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and dividing the value or cost of each coalition amongmember agents.Coalition formation among self-interested agents hasbeen widely studied in game theory [9; 5; 2; 1; 3; 4]. Themain solution concepts are geared toward guaranteeingforms of stability of the coalition structure. These con-cepts focus on the �nal solution, and they usually do notaddress the dynamic process that leads to that solution.Recent DAI work on coalition formation has introducedprotocols for dynamic coalition formation, but the pro-cess and the agents' strategies in that process have notbeen included in the solution concept. In other words, al-though the outcomes satisfy di�erent forms of stability, itis often not guaranteed that the process itself is stable orthat individual agents should adhere to that process [7;8]. Also, it is often implicitly assumed that agents cancarry out intractable computations [10; 7; 8]. On theother hand, recent DAI work has sometimes addressedthe computational limitations by explicitly incorporatingcomputational actions in the solution concept [6]. Thisallows one to game theoretically trade o� computationcost against solution quality. However, that work didnot include protocols for dynamic coalition formation,and it did not address belief revision.This paper studies self-interested agents with a spe-cial focus on the sequential deliberation (computation)and communication actions that the agents take in thedynamic process of coalition formation. Section 2 intro-duces the classic framework of game theoretic coalitionformation for agents that cannot make sidepayments.Section 3 analyses outcomes statically with the �-coresolution concept. Section 4 shows generally that re-sults derived under the �-core solution concept carryover directly to strategic solution concepts such as theNash equilibrium, the strong Nash equilibrium, and thecoalition-proof Nash equilibrium. Section 5 introducesthe dynamic coalition formation process which incorpo-rates deliberation and communication. It shows, amongother results, that stability of the coalition formationprocess is formally equivalent to convergence of theagents' beliefs (for both exogenously and endogenouslyterminated negotiation), and also that the outcome is



Pareto-optimal.2 Games and SolutionsThis section reviews the concept of a coalition game andan approach for de�ning the value of a coalition (charac-teristic function) in games where nonmembers' actionsa�ect the value of the coalition, and agents cannot trans-fer sidepayments. We begin by de�ning a game.De�nition 1 A game G = ((Si)ni=1; �U) is such that I =f1; : : : ; ng is the set of players, Si the set of strategiesfor each i 2 I and �U :Qni=1 Si ! Rn, such that for each(s1; : : : ; sn) 2Qni=1 Si,�U(s1; : : : ; sn) = (u1(s1; : : : ; sn); : : : ; un(s1; : : : ; sn))given the individual utilities on strategies: for each i,ui :Qni=1 Si ! RA solution concept de�nes the reasonable ways that agame can be played by self-interested agents:De�nition 2 Given a game G = ((Si)ni=1; �U ), a solu-tion concept (in pure strategies)1 is a correspondence
 : G ! Qni=1 Si [ ;, and each s = (s1; : : : ; sn) 2 
(G)is called a solution of GAn example of solution concept is given by Nash equi-libria: for each game G they are elements of 
N (G),where 
N is the Nash correspondence.2 The range of acorrespondence includes the empty set in order to en-compass games that do not have a solution of the typeprescribed by the solution concept.De�nition 1 characterizes games in terms of the strate-gies of agents and the corresponding payo�s. Thesegames are said to be in normal form. The normal formis a general representation that can be used to modelthe fact that nonmembers' actions a�ect the value ofthe coalition [6; 4]. However, coalition formation hasbeen mostly studied in a strict subset of normal formgames|characteristic function games|where the valueof a coalition does not depend on nonmembers' ac-tions, and it can therefore be represented by a coalitionspeci�c characteristic function which provides a payo�for each coalition T (i.e. set of agents) [9; 5; 10; 7;8]. Characteristic functions are a desirable representa-tion, so one would like to de�ne such mathematical enti-ties also for normal form games. In such general games,a characteristic function can only be de�ned by makingspeci�c assumptions about nonmembers' strategies. Inthis paper we follow Aumann's classic approach of mak-ing the �-assumption, i.e. assuming that nonmemberspick strategies that are worst for the coalition. Eachcoalition can locally guarantee itself a payo� that is no1This notion of solution can be easily extended to mixedstrategies, replacing each Si by �Si, the set of probabilitydistributions on Si.2s = (s1; : : : ; si; : : : ; sn) is in 
N(G) if for each i and foreach s0i 6= si, ui(s1; : : : ; s0i; : : : ; sn) � ui(s1; : : : ; si; : : : ; sn).

