
Orthogonally Evolved AI to Improve Difficulty
Adjustment in Video Games

Arend Hintze1, Randal S. Olson2, and Joel Lehman3

1 Michigan State University
hintze@msu.edu

2 University of Pennsylvania
3 IT University of Copenhagen

Abstract. Computer games are most engaging when their difficulty is
well matched to the player’s ability, thereby providing an experience
in which the player is neither overwhelmed nor bored. In games where
the player interacts with computer-controlled opponents, the difficulty
of the game can be adjusted not only by changing the distribution of
opponents or game resources, but also through modifying the skill of
the opponents. Applying evolutionary algorithms to evolve the artificial
intelligence that controls opponent agents is one established method for
adjusting opponent difficulty. Less-evolved agents (i.e. agents subject to
fewer generations of evolution) make for easier opponents, while highly-
evolved agents are more challenging to overcome. In this publication we
test a new approach for difficulty adjustment in games: orthogonally
evolved AI, where the player receives support from collaborating agents
that are co-evolved with opponent agents (where collaborators and oppo-
nents have orthogonal incentives). The advantage is that game difficulty
can be adjusted more granularly by manipulating two independent axes:
by having more or less adept collaborators, and by having more or less
adept opponents. Furthermore, human interaction can modulate (and
be informed by) the performance and behavior of collaborating agents.
In this way, orthogonally evolved AI both facilitates smoother difficulty
adjustment and enables new game experiences.

Keywords: Difficulty adjustment, coevolution, evolutionary computa-
tion, Markov networks

1 Introduction

A challenge in designing computer games is to match a game’s difficulty appro-
priately to the skill level of a human player. Most commonly, game developers
design explicit levels of difficulty from which a user can select. Evolving artifi-
cial intelligence (AI), i.e. applying evolutionary algorithms to adapt agents, has
often been applied to improve video games [1,2], particularly for adjusting their
difficulty [3,4]. Such difficulty adjustment approaches generally fall into two cat-
egories. In one, the player is immersed in a world where the computer-controlled
game agents evolve in real-time as the game is played. In the other, opponent

AI is evolved offline, and options for difficulty are extracted by exploiting the
evolutionary history of the opponent AI (among many others [5–16]).

This work extends from the latter category, but instead of evolving offline
only AI for opponent agents, AI is evolved for two kinds of game agents that have
orthogonal motives. One class of AI agent opposes the player (called opponent
agents), while the other class helps the player (called collaborator agents). Such
AIs are evolved through competitive co-evolution, i.e. one opponent population
and one collaborator population compete with each other. The idea is that pit-
ting such populations against each other can result in an arms race [17, 18] in
which both agents become more competent as evolution progresses.

One näıve application of such orthogonally-evolved opponent and player AIs
is to discard the evolutionary history of the player AI (because a human player
will fill that role in the game), and to use only the evolutionary history of the
evolved opponent AI to derive a range of opponent difficulties that can be de-
ployed within the game. However, an interesting idea is to instead use both evo-
lutionary histories. In particular, if co-evolution is conducted as a competition
between a population of player-friendly collaborators (with similar capabilities
as the player) and a population of player-antagonistic opponents, then the final
game can include both evolved collaborative and opponent agents of different
adaptedness. Here we investigate the advantages that such an orthogonal evolu-
tionary approach has for difficulty adjustment.

The motivation is that a richer set of player experiences can result from play-
ers interacting both with evolved opponents and evolved collaborators. That is,
the distinct evolutionary histories of the orthogonally-evolved populations yield
two independent axes for difficulty adjustment. In this way, the player can inter-
act with opponent and collaborator AIs taken from separate evolutionary time
points. The hypothesis is that such orthogonal evolution gives game designers
more options to adjust game difficulty and provide diverse player experiences.

Experiments in this paper are conducted through a browser-based game in
which a player competes with evolved opponents and is assisted by evolved
collaborators. In particular, a scientific predator-prey simulation [19] is adapted
such that the player controls one prey agent among a group of AI-controlled
prey collaborators with the objective of avoiding being consumed by an AI-
controlled predator agent. Play tests conducted through Amazon’s Mechanical
Turk collected data relating player survival time to the adaptedness of both the
AI-controlled predator and prey agents. Supporting the hypothesis, the results
demonstrate that independently adjusting the level of adaptation of opponents
and collaborators creates unique difficulty levels for players. The conclusion is
that orthogonally-evolved AI may be a promising method for game designers
to adjust game difficulty more granularly and to provide a wider variety of
experiences for players.

