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Abstract

This paper studies coalition formation among self-
interested agents that cannot make sidepayments.
We show that a-core stability reduces to analyz-
ing whether some utility profile is maximal for all
agents. We also show that the a-core is a subset of
strong Nash equilibria. This fact carries our stabil-
ity results directly over to three strategic solution
concepts.

The main focus of the paper is on analyzing the
dynamic process of coalition formation by explic-
itly modeling the costs of communication and de-
liberation. We describe an algorithm for sequential
action choice where each agent greedily maximizes
its stepwise payoff given its beliefs. Conditions are
derived under which this process leads to conver-
gence of the agents’ beliefs and to a stable coalition
structure (when the length of the process is exoge-
nously restricted as well as when agents can choose
it).

Finally, we show that the outcome of any
communication-deliberation process that leads to
a stable coalition structure is Pareto-optimal for
the original game that does not incorporate com-
munication or deliberation. Conversely, any
Pareto-optimal outcome can be supported by a
communication-deliberation process that leads to
a stable coalition structure.

1 Introduction

In many multiagent settings, self-interested agents—e.g.
representing real-world companies or individuals—can
operate more effectively by forming coalitions and co-
ordinating their activities within each coalition. There-
fore, efficient methods for coalition formation are of key
importance in multiagent systems. Coalition formation
involves partitioning the agents into disjoint coalitions,
solving the coordination problem within each coalition,
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and dividing the value or cost of each coalition among
member agents.

Coalition formation among self-interested agents has
been widely studied in game theory [9; 5; 2; 1; 3; 4]. The
main solution concepts are geared toward guaranteeing
forms of stability of the coalition structure. These con-
cepts focus on the final solution, and they usually do not
address the dynamic process that leads to that solution.
Recent DAT work on coalition formation has introduced
protocols for dynamic coalition formation, but the pro-
cess and the agents’ strategies in that process have not
been included in the solution concept. In other words, al-
though the outcomes satisfy different forms of stability, it
is often not guaranteed that the process itself is stable or
that individual agents should adhere to that process [7;
8]. Also, it is often implicitly assumed that agents can
carry out intractable computations [10; 7; 8]. On the
other hand, recent DAI work has sometimes addressed
the computational limitations by explicitly incorporating
computational actions in the solution concept [6]. This
allows one to game theoretically trade off computation
cost against solution quality. However, that work did
not include protocols for dynamic coalition formation,
and 1t did not address belief revision.

This paper studies self-interested agents with a spe-
cial focus on the sequential deliberation (computation)
and communication actions that the agents take in the
dynamic process of coalition formation. Section 2 intro-
duces the classic framework of game theoretic coalition
formation for agents that cannot make sidepayments.
Section 3 analyses outcomes statically with the a-core
solution concept. Section 4 shows generally that re-
sults derived under the a-core solution concept carry
over directly to strategic solution concepts such as the
Nash equilibrium, the strong Nash equilibrium, and the
coalition-proof Nash equilibrium. Section 5 introduces
the dynamic coalition formation process which incorpo-
rates deliberation and communication. It shows, among
other results, that stability of the coalition formation
process 1s formally equivalent to convergence of the
agents’ beliefs (for both exogenously and endogenously
terminated negotiation), and also that the outcome is



Pareto-optimal.

2 Games and Solutions

This section reviews the concept of a coalition game and
an approach for defining the value of a coalition (charac-
teristic function) in games where nonmembers’ actions
affect the value of the coalition, and agents cannot trans-
fer sidepayments. We begin by defining a game.

Definition 1 A game G = ((S;),, U) is such that [ =
{1,...,n} is the set of players, S; the sel of stralegies
foreachie I and U : [T, Si — R™, such that for each
(51,...,80) €[1iz; Si,

U(Sl,.. asn))

given the individual utilities on strategies: for each 1,
w; [ S = R

A solution concept defines the reasonable ways that a
game can be played by self-interested agents:
Definition 2 Given a game G = ((S;)",,U), a solu-
tion concept (in pure strategies)' is a correspondence
v:G = ], Si U, and each s = (s1,...,5,) € ¥(G)

15 called a solution of G

8n) = (ur(s1, ... 8n), - oy tn(s1, - -

An example of solution concept is given by Nash equi-
libria: for each game G they are elements of yn(G),
where vy is the Nash correspondence.? The range of a
correspondence includes the empty set in order to en-
compass games that do not have a solution of the type
prescribed by the solution concept.