less than the one prescribed by an analysis under thispessimistic assumption. 3 Later in the paper we showthat the results that we obtain under the �-assumptioncarry over to strategic solution concepts that can be useddirectly in normal form games without any assumptionsabout nonmembers' strategies.In games where agents can make sidepayments to eachother [7; 8; 6; 5], the characteristic function gives thesum of the payo�s of the agents in a coalition. Instead,our analysis focuses on games where agents cannot makesidepayments. In such games, the characteristic functiongives a set of utility vectors that are achievable [2]. Thisis in order to provide the coalition with a set of alter-native utility divisions among member agents. The setcontains only Pareto-optimal utility vectors: no agentcan be made better o� without making some other agentworse o�. The next de�nition formalizes this vector val-ued characteristic function under the �-assumption.De�nition 3 Given a game G = ((Si)ni=1; �U), with �Usuch that its components are non-transferible, we saythat the characteristic function isv� : 2I ! 2RIsuch that for each coalition T � Iv�(T ) � RIand v�(T ) is the set of optimal achievable utilities forT .The �-assumption comes into play in the de�nition ofthe optimal achievable utilities:De�nition 4 Given a game G = ((Si)ni=1; �U ), and aT � I, the set of optimal achievable utilities for T =fj1; : : : ; jjCjg is the set of �UT s such that:�UT = (: : : ; �uj1; : : : ; �uj2; : : : ; �ujjTj ; : : :)and 9s 2 nYi=1Si; U (s) = �UTand 6 9sT 2 Yj2T Sj : 8sI�T 2 Yj 62T Sj ; U (sT ; sI�T ) =�U 0T = (: : : ; �u0j1; : : : ; �u0j2; : : : ; �u0jjTj ; : : :)with, for all ji 2 T , �u0ji � �uji and for at least one j� 2T; �u0j� > �uj�.The next result follows trivially:3The �-assumption may be impossibly pessimistic. Agiven nonmember may be assumed to pick di�erent strate-gies when di�erent coalitions are evaluated. This is in con-trast with the fact that in any realization, the nonmembercan only pick one strategy.



Proposition 1 For every game G in normal form, v�exists.Proof 1 Suppose that for a game G = ((Si)ni=1; �U), v�cannot be de�ned. So, for at least one coalition T , v�(T )cannot be determined. But that means that a set of �UT scannot be de�ned such that6 9sT 2 Yj2T Sj : 8sI�T 2 Yj 62T Sj ; U (sT ; sI�T ) =�U 0T = (: : : ; �u0j1 ; : : : ; �u0j2 ; : : : ; �u0jjTj; : : :)and such that, for all ji 2 T , �u0ji � �uji and for at leastone j� 2 T; �u0j� > �uj� . Given this condition, we pro-ceed by evaluating �U for each s 2Qni=1 Si, so if it is notdeterminate, then �U is not de�ned for every s. Contra-diction 23 The �-Core and SuperadditivityAumann's �-assumption gives rise to the �-core solutionconcept which de�nes a stability criterion for the coali-tion structure. The idea is that strategy pro�les that donot have an optimal achievable utility are not candidatesfor the solution. Given a vector of joint strategies, it issaid to be blocked by a coalition if its members can bebetter o� by moving to another vector.De�nition 5 A coalition T blocks a vector of jointstrategies s = (s1; : : : ; sn) if for every ji 2 T there existsa s0 2 Qni=1 Si such that:� 8ji, uji(s0 ) � uji(s) and for at least one j0 2 T ,uj0(s0 ) > uj0(s)� (: : : ; uj1(s0 ); : : : ; uj2(s0 ); : : : ; ujjCj(s0 ); : : :) 2 v�(T ).The blocking relation de�nes a particular set of sta-ble joint strategies, the �-core. The �-core is the set ofjoint strategies where no coalition can be formed suchthat its members are better o� changing their individualstrategies, given that nonmembers pick strategies thatare worst for the coalition. In other words, it is the setof joint strategies for which a stable collective agreementcan be reached. Formally, the �-core correspondence isde�ned as follows:De�nition 6 A s = (s1; : : : ; sn) is in the �-core 