2 Background

The next sections review previous mechanisms to create adjustable difficulty in
video games, and the Markov Network encoding applied in the experiments to
represent controllers for game agents.

2.1 Difficulty Adjustment in Video Games

Difficulty adjustment is important for video games, because how a user expe-
riences (and potentially enjoys) a game is impacted directly by the fit between
their capabilities and those necessary to progress in the game [4]. The traditional
approaches are to either have a fixed level of difficulty, or to allow a player to
choose from a set of hand-designed difficulties. However, a universal difficulty
level may fail to satisfy many players; and hand-designed difficulties may require
significant design effort, provide only a coarse means of adjustment, and require
the player to self-rate their capabilities before interacting with the game. Thus,
many methods for automatic difficulty adjustment have been explored [1,3,4,20].

One important facet of game difficulty is the adeptness of non-player char-
acter (NPC) agents in the game. For example, how far from optimality does the
behavior of opponent agents stray? That is, the more optimal the opponent is,
the more difficult the player challenge will be. This paper focuses on applying
evolutionary algorithms (EA) to create agent controllers as a means to generate
game scenarios that vary in difficulty. EAs are appropriate for automatic con-
troller design because they provide a powerful and flexible mechanism to do so
given only a measure of adeptness, and have therefor been used often in the past
for such purposes [1, 16,20].

Evolutionary approaches to difficulty adjustment can be categorized generally
in two ways. In the first category, the computer-controlled agents evolve in real-
time as the game is played. The idea is to dynamically alter the game AI based on
player interaction, which can create unique and personalized player experiences
[20–27]. However, such approaches require the game to be designed around AI
adaptation, enabling new types of games but limiting their application to game
AI in general. For example, in Creatures [21] the main game mechanic is to
guide and teach a species of AI agents, while in NERO [23] a similarly-inspired
mechanic is to train a battalion of agents to fight other ones. By their nature, such
mechanics lead to unpredictable outcomes and can expose players to degenerate
NPC behavior, which while compelling in their own right may also undermine a
designer’s ability to craft specific and predictable player experiences.

This study focuses on a second category in which AI for opponents is opti-
mized offline, i.e. it remains unchanged during gameplay. The benefit of offline
adaptation is that player experience can be more tightly controlled, enabling it
potentially to be applied more broadly. One popular mechanism for such offline
AI design is to use EAs to evolve agent controllers. In particular, if selection
in an EA is oriented towards stronger AI behaviors, the difficulty of the game
can then be adjusted by exploiting the evolutionary history of the opponent
AI [5–16].

In this way, less evolved AI (e.g. from early generations of evolution) can
serve as a player’s opponent in early or easy levels, and more sophisticated
AI (e.g. from later generations of evolution) can be featured in more difficult
levels. However, most previous approaches focus singularly on the most optimal
behavior evolved [8,9,16], and those that consider evolving interesting or diverse
opponents [1, 28] do not fully explore the possibilities enabled by competitive
coevolution in this context. One such possibility (which is the central focus of this
paper) is to leverage as a source of diverse difficulties the separate evolutionary
trajectories of populations of agents with asymmetric abilities and conflicting
motivations.

The next section reviews the encoding used to represent and evolve agent
behaviors in the experiments.

2.2 Markov Networks

The experiment in this paper leverages a browser-game derived from the predator-
prey simulation in [29]. Agents in the simulation (and thus the game) are con-
trolled by Markov Networks (MNs), which are probabilistic controllers that
makes decisions about how an agent interacts with its environment. Because
a MN is responsible for the control decisions of its agent, it can be thought of
as an artificial brain for the agent it controls. Although MNs are the particu-
lar artificial brain applied in the simulation, other methodologies for evolving
controllers could also be used, such as neuroevolution or genetic programming.
This section briefly describes MNs, but a more detailed description can be found
in [30].

Agents in the game have sensors and actuators, as shown in Figure 1. Ev-
ery simulation time step, the MNs receive input via those sensors, perform a
computation on inputs and any hidden states (i.e., their internal memory), then
place the result of the computation into hidden or output states (e.g., actua-
tors). When MNs are evolved with a GA, mutations affect (1) which states the
MN pays attention to as input, (2) which states the MN outputs the result of
its computation to, and (3) the internal logic that converts the input into the
corresponding output.

