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Abstract

This paper proposes a novel Semantic Web of Things framework, enabling collaborative discovery of sensors and actuators in
pervasive contexts. It is based on a backward-compatible extension of the Constrained Application Protocol (CoAP), supporting
advanced semantic matchmaking via non-standard inference services. The framework also integrates efficient data stream mining
to analyze raw data gathered from the environment and detect high-level events, annotating them with machine-understandable
metadata. A case study about cooperative environmental risk monitoring and prevention in Hybrid Sensor and Vehicular Networks
is presented and experimental performance results on a real testbed are provided.
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1. Introduction and Motivation

The emerging Semantic Web of Things (SWoT)1 vision joins together the Semantic Web and the Internet of Things
(IoT). It aims to enable new classes of smart applications and services by augmenting real-world objects, locations and
events with semantically rich and machine-understandable information, conveyed through unobtrusive, inexpensive
and often disposable micro-devices. Environmental monitoring is among the most relevant and challenging applica-
tion scenarios. It requires coping with hard issues, such as: large-scale data and sensor management; volatility of
resources, users and devices; heterogeneity of hardware/software platforms; dependence on context; strict compu-
tational resource constraints. The Constrained Application Protocol (CoAP)2 is becoming one of the most widely
accepted application-layer protocols for things networks. Nevertheless, it currently allows only a basic data-oriented
representation of resources and elementary retrieval procedures relying on string matching between requests and
resource attributes, with just binary “yes/no” outcomes. Exact request/resource matches are very uncommon in real-
world scenarios, with heterogeneous devices, sensors and actuators from several independent providers.
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The SWoT needs more effective resource discovery, supporting also approximate matches and possibly provid-
ing a relevance metric between each available resource and a request. By solving this problem, one would strongly
promote interoperable collaboration in large, multi-party Wireless Sensor Network (WSN) deployments and federa-
tions. As a consequence, integrating smart objects and WSNs with Semantic Web technologies and infrastructures is
a currently relevant research trend. Various solutions have been proposed, exploiting reference ontologies to annotate
data, devices and services and sharing sensor data along the Linked Open Data guidelines through RESTful3,4 web
services. The SPITFIRE 5 service infrastructure for semantic applications leveraged Internet-connected sensors and
lightweight protocols like CoAP. Sensors were described as RDF triples and service discovery was based on meta-
data such as device features or location. The use of semantics for automatic sensor composition was also exploited
to enable a user-driven exploratory search aiming to select the most appropriate sensors for the particular problem6.
Unfortunately, those works allowed only basic queries in SPARQL fragments on RDF annotations. More advanced re-
source discovery features were not supported. Data and sensor management in mobile and pervasive contexts require
techniques such as ontology-based complex event processing7 and semantic matchmaking8. The latter in particular
supports approximated matches and resource ranking with explanation of outcomes, by means of logic-based infer-
ence services. To reach this goal, this paper borrows technologies from the Semantic Web to define a comprehensive
SWoT framework for fully decentralized cooperation. The approach manages high-level annotations of data streams,
devices, events of interest and services, with a well-defined meaning w.r.t. a shared domain conceptualization (i.e., on-
tology). From a technological standpoint, the proposal integrates: (i) slight backward-compatible extensions to CoAP
and CoRE Link Format (IETF CoRE Working Group RFC 6690, http://tools.ietf.org/html/rfc6690) resource discovery
protocol; (ii) high-level event detection and annotation through resource-efficient data mining algorithms on raw data
gathered by a Semantic Sensor Network (SSN, i.e., a semantic-enhanced WSN) using the SSN-XG ontology9 as ref-
erence vocabulary; (iii) non-standard inferences for semantic-based matchmaking8 for resource retrieval and ranking,
supporting approximate matches besides full ones. A case study on collaborative environmental risk monitoring and
management in Hybrid Sensor and Vehicular Networks (HSVNs) is presented to validate and explain the approach. A
testbed was developed implementing the framework with real devices and experiments were executed.