C� ifthere is no coalition T that can block (s1; : : : ; sn).As with the Nash correspondence, the �-core corre-spondence can be empty for some games:Example 1 G = ((Sa; Sb); �U), where the set of playersis fa; bg Sa = Sb = fn; ncgand �U = f(hc; nci; h0; 10i); (hc; ci; h5;5i);(hnc; ci; h10; 0i); (hnc; nci; h2;2i)g

where (hsa; sbi; hua(sa); ub(sb)i is the general form of theelements of �U . This is an instance of the Prisoner'sDilemma. The corresponding values of the characteristicfunction are:� v�(fag) = fh10; 0ig� v�(fbg) = fh0; 10ig� v�(fa; bg) = fh5; 5igIt is easy to see that� fag blocks fhc; ci; hc; nci; hnc; ncig� fbg blocks fhc; ci; hnc; ci; hnc; ncig� fa; bg blocks fhnc; ci; hc; nci; hnc; ncigTherefore, there is no hsa; sbi that is not blocked by atleast one coalition. In other words, 
C�(G) is empty.Under what conditions does a stable coalition struc-ture exist, i.e., what are the conditions for the non-emptyness of the �-core? In the rest of this section wewill show that surprisingly simple conditions are neces-sary and su�cient for stability. The concept of super-additivity will be used to build an intuition of this phe-nomenon. Superadditivity implies that any two coali-tions are best o� merging.De�nition 7 A game G is superadditive if given anytwo coalitions T1; T2, T1 \ T2 = ;, v�(T1) \ v�(T2) �v�(T1 [ T2). 4We now show an interesting property that relates thecharacteristic functions and superadditivity. This con-dition on characteristic functions will be later used todiscuss stability.Proposition 2 For a game G, if Ti2I v�(fig) 6= ; thenG is superadditive.Proof 2 We will prove this result by induction on thecardinality of coalitions:� given T1; T2, T1 \ T2 = ;, jT1j = 1, T2j =1, it is clear that there exist agents i; j 2 Isuch that T1 = fig and T2 = fjg. If �U� =(u�1; : : : ; u�n) 2 Ti2I v�(fig), then in particular�U� 2 v�(T1) \ v�(T2). Suppose �U� 62 v�(T1 [T2). Then, there exists s 2 Qni=1 Si such that�U(s) = (: : : ; ui(s); : : : ; uj(s); : : :) and ui(s) � u�iand uj(s) � u�j with strict inequality for one ofthem, say i. But then, �U� 62 v�(fig), contradiction.So, v�(T1) \ v�(T2) � v�(T1 [ T2).4Note that this de�nition by Shubik [9] di�ers techni-cally (although it is conceptually similar) from the conceptof superadditivity in games with sidepayments [9; 5; 6; 10; 7;8].



� assume that �U� 2 v�(T1)\v�(T2) � v�(T1[T2), forany pair of coalitions T1; T2, T1\T2 = ;, jT1[T2j �k < n. Consider i 2 I, i 62 T1; i 62 T2, and T 01 =T1[fig. Then T 01\T2 = ; and of course �U� 2 v�(T 01)(by the inductive assumption because jT 01j � k), so�U� 2 v�(T 01) \ v�(T2). Suppose that �U� 62 v�(T 01 [T2). Again, this means that exists s 2Qni=1 Si suchthat �U (s) = (: : : ; uj1(s); : : : ; ujk(s); : : :), where T 01 [T2 = fj1; : : : ; jkg, and uji(s) � u�ji for all ji 2 T 01 [T2, with strict inequality for one of them, say ji0 .Suppose without loss of generality that ji0 2 T 01, butthen, �U� 62 v�(T 01). Contradiction.So, v�(T1) \ v�(T2) � v�(T1 [ T2) for any pair of coali-tions T1; T2, T1 \ T2 = ;, jT1 [ T2j � n. That is, G issuperadditive 2To see that superadditivity is a necessary but not asu�cient condition for Ti2I v�(fig) 6= ;, let us revisitthe Prisoner's Dilemma of Example 1. It is easy to seethat it is a superadditive game, but v�(fag) and v�(fbg)have no element in common.The following result relates the condition of the previ-ous proposition with stability of the coalition structure(non-emptyness of the �-core):Lemma 1 For a game G, 
C� (G) 6= ; i�TT22I�; v�(T ) 6= ;.Proof 1 � !) If 
C�(G) 6= ;, then there exists ans� that is not blocked by any coalition. But then, bythe de�nition of blocked joint strategy, it is clear thatfor each coalition T , �U (s�) 2 v�(T ), and therefores� 2 TT22I�ff;g v�(T )�  ) If TT22I�f;g v�(T ) 6= ;, then there exists atleast one �U� 2 v�(T ) for every possible coalition Tand therefore an s 2 Qni=1 Si such that �U (s) = �U�.So, s is not blocked by any coalition and thus s 2