When agents are embedded into a game simulation, sensory inputs from its
retina are input into its MN every simulation step (labeled “retina” and “Markov
Network”, respectively in Figure 1). The MN is then activated, which allows it
to store the result of the computation into its hidden and output states for the
next time step. MNs are networks of Markov Gates (MGs), which perform the
computation for the MN. In Figure 2, we see two example MGs, labeled “Gate
1” and “Gate 2.” At time t, Gate 1 receives sensory input from states 0 and 2
and retrieves state information (i.e., memory) from state 4. At time t + 1, Gate
1 then stores its output in hidden state 4 and output state 6. Similarly, at time
t Gate 2 receives sensory input from state 2 and retrieves state information in
state 6, then places its output into states 6 and 7 at time step t+ 1. When MGs
place their output into the same state, the outputs are combined into a single

0
0
1

0
0 1 1 0 0

1
0

0

0
0
0

0 0
0 0 0 0 1

0
0
0

0
0

0
01010

0
0

0

0
0
0

000000

0
0
0

retina

Markov
Network

L R

A

PRPL

Fig. 1. An illustration of the agents in the model. Light grey triangles are prey agents
and the dark grey triangles are predator agents. The agents have a 360◦ limited-distance
retina (200 virtual meters) to observe their surroundings and detect the presence of
other agents. The current heading of the agent is indicated by a bold arrow. Each
agent has its own Markov Network, which decides where to move next based off of a
combination of sensory input and memory. The left and right actuators (labeled “L”
and “R”) enable the agents to move forward, left, and right in discrete steps.

output using the OR logic function. Thus, the MN uses information from the
environment and its memory to decide where to move in the next time step t+1.

In a MN, states are updated by MGs, which function similarly to digital logic
gates, e.g., AND & OR. A digital logic gate, such as XOR, reads two binary states
as input and outputs a single binary value according to the XOR logic. Similarly,
MGs output binary values based on their input, but do so with a probabilistic
logic table. Table 1 shows an example MG that could be used to control a prey
agent that avoids nearby predator agents. For example, if a predator is to the
right of the prey’s heading (i.e., PL = 0 and PR = 1, corresponding to the
second row of this table), then the outputs are move forward (MF) with a 20%
chance, turn right (TR) with a 5% chance, turn left (TL) with a 65% chance, and
stay still (SS) with a 10% chance. Thus, due to this probabilistic input-output
mapping, the agent MNs are capable of producing stochastic agent behavior.

Table 1. An example MG that could be used to control a prey agent which avoids
nearby predator agents. “PL” and “PR” correspond to the predator sensors just to the
left and right of the agent’s heading, respectively, as shown in Figure 1. The columns
labeled P(X) indicate the probability of the MG deciding on action X given the cor-
responding input pair. MF = Move Forward; TR = Turn Right; TL = Turn Left; SS
= Stay Still.

PL PR P(MF) P(TR) P(TL) P(SS)

0 0 0.7 0.05 0.05 0.2
0 1 0.2 0.05 0.65 0.1
1 0 0.2 0.65 0.05 0.1
1 1 0.05 0.8 0.1 0.05

76543210

Gate 1 Gate 2

76543210

time t

time t+1

Fig. 2. An example Markov Network (MN) with four input states (white circles labeled
0-3), two hidden states (light grey circles labeled 4 and 5), two output states (dark
grey circles labeled 6 and 7), and two Markov Gates (MGs, white squares labeled
“Gate 1” and “Gate 2”). The MN receives input into the input states at time step t,
then performs a computation with its MGs upon activation. Together, these MGs use
information about the environment, information from memory, and information about
the MN’s previous action to decide where to move next.

A circular string of bytes is used to encode the genome, which contains all
the information necessary to describe a MN. The genome is composed of genes,
and each gene encodes a single MG. Therefore, a gene contains the information
about which states the MG reads input from, which states the MG writes its
output to, and the probability table defining the logic of the MG. The start of
a gene is indicated by a start codon, which is represented by the sequence (42,
213) in the genome.

21342 207 100 8940 130 4 1 255

21342 134 97

Gene 1

Start N in outN Input State IDs Output State IDs Probabilities

Gene 2

11346# 140 # #

7120 238 # 248 1671017# 254 # #

Fig. 3. Example circular byte strings encoding the two Markov Gates (MGs) in Fig-
ure 2, denoted Gene 1 and Gene 2. The sequence (42, 213) represents the beginning of
a new MG (white blocks). The next two bytes encode the number of input and output
states used by the MG (light grey blocks), and the following eight bytes encode which
states are used as input (medium grey blocks) and output (darker grey blocks). The
remaining bytes in the string encode the probabilities of the MG’s logic table (darkest
grey blocks).