2. Semantic Sensor Networks for advanced context extraction

The proposed reference architecture extends an earlier version of the CoAP-based framework10. Sensors deployed
in an area communicate with a local sink node, which acts as cluster head. Multiple sinks are connected to a gateway,
interfacing the network toward the outside. Each sensor is characterized not only by data-oriented attributes, but also
by a semantic annotation describing its features and functionalities. Sinks are able to: (i) register sensors along with
their semantic descriptions as CoAP resources; (ii) support logic-based resource discovery on annotated metadata,
leveraging a lightweight embedded matchmaker8. For these purposes, sink nodes embed CoAP servers. They also
gather and process data for event detection. When an event is recognized, it is annotated and a resource record is
updated in the server. Beyond the semantic annotation, the record contains further extra-logical context parameters,
such as geographic coordinates and a timestamp. The gateway waits for resource discovery requests from client
applications searching for events in the area, and replies on behalf of connected sink nodes.

The two prototypical modules developed in the basic framework10 were improved to support a collaborative sens-
ing process. Communication in SSNs was implemented using a modified version of Californium CoAP library
(http://eclipse.org/californium/), enabling the semantic-based enhancements of the CoAP protocol10.
JOSM SSN plugin. Figure 1 shows the prototype GUI of the SSN plugin for the Java OpenStreetMap (OSM)
open source editor (http://josm.openstreetmap.de/). It can be used to perform the following tasks: (i) SSN browsing,
showing on the map in (A) the available sensors and sink nodes registered on CoAP gateways; (ii) Semantic-based
sensor discovery, for customizing a semantic-based CoAP request (by specifying reference location, maximum dis-
covery range, inference task to perform and relevance threshold) visually through panel (B) and sending it to look for
sensors in the area; (iii) SSN scenario generation to create random configurations for large-scale SSN simulations,
through the panel (C) shown in Figure 1, which extends the OSM to Rescue plugin11 (http://kaspar.informatik.uni-
freiburg.de/∼osm/). Scenarios can be customized according to the parameters reported in Table 1.
CoAP Mobile Node. An Android-based client was developed using Android SDK Tools (Revision 21.1, correspond-
ing to Android Platform version 4.2.2, API level 17) and tested on a Samsung GT-i9250 Galaxy Nexus smartphone.
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Fig. 1: JOSM plugin for CoAP-based SSNs Fig. 2: Covering result

Table 1: Parameters for scenario generation

Parameter Description Parameter Description
S number of sink nodes G num. of CoAP gateways (GWs)

Dmin min num. of CoAP sensors per sink S min min num. of sinks connected to a CoAP GW
Dmax max num. of CoAP sensors per sink S max max num. of sinks connected to a CoAP GW

dMaxS max distance in m between sink and sensors dMaxG max distance in m between two connected GWs

It was devised to support in-the-field communication with SSNs and to perform: (a) SSN browsing and sensor dis-
covery, in which the user can select a gateway node and view all connected sensors or only devices retrieved after
a semantic-based discovery. Each sensor can be also queried to retrieve data it measures; (b) Collaborative sensing:
when a mobile node (e.g., an Android smartphone) queries a CoAP gateway, it can be also configured automatically
as an information source, connected to the gateway temporarily. It can provide data coming from both embedded sen-
sors (e.g., accelerometer, gyroscope) and external sensing peripherals available through wired or wireless connections.
These data can further characterize the reference environment, enabling improved event detection. In this way, mobile
nodes are enticed to share their perceptions with the rest of the SSN in order to obtain a more accurate feedback.

The proposed SSN framework includes a simple yet effective data mining method, devised to extract relevant
information from sensor readings and annotate it, consisting of the following steps. (i) Read and collect data from
the sensors embedded in the device, as well as from external sensors in the field through standard CoAP requests.
(ii) Compute average, variance and standard deviation for the current time window, so as to assess the variability of
collected information within the monitored area. (iii) Compute incremental ratio of the above indexes w.r.t. previous
time windows, in order to highlight trends and significant changes. (iv) For every data collection, define a (binary
or multiple) classifier, to detect relevant events when given conditions occur. In the case study in Section 3, mining
and event detection are executed at gateway level after sensors send data via standard CoAP frames. (v) The output
of each classifier is a logic-based expression constructed according to knowledge modeled in a reference ontology,
which formalizes a conceptualization of the sensing domain.