C� (G) 2This result is useful for proving the following theo-rem. The theorem shows that to characterize the stabil-ity of the coalition structure in terms of the �-core, onlythe utilities and the corresponding actions of individualagents are required, instead of comparing utilities andactions of coalitions.Theorem 1 For a game G, 
C� (G) 6= ; i�Ti2I v�(fig) 6= ;.Proof 1 � !) If 
C� (G) 6= ;, there exists a s 2Qni=1 Si such that no coalition blocks it. So for eachcoalition T , �U (s) 2 v�(T ). In particular for allthe coalitions with a single member, T = fig. So,�U (s) 2 Ti2I v�(fig).�  ) By Lemma 1, it is enough to prove thatTT22I�f;g v�(T ) 6= ;. The proof will be by induc-tion on the size of coalitions:

{ given that by hypothesis 9 �U� 2 Ti2I v�(fig),then for each i 2 I, �U� 2 v�(fig){ lets assume that for each coalition T with jT j =k < n, �U� 2 v�(T ). For any i 2 I; i 62 T (byproposition 1):�U� 2 v�(T ) \ v�(fig) � v�(T [ fig)So, �U� 2 v�(T 0), for any T 0 such that jT 0 j =k+1. Therefore, �U� 2 T 00 for any T 00 2 2I�f;g2Because for each agent i, v�(fig) represents her opti-mal achievable utilities, this result states that the non-emptyness of the �-core is equivalent to the existenceof at least one utility vector that is maximal for everyagent. This vector, say �U , is Pareto-optimal: there isno other �U 0 such that for all i, �U 0i � �Ui, with strictinequality for at least one i.It follows from Theorem 1 that in games without side-payments, the coalition structure can be stable onlyif every possible pair of coalitions is best o� merg-ing ([�-core 6= ;]) superadditivity). This di�ers fromgames with sidepayments [6]. On the other hand|as ingames with sidepayments|the coalition structure maybe unstable even if every pair of coalitions is best o�merging (superadditivity 6) [�-core6= ;]).4 Relationships between Axiomatic andStrategic Solution ConceptsIn this section we present some new relationships be-tween axiomatic and strategic (normative) solution con-cepts. The importance of these relationships lies in thefact that they allow us to import the other results of thispaper (derived for the axiomatic�-core solution concept)directly to normative solution concepts.The notion of the �-core is axiomatic in that it onlycharacterizes the outcome without a direct reference tostrategic behavior. The Nash correspondence is, instead,a strategic solution concept: it is based only on the self-interested strategy choices of agents. Speci�cally, it an-alyzes what an agent's best strategy is, given the strate-gies of others. A strategy pro�le is in Nash equilibrium ifevery agent's strategy is a best response to the strategiesof the others. Nash equilibrium does not account for thepossibility that groups of agents (coalitions) can changetheir strategies in a coordinated manner. Aumann hasintroduced a strategic solution concept called the strongNash equilibrium to address this issue [2]:De�nition 8 A strategy pro�le s 2Qni=1 Si, in a gameG, is a strong Nash equilibrium if for any T � I andfor all �sT 2 Qj2T Sj there exists an i0 2 T such thatui0(s) � ui0(�sT ; sI�T ).This concept gives rise to the strong Nash correspon-dence, 
SN , i.e. the set of strong Nash equilibria. Wecan show a close relationship between the strong Nashsolution concept and the �-core solution concept:



Theorem 2 For any game G, 
C�(G) � 
SN (G). 5Proof 2 Suppose that s 2 
C� (G) but s 62 
SN (G).Then, there exist an T � I and an �sT 2 Qj2T Sj suchthat for all j 2 C, uj(s) < uj(�sT ; sI�T ). That meansthat �U (s) is not in v�(T ), so there is a s0 such that�U (s0 ) 2 v�(T ) and uj(s0 ) � uj(s). Contradiction 2We can also relate the Nash correspondence and the �-core correspondence (this could alternatively be deducedfrom Theorem 2 and the fact that 
SN (G) � 
N (G)):Theorem 3 For any game G, 
C�(G) � 
N (G).Proof 3 Given s 2 
C�(G), we will show that s isa Nash equilibrium in pure strategies for G. Supposenot. By Theorem 1 is enough to consider what hap-pens with single individuals. Then, for a i0 2 I,given the vector (s1; : : : ; si0�1; si0+1; : : : ; sn), the bestresponse for i0 is s0i0 with ui0(s1; : : : ; s0i0 ; : : : ; sn) >ui0(s). But that means that fig blocks s, and therefores 62 