Figure 3 depicts an example genome. After the start codon, the next two
bytes describe the number of inputs (Nin) and outputs (Nout) used in this MG,
where each N = 1 + (byte mod Nmax). Here, Nmax = 4. The following Nmax

bytes specify which states the MG reads from by mapping to a state ID number

with the equation: (byte mod Nstates), where Nstates is the total number of
input, output, and hidden states. Similarly, the next Nmax bytes encode which
states the MG writes to with the same equation as Nin. If too many inputs or
outputs are specified, the remaining sites in that section of the gene are ignored,
designated by the # signs. The remaining 2Nin+Nout bytes of the gene define the
probabilities in the logic table.

All evolutionary changes such as point mutations, duplications, deletions, or
crossover are performed on the byte string genome. During a point mutation, a
random byte in the genome is replaced with a new byte drawn from a uniform
random distribution. If a duplication event occurs, two random positions are
chosen in the genome and all bytes between those points are duplicated into
another part of the genome. Similarly, when a deletion event occurs, two random
positions are chosen in the genome and all bytes between those points are deleted.
Crossover for MNs was not implemented in this experiment to allow for a succinct
reconstruction of the line of descent of the population, which was important in
the original study [29].

3 Approach

In typical applications of video game difficulty adjustment through evolved AI,
only one class of AI (typically the opponent) is evolved, and the evolutionary
history of the evolved AI yields a variety of differentially-adapted AIs. Near the
beginning of evolutionary training we expect AIs to be incapable or maladapted,
while after many generations of selection the AI becomes increasingly competent
at performing the task it was selected for. This range of behaviors forms a
continuum from which one can tailor the difficulty of player game experiences.
Here instead of evolving only a single population of opponent AI agents, we co-
evolve both the opponent agent and collaborative agents that help the player;
these distinct agent types can have different capabilities and will have orthogonal
fitness functions (because their motivations are in conflict).

The advantage of orthogonally-evolved AI is that it can enable players to
interact not only with collaborative and opponent AIs taken from the same
generation of evolution, but also with agents taken from separate, arbitrary
generations. For example, the player can play not only with opponents and col-
laborators that are both capable (i.e. opponents and collaborators taken from
the end of an evolutionary run), but can also face a more difficult situation if
a well-adapted opponent is combined with a weakly-adapted and largely inca-
pable team of player-collaborative agents. Or conversely, to engineer an easier
game experience, a well-adapted collaborating team can be combined with an
incapable opponent taken from an early generation of its evolution. The idea is
that combining opponents and collaborators from different points of evolution
will result in increased possibilities for player game experiences, as illustrated
by Figure 4.

fi
tn

e
s
s

generations

fi
tn

e
s
s

generations

difficulty

difficulty

d
if
fi
c
u

lt
y

linear

orthogonal

Fig. 4. Comparison of linear vs. orthogonal evolution of AI The top Figure
(linear) shows a typical application of evolved AI. The difficulty (ability of the evolved
AI) increases with generations of evolution. The bottom Figure (orthogonal) shows an
example of orthogonal evolution where two populations are co-evolved with orthogonal
incentives. Because AIs from both populations can be mixed arbitrarily, many more
game situations can be constructed.

4 Experiment

The main hypothesis explored here is that the described method of using or-
thogonally evolved AIs helps to expand options for game difficulty. One means
to test this hypothesis is for players to interact in a game setting with various
mixtures of adapted and unadapted AIs for both opponents and collaborators. If
the hypothesis is true, the expectation is that player performance will vary over
all tested combinations. Conversely, if the hypothesis is false then there should
be no additional significant differences in player performance from varying agent
adapatedness across opponents and collaborators.

Testing this hypothesis requires a video game implementation with NPCs
that can play alongside the player, which may not be possible or appropriate in
every game. In this paper, the particular video game used for experimentation
is derived from a simple predator-prey simulation from [29]. In the original sim-
ulation, predator and prey agents are controlled by evolved Markov networks
inspired by computational abilities of biological brains. A single predator on a
2d surface is evolved to catch as many of the coexisting prey agents as possi-
ble. In contrast, the group of prey agents is collectively evolved to resist being
caught (for detailed explanation see: [29]). In this way, the motivations of the
predator and prey are orthogonal. Over generations, the predator evolves to
more efficiently catch prey agents by learning to attack the outside of a swarm
of prey agents more consistently. Prey agents in the simulation evolve to swarm
together, because those that can not successfully swarm become isolated from
the rest of the prey agents, and are more easily caught. The resulting evolved

swarming behavior is explained by the selfish herd hypothesis [19,31], which the
simulation was designed to investigate.

