where and are given in (21). As a result, we get the
following expansion for the algorithm increment versus
increasing powers of the deviation:

(49)

where

and

are of order at least two versus, and where

(50)

while

(51)

(52)

(53)

Because is a separating state, we have

E (54)

Moreover, according to (21) and (41), it is easily seen that

E (55)

Consider the nonlinear mapping associated with the
deterministic algorithm (32), and let us write it with the help
of the corresponding deviation vectorsand , i.e.

(56)

It reads

E E E

(57)

For , the matrix is invertible. Hence, for
suitably upperbounded, is a diffeomorphism. We call the

corresponding (open) neighborhood of Then, by virtue of
the Hartman-Grossman theorem [22], the equilibrium point
of the recursion (32) is asymptotically stable iff the associated
tangent linear recurrence

(58)

is stable. In a similar way, when the reversing separating state
exists (that is, when , the linear system tangent

in is written

(59)

where Hence, local stability in holds

iff the eigenvalues of have modulus less
than 1. This is known to be equivalent to the set of inequalities

Det (60)

Det Trace Det (61)

The entries of are given by (41). It is not difficult to
show that

Det (62)

Trace (63)

where

(64)

(65)

(66)

The RHS of condition (61) cannot be true, neither in nor
in , unless is positive:

(67)

This is the condition for the existence of at least one stable
separating state. It has only to do with the statistics of the
sources and For instance, it is valid when both sources
are sub-Gaussian, i.e., with negative kurtosis[cf. (12)].
However, (67) is more general. It can be valid with one sub-
Gaussian and one super-Gaussian source. Note that one source
can be Gaussian but not both of them. When (67) holds, we
shall say that the two sources are “globally sub-Gaussian.”
Since the step-size is positive, inequality (60) is equivalent
to

(68)

Since is positive, this inequality cannot hold unless is
positive. Now, it follows from (15) that

(69)

(70)

As a result, for globally sub-Gaussian sources, the natural
separating state is always locally stable. The reversing
state is also locally stable iff

(71)
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Finally, (68) provides two upperbounds overfor the respec-
tive stability of and These inequalities are refined by
the LHS of (61) according to

(72)

for (73)

In summary, under conditions (67) and (72), for inside
a certain neighborhood of , the deterministic algorithm
(32) converges to It is similar for under the additional
assumption (71).

Three Remarks:

1) The stepsize upperbounds in (72) and (73) are ap-
proximated values because the problem has first been
linearized.

2) These upperbounds increase sharply whendecreases,
i.e., when the mixture matrix is approaching irregu-
larity. This result might appear paradoxical but will be
better understood in Part II.

3) They are unaffected when the statistics of sources ap-
proach the limiting (forbidden) situation, where

C. Instability of the Nonseparating Equilibria and

This analysis is performed using the ODE. A straightforward
(but rather tedious) calculation shows that whenis positive
according to condition (67) (i.e., when there exists a stable
separating equilibrium), then and are exponentially
unstable. This result ensures that the recursive algorithm will
not converge toward ill solutions of the separation problem. Fi-
naly, note that the ODE (35) has exactly the same equilibrium
states as the DHJ algorithm with the same
status, except that there is, of course, no step-size condition
such as (72) and (73).

We are now ready to investigate convergence of the random
sequence of vectors generated by the discrete algorithm
[see (29) and (30)].

VI. “Q UASI”-CONVERGENCE OF THESTOCHASTICALGORITHM

The convergence properties of a stochastic adaptive algo-
rithm are easy to handle only when the associated deterministic
algorithm (or associated ODE) has only one stable equilibrium
(say ). If, in addition, the ODE is globally stable, then the
following general convergence result for stochastic algorithms
has been proved in [16] and [17] under certain regularity and
polynomial increase conditions for the increment, which are
obviously fulfilled in the present case

Result 1 (General Algorithm):If the ODE is globally stable
and has a unique stable equilibrium , then

(74)

where

(75)

This result means that in steady-state, the probability that
departs (significantly) from is negligibly small if

the step-size is small enough.

Unfortunately, even in the case where is unstable,
we cannot apply Result 1 to the (stochastic) Hérault-Jutten
algorithm because global stability of the ODE cannot be
proved.3

When the ODE is not globally stable, the only convenient
result is concerned with the decreasing step-size algorithm, i.e.,

is a function of the iteration step in the following way:

(76)

Then, the corresponding algorithm

(77)

has the ability to reach the optimal state (but not to track
potential time variations ) according to the following
result (which is valid under the same regularity and polynomial
increase conditions for as those in Result 1).

Result 2 (General Result):If visits infinitely often
some compact set inside the ODE attraction basin of a stable
equilibrium , then tends to almost surely, as
tends to infinity.

In the stochastic approximation literature, this result is
known as the “Kushner and Clark type of convergence” [17].
Result 2 is indeed applicable to the (stochastic) H´erault-
Jutten algorithm under consideration here. However, it is but a
weak result because of the infinitely often visiting hypothesis,
which is essentially equivalent to the assumption that is
bounded. In most stochastic approximation problems, and par-
ticularly for this specific algorithm, the proof of boundedness
seems a very difficult matter. For this reason, the approximate
analysis that follows appears very valuable.