Definition 1 characterizes games in terms of the strate-
gies of agents and the corresponding payoffs. These
games are said to be in normal form. The normal form
is a general representation that can be used to model
the fact that nonmembers’ actions affect the value of
the coalition [6; 4]. However, coalition formation has
been mostly studied in a strict subset of normal form
games—characteristic function games—where the value
of a coalition does not depend on nonmembers’ ac-
tions, and it can therefore be represented by a coalition
specific characteristic function which provides a payoff
for each coalition T (i.e. set of agents) [9; 5; 10; T;
8]. Characteristic functions are a desirable representa-
tion, so one would like to define such mathematical enti-
ties also for normal form games. In such general games,
a characteristic function can only be defined by making
specific assumptions about nonmembers’ strategies. In
this paper we follow Aumann’s classic approach of mak-
ing the a-assumption, i.e. assuming that nonmembers
pick strategies that are worst for the coalition. Each
coalition can locally guarantee itself a payoff that is no

!This notion of solution can be easily extended to mixed
strategies, replacing each S; by AS;, the set of probability
distributions on S;.

25 = (81,...,8i,...,8,) is in yn(G) if for each 7 and for

7 7
each s; # si, wi(s1,...,8;, ..., 9n) < wi(s1,...,8i,...,5n).

less than the one prescribed by an analysis under this
pessimistic assumption. 2 Later in the paper we show
that the results that we obtain under the a-assumption
carry over to strategic solution concepts that can be used
directly in normal form games without any assumptions
about nonmembers’ strategies.

In games where agents can make sidepayments to each
other [7; 8; 6; 5], the characteristic function gives the
sum of the payoffs of the agents in a coalition. Instead,
our analysis focuses on games where agents cannot make
sidepayments. In such games, the characteristic function
gives a set of utility vectors that are achievable [2]. This
i1s in order to provide the coalition with a set of alter-
native utility divisions among member agents. The set
contains only Pareto-optimal utility vectors: no agent
can be made better off without making some other agent
worse off. The next definition formalizes this vector val-
ued characteristic function under the a-assumption.

Definition 3 Given a game G = ((S;),,U), with U
such that its components are non-transferible, we say
that the characteristic function s

Vo of QRI
such that for each coalition T'C [
vo(T) C R!
and ve(T) is the set of optimal achievable utilities for

T.

The a-assumption comes into play in the definition of
the optimal achievable utilities:

Definition 4 Given a game G = ((S;)=,,U), and a
T C I, the set of optimal achievable utilities for T =
{J1, -, Jjc|} is the set of Ups such that:

Ur I(...,ﬂjl,...,ﬂjw...,ﬂlel,...)
and
n
Ise S Uls) =Tz
i=1
and
AsT e [[S: vs' T e]]s; vi", ' 1) =
JET J€T
UT I(...,ﬂjl,...,ﬂj2,...,ﬂj|T|,...)
with, for all j; € T, ﬂ;l > u;, and for at least one j* €
T ﬂj* > Uje.

The next result follows trivially:

®The w-assumption may be impossibly pessimistic. A
given nonmember may be assumed to pick different strate-
gies when different coalitions are evaluated. This is in con-
trast with the fact that in any realization, the nonmember
can only pick one strategy.



Proposition 1 For every game G in normal form, v,
erists.

Proof 1 Suppose that for a game G = ((S;)"_y,U), va
cannot be defined. So, for at least one coalition T', v, (1)

cannot be determined. But that means that a set of Urs
cannot be defined such that

AsT e [[S5: v T e[S v(s",s"7) =

JET J€T
UT = (...,ﬂjl,...,ﬂj2,...,ﬂj|T|,...)
and such that, for all j; € T, ﬂ;l
one j* €T, ﬂ;* > ;. Gwen this condition, we pro-
ceed by evaluating q for each s € [[i—, Si, so if it is not
determinate, then U 1s not defined for every s. Contra-
diction O

> uj, and for at least

3 The o-Core and Superadditivity

Aumann’s a-assumption gives rise to the a-core solution
concept which defines a stability criterion for the coali-
tion structure. The idea is that strategy profiles that do
not have an optimal achievable utility are not candidates
for the solution. Given a vector of joint strategies; it is
said to be blocked by a coalition if its members can be
better off by moving to another vector.

Definition 5 A coalition T blocks a vector of joint
strategies s = (s1,...,sn) if for every j; € T there exists
as €[[iz, Si such that:

o Vi, ujl(sl) > wuj,(s) and for at least one jo € T,
Ujo (5 ) > Uj, (5)

o (oo (s), (s, g0 (5), ) € va(T).

