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Self-Adaptive Source Separation, Part |
Convergence Analysis of a Direct Linear Network
Controled by the Erault-Jutten Algorithm

Odile Macchi, Fellow, IEEE and Eric MoreauMember, IEEE

Abstract—t is known that self-adaptive separation of a linear matrix of the observations. In [1], a contrast criterion based

mixture of non-Gaussian independent sources can be achievedon rth-order cumulantgr > 3) is maximized, corresponding
with a feedback linear neural network that is adapted by the to zero cross-cumulants_

Heérault-Jutten algorithm. Yet, realizability of the feedback re- . . . .
quires implementation constraints. In this paper, an equivalent In this paper, like in [10]-{14], we adopt the adaptive

direct (without feedback) network is considered that is free of approach that solves the problem in real time. The first
these constraints while the self-adaptive rule is kept unchanged. successful method was a linear adaptive feedback structure

The separating states are shown to be equilibrium points. Their that has been investigated independently in two fields of

stability status is studied in the case of two sources. Then, we gnyjication. For instance, in the case of two sources and two
show that the algorithm is convergent in the “quasi’-quadratic - .
observationse, , z», it computes

mean sense toward a separating state for a small enough step-size:

y1 =1 + froy2
|. INTRODUCTION Yo =2 + fo191. 1)

N THE SOURCE separation problem, several linear mby, the one hand, this structure has been successfully used

1 tres of unknown, random, zero-mean, and statistically,yer the denomination of “bootstrapped algorithm” in satel-
independent signals called sources are observed [1]-{13]. 10€ 4nd radio communication [12], [13] using second-order

sources must be recovered without knowing the mixture Py ments in the adaptation laws: minimum output power

rameters. This is a “self-learning” or an “unsupervised” INVersg, yor zero correlation together with output nonlinearities
problem. The inverse system has to be learned with the sglgiey signal discriminators. On the other hand, this feedback
knowledge of the observed mixtures. This problem is oftefy,ctyre has been formulated in a neural network context
qualified blind. It has many applications in diverse fields 0{5] [6], e.g., for speech enhancement in noise [7]. In the

engineering Qnd applled_smences, I'k_e_ communlcat|o_n§, alidfer approach, the structure is controlled by an unsupervised
processing, airport surveillance (localizing and recognizing ttﬂ?cal Hebbian learning rule. A nonlinear odd function is

planes), etc.... _ o applied to the outputs to produce independence and not only
The key property that makes separation possible is mu%@correlation.

independence of the sources. In the independent COmponeR,;iq paper uses the original updating rule of [5] and [6],

analysis technique [1], by a linear transform, a new vector iy, though the structure is changed. Indeed, the joint system
looked for with independent components that will hopefullYl) raises a problem of realizability. Moreover, it can yield

correspond to the sources. instability. To cope with this problem, it is assumed in [5]

The two different ways to deal with this problem are thg,q 1157 that the sources are random processes in continuous
block approach and the adaptive one. In the block approagh,e Then, oversampling makes the feedback realizable at

certain statistics of order 3 or more are calculated for thga price of an increased sampling rate, which is much beyond

observed mixture vector. Then, identification of the mixturgpannon's requirement. Therefore, implementation complexity
parameters follows. For instance, the contribution [2] is bas%dincreased

on the eigenvalue decomposition of a fourth-order cumulantyy,q it is better to consider a direct structure as in [10] and
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After stating the problem in Section Il, we investigate ) m Y1
the separating states in Section Ill. Then, we consider the —|—

particular updating rule imagined byérhult and Jutten for
the feedback structure and apply it to the direct structure. Its
equilibrium states with their associated stability are studied for d

the general case of, sources with a particular emphasis on 21
the case of two sources (Section IV). Section V is devoted T2 +
to the study of the (average) deterministic algorithm, whereas U
Section VI shows that the stochastic algorithm is convergent
in the “quasi’-quadratic mean sense toward the desired system
which separates the sources.

