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I. INTRODUCTION TO EXPANDERS

Expander graphs are one of the deepest tools of theoret-
ical computer science and discrete mathematics, popping
up in all sorts of contexts since their introduction in the
1970s. Here’s a list of some of the things that expander
graphs can be used to do. Don’t worry if not all the items
on the list make sense: the main thing to take away is the
sheer range of areas in which expanders can be applied.

• Reduce the need for randomness: That is, ex-
panders can be used to reduce the number of ran-
dom bits needed to make a probabilistic algorithm
work with some desired probability.

• Find good error-correcting codes: Expanders can
be used to construct error-correcting codes for pro-
tecting information against noise. Most astonish-
ingly for information theorists, expanders can be
used to find error-correcting codes which are effi-
ciently encodable and decodable, with a non-zero
rate of transmission. This is astonishing because
finding codes with these properties was one of the
holy grails of coding theory for decades after Shan-
non’s pioneering work on coding and information
theory back in the 1940s.

• A new proof of PCP: One of the deepest results
in computer science is the PCP theorem, which
tells us that for all languages L in NP there is a
randomized polyonomial-time proof verifier which
need only check a constant number of bits in a pur-
ported proof that x ∈ L or x 6∈ L, in order to de-
termine (with high probability of success) whether
the proof is correct or not. This result, originally
established in the earlier 1990s, has recently been
given a new proof based on expanders.

What’s remarkable is that none of the topics on this
list appear to be related, a priori, to any of the other
topics, nor do they appear to be related to graph the-
ory. Expander graphs are one of these powerful unifying
tools, surprisingly common in science, that can be used
to gain insight into an an astonishing range of apparently
disparate phenomena.

I’m not an expert on expanders. I’m writing these
notes to help myself (and hopefully others) to under-
stand a little bit about expanders and how they can be
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applied. I’m not learning about expanders with any spe-
cific intended application in mind, but rather because
they seem to behind some of the deepest insights we’ve
had in recent years into information and computation.

What is an expander graph? Informally, it’s a graph
G = (V,E) in which every subset S of vertices expands
quickly, in the sense that it is connected to many vertices
in the set S of complementary vertices. Making this def-
inition precise is the main goal of the remainder of this
section.

Suppose G = (V,E) has n vertices. For a subset S of
V we define the edge boundary of S, ∂S, to be the set
of edges connecting S to its complement, S. That is, ∂S
consists of all those edges (v, w) such that v ∈ S and
w 6∈ S. The expansion parameter for G is defined by

h(G) ≡ min
S:|S|≤n/2

|∂S|
|S|

, (1)

where |X| denotes the size of a set X.
One standard condition to impose on expander graphs

is that they be d-regular graphs, for some constant d, i.e.,
they are graphs in which every vertex has the same de-
gree, d. I must admit that I’m not entirely sure why this
d-regularity condition is imposed. One possible reason is
that doing this simplifies a remarkable result which we’ll
discuss later, relating the expansion parameter h(G) to
the eigenvalues of the adjacency matrix of G. (If you
don’t know what the adjacency matrix is, we’ll give a
definition later.)

Example: Suppose G is the complete graph on n ver-
tices, i.e., the graph in which every vertex is connected
to every other vertex. Then for any vertex in S, each
vertex in S is connected to all the vertices in S, and
thus |∂S| = |S| × |S| = |S|(n − |S|). It follows that the
expansion parameter is given by

h(G) = min
S:|S|≤n/2

n− |S| =
⌈n

2

⌉
. (2)

For reasons I don’t entirely understand, computer sci-
entists are most interested in the case when the degree,
d, is a small constant, like d = 2, 3 or 4, not d = n − 1,
as is the case for the complete graph. Here’s an example
with constant degree.

Example: Suppose G is an n × n square lattice in 2
dimensions, with periodic boundary conditions (so as to
make the graph 4-regular). Then if we consider a large
connected subset of the vertices, S, it ought to be plausi-
ble that that the edge boundary set ∂S contains roughly
one edge for each vertex on the perimeter of the region S.
We expect there to be roughly

√
|S| such vertices, since
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we are in two dimensions, and so |∂S|/|S| ≈ 1/
√
|S|.