CoAP adopts the CoRE Link Format specification for resource discovery. This protocol only allows a syntactic
string-matching of attributes, lacking an explicit and formal characterization of the resource semantics. To overcome
this limitation, semantic-based CoAP protocol enhancements10 allow to exploit non-standard inferences for automated
semantic sensor discovery and composition. Concept Covering8 is particularly useful in SWoT scenarios, such as
sensor networks, where data must be gathered from specific and different types of sensors to infer proper events. A
client application composes a discovery request and queries a SSN gateway to find a set of most suitable sensors,
among those managed by sinks directly connected to the gateway, having a semantic description expressed in OWL
(Web Ontology Language, http://www.w3.org/TR/owl2-primer) w.r.t. a shared ontology. The gateway carries out
semantic matchmaking by solving a Concept Covering Problem (CCoP), in order to find the set of resources which
together satisfy the request to the maximum extent. In case of a partial cover, the response can also include both the
semantic description of the uncovered part (H) of the request and the percentage of request not covered. This value
is obtained comparing H w.r.t. the starting request by means of semantic-based ranking algorithms8. Furthermore,
exploiting the proxy support built into CoAP, the gateway has the possibility to forward the uncovered part as a new
request towards other SSN nodes in the area of interest, searching for more resources to satisfy missing features. In
this way, each semantic-enabled gateway can start a collaborative and multi-hop resource discovery.
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3. Case study: collaborative environmental monitoring

In order to clarify the proposed approach and show its benefits, a case study in cooperative environmental moni-
toring is reported. It focuses on Hybrid Sensor and Vehicular Networks (HSVNs), which merge Vehicular Ad-Hoc
Networks (VANETs) and WSNs. In HSVNs, sensors are distributed along roads to monitor and gather information
about the environmental conditions of a given area. Furthermore, vehicles receive safety warnings and traffic in-
formation from deployed Road-Side Units (RSUs) through Vehicle-to-Infrastructure (V2I) wireless communication
technologies. Each RSU is a CoAP gateway and periodically queries sinks in its range. Sinks perform Concept Cov-
ering for semantic-based discovery to find suitable sensors and return the most appropriate device set to the RSU.
The latter can now start obtaining raw data from sensors and detects weather events via data mining, as described in
Section 2. Event annotations are then exposed to warn vehicles about current driving risk factors. Extending the SSN-
XG ontology along the Stimulus-Sensor-Observation design pattern9, both observed parameters (e.g., temperature,
humidity, wind speed) and sensor measurement capabilities (e.g., accuracy, resolution, frequency) were defined.

It is morning. A car is travelling on SS16, a highway near Bari, Italy. The road has low-density traffic with 90
vehicles flowing per hour. Possible risks are due to crossroads. This environmental monitoring scenario was simulated
with an SSN randomly generated by the JOSM plugin described in Section 2. Figure 2 depicts three RSUs, eight
sinks and fourteen sensors in the network. The car (blue icon in the picture) is driving near the RSU1 gateway, which
composes a discovery request D, using concepts defined in the domain ontology, as reported in Figure 3 in OWL 2
Manchester Syntax. The CoAP request also includes: (i) the RSU reference location P, defined through the attributes
lt and lg; (ii) maximum distance md; (iii) minimum covering threshold sr for resource retrieval. In particular,
RSU1 looks for devices located near SS16 with a maximum distance of 3000 m from P and a coverage threshold
value of 90%. After a distance-based pre-filtering, RSU1 solves the CCoP applied to sensors10. Figure 3 reports
concept expressions for some of the sensors inside the measurement area in Figure 2 and connected to gateway node
RSU1. Connected sinks retrieve a covering set S c(RSU1) composed of LM70Sensor, BMP085Sensor and FS11Sensor.
Nevertheless, this set does not fully cover the request: an uncovered part URS U1 is returned, corresponding to 37% of
D. In detail, no anemometer or humidity sensor has been retrieved, and LM70Sensor does not completely satisfy the
required temperature measurement capabilities. Consequently, RSU1 sends a CoAP semantic request to the reachable
gateway RSU2, forwarding URS U1 to discover remaining sensors. S c(RSU2) is composed of Hts2030Sensor, while
URS U2 is 14%. Similarly, RSU2 forwards URS U2 to RSU3, obtaining BitLineBLVSensor. Finally, RSU2 returns the
discovered sensor set to RSU1, also specifying the final uncovered part URS U3, corresponding to 5% of the original D.