Y2

Fig. 1. Direct architecture for the case of two sources.

where p(¢) is the label of the column where the 1 of the
ith row stands. Thereforgy hasm independent components
proportional to the sources;, provided none of the\; is

We observe then outputsz;,i = 1,---,n of an unknown zero, i.e., the matrix is invertible. Conversely, it has been
multidimensional linear system called “mixture,” which isshown in [1] for non-Gaussian sources that the linear mixture
driven by unobserved realizations of random, zero-mean, y = Sq cannot have independent components unfess AP.

Il. STATEMENT OF THE PROBLEM

and statistically independent input souregsj = 1,---,m. Therefore, the matrid{ in (4) generates such a vectgrif
In matrix and vector notations, this model reads and only if (iff)
z=Ga (3) HG = AP. (7)
where Such a matrixH will be called “separating.” Applied to the
z (n,1) vector of observations, mixture x, the matrix H restores themn individual sources
a (m,1) vector of sources a; up to certain specific nonzero gains (the coefficients
G (n,m) mixture matrix. A;) and up to a certain reordering (the permutatiBn=

(p(1),---,p(m))). With the help of the entries;;; of the

It is a noise-free, time-free model. \ - - v :
inverse mixture matrixk = G-, it is easily seen that the

To recover a vectog close to the source vectarknowing .
the vectorz only, one should estimate some inverse@f 9aiNsA: are
\(/)\:cmcr:sls denotedd in the sequel. The corresponding estimate Xi = kpayis Vi (8)
a
SinceA and P are invertible, (7) shows that the separation
y = Hx (4) problem has no solution whefi¥ is not invertible. Thus,
throughout this paper (Parts | and If}, is assumed regular
SinceA and P are arbitrary, this independence problem is

extracted fromz with m specific coordinates of which theam lll-posed problem with a numbgr of qnspem_ﬁed (arbitrary)
. ; . S arameters. The three structures investigated in Parts | and |l
other will be linear combinations. Then separation is dorP

with the help of the subvecta,. It will thus be assumed in O(? th'.s paper put consf[ra_lnts on_to theno_n_zero gains\;. For
the direct structure, this is obtained by fixing at the value 1 the
the sequel thah = m.

Finally, let Oy, -+ (), designate the respective powerglagonal entriegy;; [cf. (2)]. As for the ordering of restored

. . sources, there is only a finite number of possibilities.
of ay, -, an. The normalized (unit power) sourceg = y P

a:/V/@ and the modified matrG’ with entries g, — _ ey 1S assumed hat he sourcess; have zero mean

9ij1/Q; yield the same observed vecter = G'a’ = Ga. '

Therefore, it can be assumed in the sequel that all the sources Ea; =0 9

have unit power. EaZ =1 (10)
For this problem, the key assumption is joint independence LA o

of the sources, which is a property that is much stronger Eaj = Aj <oo, A4;>0. (11)

than decorrelation for non-Gaussian sources. HOWeVer, e goirces can be characterized equivalently by their so-

requirement of independent components fpiis not suffi- .4 “kurtosis™

cient, on its own, to ensure that = a. Let P be any

arbitrary permutation matrix (with one and only one nonzero Kq 2 A2 -3 (12)

element—which is a 1—in each row and each column), and

let A = Diag(\1,- - -, \m) be any diagonal matrix. The vectorWhich is very often used in the literature because they are null
oo for Gaussian variables.

where H is an (m,n) matrix. Clearly, this problem has no
solution whenm >n. Whenm < n, a subvectorz, can be

y=APa ©)

lll. THE SEPARATING STATES
has components ] ] ] ]
The direct architecture was presented in [12] and [10]. It is