The blocking relation defines a particular set of sta-
ble joint strategies, the a-core. The a-core is the set of
joint strategies where no coalition can be formed such
that its members are better off changing their individual
strategies, given that nonmembers pick strategies that
are worst for the coalition. In other words, it is the set
of joint strategies for which a stable collective agreement
can be reached. Formally, the a-core correspondence 1s
defined as follows:

Definition 6 A s = (s1,...,s,) is in the a-core ye, if
there is no coalition T that can block (s1,...,sn).
As with the Nash correspondence, the a-core corre-
spondence can be empty for some games:
Example 1 G = ((S4,S,),U), where the set of players
is {a, b}
Se = Sy = {n,nc}

and

U = {(<C’ nc>’ <0’ 10>)’ (<C’ C>’ <5a 5>)a
({ne,c),(10,0)), ((ne, ne), (2,2))}

where ({sa, 5b), (¥a(8a), us(ss)) is the general form of the
elements of U. This is an instance of the Prisoner’s
Dilemma. The corresponding values of the characteristic

function are:
o va({a}) = {(10,0)}
o vo({b}) = {{0,10)}
e va({a,b)) = {(5.5))
It is easy to see that
o {a} blocks {(c,¢), (¢, ne), (ne,ne)}
o {b} blocks {(c, ), (ne,c), (nc, nc)}
o {a,b} blocks {(ne, ), (¢, ne), (ne, ne)}

Therefore, there is no {sq, sp) that is not blocked by at
least one coalition. In other words, ye (G) is empty.

Under what conditions does a stable coalition struc-
ture exist, i.e., what are the conditions for the non-
emptyness of the a-core? In the rest of this section we
will show that surprisingly simple conditions are neces-
sary and sufficient for stability. The concept of super-
additivity will be used to build an intuition of this phe-
nomenon. Superadditivity implies that any two coali-
tions are best off merging.

Definition 7 A game G s superadditive if given any
two coalitions Ty, Ta, Th NTa =0, ve(T1) N ve(Tz) C
Ua(Tl UTQ) 4

We now show an interesting property that relates the
characteristic functions and superadditivity. This con-
dition on characteristic functions will be later used to
discuss stability.

Proposition 2 For a game G, if (e va({i}) # 0 then
G s superadditive.

Proof 2 We will prove this result by wnduction on the
cardinality of coalitions:

L 4 given Tl,Tz, T1 ﬂTz = @, |T1| = 1, T2|
1, it s clear that there exist agents i,j €
such that Ty = {i} and T» = {j}. If U*
(ui, ..., un) € (ligrva({i}), then in particular
U* € vo(Th) Nva(T2). Suppose U* & vo(T1 U
T»). Then, there emists s € [[i—;S; such that
U(s) = (.o wils), ... uj(s),...) and ui(s) > uf
and uj(s) > uj with strict inequality for one of
them, say i. But then, U* & v, ({i}), contradiction.
SO, Ua(Tl) N UQ(TQ) C Ua(Tl UTQ)

o~

“Note that this definition by Shubik [9] differs techni-
cally (although it is conceptually similar) from the concept
of superadditivity in games with sidepayments [9; 5; 6; 10; 7;
8].



o assume that U* € v, (T1) Nva(Ty) C vo(T1UTs), for
any pair of coalitions T, Ty, TyNTy = 0, |T} UT2| <
k < mn. Consideri eI, i i g T,i g T, and T, =
TyU{i}. Then T NTy = @ and of course U c va(T )
(by the mductwe assumplion because |T | < k), so
U* e va(Tl) Nva(T2). Suppose that U* ¢ vOC(T1

Ty). Again, this means that exists s € []—, Si such
that U(s) = (..., uj, (s),...,uj(s),...), where Tll U
Ty ={j1,...,jx}t, and uj,(s) > uj, for all j; € T, U
Ty, with strict inequality for one of them, say ji,.
Suppose without loss of generality that j;, € Tll, but
then, U* & vo(T}). Contradiction.

So, vo(Th) Nva(T2) C vo(Th UT,) for any pair of coali-
tions T, Ty, Ty NTy = B, [Ty UTs| < n. That is, G is
superadditive O

To see that superadditivity is a necessary but not a
sufficient condition for (;c; va({i}) # 0, let us revisit
the Prisoner’s Dilemma of Example 1. It is easy to see
that it is a superadditive game, but v, ({a}) and v4 ({b})
have no element in common.

The following result relates the condition of the previ-
ous proposition with stability of the coalition structure
(non-emptyness of the a-core):

Lemma 1 For a
Nrear_g va(T) £ 0.

Proof 1 e —) Ifyc (G) # 0, then there exists an
s* that is not blocked by any coalition. But then, by
the definition of blocked joint strateqy, it is clear that
for each coalition T, U(s*) € v, (T), and therefore

5" € Npear_gypy val(T)

o ) If Nrear_qpy valT) # (), then there ewists at
least one U* € v, (T) for every possible coalition T
and therefore an s € [[i=, Si such that U(s) = U*.
So, s 1s not blocked by any coalition and thus s €

e, (G) O

This result is useful for proving the following theo-
rem. The theorem shows that to characterize the stabil-
ity of the coalition structure in terms of the a-core, only
the utilities and the corresponding actions of individual
agents are required, instead of comparing utilities and
actions of coalitions.