Result 3 (HJ Algorithm):For some fixed quantity the
stochastic H́erault-Jutten algorithm satisfies

E (78)

asymptotically for small and close to
A similar result holds with close to when is a

stable equilibrium of the (DHJ) algorithm. In the specific case
where and have identical statistics, the proportionality
coefficient is

(79)

where This result is proved in Appendix A. It is of
great practical value. Indeed, any preassigned level of accuracy
can be reached for the steady-state power E of the
deviation from optimality, provided is chosen small enough.
This type of convergence can be called “quasi”-convergence
in the mean square sense although it does not preclude the
fact that with an extremely low probability, can escape
the vicinity of Such a result is familiar in the field of
adaptivity because convergence of supervised adaptive LMS
or RLS filters obeys a relationship similar to (78), as shown,
for instance, in [20] and [21].

3The ODE does not appear to be globally stable. In fact, (35) is a2 � 2

nonlinear differential system whose right-hand sides are rational fractions of
fourth-order polynomials in the variablesd12 and d21 and for which no
Lyapounov function has been obtained.
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Result 3 has been derived under the assumption that the
sequence of pairs is i.d.d. This
assumption is sufficient but far from necessary. We have used
it because it makes the proof shorter.

In practice, our computer simulations have shown that (78)
is valid when is smaller than This condition on is
four times more restrictive than in the deterministic stability
analysis.

VII. CONCLUSION

This paper is the first rigorous convergence analysis of
the “Hérault-Jutten” stochastic algorithm for separating inde-
pendent sources in a self-learning way. This algorithm was
originally introduced for a feedback structure, but we have
shown here that it can be applied to a direct structure. The
separating states of this direct structure have been shown
to be equilibria of the H́erault-Jutten algorithm. In the case
of two sources, at least one of these equilibria is locally
stable for the associated deterministic algorithm, provided
the sources are globally sub-Gaussian, and the step-size is
small enough. Finally, it has been proved that the stochastic
algorithm itself is “quasi”-convergent in the mean square sense
toward a separating state, subject to a suitable initialization in
the attraction basin. This result requires a very small step-size

All these theoretical results still have to be verified through
computer simulations, and the achievements of this direct
structure also have to be compared with those of the feedback
one. This is the purpose of Part II of the present paper.

APPENDIX

“QUASI”-M EAN SQUARE CONVERGENCE OF

When is suitably close to , the adaptation increment
can be approximated by the first-order approximation of

(49). Therefore, the deviation from optimality obeys the
approximate recursion

(80)

Let us split into two parts according to

(81)

where

(82)

is called the transient deviation, while

(83)

is called the fluctuation deviation. Now, let

(84)

denote the transition matrix associated with the hereabove
recursion. It is clear that the following relationships hold:

(85)

(86)

Although this assumption is not necessary, in order to reach a
concise proof, we suppose thatthe sequence is i.i.d. It
follows that all the factors in are independent. More-
over, and are independent. Finally, the pair

is independent of Hence

E E (87)

E (88)

This quantity is exponentially vanishing under the three as-
sumptions (15), (67), and (72), as proved in Section V-B.
Moreover

E E (89)

Now, is zero-mean, and therefore

E (90)

It follows that in steady-state (i.e., for large enough), we
can assume that

E (91)

Now, consider second-order properties of It follows
from (80) that

(92)

Denote

E (93)

E (94)

and note that according to (50)

E

(95)

Thanks to the independence assumption and to (54), the
expectation of (92) yields

(96)
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where we have used the inequality

E

(97)

which is valid for small values of , and where we have
taken advantage of the result (91) to cancel the terms like
E The recurrence (96) can be
easily investigated. We note that is symmetrical by its
very definition. It is equivalently represented by the 3-D vector

(98)

whose recurrence equation reads

(99)

where

(100)

and

(101)

It is easily seen that the three eigenvalues ofare

(102)

Because , they are distinct. Moreover, they are
positive thanks to condition (67). Thus, can be diagonalized
according to

diag (103)

where is a regular matrix whose columns are eigenvectors,
respectively, associated with the eigenvalues ofAs a result,
the sequence in (99) is convergent iff is suitably
upperbounded along

(104)

i.e.

(105)

Under condition (105), the recurrence (99) is exponentially
convergent toward

(106)

This result provides, in particular, the steady-state value of
the mean-square deviation E It follows from (100),
(101), and (106) that

E (107)

as stated by (78) in the text. Here, and are, respectively,
the first and second components of the 3–D vectorin (106).
Their calculation yields

(108)

where depends on and in a straight-
forward manner. In the specific case whereand have
identical statistics , the

numerical result is

(109)

which yields the result (79) in the text.
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et Hérault,” Traitement du Signal, vol. 8, pp. 35–42, 1991 (in French).

[20] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-
Hall, 2nd ed., 1991.

[21] O. Macchi, Adaptive Processing: The Least Mean Squares Approach
with Applications in Transmission. New York: Wiley, 1994.

[22] J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical
Systems and Bifurcations of Vector Fields. New York: Springer-Verlag,
1983, ch. 1.



926 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 4, APRIL 1997

Odile Macchi (M’75–SM’84–F’89) was born in
1943 in Aurillac, France. She graduated from the
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