Yi = Nilp(s), i=1,---.m (6) depicted in Fig. 1 for two source3n = 2).
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It obeys the input/output equation where
y= I+ D)z, dii =0 Vi (13) D, 2 911922 — 912921 (# 0) (22)

where I is the identity matrix. There aren linear cells s the determinant of. We call D! the “natural” separating
with m inputs and one output each and one input coefficiestate because it restoresanda, in the natural order. Channel
constrained to 1. Itis a single-layer feedforward network. It int, whereq, is dominant, generates and similarly foras.
volvesm(m~—1) multiplications, which is a low computational  The second solution (associated wif? = I’) is the

complexity. “reversing” separating state:
The separating states are those matribe$or which (5) T

holds. Do _ <9g 922 ) (23)
Case of Two SourcesFor m = 2, it is clear that the g2 q12

changed quantities

ad 2 (az,a1) and G A <912 gll)
g2 g21

with the outputs

w) = ——2ag; wh=-"La;. (24)

tisfy th lationshi ) .
salisly the relationship Second ConfigurationWhen

Ga=G'd. (14)
911922912921 = 0 (25)
Hence, by relabeling the sources if required, it can be assumed ) _ o )
that the entries o7 satisfy we must specify which one(s) among the coefficiegis is
(are) zero. According to (15);; = 0 or goo = 0 mean that
|912921] < |g11922]. (15)  the matrix@ has a row or a column that is null. Thu,is not

invertible; this is a case that must be excluded. Consequently,

For instance, this inequality holds when is dominant in
e " i (25) cannot hold unless

andas in zs, i.e., whengi2| < |g11] and|ga1| < |ga2|- Thanks
to the invertibility of (I + D), one can write gi1g22 7 0. (26)

_ -1 _
I+D)=~(I-D)7,  y=1-dndy. (18)  When g12 = 0, G is a lower triangular matrix. There is one

Hence, according to (13) and only one separating state thaf$. It corresponds to the
output
Y1 =721 + di2y2
921
1Yo =vx2 + da1y1. a7 y =2, Y2= _gle + x2. (27)

Comparison of the systems (1) and (17) shows that tghen g,;, = 0, G is an upper triangular matrix, and the
direct and feedback structures having the same vect@ggique) solution is similar.

D2 (d12,d21)T yield the same outputs (resp,, and y)

up to the scale factot IV. ADAPTATION LAW
Yp = VYp- (18) We return to the general case of sources and use the
- . N vector
In this sense, the structures are equivalent. This will reduce
the efforts by one half. D2 (dig,-- -, dimydory doy -y oy ity -+ 5 1)) "
Now, there are two possible configurations. (28)

First Configuration: When
to characterize the matri in (13). Adaptation is usually
performed in a discrete recursive way, i.8,is incremented
there are two separating matrices corresponding to the perral@ng
tation matricesl and

911922912921 # 0 (19)

D(n) =D(n—1) — pZ(n), >0 (29)
;A (01
= <1 0)' where is a positive step-size. We use the following adapta-
! . . _Hon law [10] for the element;; of Z:
The vector D of the first separating state (associated wit
P=1is Zij =Yg Ujs i@ # J. (30)
T

Dl — _<9£ @) (20) This is the mere transposition to the direct structure of the
g22” g11 updating rule used in [5] and [6] for the feedback structure for

which it has turned out successfully. It is built up solely with
the system outputs. Therefore, it makes sense to use the same
_Ds . _Dy (21) increment with the two different structures. The rest of this
g22 g11 Part | will bring full justification for this adaptation choice. In

with the outputs
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(30), Z is evaluated taking the previous valik= D(n — 1) Then, it is possible to test the local stability of the ODE system
to calculatey; andy;. This yields a stochastic algorithm. ~ (35) at the equilibrium state& = D. The procedure is to
We will denote Z the expectation of the increment. It iscalculate the roots of the characteristic polynomial associated

conditioned on the state db: with the matrixJ(£) and to check whether or not all of them
— A L, have a positive real part. This procedure is indeed feasible but
zi;(D) 2 E,pyiy;, i F ] (31) tedious.p P P

and the result depends aoR. The deterministic algorithm A simpler (but partial) answer is to test the real part of the
associated with (29) and (30) [“deterministicidult Jutten” sum of eigenvalues. It is well known that this sum is the trace
(DHJ)] is of J. Hence, we have a necessary condition for stability of