Since the graph can contain regions S with up to O(n2)
vertices, we expect

h(G) = O

(
1
n

)
(3)

for this graph. I do not know the exact result, but am
confident that this expression is correct, up to constant
factors and higher-order corrections. It’d be a good ex-
ercise to figure out exactly what h(G) is. Note that as
the lattice size is increased, the expansion parameter de-
creases, tending toward 0 as n →∞.

Example: Consider a random d-regular graph, in
which each of n vertices is connected to d other vertices,
chosen at random. Let S be a subset of at most n/2
vertices. Then a typical vertex in S will be connected
to roughly d × |S|/n vertices in S, and thus we expect
|∂S| ≈ d× |S||S|/n, and so

|∂S|
|S|

≈ d
|S|
n

. (4)

Since |S| has its minimum at approximately n/2 it follows
that h(G) ≈ d/2, independent of the size n.

Exercise: Show that a disconnected graph always has
expansion parameter 0.

In each of our examples, we haven’t constructed just
a single graph, but rather an entire family of graphs,
indexed by some parameter n, with the property that as
n gets larger, so too does the number of vertices in the
graph. Having access to an entire family in this way turns
out to be much more useful than having just a single
graph, a fact which motivates the definition of expander
graphs, which we now give.

Suppose we have a family Gj = (Vj , Ej) of d-regular
graphs, indexed by j, and such that |Vj | = nj for some
increasing function nj . Then we say that the family {Gj}
is a family of expander graphs if the expansion parame-
ter is bounded strictly away from 0, i.e., there is some
small constant c such that h(Gj) ≥ c > 0 for all Gj in
the family. We’ll often abuse nomenclature slightly, and
just refer to the expander {Gj}, or even just G, omitting
explicit mention of the entire family of graphs.

II. EXPLICIT EXAMPLES OF EXPANDERS

We’ve seen previously that a family of d-regular ran-
dom graphs on n vertices defines an expander. For appli-
cations it is often more useful to have more explicit con-
structions for expanders. In particular, for applications
to algorithms it is often useful to construct expanders
on O(2n) vertices, where n is some parameter describing
problem size. Just to store a description of a random
graph on so many vertices requires exponentially much
time and space, and so is not feasible. Fortunately, more
parsimonious constructions are possible, which we now
describe.

Example: In this example the family of graphs is in-
dexed by a prime number, p. The set of vertices for
the graph Gp is just the set of points in Zp, the field of
integers modulo p. We construct a 3-regular graph by
connecting each vertex x 6= 0 to x − 1, x + 1 and x−1.
The vertex x = 0 is connected to p − 1, 0 and 1. Ac-
cording to the lecture notes by Linial and Wigderson,
this was proved to be a family of expanders by Lubotsky,
Phillips and Sarnak in 1988, but I don’t know a lower
bound on the expansion parameter. Note that even for
p = O(2n) we can do basic operations with this graph
(e.g., random walking along its vertices), using compu-
tational resources that are only polynomial in time and
space. This makes this graph potentially far more use-
ful in applications than the random graphs considered
earlier.

Example: A similar but slightly more complex exam-
ple is as follows. The vertex set is Zm × Zm, where m
is some positive integer, and Zm is the additive group of
integers modulo m. The degree is 4, and the vertex (x, y)
has edges to (x± y, y), and (x, x± y), where all addition
is done modulo m. Something which concerns me a lit-
tle about this definition, but which I haven’t resolved, is
what happens when m is even and we choose y = m/2
so that, e.g., the vertices (x + y, y) and (x − y, y) coin-
cide with one another. We would expect this duplication
to have some effect on the expansion parameter, but I
haven’t thought through exactly what.