Now RSU1 can query and observe sensors to acquire data for weather event detection. Using the process described
in Section 2 (computation details not shown due to lack of space), the classifier identifies Fog and Rain events in the
example. The corresponding semantic annotations become resources for a further matchmaking process carried out
for vehicle safety. RSU1 waits for vehicles equipped with a wireless interface entering its radio range. Let us suppose
that the vehicles described in Figure 4 drive nearby RSU1 and are equipped with a prototypical system for real-
time monitoring and driving assistance12. Therefore, each of them is able to interpret data extracted from On-Board
Diagnostics (OBD-II) car interface and smartphone sensors, integrating locally detected environmental information
and potential risk factors into the request. Consequently, the RSU can use the provided information to further enrich
event annotation, e.g., traffic level, road pavement conditions, and so on. RSU1 will perform matchmaking between
vehicle descriptions and weather events, reported in Figure 4, each annotated in terms of safety requirements a car
must implement to limit risks. Finally, for each 〈vehicle, event〉 pair, RSU1 exploits Concept Abduction inference
service8 to detect risk level. The X5 is the safest vehicle, because it is equipped with snow tires (also useful in case
of rain), fog lamps, ABS and ESP. The A3 has higher risk levels due to its medium-high speed, despite the activated
ABS and fog lamps. A high speed and inadequate safety features make the 600 absolutely unsuitable.

4. Experiments

To prove the feasibility of the proposed framework, a performance evaluation was carried out in a testbed with
real devices. Tests aimed to measure the amount of data exchanged between network nodes and the time spent
by RSU1 to obtain the list of sensors useful for monitoring environmental conditions. Semantic-enabled CoAP
servers for RSU1 and the three sinks it manages were executed on different Raspberry Pi Model B (specifications:
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Request ≡ Sensor and (hasTemperature only (LowRes. and LowAcc. and HighLaten.)) and (hasVisibility only (LowAcc. and
LowFreq.)) and (hasOperatingRange only LowMedAltit.) and (hasPressure only (LowAcc. and MediumRes.)) and (hasWindSpeed
only (MediumRes. and MediumAcc. and LowPrec.)) and (hasHumidity only (MediumAcc. and MediumRes. and HighFreq.))

LM70Sensor (S 1) ≡ TemperatureSensor and (hasTemperature only (LowAcc. and HighRange and MediumFreq.)) and
(hasOperatingRange only LowMedAltit.)

BMP085Sensor (S 2) ≡ Barometer and (hasPressure only (LowAcc. and MediumRes. and LowRange and LowPrec.))

FS11Sensor (S 2) ≡ VisibilitySensor and (hasVisibility only (LowAcc. and LowRange and LowFreq.))

Hts2030Sensor (S 5) ≡ HumiditySensor and (hasHumidity only (MediumAcc. and MediumRes. and HighRange and HighFreq.))

BitLineBLVSensor (S 7) ≡ AnenometerSensor and (hasWindSpeed only (MediumAcc. and LowRes. and MiddleRange and LowPrec.))

Fig. 3: Request and sensors descriptions

BMW X5 ≡ Vehicle and SUV and (hasSpeed only ModerateSpeed) and (hasLamp only (XenonLamp and FogLamp)) and (hasSecureDevice
only (ABS and ESP)) and (hasPneumatic only SnowTire)
BMW X5 Sensing ≡ (trafficLevel only Low) and (pavement only Irregular)

Audi A3 ≡ Vehicle and Sedan and (hasSpeed only HighSpeed) and (hasLamp only FogLamp) and (hasSecureDevice only ABS) and
(hasPneumatic only TraditionalTire)
Audi A3 Sensing ≡ (trafficLevel only Low) and (pavement only SlightlyIrregular)

Fiat 600 ≡ Vehicle and EconomyCar and (hasSpeed only HighSpeed) and (hasLamp only HeadLamp) and (hasPneumatic only
TraditionalTire)
Fiat 600 Sensing ≡ (trafficLevel only Low) and (pavement only Irregular)

Fog ≡ Weather and (hasSpeed only ModerateSpeed) and (hasLamp only FogLamp) and (hasSecureDevice only ABS)

Rain ≡ Weather and (hasSpeed only ModerateSpeed) and (hasSecureDevice only (ABS and ESP)) and (hasPneumatic only RibbedTire)