A game was created which implemented the same simulation rules, but sub-
stituted a human player for one of the swarming prey agents. The human’s
objective is to evade the predator as long as possible (Figure 5). All of the other
agents in the game are controlled by MNs; importantly, the non-player prey
agents are controlled by MNs taken from a separate population (and poten-
tially a separate point in that population’s evolutionary history) from that of
the predator agent.

player

predator

Fig. 5. Typical game situation. The player uses the keyboard’s left and right keys
to control the player agent (bright green) within a group of other collaborating agents
(dim green). The predator agent (red) can kill the other agents if close enough to them.
The player has 120 seconds (remaining time is shown at the top right) to evade the
predator. Note that the number of remaining collaborating agents is shown at the top
left. Figure is best viewed in color.

The simulation was adapted into a browser-based game, and human players
were recruited from Amazon’s Mechanical Turk to play. In the game, a group
of swarming agents is antagonized by a predator agent. The player acts as one
of the swarm agents and is tasked with avoiding the predator. All agents other
than the player (i.e. the predator and the remaining prey agents) are controlled
by previously evolved Markov networks (i.e. no evolution takes place while the
game is played). The predators were evolved to catch prey while prey agents
were evolved to flee predators and eventually swarm together to avoid capture.
Predator and prey Markov networks can either come from a relatively unevolved
stage (generation 900) or from a relatively evolved stage (generation 1, 900). At
the beginning of the game one of the four possible combinations of adaptation

for the predator and prey Markov networks is randomly chosen. The game ends
either if the predator catches the player or after 120 seconds pass.

4.1 Experimental Details

First, several evolutionary runs were performed using the EOS framework [29]
with its default settings. Organisms on the line of descent [32] from the predator
as well as from the prey populations were saved every 25 generations. A particu-
lar evolutionary run was then selected that showed a large gain in swarming and
predation capability at end of the run compared to the beginning. The motiva-
tion was to ensure a significant recognizable difference between the capabilities
of the AI over its evolutionary history. Agents were chosen from two time points
(generations 900 and 1, 900) to represent different levels of adaptation (referred
to here as evolved and unevolved). Detailed description of the simulation and
evolutionary setup can be found in [29].

The game was implemented in Processing [33] and can be run in a web
browser using ProcessingJS. 200 Amazon Mechanical Turk users were recruited
to play the game1 , which was embedded in a website. At the start of the game,
one of the four possible experimental conditions was randomly chosen: unevolved
prey & unevolved predator, unevolved prey & evolved predator, evolved prey
& unevolved predator, or evolved prey & evolved predator. Each player was
required to play for either 120 seconds or until caught by the predator. The
game difficulty implicitly increases with time because as the predator decimates
the prey agents, the player is increasingly likely to be hunted by the predator.
At the end of the game how long the player survived (at best 120 seconds) and
how many other prey agents were still alive at that point, was recorded.

5 Results

The results of the experiment show that in the four tested combinations, average
player survival time for each individual combination significantly differs from
each of the others (Figure 6). Intuitively, one might expect that the game’s
difficulty depends mostly upon the predator’s ability to catch prey, because
only the predator poses direct danger to the player. This intuition suggests
that the two environments with the unevolved predator should be the easiest
and the two environments containing the evolved predator should be the most
challenging. Interestingly, however, the results instead show that the difficulty
of the game depends more on the ability of the prey to swarm than on the
ability of the predator to catch. The more evolved the prey is, the easier the
game becomes, while the predator’s ability is only of secondary importance. In
this way, the results highlight that evolving opponents and collaborators with
orthogonal objectives, like in this predator prey example, indeed allows for more

1 Our study was exempt by the Office of Research Support at the University of Texas
at Austin. Number 2013-09-0084. Due to the exemption, by not taking any personal
data, and due to the anonymity of the subjects, we did not need written consent.

combinations of difficulty (Figure 4). Thus, choosing AIs for distinct roles from
different evolutionary time points can facilitate a smoother (and potentially more
complex) progression of game difficulties.

u/uu/e e/ue/e
0

20

40

60

80

100

120

ti
m
e

Fig. 6. Comparison of player performance The average time in seconds players
survived before being caught by the predator, for four different conditions, from left
to right: (u/e) predator from an early point in evolution (generation 900) paired with
evolved prey (generation 1, 900), (e/e) both AIs from a late point in evolution (gener-
ation 1, 900), (u/u) both AIs from an early point in evolution (generation 900), (e/u)
predator from a late point in evolution (generation 1, 900) paired with unevolved prey
(generation 900)

Further, in this kind of interactive environment it is not only the swarm-
ing agents that influence player survivability. Conversely, the player actions can
effect how well the swarm agents survive. When comparing the swarm agents’
survival rate in the presence of the player, to a situation where the player’s
agent is controlled by the same AI as all the other prey agents, the result is
that player interactions reduce the prey survivability only when the prey agents
are controlled by the more evolved AI (Figure 7). When prey agents are taken
from an early generation the effect is more subtle. This result shows that not
only can the difficulty the player experiences can be modulated by the degree of
adaptation of prey agents, but that evolved prey agents are also more influenced
by player actions if they are more evolved themselves.