Theorem 1 For a game G, 7 (G) # 0 if

Nierva{i}) # 0.

Proof 1 e —) If yc (G) # 0, there emists a s €
H?:l Si such that no coalition blocks it. So for each
coalition T, U(s) € vo(T). In particular for all
the coalitions with a single member, T = {i}. So,

U(s) € Mierva({i})-

e —) By Lemma I, it is enough to prove that
Nrear—qpy va(T) # (. The proof will be by induc-

tion on the size of coalitions:

game G, v (G) # 0 iff

— gien that by hypotheszs U~ € Mier va({7}),
then for each i € I, U* € vy ({i})

— lets assume that for each coalition T with |T| =
k<n, U €v,(T). Foranyi € I,i ¢ T (by
proposition 1):

U™ € va(T) Nva({i}) C va(TU{i})

So, U* € vo(T ) for any T such that IT'| =
k+1. Therefore, U* € T forany T € 21 —{0}
O

Because for each agent i, v, ({é}) represents her opti-
mal achievable utilities, this result states that the non-
emptyness of the a-core is equivalent to the existence
of at least one utility vector that 1s maximal for every
agent. This vector, say U, is Pareto-optimal: there is
no other U’ such that for all 2, UZI > U;, with strict
inequality for at least one 1.

It follows from Theorem 1 that in games without side-
payments, the coalition structure can be stable only
if every possible pair of coalitions is best off merg-
ing ([o-core # (] = superadditivity). This differs from
games with sidepayments [6]. On the other hand—as in
games with sidepayments—the coalition structure may
be unstable even if every pair of coalitions is best off
merging (superadditivity # [a-core# ]).

4 Relationships between Axiomatic and
Strategic Solution Concepts

In this section we present some new relationships be-
tween axiomatic and strategic (normative) solution con-
cepts. The importance of these relationships lies in the
fact that they allow us to import the other results of this
paper (derived for the axiomatic a-core solution concept)
directly to normative solution concepts.

The notion of the a-core is axiomatic in that it only
characterizes the outcome without a direct reference to
strategic behavior. The Nash correspondence is, instead,
a strategic solution concept: 1t is based only on the self-
interested strategy choices of agents. Specifically, it an-
alyzes what an agent’s best strategy is, given the strate-
gies of others. A strategy profile 1s in Nash equilibrium if
every agent’s strategy 1s a best response to the strategies
of the others. Nash equilibrium does not account for the
possibility that groups of agents (coalitions) can change
their strategies in a coordinated manner. Aumann has
introduced a strategic solution concept called the strong
Nash equilibrium to address this issue [2]:

Definition 8 A strategy profile s € [[;_, S;, in a game
G, 1s a strong Nash equilibrium if for any T C I and
for all 57 € HjeT S; there erists an tg € T’ such that
uiu(s) 2 Ui (ET’ SI_T)’

This concept gives rise to the strong Nash correspon-
dence, vgn, 1.e. the set of strong Nash equilibria. We
can show a close relationship between the strong Nash
solution concept and the a-core solution concept:



Theorem 2 For any game G, ve, (G) C vsn(G). ®

Proof 2 Suppose that s € ~e (G) but s € vsn(G).
Then, there exist an T'C I and an 57 € HjeT S; such
that for all j € C, u;j(s) < uj(s7,s!=T). That means
t,hat, U(s) is not in val(T), so there is a s such that
U(s) € va(T) and uj(s ) > u;(s). Contradiction O

We can also relate the Nash correspondence and the a-
core correspondence (this could alternatively be deduced
from Theorem 2 and the fact that ysn (G) C yv(G)):

Theorem 3 For any game G, vc_(G) C v (G).

Proof 3 Given s € ~¢ (G), we will show that s is
a Nash equilibrium in pure strategies for G. Suppose
not. By Theorem 1 is enough to consider what hap-
pens with single individuals.  Then, for a iz € I,

given the vector (S1,...,8io—1,8ig41s---,5n), the best
response for ig s s, with wi,(s1,...,8;,,---,5.) >
Ui, (). But that means that {i} blocks s, and therefore

s & e, (G).Contradiction. This proves that ve (G) C
v (G) Example 1 shows that the converse is not
true: v (G) = {{nc,ne)} and v¢ (G) = 0. Therefore
ve. (G) Cyn(G) B

One implication of the results in this section is that
the other results of this paper (which are derived for the
a-core) carry over directly to analyses that use strate-
gic solution concepts (Nash equilibrium, coalition-proof
Nash equilibrium or strong Nash equilibrium). Specifi-
cally, any solution that is stable according to the a-core
is also stable according to these three solution concepts.