D(n) = D(n — 1) — pZ(D(n — 1)) (32) the equilibrium state:

Al
Consider a separating stat corresponding to certain matri- T(E) = 5 TracdJ(E))> 0. (42)
cesA and P. Clearly, thanks to independence of the It follows from (40) that
Zi;(D) = MNEa3 ;\Bayy, 44 J. 33 i
| DN =ANE G By, 1 () T(E) = Y Eyiya;. (43)
Since thea, are zero-mean ig=1
Z(D) = 0. (34) 7

Moreover, if this equilibrium stateF is indeed a separat-
It means thateparating states are equilibria of the determining state D associated with a specific permutatioh =
istic algorithm (32) However, the converse is not true: Somep(1),.--,p(m)), it follows that
equilibrium points of (32) might not be separating states, as

will be discu_ssed I_ater. N o _ T(D) = Z A§)\an,2,(i)ap(j)$j, (44)
The next issue is stability of these equilibria. A first ap- =1
proach is the so-called “ordinary differential equation” (ODE) i#j
technique [16], [17], which replaces the recurrence (32) by a i 9ip(i)
differential equation according to W)= Z =R (45)
i,g=1 " p(i)i p(5)J
dD(t — i#j
PO _ (). 35) | |
dt where the last equality follows from independence of éhe
This system is locally stable near an equilibrium paiiff and from (8)—(10). Based on (45), it is possible to test the
the corresponding tangent linear system necessary (but insufficient) stability condition (42) at each
dD(t) separating equilibriunD.
= —J(E)(D(t) - E) (36)  The rest of this paper is devoted to the casenck 2.
iesn?rtiz;ZIe, whereJ(-) is the matrix of partial derivatives with V. THE DETERMINISTIC ALGORITHM
— Stability and convergence of the deterministic algorithm
_ 9Zx(D)

Jr (D) = , kK =1,--- m(m—-1) (37) (31) and (32) toward a separating state is a prerequisiste for
_ I _ o the stochastic algorithm (29) and (30) itself to be stable and
andk is the rank of an entryl;; in the definition (28) ofD. convergent. Therefore, we first investigate the deterministic

According to (31) algorithm.
Ay, Oy,
_ 2 z 3
Jiw = 3Ey;y; 0y + Ey; adi;,- (38) A, Equilibrium States
Moreover, it follows from (13) that Under the fourth-order moment condition
3] A1Ay—3#£0 46
I —bwny (@ £T) (39) 1A =37 (46)
5! the equilibrium states of the DHJ algorithm associated to
whereé;; is the Kronecker symbol. Accordingly the feedback structure are investigated in [18] and [19] and
0 if i 24,4 £ recalled in Part Il of this paper. The equivalence (18) between
Jw = 4 3By if i = ,L.’ ’ (40) the direct and feedback structures having the same védetor
Ey3;;1 T — j’ can be used to avoid solving the system (34). Therefore, the
_ E C results below hold:
With the help of (13) and (40), the matrid can thus be  First Configuration: [i.e., gi1g20012921 # 0 according to
evaluated. For instance, with = 2 (19)]. There are two separating equilibria, namefy: =
sty =L <3gflg§2 gy 42 ) D', E* = D? [see (20) and (23)] plus, in genefatwo
= , i ilibridr3 4 ;
7103 g5, A2 3¢2 9%, nonseparating equilibrigz® and E* (for which the outputs

y1 and y» remain mixtures of the sources andaz).

o _ D5 (3¢hh g A3
J(D7) = 3—§ < 412A221 3 12772 ) . (41) 2when a certain equality relates the fourth-order momejtand A3 to one
912921 \ 92141 9912971 of the two lines of the matrix?, there is only one nonseparating equilibrium.
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Second Configuration{i.e., giog21 = 0,g11900 # 0 ac- corresponding (open) neighborhood@t. Then, by virtue of
cording to (25) and (26)]. There is one separating equilibriuthe Hartman-Grossman theorem [22], the equilibrium p&iht
E' = D! plus, in general, the two nonseparating equilibriaf the recursion (32) is asymptotically stable iff the associated
E? and B4, tangent linear recurrence