Note that in order to assess the influence players have on the survivability of
prey agents in the game, the following exponential decay function was used:

n = e
a− a

1−(x
a

)2 (1)

As an approximation for the number of organisms alive over time in the presence
of the player, the number of organisms alive after 120 seconds or at the time
point the player died was used to fit Equation 1. To assess prey survivability
without the presence of the player, for each of the four possible conditions the
game was run without a player, and the player organism was controlled by the
same AI as the other swarm agents. For these runs, the data was aggregated to
estimate the average number of prey, and also was fit to Equation 1.

For both data sets the residuals against each of the fitted functions were
computed and a Mann Whitney U test was performed to show that the residuals
of each others fit were significantly different from one another.

6 Discussion

First, it is important to note that this approach of controlling swarming agents
in video games with evolved MNs contrasts with more conventional approaches.
For example, the Boids algorithm [34] is commonly applied to control swarm-
ing agents, and works by uniformly applying three elementary forces (separation,
alignment, and cohesion) to each agent in the swarm. These simple forces govern
the entire swarm and dictate where each individual moves. Swarm behavior can
be varied by adjusting a limited set of parameters (e.g. the radius of influence,
the force applied, and the turning rate). However, the potential for novelty is lim-
ited because such parameters do not change the fundamental underlying forces.
Furthermore, in general adapting the Boids model to particular capabilities of
antagonisitic agents (like the predator) requires specific human insight. To over-
come the limitations of simpler models (like the Boids algorithm) the EOS model
is applied here, where agents are individually controlled by an evolved Markov
network (which could in theory approximate the Boids algorithm through learn-
ing). Such Markov networks have to our knowledge not been applied to video
games before, and our work demonstrates their feasibility. An interesting bene-
fit of such networks is that in contrast to more computationally demanding AI
algorithms, once evolved Markov networks are computationally tractable to em-
bed even within javascript browser games. Each agent in a swarm is controlled
by its own Markov network, allowing for novelty and variability between swarm
agents. In some video games it is likely more interesting and visually appealing
for the player to have heterogeneous swarms, which the use of evolved Markov
networks enables.

More broadly, the results present an elaboration on previous approaches to
difficulty adjustment in video games, which primarily focus on the evolution of
opponent AI to create a single axis for difficulty adjustment: The more genera-
tions over which the opponent evolves, the more challenging it is to overcome.
In contrast, coevolving the opponent agent with collaborative agents enables a
wider spectrum of possibilities. Instead of exploiting only the evolutionary his-
tory of the opponent to adjust difficulty, the player can engage with different
combinations of opponents and collaborators, which in the case studied here
allows for smoother difficulty adjustment. In this way, the results demonstrate
that coevolving separate populations of agents with orthogonal objectives is a
viable method to improve difficulty adjustment.

One surprising result is that the difficulty in the explored game depends more
on the capability of the collaborator (prey) than on the opponent (predator).
While it is difficult to pinpoint the exact reasons for such behavior, it appears
that when the player interacts with collaborators that can effectively swarm
and evade the opponent, the player has an effective example to mimic, which

0 20 40 60 80 100 120

t

0

5

10

15

20

25

30

a
li
v
e

u/u

0 20 40 60 80 100 120

t

0

5

10

15

20

25

30

a
li
v
e

u/e

0 20 40 60 80 100 120

t

0

5

10

15

20

25

30

a
li
v
e

e/u

0 20 40 60 80 100 120

t

0

5

10

15

20

25

30

a
li
v
e

e/e

Fig. 7. Comparison of prey survivability The figure compares the survival over
time of prey agents, when interacting with a human-controlled prey, or when interacting
only with computer-controlled agents. Each plot is titled by two letters that indicate
the adaptedness of both the predator (first letter) and prey (second letter). The letter
itself indicates whether agents come from an early point in evolution (u for “unevolved”;
generation 900) or a late point in evolution (e for “evolved”; generation 1, 900). Thus
the top left plot titled “u/e” reflects pairing a predator from generation 900 with prey
from generation 1, 900). Black dots indicate the number of prey living when the player
dies (when interacting with a human-controlled agent) and red Xs indicate the average
number (over 5 sampled runs) of prey alive when there is no human interference.
Curves are fit to the data points, and their color reflects the color of the data points
from which they are derived. The distribution of the residuals between the red and
black data points and their corresponding fit is significantly different between all four
cases (p < 0.001). The conclusion is that player interaction influences the effectiveness
of the other prey agents.