Another implication is that to verify that a strategy
profile 1s in the a-core, one only needs to consider strat-
egy profiles that are Pareto-optimal ® and in Nash equi-
librium. Alternatively, one can restrict this search to

50Often the strong Nash equilibrium is too strong a so-
lution concept, because in many games no such equilibrium
exists. Recently, the coalition-proof Nash equilibrium [3] has
been suggested as a partial remedy to this problem. This
solution concept requires that there is no subgroup that can
make a mutually beneficial deviation (keeping the strategies
of nonmembers fixed) in a way that the deviation itself is
stable according to the same criterion. A conceptual prob-
lem with this solution concept is that the deviation may be
stable within the deviating group, but the solution concept
ignores the possibility that some of the agents that deviated
may prefer to deviate again with agents that did not origi-
nally deviate. Furthermore, even this kinds of solutions do
not exist in all games. In games where a solution is stable ac-
cording to the a-core, the solution is stable according to the
coalition-proof Nash equilibrium solution concept also. This
is because vc,(G) C vopn (which follows from our result
veo (@) C vsn(G) and the known fact ysn(G) C vepn(G)).

%The non-emptyness of the a-core is equivalent to the ex-
istence of an utility vector U which is common to all sets
va({1}) for all agents i:. By definition 4, this means that
there does not exist a U such that [7; > U, for all 4, with
strict inequality for at least one 3. That is, U is Pareto-
optimal. Therefore one can restrict the search to Pareto-
optimal outcomes.

Pareto-optimal strong Nash or Pareto-optimal coalition-
proof Nash equilibria.

5 Bounded Rationality in Coalition
Formation

In the previous section it was assumed that deliberation
1s costless. To relax this assumption we introduce de-
liberation and communication actions explicitly into the
model:

Definition 9 For each agent i in a game G, let D; be
a set of deliberation-communication activities that i can
perform to choose a strateqy s; to be executed. Fach
d; € D; is associated with a C;(d;), i.e. the cost (for i)
of performing the actwity d;

In order to avoid unnecessary complications, we as-
sume that Cj(-) can be expressed in the same units as
u;(+). On the other hand, we will not assume any special
structure on Dy, except the following:

Definition 10 For each agent i, we consider her process
of communication-deliberation {a}, a},...a%}, where
at € Dy, fort = 0,1,...,(t; — 1), and a}* € S;. If
N = maz;ert;, we say that the coalition structure has
been formed in N steps, and for any i and t such that
t; <t < N,at =al

The idea behind this definition is that the agents de-
liberate and exchange messages until each one decides on
a strategy to follow. We also assume that this process is
finite and that each agent stays commited to her choice
once she has reached a decision.

We use a very general characterization of the
communication-deliberation process, without going into
the details of how an action leads to another one (e.g.
how deliberation actions lead to the choice of physical
actions). This approach has the advantage of provid-
ing results that can be applied to any such process. We
say that the payoff of agent ¢ in an N-period process is
determined as follows:

Definition 11 If for each i,
deliberation process is a; = {a?, ...
payoff is

the communication-

yal'} (ab = s;), the

pi(Giy ... @n) = wi(S1,...,8,...,50)

— (Ci(a]) +...+ Ci(a')) = Co(N — t3)
where C; > 0 is the waiting cost, which is assumed con-
stant per time unit.

We assume that costs of activities are independent, so
if the process is a@; = (a},...,alv), its cost C;(a;) is equal
to the sum of the costs of the activities, Cj(a?) + ...+
C’i(af’) + CZ(N — ti).

Now a new game can be defined which explicitly takes
the deliberation and communication actions as part of
each agent’s strategy. This follows the approach of [6]

where such actions are explicitly incorporated into the



solution concept. It differs from other DAI approaches
to coalition formation where the solution concept only
analyzes final outcomes [10; 7; 8].

Definition 12 From G, {D;}"_, and t > 0, a new
game can be defined, G* = ((D! x S;)'_,,P), where
P o T (DE x S;) — R™ such that for each a €
[Tz (DF x Si), P(a) = (pr(@1), - ., pn(an))

The length of the game, ¢, depends critically on the
available communication-deliberation activities and on
the sequential choice of activities. We assume that the
time limit is a given. To justify this, we suppose that
each agent ¢ has a degree of impatience, given by a max-
imum time to make a final decision ¢;. In Subsection 5.2
we will relax this assumption.