III. GRAPHS AND THEIR ADJACENCY
MATRICES

How can we prove that a family of graphs is an ex-
pander? Stated another way, how does the expansion
parameter h(G) vary as the graph G is varied over all
graphs in the family?

One way of tackling the problem of computing h(G) is
to do a brute force calculation of the ratio |∂S|/|S| for
every subset S of vertices containing no more than half
the vertices in the graph. Doing this is a time-consuming
task, since if there are n vertices in the graph, then there
are exponentially many such subsets S.

Problem: In general, how hard is it to find the sub-
set S minimizing |∂S|/|S|? Can we construct an NP-
Complete variant of this problem? I don’t know the
answer to this question, and I don’t know if anyone else
does, either.

Fortunately, there is an extraordinarily beautiful ap-
proach to the problem of determining h(G) which is far
less computationally intensive. It involves the adjacency
matrix A(G) of the graph G. By definition, the rows
and columns of the adjacency matrix are labelled by the
vertices of V . For vertices v and w the entry A(G)vw is
defined to be 1 if (v, w) is an edge, and 0 if it is not an
edge.

It is a marvellous fact that properties of the eigenvalue
spectrum of the adjacency matrix A(G) can be used to
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understand properties of the graph G. This occurs so
frequently that we refer to the spectrum of A(G) as the
spectrum of the graph G. It is useful because the eigen-
value spectrum can be computed quickly, and certain
properties, such as the largest and smallest eigenvalue,
the determinant and trace, can be computed extremely
quickly.

More generally, by recasting graphs in terms of adja-
cency matrices, we open up the possibility of using tools
from linear algebra to study the properties of graphs. Al-
though we’re most interested in studying expanders, for
the rest of this sectionI’m going to digress from the study
of expanders, studying how the linear algebraic point of
view can help us understand graphs, without worrying
about how this connects to expanders. This digression is
partially motivated by the fact that this is beautiful stuff
(at least in my opinion), and is partially because our later
discussion of expanders will be based on this linear alge-
braic point of view, and so it’s good to get comfortable
with this point of view.

The following exercise provides a good example of how
graph properties can be related to the eigenvalues of the
graph.

Exercise: Prove that if two graphs are isomorphic,
then they have the same spectrum.

This result is often useful in proving that two graphs
are not isomorphic: simply compute their eigenvalues,
and show that they are different. A useful extension of
the exercise is to find an example of two graphs which
have the same spectra, but which are not isomorphic.

Note that the adjacency matrix may be considered as
a matrix over any field, and the result of the exercise is
true over any field. (I’ve often wondered if the converse
is true, but don’t know the answer.) Nonetheless, by and
large, we’ll consider the adjacency matrix as a matrix
over the field R of real numbers. Assuming that G is an
undirected graph, we see that A(G) is a real symmetric
matrix, and thus can be diagonalized. We will find it
convenient to write the eigenvalues of a graph G in non-
increasing order, as λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G).

A fact we’ll make a lot of use of is that when G is
d-regular the largest eigenvalue of G is just d. To see
this, note that the vector ~1 ≡ (1, 1, . . . , 1) is an eigen-
vector of G with eigenvalue d. To prove that d is the
largest eigenvalue seems to be a little bit harder. We’ll
just sketch a proof. To prove this it is sufficient to show
that vT A(G)v ≤ d for all normalized vectors v. From
the d-regularity of G it follows that A(G)/d is a doubly
stochastic matrix, i.e., has non-negative entries, and all
rows and columns sum to one. A theorem of Birkhoff
ensures that A(G)/d can be written as a convex combi-
nation of permutation matrices, so A(G) = d

∑
j pjPj ,

where pj are probabilities, and the Pj are permutation
matrices. This gives vT A(G)v = d

∑
j pjv

T Pjv. But
vT Pjv ≤ 1 for any permutation Pj , which gives the de-
sired result.