B. Local Stability inD! and D? V(n) =1 - pJ(DY))V(n - 1) (58)

Consider the stability in the natural separating sfatefirst. s stable. In a similar way, when the reversing separating state
For any vectorD, we define the deviation from optimality D2 exists (that is, when;2g2; # 0), the linear system tangent
)T in D? is written

_ TAp_ pl_ 912 g2
V=(v,um) =D-D <d12 to it V(n) = - pJ(D*)V(n—1) (59)

22’ g1
(47)

Bv the definiti 13) of the direct struct " . whereV £ D— D2, Hence, local stability irD?, i = 1,2 holds
y e detnition ( : ) of the frec’ stuelre, the ou puitff the eigenvalues ofk; 2 I — pd (D) have modulus less
corresponding to a fixed (honoptimal) vectbris

than 1. This is known to be equivalent to the set of inequalities

=w; + T2v1; = wy + 11V 48
Y1 1 215 Y2 2 1v2 (48) Det(K;) < 1 (60)
Where_w]L and wy are given in (2.1). As a result, we get the _1 - Det(K;) < TracdK;) < 1 + Det(K). (61)
following expansion for the algorithm incremeft D) versus
increasing powers of the deviatidn: The entries ofJ(D*) are given by (41). It is not difficult to
Z(D)=2ZM £ AV + BV? 4+ FV3 + KV*  (49) Show that
where Det(K;) =1 — 6uf; + leQOéﬁz‘Q (62)
Tracd K;) =2 — 6uf; 63
V2 A (vf,vlvg,vg)T, €K;) U (63)
via (03, v2vg, v1v3,v5)T  and where
V42 (vBuy, v vd)T AL =D} /(911922) (64)
_ 3
are of order at least two versdi$, and where P2 = = Dy/(g12921) (65)
_0_ A242
) A <wi”w§> 42 <3w§§u2x2 w:fa:(zl ) (50) a=9— AT A3. (66)
Wiy wyry  Bwiwiry The RHS of condition (61) cannot be true, neither¥ nor
while in D?, unlessa is positive:
A 3wiwer3  3wiriro 0 Aj Ay < 3. 67
B= < 0 3wirire 3wiwexi ) (51) L (67)
A (werd Bwiziad 0 0 This is the condition for the existence of at least one stable
F= < 0 0 Swyadza ww?) (52) separating state. It has only to do with the statistics of the
A (gad 0 sourcesz; andas. For instance, it is valid when both sources
K= < 102 23 ) (53) are sub-Gaussian, i.e., with negative kurtosjs[cf. (12)].
142 However, (67) is more general. It can be valid with one sub-
BecauseD! is a separating state, we have Gaussian and one super-Gaussian source. Note that one source
L can be Gaussian but not both of them. When (67) holds, we
E[zY] =o0. (54)

shall say that the two sources are “globally sub-Gaussian.”
Moreover, according to (21) and (41), it is easily seen that Since the step-sizg is positive, inequality (60) is equivalent

to
E[A] = J(DY). (55)
. . . . . paf? <643 (68)
Consider the nonlinear mapping — D’ associated with the

deterministic algorithm (32), and let us write it with the helSince « is positive, this inequality cannot hold unlegs is

of the corresponding deviation vecto¥rsand V’, i.e. positive. Now, it follows from (15) that
Vi=g(V). (56) B >0 (69)
It reads —P2911922912921 > 0. (70)

V! =(I — pJ(D')V — W(E[BIV? + E[FIV® + E[K]V*).  As a result, for globally sub-Gaussian sources, the natural
(57) separating statd)! is always locally stable. The reversing