Fig. 4: Annotations of weather events and example vehicles

Table 2: Network performance evaluation

Time (ms) Data (byte)
Ti Tc T f Bitx Birx Bf tx Bf rx

RSU1 1232 355 93 36 2004 1215 1720
RSU2 7 25 29 24 2004 1154 1195
RSU3 14 22 – 36 2992 – –

Table 3: Basic CoAP vs semantic CoAP

Basic
CoAP

Semantic
CoAP

Time (ms) 150 575
TX (byte) 21 92
RX (byte) 1106 974

https://www.raspberrypi.org/products/model-b/) boards, configured with Wheezy Raspbian (http://www.raspbian.org)
operating system. Gateways RSU2 and RSU3, their sinks and sensors were simulated via the JOSM plugin running
on a workstation (HP Z820 with Xeon E5-2643 quad-core CPU at 3.3 GHz, 16 GB RAM, 1 TB hard disk) Table 2
shows the results on time and data exchanged within the simulated scenario. In particular, for each RSU the following
parameters were measured: wait time (Ti); the total amount of bytes transmitted and received (Bitx, Birx) with its sinks
to obtain sensors descriptions; the amount of time spent (Tc) for executing the Concept Covering process locally; the
time (T f ) and bytes exchanged (Bf tx, Bf rx) with neighboring RSUs after forwarding the uncovered part of the request.
For times, five runs of each test were executed and the average of the last four runs was taken. Table 2 also high-
lights the performance gap between the real node (RSU1) and the simulated ones (RSU2, RSU3), due to memory and
processing constraints on the Raspberry Pi. However, turnaround time result appears acceptable (� 1.7 s). The most
time-consuming step is Ti, since it includes the data structures setup by the embedded reasoner running on the board.
As found in8 for other reasoning tasks, Tc in RSU1 exhibits a similar trend w.r.t. RSU2 and RSU3; time is roughly
an order of magnitude higher on the Raspberry Pi node. Concerning data exchanges, there is a significant difference
between the size of Bitx and the other ones (Birx, Bf tx, Bf rx). Indeed, the packets each RSU sends to connected sinks
to obtain the list of semantic resources contain only standard CoAP queries. Instead, replies from sinks and packets
exchanged between each RSU include the new query parameters, defined in10, including the compressed annotations.

A performance comparison was executed between a standard and a semantic CoAP request/response session, in a
network composed only by real nodes. In this test the semantic request included only the temperature and operating
range measurement capabilities detailed in Figure 3, so as to require a single resource category via Concept Abduction
resolution10. For standard CoAP, the request is characterized only by the query parameter rt=“Temperature” as a
straightforward string searching for generic temperature sensors and the output produced is a simple list of resources
managed by the RSU1 with no detailed information. Conversely, although heavier in terms of processing time and
packet size as depicted in Table 3, the semantic-enhanced CoAP protocol allows to specify a more precise query and
obtain an accurate and smaller response, listing resources in relevance order with related metadata.

Benefits of the proposed approach w.r.t. the state of the art were assessed in a comparison with works cited in
Section 1. Table 4 shows only the proposed approach combines fitness for resource-constrained environments (by



1052	 Michele Ruta et al. / Procedia Computer Science 109C (2017) 1047–1052
6 M. Ruta et al. / Procedia Computer Science 00 (2017) 000–000

Table 4: Comparison of the proposed approach with related works

Approach Application
protocol

Representation
language

Contextual query at-
tributes

Distributed
search

Match types Resource ranking Resource
composition

Pfisterer et al. 5 CoAP RDF In SPARQL query No Exact only No No
Taylor et al. 7 Agnostic OWL 2 In CEP language No Exact only No Yes
Janowicz et al. 4 HTTP RDF In URI query portion No Exact only No No
Perera et al. 6 Agnostic RDF In SPARQL query Yes Exact and ap-

proximated
Yes (Top-K on
weighted attributes)

No

This CoAP OWL 2 In CoAP parameters Yes Exact and ap-
proximated

Yes (semantic dis-
tance)

Yes

using CoAP and a distributed search strategy), expressiveness of sensor modeling (by exploiting OWL 2) and support
for both exact and approximated matches, with formally grounded resource ranking and composition.