The following proposition gives another example of the
relationships one can find between a graph and its spec-

trum.
Proposition: A d-regular graph G is connected if and

only if λ1(G) > λ2(G).
Proof: The easy direction is the reverse implication,

for which we prove the contrapositive, namely, that a
d-regular disconnected graph has λ1(G) = λ2(G). This
follows by breaking G up into disconnected components
G1 and G2, and observing that A(G) = A(G1)⊕A(G2),
where ⊕ is the matrix direct sum. Since both G1 and
G2 are d-regular it follows that they both have maxi-
mal eigenvalue d, and so d appears at least twice in the
spectrum of A(G).

At the moment, I don’t see an easy way of proving
the forward implication. One not very satisfying proof
is to observe that A(G)/d is the Markov transition ma-
trix for a random walk on the graph, and that since the
graph is connected, the random walk must converge to
a unique distribution, which implies that in the limit
of large n there can only be one vector v such that
(Gn/dn)v = v. This means that Gn’s largest eigenvalue
is non-degenerate, from which it follows that G’s largest
eigenvalue is non-degenerate. This is a sketch, but it can
all be established rigorously with a little work and the
aid of well-known theorems on Markov chains.

The proof sketched in the previous paragraph is not
really satisfactory, since it involves an appeal to theo-
rems which are in some sense less elementary than the
result under discussion. Another possibility which I’ve
explored but haven’t made work with complete rigour
is to investigate Gn/dn more explicitly. With a little
thought one can prove that the entry Gn

vw is just the
number of paths between v and w of length n. Since
G is connected, we’d expect in the limit of large n this
number would be dominated by a term which does not
depend on w, and would just scale like the total number
of paths of length n starting at v (which is dn), divided
by the total number of possible destinations w, which is
n, giving Gn

vw/dn → 1/n. (This would only be true if G
has self-loops (v, v).) Of course, the matrix whose entries
are all 1/n has a single eigenvalue 1, with all the rest 0,
which would suffice to establish the theorem.

QED
Problem: How should we interpret the determinant

of a graph? What about the trace?
Problem: If we consider A(G) as a matrix over the

field Z2 = {0, 1}, then it is possible to define a matrix
sum G1 + G2, whose adjacency matrix is just A(G1) +
A(G2), and a matrix product G1 × G2 whose adjacency
matrix is just A(G1)A(G2). Many questions naturally
suggest themseves: (1) when is there an edge between v
and w in G1 + G2; (2) when is there an edge between
v and w in G1 × G2 (these first two questions are easy
to answer); (3) for which graphs is A(G) invertible, and
thus a natural inverse graph G−1 exists; (4) how can
we interpret the inverse graph; (5) when do two graphs
commute?

Problem: Along similar lines to the previous problem,
it’s possible to define a tensor product of graphs. What
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are the properties of the graph tensor product?
The ideas I’ve described in this sectionare examples of

the important general principle that once you’ve defined
a mathematical object, you should seek out alternate rep-
resentations (or even just partial representations) of that
object in terms of mathematical objects that you already
understand. By recasting graphs as matrices, we open up
the possibility of using all the tools of linear algebra to
answer questions about graphs. This can work in one of
two ways: we can ask a question about graphs, and try to
see if it’s possible to give a linear algebraic answer, or we
can ask what implication known results of linear algebra
have for graphs — what does the Gaussian elimination
procedure correspond to, or the spectral decomposition,
or two matrices commuting, or the wedge product, or
whatever. Exploring such connections has the potential
to greatly enrich both subjects.

IV. EXPANSION AND THE EIGENVALUE GAP

Let’s return our attention to expander graphs, and see
what the eigenvalues of a graph have to do with its ex-
pansion parameter. We define the gap for the graph G
to be the difference ∆(G) ≡ λ1(G)− λ2(G) between the
largest and second-largest eigenvalues. The expansion
parameter and the gap are connected by the following
theorem:

Theorem: The expansion parameter h(G) for a d-
regular graph G is related to the gap ∆(G) by:

∆(G)
2

≤ h(G) ≤
√

2d∆(G). (5)

Thus, properties of the eigenvalue gap can be used to
deduce properties of the expansion parameter. For exam-
ple, if the eigenvalue gap for a family of d-regular graphs
is bounded below by a positive constant, then the expan-
sion parameter must also be bounded below by a positive
constant, and so the family is an expander.