] o ) state D? is also locally stable iff
For 11 < pi,, the matrixI —pJ(D?) is invertible. Hence, fofV/|

suitably upperbounded; is a diffeomorphism. We callf the g11922912921 < 0. (72)
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Finally, (68) provides two upperbounds ovefor the respec-  Unfortunately, even in the case whei@? is unstable,
tive stability of D! and D?. These inequalities are refined bywe cannot apply Result 1 to the (stochasticdr&ult-Jutten

the LHS of (61) according to algorithm because global stability of the ODE cannot be
3
A 2911922 proved:
O<p<pr = D33 + A Ay) for D* (72) When the ODE is not globally stable, the only convenient
g_2 result is concerned with the decreasing step-size algorithm, i.e.,
0< <o 2 ﬁ for D2, (73) 1= py is afunction of the iteration step in the following way:
— 2
In summary, under conditions (67) and (72), #3(0) inside Z Hn = 00, Z“n <0 (76)

a certain neighborhootf of D!, the deterministic algorithm
(32) converges td*. It is similar for D? under the additional Then, the corresponding algorithm
assumption (74). D(n)=Dln—1) = mZ(n),  p>0  (17)

1) The stepsize upperbounds in (72) and (73) are apas the ability to reach the optimal stafe (but not to track
proximated values because the problem has first bepefential time variationsD!(n)) according to the following
linearized. result (which is valid under the same regularity and polynomial

2) These upperbounds increase sharply whgrlecreases, increase conditions foZ as those in Result 1).

i.e., when the mixture matri€¥ is approaching irregu- ~ Result 2 (General Result)tf D(n) visits infinitely often
larity. This result might appear paradoxical but will besome compact s€tinside the ODE attraction basin of a stable

better understood in Part II. equilibrium D!, then D(n) tends toD! almost surely, as

3) They are unaffected when the statistics of sources dpnds to infinity. .
proach the limiting (forbidden) situation, where— 0. In the stochastic approximation literature, this result is
. . _ known as the “Kushner and Clark type of convergence” [17].

C. Instability of the Nonseparating Equilibria™ and £* Result 2 is indeed applicable to the (stochastigradit-

This analysis is performed using the ODE. A straightforwardutten algorithm under consideration here. However, it is but a
(but rather tedious) calculation shows that whers positive weak result because of the infinitely often visiting hypothesis,
according to condition (67) (i.e., when there exists a stabléhich is essentially equivalent to the assumption Hétk) is
separating equilibrium), the®? and E* are exponentially bounded. In most stochastic approximation problems, and par-
unstable. This result ensures that the recursive algorithm wittularly for this specific algorithm, the proof of boundedness
not converge toward ill solutions of the separation problem. FSeems a very difficult matter. For this reason, the approximate
naly, note that the ODE (35) has exactly the same equilibriuvamalysis that follows appears very valuable.
statesD!, D?, E3  E* as the DHJ algorithm with the same Result 3 (HJ Algorithm):For some fixed quantity;, the
status, except that there is, of course, no step-size condit&ginchastic Krault-Jutten algorithm satisfies
such as (72) and (73).

2
We are now ready to investigate convergence of the random EV(n)|” — un, n — 00. (78)
sequence of vectort®(n) generated by the discrete algorithmasymptotically for, small andD(0) close toD!. .
[see (29) and (30)]. A similar result holds withD(0) close toD? whenD? is a

stable equilibrium of the (DHJ) algorithm. In the specific case

wherea; and a, have identical statistics, the proportionality
The convergence properties of a stochastic adaptive alg@efficient is

rithm are easy to handle only when the associated deterministic

algorithm (or associated ODE) has only one stable equilibrium

(say DY). If, in addition, the ODE is globally stable, then the

following general convergence result for stochastic algorlthrr\1N cren® 2 EaS. This result is proved in Appendix A. It is of

has been proved in [16] and [17] under certain regularity an reat practical value. Indeed, any preassigned level of accurac
polynomial increase conditions for the incremehtwhich are 9 P ' - anyp 9 Y