In order to maximize payoffs, our self-interested agents
engage in negotiations. The final outcomes represent the
result of agreements among agents. To justify the self-
enforcement of these agreements we need a criterion for
the stability of the coalition structure:

Definition 13 A process a = {d° ...,a'} €
H?:l(Df»_l x S;) defines a stable coalition structure if
at € [Iis, Si cannot be blocked (see Section 3) by any

Lat'y
The relationship between stable coalition structures and
the a-core is given by the following lemma.

Lemma 2 If the process a = {a° ...,a'} €
H?:l(Df»_l x S;) is in the a-core of the game G' then a
defines a stable coalition structure.

o, . N 7
coalition formed in another process @ = {a" ..

Proof 2 Suppose that there exist a coalition T’ such that
exists s € [[;_, Si that verifies that u;(s) > u;j(a’)
for j € T and uj+(s) > uj(a’) for a j* € T. Then
a = {aol, ..., 8} is a process in which T is formed and
obtains 3, where 5; = s; and Pj(dl) > Pj(a), forjeT.
Contradiction because a is in the a-core of G* O

We can easily restate the notions given in Section 2 in
order to find conditions for the stability of the coalition
structure. First, we define the characteristic function for
G, vge, replacing the optimal achievable utilities by the
optimal achievable payoffs which incorporate delibera-
tion and communication:

Definition 14 Given G* = ((D! x S;))'_,,P), and
T C I, the set of optimal achievable payoffs for T =
{J1, -, Jyr} is the set of Psisuch that exists a €
[T_, (D! x S;) and P(a) = P. Moreover, /Ja €
[T, (D! x S;), such that P(a) = P’ with, forall j; € T,
]5]{1 > P;,, and for at least one j* € T, P]f* > Pje

[

This means, again, that P is an optimal achievable
payoff for coalition T if there is no other payoft vector
such that the payoff is no worse for any member and it
is better for at least one—for all (in particular for the
worst) processes that nonmembers can pick. Now,

Proposition 3 a € H?:l(Df»_l x S;) is such that
P(a) € vgt({i}) for each i iff a is in yc  (G?).

Proof 3 Immediate from Theorem 1 0

This means that a communication-deliberation-action
process in the a-core corresponds to a Pareto-optimal
payoff. For many games (the Prisoner’s Dilemma being
an example) a Pareto-optimal payoff can be reached only
through the coordinated activity of agents. Let us give
another example:

Example 2 Consider again the game G of Example 1,
and assume that

D, = Dy = {dadlad”}

and

Co(d) = Cp(d) = 0.1
Co(d)=Cy(d) =01
Co(d ) =Cy(d' ) =05
where the actions are described as follows:

o d: evaluate options (we will say that any of the other
choices require this deliberation step before they can
be chosen)

o d: engage in negotiations

o d": reach an enforceable agreement

Moreover, we assume that the evaluation d has as a
consequence the realization that if no enforceable agree-
ment is reached, the outcome will be {nc,nc). So, the
sequence ({d, d), <dl, dl>, <d”, d”>, (¢, ¢)) is in the core, be-
cause the payoff for every player, 5 — (0.1 4+ 0.1 4+ 0.5)
1s higher than any other payoff, considering that d is an
unavoidable step in the process. If an agent chooses the
process {d, nc} she know that the other will do the same,
so the payoff will be 2 —0.1.

5.1 Incorporating Belief Revision

The previous example is very simple, but 1t shows the se-
quential nature of an agent’s choice of action. This sub-
section introduces a more sophisticated decision making
model for an agent that takes part in coalition forma-
tion. This model is used to show results on the joint
outcomes and the joint process.

To choose the action that maximizes expected pay-
off at each step, an agent may need to evaluate the ex-
pected payoffs of different actions. We will show when
this procedure leads to the formation of a stable coali-
tion structure. To give a mathematical characterization,
we introduce the notion of “expected payoft”:

Definition 15 Given a sequence of actions performed
by an agent i, at = (a?,...,al) € Df»"'l, we say that
agent i can define a subjective probability distribution on
[15, S, such that Al(s|at™) is the conditional probabil-
ity of an outcome s, given that the next action is af"'l. A
probability distribution on the total costs associated with
the process to reach s € []/_, Si can be also defined,



such that §1(C;(s)|ai™) is the conditional probability of

i
a cost Ci(s) 7, given that the next action is ai™. Then,
the expected payoff, given that the next action s af"’l 18
b0ty
pila;") = Z
SEH:L:I S

Ci(s), sel_[:;1 S,

ui(5)Af (slai )

Ci(5)3; (Ci(s)]a; ™)

An agent can try to maximize her expected payoff in
each step, i.e. to choose a al € (D; U S;) that maximizes
pi(-). This is a greedy procedure, and agents that use
it may not always converge on a joint solution. But
when this procedure is performed in conjunction with
coordination among agents (in the sense that they agree
on a process that is in the a-core), they will converge
to the belief that a particular outcome s is the most
probable one (later we show that s is Pareto-optimal).