One reason for finding the connection between the gap
and the expansion parameter interesting is that it is far
easier to estimate the gap of an n by n matrix than it
is to enumerate the exponentially many subsets S of the
vertex set V , and compute |∂S|/|S| for each one.

Proof discussion: We already understand that
λ1(G) = d for this graph, with eigenvector ~1 =
(1, 1, . . . , 1). So we’ll concentrate on trying to understand
the behaviour of the second largest eigenvalue, λ2(G).
The theorem tells us that the difference between d and
λ2(G) is controlled both above and below by the expan-
sion parameter h(G).

How can we get control over the second largest eigen-
value of G? One way is to observe that λ2(G) is just the
maximum of the expression vT Av/vT v, where A is the
adjacency matrix of G, and we maximize over all vectors
v orthogonal to the eigenvector ~1. An encouraging fact
is that this expression is quite easy to deal with, because

the condition that v be orthogonal to ~1 is actually equiv-
alent to the sum of v’s entries being equal to 0, so we
have

λ2(G) = max
v:tr(v)=0

vT Av

vT v
, (6)

where tr(v) is just the sum of the entries of the vector v.
We’re going to provide a lower bound on λ2(G) by

simply guessing a good choice of v satisfying tr(v) = 0,
and using the fact that

λ2(G) ≥ vT Av

vT v
. (7)

To make a good guess, it helps to have a way of thinking
about expressions like vT Av, where tr(v) = 0. A con-
venient way of thinking is to rewrite v as the difference
of two disjoint probability distributions, p and q, i.e.,
v = p − q, where p and q are non-negative vectors each
summing to 1, and with disjoint support. This results
in terms like pT Aq, which we can think of in terms of
transition probabilities between q and p. This will allow
us to apply the expansion properties of the graph.

Let’s make these ideas a little more concrete. The key
is to define ~1S to be the vector whose entries are 1 on S,
and 0 elsewhere, and to observe that

~1T
SA~1T = |E(S, T )|, (8)

where |E(S, T )| is the number of edges between the vertex
sets S and T . This suggests that we should choose p
and q in terms of vectors like ~1S , since it will enable us
to relate expressions like vT Av to the sizes of various
edge sets, which, in turn, can be related to the expansion
parameter.

Suppose in particular that we choose

v =
~1S

|S|
−

~1S

|S|
. (9)

This satisfies the condition tr(v) = 0, and gives

vT v =
1
|S|

+
1
|S|

(10)

and

vT Av =
1
|S|2

E(S, S) +
1
|S|2

E(S, S)− 2
|S||S|

E(S, S).(11)

The definition of an expander graph gives us control
over E(S, S), so it is convenient to rewrite E(S, S) and
E(S, S) in terms of E(S, S), using the d-regularity of the
graph:

E(S, S) + E(S, S) = d|S|; E(S, S) + E(S, S) = d|S|.(12)

A straightforward substitution and a little algebra gives:

vT Av = d

(
1
|S|

+
1
|S|

)
−

(
1
|S|

+
1
|S|

)2

E(S, S). (13)
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Comparing with the earlier expression for the denomina-
tor vT v, we obtain

λ2(G) ≥ d−
(

1
|S|

+
1
|S|

)
E(S, S). (14)

Now choose S so that E(S, S) = h(G)|S|, and |S| ≤ n/2,
giving after a little algebra

λ2(G) ≥ d− 2h(G), (15)

and thus

∆(G)
2

≤ h(G), (16)

which was the first of the two desired inequalities in the
theorem.

The proof of the second inequality is a little more com-
plicated. Unfortunately, I haven’t managed to boil the
proof down to a form that I’m really happy with, and for
this reason I won’t describe the details. If you’re inter-
ested, you should try to prove it yourself, or refer to the
notes of Linial and Wigderson.