shortens player learning time and thereby improves the player’s performance.
Another reason for the importance of the collaborative agents is that in the
swarming example applied here, the evolved swarm of collaborators actively
aggregates, and thereby protects the player as long as the player stays within
the bounds of the swarm. This type of altruistic group behavior can improve the
player’s survivability, thereby providing an interesting example of an emergent
game mechanism that is automatically discovered by orthogonal coevolution.

An additional idea explored in this paper is transplanting agents evolved
originally in a scientific setting to create or enhance an entertaining video game.
In particular, this paper creates a video game by exapting AI agents evolved in a
simulation exploring biological hypotheses for the evolution swarming behavior
[19]. A possible benefit is that through directly interacting with evolved AI
in a game-like environment, a reader of a paper can potentially more easily
understand the paper, as well as better judge the quality and sophistication of the
results. In this way, video games based on scientific simulations can potentially
assist wider understanding of scientific results by non-experts. Future work will
investigate the plausibility of such ideas.

A limitation of the approach is that it may not always be appropriate or
easy to formulate a game situation in terms of orthogonally evolved popula-
tions. However, computer games are increasingly multiplayer and increasingly
incorporate massive game worlds, providing natural opportunities for game de-
signers to augment games with collaborative agents in addition to more typical
confrontational opponents. In particular, MMORPGs not only commonly con-
tain companions and enrich their environments using NPCs, but such games (or
perhaps real time strategy games) may also benefit from integrating evolution-
ary mechanisms into their gameplay, and thereby allow opponents and NPCs
to evolve as a game progresses. As shown in the results, player action indeed
influences prey performance, which supports the idea that agents can adapt to
players within the game.

7 Conclusion

This paper introduced the concept of orthogonal coevolution, and tested its ef-
fectiveness in a browser-based game adapted from a scientific simulation. The
results demonstrate that evolving opponents in conjunction with evolved com-
panions can lead to smoother difficulty adjustment and allow players to experi-
ence more varied situations. The conclusion is that such orthogonal coevolution
may be a promising approach for adjusting video game difficulty.

8 Acknowledgments

We would like to thank Chris Adami for insightful comments and discussion of
the project.

References

1. Yannakakis, G.N.: AI in Computer Games (2006)
2. Browne, C.: Evolutionary Game Design. Springer (September 2011)
3. Spronck, P., Sprinkhuizen-Kuyper, I., Postma, E.: Difficulty scaling of game AI.

on Intelligent Games (2004)
4. Hunicke, R., Chapman, V.: AI for dynamic difficulty adjustment in games. Chal-

lenges in Game Artificial Intelligence AAAI (2004)
5. Overholtzer, C.A., Levy, S.D.: Evolving AI opponents in a first-person-shooter

video game. In: AAAI Proceedings of the 20th national conference on Artificial
intelligence. (2005)

6. Cole, N., Louis, S.J., Miles, C.: Using a genetic algorithm to tune first-person
shooter bots. Audio, Transactions of the IRE Professional Group on 1 (June 2004)
139–131

7. Tan, T.G., Anthony, P., Teo, J., Ong, J.H.: Neural network ensembles for video
game AI using evolutionary multi-objective optimization. Audio, Transactions of
the IRE Professional Group on (December 2011) 605–610

8. Yau, Y.J., Teo, J., Anthony, P.: Pareto Evolution and Co-evolution in Cogni-
tive Game AI Synthesis. In: Evolutionary Multi-Criterion Optimization. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007) 227–241

9. Yau, Y.J., Teo, J., Anthony, P.: Pareto Evolution and Co-Evolution in Cognitive
Neural Agents Synthesis for Tic-Tac-Toe. In: 2007 IEEE Symposium on Compu-
tational Intelligence and Games, IEEE (2007) 304–311

10. Mayer, H.A., Maier, P.: Coevolution of neural Go players in a cultural environment.
Audio, Transactions of the IRE Professional Group on 2 (September 2005) 1017–
1012