Proposition4 Ifa = (a° ..., a', ... a")
core (Proposition 4 showed that this means that for each
t, a' = (ai,...,al) is the vector of optimal decisions)
then Im such that for t > m exists an s € H?:l S; that

gives the maz e s A§_1(5|a§) for each 1.
i=1""

15 in the a-

Proof 4 If @ is in the a-core, P(a) is in vgn({i})
(by Theorem 1). Suppose that for each m erxists a
t > m such that it does not exist an s € H?:l S; that
gives the maz [T s A§_1(5|a§). In particular, given
i=1""
m = N — 1, fort = N it does not erist a s giv-
ing the maz 1~ g Afv_l(5|afv). If so, it means that
i=1""
at least an agent will deviate, making another strategy
profile more probable. Then, as a € S; it is clear
that for at least an agent i*, pi+(d') > pi+(a), where

a = (all,...,aNl), aé\f = aj»v =s; forj#£1* andaf\*ﬂ +
af\*f = s;». Contradiction because P(a) € von({i*}) D

The converse is not true. A process that leads to a
stable coalition structure may not be in the a-core. It
is intuitive that a stable structure can be formed in a
cost-inefficient process. This process could be blocked
by another one leading to the same coalition structure,
thus preserving stability. Therefore, Proposition 4 only
gives a necessary condition for a process to be an element
of the a-core. However, this is all we need since the
following result shows that a coalition structure is stable
if it leads to a convergence of beliefs about the strategy

profile to be chosen.

Theorem 4 For GV, given a process a = (a°,...,alV),

Im such that for allt > m exists an s € H?:l Si that

gives the maz [T s A§_1(5|a§) for each 1 iff a defines
i=1 """

a stable coalition structure.
7C’,‘(s) is the average cost of a process with the form a =

(af,...,s;), incorporating also an estimate of the length of
time to reach s

Proof4 e —) Trivial: if a coalition T formed in a
stage t < m can block & it means that there ezx-
ists a¥' € [T°, Si, such that uj(aNl) > u;(aV) for
j €T and for a j* € T, uj*(aNl) > wj+ (a) and
aN' mazimizes ﬁj»v_l(). Contradiction because the
optimal decision in N is a” .

o ) Suppose that for all m exists a t > m
such that there is no s € [[;_, Si that gives the

mazr 17 s A=Y (s|at) for each i. If so, for m =
i=1""

N —1, there exists a i* and a s* # a” verifying that
pRT(s*) > pN T (aN), but then, {i*} is a coalition
that blocks a . Contradiction O

This result can be generalized as follows:

Theorem 5 In GV, a = (a',...,a") defines a sta-
ble coalition structure iff there exist an m such that
for each i and for all t > m, there exists a pair
(aV,at) € (TTiz, Si) x Di such that w;(-)A"'(:|-) and
C’Z()éf_l(CZ()H achieve a marimum and a minimum
(respectively) in (a’¥, al).

Proof 5 e —) Assume that for all m exists i € T
such that forall at € D; U S; exists t > m for which
ul()Af_1(|) and C’Z()éf_l(CZ()H do not achieve
a mazimum and a minimum in (aV at). Taking
m = N — 1 it results that exrists s € H?:l S; such
that u; (s)AN " (s[si) > ui(a™)AN " aV|aN) and
Ci(s)8 " (Ci(s)lal) < Cila™)8 = (Ci(a™)]a).

Therefore i can block a . Contradiction.

o ) suppose that exists a coalition T C I that can
be formed in a another process a. Therefore for at
least one i € T, erists s € H?:l Si (si = af\ﬂ)such
that ui(s)AfV_l(s|si) > ui(aN)AfV_l(aNMfV) and
Ci(s)8) M (Ci(s)lsi) < Ci(a™)o, " H(Ci(a)]si).
Contradiction because for (a® al) ul()Af_l(H
and C’Z()éf_l(CZ()H achieve a mazrimum and a

minimum O

Put together, Theorem 5 gives the conditions under
which the greedy process of Definition 15 is guaranteed
to lead to a stable coalition structure. Sometimes the
process that leads to this coalition structure is stable
according to the a-core and sometimes not.