QED
Problem: Can we generalize this result so that it

applies to a general undirected graph G, not just to d-
regular graphs? Can we prove an analogous statement
for directed graphs, perhaps in terms of singular val-
ues? Can we define a a generalized notion of ”expan-
sion” which can be applied to any symmetric matrix A
with non-negative entries, and connect that notion of ex-
pansion to the eigenvalue gap? Can we generalize even
further? What happens if we change the field over which
the matrix is considered?

V. RANDOM WALKS ON EXPANDERS

Many applications of expanders involve doing a ran-
dom walk on the expander. We start at some chosen
vertex, and then repeatedly move to any one of the d
neighbours, each time choosing a neighbour uniformly at
random, and independently of prior choices.

To describe this random walk, suppose at some given
time we have a probability distribution p describing the
probability of being at any given vertex in the graph G.
We then apply one step of the random walk procedure
described above, i.e., selecting a neighbour of the current
vertex uniformly at random. The updated probability
distribution is easily verified to be:

p′ =
A(G)

d
p. (17)

That is, the Markov transition matrix describing this ran-
dom walk is just Â(G) ≡ A(G)/d, i.e., up to a constant
of proportionality the transition matrix is just the adja-
cency matrix. This relationship between the adjacency
matrix and random walks opens up a whole new world
of connections between graphs and Markov chains.

One of the most important connections is between the
eigenvalues of Markov transition matrices and the rate at
which the Markov chain converges to its stationary dis-
tribution. In particular, the following beautiful theorem
tells us that when the uniform distribution is a stationary
distribution for the chain, then the Markov chain con-
verges to the uniform distribution exponentially quickly,
at a rate determined by the second largest eigenvalue of
M .

Exercise: Show that if M is a normal transition ma-
trix for a Markov chain then 1 = λ1(M) ≥ λ2(M) ≥ . . ..

Theorem: Suppose M is a normal transition matrix
for a Markov chain on n states, with the uniform distri-
bution u = ~1/n as a stationary point, Mu = u. Then for
any starting distribution p,

‖M tp− u‖1 ≤
√

nλ2(M)t, (18)

where ‖ · ‖1 denotes the l1 norm.
The normality condition in this theorem may appear

a little surprising. The reason it’s there is to ensure that
M can be diagonalized. The theorem can be made to
work for general M , with the second largest eigenvalue
replaced by the second largest singular value. However,
in our situation M is symmetric, and thus automatically
normal, and we prefer the statement in terms of eigen-
values, since it allows us to make a connection to the
expansion parameter of a graph. In particular, when
M = Â(G) we obtain:

‖Â(G)tp− u‖1 ≤
√

n

(
λ2(G)

d

)t

. (19)

Combining this with our earlier results connecting the
gap to the expansion parameter, we deduce that

‖Â(G)tp− u‖1 ≤
√

n

(
1− h(G)2

2d2

)t

. (20)

Thus, for a family of expander graphs, the rate of con-
vergence of the Markov chain is exponentially fast in the
number of time steps t.

Exercise: Suppose M is a transition matrix for a
Markov chain. Show that the uniform distribution u is a
stationary point point for the chain, i.e., Mu = u, if and
only if M is doubly stochastic, i.e., has non-zero entries,
and all rows and columns of the matrix sum to 1.

Proof: We start by working with the l2 norm ‖ · ‖2.
Since Mu = u we have M tu = u, and so:

‖M tp− u‖2 = ‖M t(p− u)‖2. (21)

A computation shows that p− u is orthogonal to u. But
u is an eigenvector of M with the maximum eigenvalue,
1, and thus p− u must lie in the span of the eigenspaces
with eigenvalues λ2(M), λ3(M), . . .. It follows that

‖M t(p− u)‖2 ≤ λ2(M)t‖p− u‖2 ≤ λ2(M)t, (22)

where we used the fact that ‖p − u‖2 ≤ 1, easily estab-
lished by observing that ‖p−u‖2 is convex in p, and thus
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must be maximized at an extreme point in the space of
probability distributions; the symmetry of u ensures that
without loss of generality we may take p = (1, 0, . . . , 0).
To convert this into a result about the l1 norm, we use
the fact that in n dimensions ‖v‖1 ≤

√
n‖v‖2, and thus

we obtain

‖M t(p− u)‖1 ≤
√

nλ2(M)t, (23)

which was the desired result. QED
What other properties do random walks on expanders

have? We now prove another beautiful theorem which
tells us that they “move around quickly”, in the sense
that they are exponentially unlikely to stay for long
within a given subset of vertices, B, unless B is very
large.