11. Lubberts, A., Miikkulainen, R.: Co-evolving a go-playing neural network. . . .
Algorithms Upon Themselves (2001)

12. Chellapilla, K., Fogel, D.B.: Evolving an expert checkers playing program without
using human expertise. Evolutionary Computation, IEEE Transactions on 5(4)
(2001) 422–428

13. Chellapilla, K., Fogel, D.B.: Evolution, neural networks, games, and intelligence.
In: Proceedings of the IEEE. (1999) 1471–1496

14. Lim, C.U., Baumgarten, R., Colton, S.: Evolving behaviour trees for the commer-
cial game DEFCON. In: EvoApplicatons’10: Proceedings of the 2010 international
conference on Applications of Evolutionary Computation, Springer-Verlag (April
2010)

15. Hagelbäck, J., Johansson, S.J.: Using multi-agent potential fields in real-time strat-
egy games. In: AAMAS ’08: Proceedings of the 7th international joint conference
on Autonomous agents and multiagent systems, International Foundation for Au-
tonomous Agents and Multiagent Systems (May 2008)

16. Priesterjahn, S., Kramer, O., Weimer, A., Goebels, A.: Evolution of Human-
Competitive Agents in Modern Computer Games. In: 2006 IEEE International
Conference on Evolutionary Computation, IEEE (November -2005) 777–784

17. van VALEN, L.: A new evolutionary law. Evolutionary Theory 1 (1973) 1–30
18. Bell, G.: The Masterpiece of Nature. The Evolution and Genetics of Sexuality.

CUP Archive (1982)
19. Olson, R.S., Knoester, D.B., Adami, C.: Critical interplay between density-

dependent predation and evolution of the selfish herd. In: GECCO ’13: Proceeding
of the fifteenth annual conference on Genetic and evolutionary computation con-
ference, ACM Request Permissions (July 2013)

20. Yannakakis, G.N., Hallam, J.: Evolving opponents for interesting interactive com-
puter games. From animals to animats (2004)

21. Grand, S., Cliff, D., Malhotra, A.: Creatures: artificial life autonomous software
agents for home entertainment. In: AGENTS ’97: Proceedings of the first interna-
tional conference on Autonomous agents, ACM (February 1997)

22. Pollack, J., Blair, A.: Co-Evolution in the Successful Learning of Backgammon
Strategy. Machine Learning (1998)

23. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Evolving neural network agents in
the NERO video game. In: Proceedings of the IEEE. (2005)

24. Hastings, E.J., Guha, R.K., Stanley, K.O.: Evolving content in the Galactic Arms
Race video game. In: 2009 IEEE Symposium on Computational Intelligence and
Games (CIG), IEEE (2009) 241–248

25. DeLooze, L.L., Viner, W.R.: Fuzzy Q-learning in a nondeterministic environment:
developing an intelligent Ms. Pac-Man agent. In: CIG’09: Proceedings of the 5th
international conference on Computational Intelligence and Games, IEEE Press
(September 2009)

26. Handa, H.: Constitution of Ms.PacMan player with critical-situation learning
mechanism. International Journal of Knowledge Engineering and Soft Data
Paradigms 2(3) (January 2010) 237–250

27. Tong, C.K., Hui, O.J., Teo, J., On, C.K.: The Evolution of Gamebots for 3D First
Person Shooter (FPS). Audio, Transactions of the IRE Professional Group on
(September 2011) 21–26

28. Agapitos, A., Togelius, J., Lucas, S.M., Schmidhuber, J., Konstantinidis, A.: Gen-
erating diverse opponents with multiobjective evolution. In: Computational Intel-
ligence and Games, 2008. CIG’08. IEEE Symposium On, IEEE (2008) 135–142

29. Olson, R.S., Hintze, A., Dyer, F.C., Knoester, D.B., Adami, C.: Predator confu-
sion is sufficient to evolve swarming behaviour. J R Soc Interface 10(85) (2013)
20130305

30. Marstaller, L., Hintze, A., Adami, C.: The evolution of representation in simple
cognitive networks. Neural Computation 25(8) (August 2013) 2079–2107

31. Hamilton, W.D.W.: Geometry for the selfish herd. Journal of Theoretical Biology
31(2) (May 1971) 295–311

32. Lenski, R.E., Ofria, C., Pennock, R.T., Adami, C.: The evolutionary origin of
complex features. Nature 423(6) (May 2003) 139–144

33. Fry, B., Reas, C.: Processing Library for Visual Arts and Design
34. Toner, J., Tu, Y.: Flocks, herds, and schools: A quantitative theory of flocking.

Audio, Transactions of the IRE Professional Group (April 1998)