5. Conclusion

The paper described an advanced Semantic Sensor Network framework. It exploits backward-compatible CoAP
extensions for semantic-based resource description, management and discovery. Efficient data stream mining and
collaborative sensing are further notable features of the proposal. A case study in a HSVN scenario and experimental
tests on a real testbed implementation allowed to evaluate both feasibility and usefulness of the approach. Albeit
processing times and network load are higher than in standard CoAP, the improvement in the quality of discovery
justifies the proposed approach in complex scenarios like large-scale distributed environmental monitoring.

Future work includes the combination of machine learning algorithms with semantic-based sensor data manage-
ment for more flexible context mining, as well as the integration of specialized compression algorithms for Semantic
Web languages13 to reduce storage and network load.

Acknowledgements. The authors acknowledge partial support of Apulia region cluster project PERSON.

References

1. Ruta, M., Scioscia, F., Di Sciascio, E.. Enabling the Semantic Web of Things: framework and architecture. In: Sixth IEEE International
Conference on Semantic Computing (ICSC 2012). IEEE; IEEE; 2012, p. 345–347.

2. Bormann, C., Castellani, A.P., Shelby, Z.. CoAP: An Application Protocol for Billions of Tiny Internet Nodes. Internet Computing, IEEE
2012;16(2):62–67.

3. Patni, H., Henson, C., Sheth, A.. Linked Sensor Data. In: Collaborative Technologies and Systems (CTS), 2010 International Symposium
on. IEEE; 2010, p. 362–370.

4. Janowicz, K., Brring, A., Stasch, C., Schade, S., Everding, T., Llaves, A.. A RESTful proxy and data model for linked sensor data.
International Journal of Digital Earth 2013;6(3):233–254. doi:10.1080/17538947.2011.614698.

5. Pfisterer, D., Romer, K., Bimschas, D., Kleine, O., Mietz, R., Truong, C., et al. SPITFIRE: Toward a Semantic Web of Things.
Communications Magazine, IEEE 2011;49(11):40–48.

6. Perera, C., Zaslavsky, A., Liu, C., Compton, M., Christen, P., Georgakopoulos, D.. Sensor Search Techniques for Sensing as a Service
Architecture for the Internet of Things. Sensors Journal, IEEE 2014;14(2):406–420. doi:10.1109/JSEN.2013.2282292.

7. Taylor, K., Leidinger, L.. Ontology-driven complex event processing in heterogeneous sensor networks. The Semanic Web: Research and
Applications 2011;:285–299.

8. Scioscia, F., Ruta, M., Loseto, G., Gramegna, F., Ieva, S., Pinto, A., et al. A mobile matchmaker for the Ubiquitous Semantic Web.
International Journal on Semantic Web and Information Systems 2014;10(4):77–100.

9. Compton, M., Barnaghi, P., Bermudez, L., Garcı́a-Castro, R., Corcho, O., Cox, S., et al. The SSN ontology of the W3C semantic sensor
network incubator group. Web Semantics: Science, Services and Agents on the World Wide Web 2012;17:25–32.

10. Ruta, M., Scioscia, F., Pinto, A., Di Sciascio, E., Gramegna, F., Ieva, S., et al. Resource annotation, dissemination and discovery in the
Semantic Web of Things: a CoAP-based framework. In: Green Computing and Communications (GreenCom), 2013 IEEE and Internet of
Things (iThings/CPSCom), IEEE Int. Conf. on and IEEE Cyber, Physical and Social Computing. IEEE; 2013, p. 527–534.

11. Gobelbecker, M., Dornhege, C.. Realistic Cities in Simulated Environments - An Open Street Map to Robocup Rescue Converter. In: 4th
International Workshop on Synthetic Simulation and Robotics to Mitigate Earthquake Disaster (SRMED 2009). 2009, .

12. Ruta, M., Scioscia, F., Gramegna, F., Di Sciascio, E.. A Mobile Knowledge-based System for On-Board Diagnostics and Car Driving
Assistance. In: UBICOMM 2010, The 4th Int. Conf. on Mobile Ubiquitous Computing, Systems, Services and Technologies. 2010, p. 91–96.

13. Scioscia, F., Ruta, M.. Building a Semantic Web of Things: issues and perspectives in information compression. In: Semantic Web
Information Management (SWIM’09). In Proceedings of the 3rd IEEE International Conference on Semantic Computing (ICSC 2009). IEEE
Computer Society; 2009, p. 589–594.