More precisely, suppose B is a subset of vertices, and
we choose some vertex X0 uniformly at random from the
graph. Suppose we use X0 as the starting point for a
random walk, X0, . . . , Xt, where Xt is the vertex after
the tth step. Let B(t) be the event that Xj ∈ B for all
j in the range 0, . . . , t. Then we will prove that:

Pr(B(t)) ≤
(

λ2(G)
d

+
|B|
n

)t

(24)

Provided λ2(G)/d + |B|/n < 1, we get the desired expo-
nential decrease in probability. For a family of expander
graphs it follows that there is some constant ε > 0 such
that we get an exponential decrease for any B such that
|B|/n < ε. These results are special cases of the following
more general theorem about Markov chains.

Theorem: Let X0 be uniformly distributed on
n states, and let X0, . . . , Xt be a time-homogeneous
Markov chain with transition matrix M . Suppose the
uniform distribution u is a stationary point of M , i.e.,
Mu = u. Let B be a subset of the states, and let B(t)
be the event that Xj ∈ B for all j ∈ 0, . . . , t. Then

Pr(B(t)) ≤
(

λ2(M) +
|B|
n

)t

. (25)

Proof: The first step in the proof is to observe that:

Pr(B(t)) = ‖(PMP )tPu‖1, (26)

where the operator P projects onto the vector space
spanned by those basis vectors corresponding to elements
of B. This equation is not entirely obvious, and proving
it is a good exercise for the reader.

The next step is to prove that ‖PMP‖ ≤ λ2(M) +
|B|/n, where the norm here is the operator norm. We
will do this below, but note first that once this is done,
the result follows, for we have

Pr(B(t)) = ‖(PMP )tPu‖1 ≤
√

n‖(PMP )tPu‖2 (27)

by the standard inequality relating l1 and l2 norms, and
thus

Pr(B(t)) ≤
√

n‖PMP‖t‖Pu‖2, (28)

by definition of the operator norm, and finally

Pr(B(t)) ≤
(

λ2(M) +
|B|
n

)t

, (29)

where we used the assumed inequality for the operator
norm, and the observation that ‖Pu‖2 =

√
|B|/n ≤

1/
√

n.
To prove the desired operator norm inequality,

‖PMP‖ ≤ λ2(M) + |B|/n, suppose v is a normalized
state such that ‖PMP‖ = |vT PMPv|. Decompose
Pv = αu + βu⊥, where u⊥ is a normalized state or-
thogonal to u. Since ‖Pv‖2 ≤ ‖v‖2 = 1 we must have
|β| ≤ 1. Furthermore, multiplying Pv = αu+βu⊥ on the
left by nuT shows that α = nuT Pv. It follows that |α|
is maximized by choosing v to be uniformly distributed
over B, from which it follows that |α| ≤

√
|B|. A little

algebra shows that

vT PMPv = α2uT Mu + β2uT
⊥Mu⊥. (30)

Applying |α| ≤
√
|B|, uT Mu = uT u = 1/n, |β| ≤ 1, and

uT
⊥Mu⊥ ≤ λ2(M) gives

vT PMPv ≤ |B|
n

+ λ2(M), (31)

which completes the proof. QED

VI. REDUCING THE NUMBER OF RANDOM
BITS REQUIRED BY AN ALGORITHM

One surprising application of expanders is that they
can be used to reduce the number of random bits needed
by a randomized algorithm in order to achieve a desired
success probability.