_ 2
obviously fulfilled in the present case can be reached for the steady-state powpr (k)| of the

Result 1 (General Algorithm)if the ODE is globally stable deviation from optimality, provideg is chosen small enough.

and has a unique stable equilibriubt, then ThIS type of convergence can be call_ed guasi’-convergence
in the mean square sense although it does not preclude the

Y < 1o, Ve, lim sup P{|D(n) — D'|>¢} < C(n) (74) fact that with an extremely low probability)(n) can escape

e the vicinity of D!, Such a result is familiar in the field of
adaptivity because convergence of supervised adaptive LMS

C(p) —0, pu—0. (75) or RLS filters obeys a relationship similar to (78), as shown,
for instance, in [20] and [21].

.
This result means that in steady-state, the probability thaf The ODE does not appear to be globally stable. In fact, (35)Isa2
nonlinear differential system whose right-hand sides are rational fractions of

D(”) depgrts .(S|gn|f|cantly) fromD" is neg“g'bly small if fourth-order polynomials in the variablet > and d2; and for which no
the step-size is small enough. Lyapounov function has been obtained.

VI. “QUASI"-CONVERGENCE OF THESTOCHASTIC ALGORITHM

4 4 3 _ A6
— gllv'+ :922 3B A D3 (79)
91193 29— AH7

where
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Result 3 has been derived under the assumption that thenote the transition matrix associated with the hereabove

sequence of pairs(n) = (ai(n),a2(n))? is i.d.d. This recursion. It is clear that the following relationships hold:
assumption is sufficient but far from necessary. We have used .
it because it makes the proof shorter. Vi(n) = UnoV(0) (85)
In practice, our computer simulations have shown that (78) - .
is valid wheny: is smaller thary; /4. This condition ony is Vin) = - ’“‘Z Un i 20 (). (86)
four times more restrictive than in the deterministic stability =1
analysis. Although this assumption is not necessary, in order to reach a

concise proof, we suppose thidie sequenced(n) is i.i.d. It
follows that all the factors inl/, ; are independent. More-
over, U, ; and Z()(j) are independent. Finally, the pair

This paper is the first rigorous convergence analysis 9&(71)72(1)(71)] is independent of/ (n — 1). Hence
the “Hérault-Jutten” stochastic algorithm for separating inde-

VII. CONCLUSION

pendent sources in a self-learning way. This algorithm was N s _ .
originally introduced for a feedback structure, but we have BVi(n) = 1:[1 (I = HEA())V(0), (87)
shown here that it can be applied to a direct structure. The . = Ln
separating states of this direct structure have been shown EVi(n) = = nd(D7)"V(0). (88)

to be equilibria of the Hrault-Jutten algorithm. In the caser,
of wo sources, at I(_aast one of _th.es_e equm_bna 'S Iogalg/ mptions (15), (67), and (72), as proved in Section V-B.
stable for the associated deterministic algorithm, provid oreover

the sources are globally sub-Gaussian, and the step-size Is
small enough. Finally, it has been proved that the stochastic

algorithm itself is “quasi’-convergent in the mean square sense

toward a separating state, subject to a suitable initialization in

the attraction basin. This result requires a very small step-sigg, ZM(n) is zero-mean, and therefore

i

is quantity is exponentially vanishing under the three as-

EVI(n) = —p 3 (I - pd (D))" EZD(). (89

All these theoretical results still have to be verified through EV/(n) =0. (90)
computer simulations, and the achievements of this direct

structure also have to be compared with those of the feedbdfollows that in steady-state (i.e., for large enough), we
one. This is the purpose of Part Il of the present paper. Ccan assume that

EV(n)=0. (92)
APPENDIX

"QUASI™-M EAN SQUARE CONVERGENCE OFD(n) Now, consider second-order properties 6fr). It follows

from (80) that
WhenD(0) is suitably close td)?, the adaptation increment

Z(n) can be approximated by the first-order approximation of V(n)V(n)" =(I — pA(n))V(n — )V (n - 1)