5.2 Deliberation-Communication
Processes of Different Lengths

The previous result is highly dependent on the length
of the process: two processes a and a are comparable
only if their lengths are the same. If not, the previous
result cannot be applied. If we maintain that the degree
of impatience of each agent, ¢;, is given beforehand, it
is clear that the game has a definite length maz;¢rt;.
If not, a condition on the convergence of beliefs can be
given. The following result shows also that every conver-
gent process (in the sense that agents agree in their be-
liefs about the final outcome), defines a stable coalition



structure in an endogenously defined timing. In other
words, there always exists a process that provides the
outcome on which the agents agree, and the length of
the process 1s finite:

Theorem 6 If there exists an m such that for each i
and for each t > m, ul()Af_1(|) and C’Z()éf_l(cz(ﬂ)
have a mazimum and a minimum (respectively) in a pair
(s*,al), then there erists an N such that a® = s*.

Proof 6 Given that for each i, for each t > m,
ul()Af_l(H and C’Z()éf_l(CZ()H have a mazimum
and a minimum (respectively) in a pair (s*, at), we know
that for every i, exists t; such that sf = aZ’ (otherwise
the process a; is infinite and C;(s*) = oo and therefore
p(@;)) — —oo). Fort > t;, ab is the action of wait-
ing for the decision of the other agents. Then, taking
N = maz;t;, we see that o = s* O

5.3 Comparing Outcomes of Rational and
Bounded Rational Agents

Communication-deliberation processes were introduced
in order to describe the dynamic formation of coalition
structures in the original game . Theorem 7 shows
that the outcome of a process that converges to a stable
coalition structure is Pareto-optimal (part of the Pareto-
frontier of the original game (). Conversely, any Pareto-
optimal outcome can be supported by a process that
converges to a stable coalition structure. ® Formally,
the relationship between outcomes in a stable coalition
structure formed in a communication-deliberation pro-
cess, and outcomes achieved by perfectly rational agents
in the original game G is as follows:

Theorem 7 A process @ = (a',...,a") generates a
stable coalition structure iff there does not exists s €
[T5o, Si, such that w;(s) > u;(a¥) for alli and u;-(s) >

ui+ (@) for at least one i*.

Proof 7 e —) Suppose that exists s € [[;_,Si,
u;(s) > wui(a) for all i and at least for one i*,
wi+(s) > w+(aN).  Then, another process a =
(all, : ..,aIN) can be generated, a N = s. Contra-

diction.

. e) Suppose that there exists another process a =
(at,...;a®), aN = s, such that for at least one
i*, wie(s) > ui (@V). Contradiction O

6 Conclusions

We analyzed the problem of coalition formation in games
without sidepayments. First, the a-core solution concept
was reviewed in the context of games in which agents are

8There is an analogy between this result and the Folk the-
orems for repeated games [4]. Both show that the outcome
of a process lies in a particular region of the strategy space:
above the minimax point in the Folk result and the Pareto-
frontier here.

perfectly rational. We showed that a solution is in the a-
core if the corresponding utility profile is Pareto-optimal,
1.e. an individual utility cannot be improved without di-
minishing the utility of another agent. This property
1s closely related with superadditivity, a property indi-
cating that shared optimal achievable utilities for differ-
ent coalitions remain optimal achievable utilities for the
union of the coalitions. Superadditivity implies that any
two coalitions are best off by merging.

Next we explored the relationships between axiomatic
and strategic solution concepts. We showed that any so-
lution that is stable according to the a-core corresponds
to a strong Nash equilibrium (and to a coalition-proof
Nash equilibrium and a Nash equilibrium). This al-
lows us to study games with the a-core solution con-
cept while our positive stability results carry over di-
rectly to these three strategic equilibrium-based solution
concepts. This also allows one to confine the search for
stable a-core solutions to the space of Pareto-efficient
strong Nash equilibria (or coalition-proof Nash equilib-
ria or Nash equilibria).

For bounded rational agents we showed that the a-core
solution concept provides clues about the properties of
the deliberation-communication processes that lead to
stable coalition structures. Specifically, we showed that
a process defines a stable coalition structure if 1ts out-
come cannot be blocked by a coalition formed in another
process of the same length.

We characterized the communication-deliberation pro-
cess as a greedy maximization of stepwise expected pay-
off where deliberation and communication actions incur
costs. We showed that when agents agree to a process
that is in the a-core, this greedy algorithm leads to con-
vergence of the agents’ beliefs in a finite number of steps.
We also showed that the convergence of beliefs implies
that the final outcome is stable (when the protocol length
is exogenously restricted as well as when agents can en-
dogenously decide the length). More general mathemat-
ical conditions for such stability were also derived.

Finally, we showed that the outcome of any
communication-deliberation process that leads to a sta-
ble coalition structure is Pareto-optimal for the original
game that does not incorporate communication or de-
liberation. Conversely, any Pareto-optimal outcome can
be supported by a communication-deliberation process
that leads to a stable coalition structure.
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