Suppose, for example, that we are trying to compute
a function f(x) that can take the values f(x) = 0 or
f(x) = 1. Suppose we have a randomized algorithm
A(x, Y ) which takes as input x and an m-bit uniformly
distributed random variable Y , and outputs either 0 or
1. We assume that:

• f(x) = 0 implies A(x, Y ) = 0 with certainty.

• f(x) = 1 implies A(x, Y ) = 1 with probability at
least 1− pf .

That is, pf is the maximal probability that the algorithm
fails, in the case when f(x) = 1, but A(x, Y ) = 0 is
output by the algorithm.

An algorithm of this type is called a one-sided ran-
domized algorithm, since it can only fail when f(x) = 1,
not when f(x) = 0. I won’t give any concrete examples
of one-sided randomized algorithms here, but the reader
unfamiliar with them should rest assured that they are
useful and important — see, e.g., the book of Motwani
and Raghavan (Cambridge University Press, 1995) for
examples.
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As an aside, the discussion of one-sided algorithms
in this sectioncan be extended to the case of random-
ized algorithms which can fail when either f(x) = 0 or
f(x) = 1. The details are a little more complicated, but
the basic ideas are the same. This is described in Linial
and Wigderson’s lecture notes. Alternately, extending
the discussion to this case is a good problem.

How can we descrease the probability of failure for a
one-sided randomized algoerithm? One obvious way of
decreasing the failure probability is to run the algorithm
k times, computing A(x, Y0), A(x, Y1), . . . , A(x, Yk−1). If
we get A(x, Yj) = 0 for all j then we output 0, while if
A(x, Yj) = 1 for at least one value of J , then we output
f(x) = 1. This algorithm makes use of km bits, and
reduces the failure probability to at most pk

f .
Expanders can be used to substantially decrease the

number of random bits required to achieve such a reduc-
tion in the failure probability. We define a new algorithm
A′ as follows. It requires a d-regular expander graph G
whose vertex set V contains 2m vertices, each of which
can represent a possible m-bit input y to A(x, y). The
modified algorithm A′ works as follows:

• Input x.

• Sample uniformly at random from V to generate
Y0.

• Now do a k−1 step random walk on the expander,
generating random variables Y1, . . . , Yk−1.

• Compute A(x, Y0), . . . , A(x, Yk−1). If any of these
are 1, output 1, otherwise output 0.

We see that the basic idea of the algorithm is similar to
the earlier proposal for running A(x, Y ) repeatedly, but
the sequence of independent and uniformly distributed
samples Y0, . . . , Yk−1 is replaced by a random walk on
the expander. The advantage of doing this is that only

m + k log(d) random bits are required — m to sample
from the initial uniform distribution, and then log(d) for
each step in the random walk. When d is a small constant
this is far fewer than the km bits used when we simply
repeatedly run the algorithm A(x, Yj) with uniform and
independently generated random bits Yj .

With what probability does this algorithm fail? Define
Bx to be the set of values of y such that A(x, y) = 0, yet
f(x) = 1. This is the “bad” set, which we hope our
algorithm will avoid. The algorithm will fail only if the
steps in the random walk Y0, Y1, . . . , Yk−1 all fall within
Bx. From our earlier theorem we see that this occurs
with probability at most:(

|Bx|
2m

+
λ2(G)

d

)k−1

. (32)

But we know that |Bx|/2m ≤ pf , and so the failure prob-
ability is at most(

pf +
λ2(G)

d

)k−1

. (33)

Thus, provided pf + λ2(G)/d < 1, we again get an expo-
nential decrease in the failure probability as the number
of repetitions k is increased.

VII. CONCLUSION

These notes have given a pretty basic introduction to
expanders, and there’s much we haven’t covered. More
detail and more applications can be found in the online
notes of Linial and Wigderson, or in the research litera-
ture. Still, I hope that these notes have given some idea
of why these families of graphs are useful, and of some
of the powerful connections between graph theory, linear
algebra, and random walks.