(49). Therefore, the deviatiovi(n) from optimality obeys the (I - uAT(n)) + LLQZ(I)(H)(Z(I)(H))T
approximate recursion —u(V(n = D)(EZWm)T
V(n) = (I = pAm)V(n—1) — n2®Pm).  (80) + 20V (n - 1))
+ AV (n — 1)(ZD (n)"
Let us splitV(n) into two parts according to + ZOmWVT (0 = 1) AT (). (92)
V(n) =Vi(n)+V7(n) (81) Denote

where I(n) £ EV()V"(n) (93)

. B}2 EdS, i=1,2 B;>0 (94)

Vi(n) = I - pAn))V'(n - 1), V(0)=V(0) (82)
and note that according to (50)
is called the transient deviation, while
EZM (n)(Z2M ()"
VI(n) = (I = pA(m)V/ (n = 1) = pZD(n), V7(0) = —— ( Bigt, A%gflA%g%Q) SL. (%)
(83) 99,95, \Algt1 4303 Bsg3, '

Thanks to the independence assumption and to (54), the

i I he fl ion deviation. Now, | . .
s called the fluctuation deviatio ow, let expectation of (92) yields

113

Un,j
Un,n

(I - pA(n)---(I-pAQG+1), n>j I(n)=I(n—-1) = pJ(DHI(n - 1)
I (84) — ul(n - 1)J(DYHYT + 2L (96)

113
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where we have used the inequality numerical result is

HE[A(n)I(n — 1) A" (n)]

3B3 — AS
r= (0 +02)50 (109)

< J(DOH(n - 1)+ L(n—1)J(DHT  (97) which yields the result (79) in the text.

which is valid for small values of:, and where we have
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taken advantage of the result (91) to cancel the terms likeThe authors are endebted to the anonymous reviewer who
E[A(n)E[V(n — 1)](Z®1)(n))T]. The recurrence (96) can behas pointed out some inaccurracy in the formulation of the
easily investigated. We note th#t(n) is symmetrical by its convergence result.

very definition. It is equivalently represented by the 3-D vector

Y(n) £ (U1 (n), Taa(n), Tia(n))” (98)
whose recurrence equation reads 1]
v(n) = (I = pM)y(n — 1) + 1i*L 99) 2
where 3]
A D2 69719%> 20 , 293114;
= 7393 40 ) 69i19222 29%21%2 (100) [4]
11922\ g30 A5 911 AT 691193
and s [5]
L= ﬁ(gﬁB?ag%Bga9319§2A%A§)T- (101)
It is easily seen that the three eigenvaluesMbfare (6]
2D3
SE =—L (3 + E"41142)7 €= _17 07 1. (102) [7]
911922

BecauseAd; A; # 0, they are distinct. Moreover, they are
positive thanks to condition (67). Thulf can be diagonalized

according to &
M = C diag¢_y,&,£)CH (103) g

whereC' is a regular matrix whose columns are eigenvectors,
respectively, associated with the eigenvaluedfofAs a result, [10]
the sequencey(n) in (99) is convergent iff is suitably

upperbounded along [11]
pér <2 (104)
ie.
[12]
g11922
P — 105
" D33+ ALdy) G0y

Under condition (105), the recurrence (99) is exponentialml
convergent toward

y=uN, NZ2M'L (106) [15]

This result provides, in particular, the steady-state value of
the mean-square deviationV&n»)|?. It follows from (100), [16]
(101), and (106) that

V)=, 02 m+m)  @o7) B
as stated by (78) in the text. Herg, andr, are, respectively,

the first and second components of the 3—D vegfan (106). 18]
Their calculation yields [19]
> 20

n=< Dy )7’ 10g)

911922 [21]

wherer depends oy, A, By, Bs, g11, andgss in a straight- 221

forward manner. In the specific case whereand a> have
identical statistics(4; = 4, = A,B; = B, = B), the
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