C� (G).Contradiction. This proves that 
C� (G) �
N (G) . Example 1 shows that the converse is nottrue: 
N (G) = fhnc; ncig and 
C�(G) = ;. Therefore
C� (G) � 
N (G) 2One implication of the results in this section is thatthe other results of this paper (which are derived for the�-core) carry over directly to analyses that use strate-gic solution concepts (Nash equilibrium, coalition-proofNash equilibrium or strong Nash equilibrium). Speci�-cally, any solution that is stable according to the �-coreis also stable according to these three solution concepts.Another implication is that to verify that a strategypro�le is in the �-core, one only needs to consider strat-egy pro�les that are Pareto-optimal 6 and in Nash equi-librium. Alternatively, one can restrict this search to5Often the strong Nash equilibrium is too strong a so-lution concept, because in many games no such equilibriumexists. Recently, the coalition-proof Nash equilibrium [3] hasbeen suggested as a partial remedy to this problem. Thissolution concept requires that there is no subgroup that canmake a mutually bene�cial deviation (keeping the strategiesof nonmembers �xed) in a way that the deviation itself isstable according to the same criterion. A conceptual prob-lem with this solution concept is that the deviation may bestable within the deviating group, but the solution conceptignores the possibility that some of the agents that deviatedmay prefer to deviate again with agents that did not origi-nally deviate. Furthermore, even this kinds of solutions donot exist in all games. In games where a solution is stable ac-cording to the �-core, the solution is stable according to thecoalition-proof Nash equilibrium solution concept also. Thisis because 
C�(G) � 
CPN (which follows from our result
C�(G) � 
SN (G) and the known fact 
SN (G) � 
CPN (G)).6The non-emptyness of the �-core is equivalent to the ex-istence of an utility vector �U which is common to all setsv�(fig) for all agents i. By de�nition 4, this means thatthere does not exist a �U 0 such that �U 0i � �Ui for all i, withstrict inequality for at least one i. That is, �U is Pareto-optimal. Therefore one can restrict the search to Pareto-optimal outcomes.

Pareto-optimal strong Nash or Pareto-optimal coalition-proof Nash equilibria.5 Bounded Rationality in CoalitionFormationIn the previous section it was assumed that deliberationis costless. To relax this assumption we introduce de-liberation and communication actions explicitly into themodel:De�nition 9 For each agent i in a game G, let Di bea set of deliberation-communication activities that i canperform to choose a strategy si to be executed. Eachdi 2 Di is associated with a Ci(di), i.e. the cost (for i)of performing the activity diIn order to avoid unnecessary complications, we as-sume that Ci(�) can be expressed in the same units asui(�). On the other hand, we will not assume any specialstructure on Di, except the following:De�nition 10 For each agent i, we consider her processof communication-deliberation fa0i ; a1i ; : : : atii g, whereati 2 Di, for t = 0; 1; : : : ; (ti � 1), and atii 2 Si. IfN = maxi2Iti, we say that the coalition structure hasbeen formed in N steps, and for any i and t such thatti � t < N , ati = atiiThe idea behind this de�nition is that the agents de-liberate and exchange messages until each one decides ona strategy to follow. We also assume that this process is�nite and that each agent stays commited to her choiceonce she has reached a decision.We use a very general characterization of thecommunication-deliberation process, without going intothe details of how an action leads to another one (e.g.how deliberation actions lead to the choice of physicalactions). This approach has the advantage of provid-ing results that can be applied to any such process. Wesay that the payo� of agent i in an N -period process isdetermined as follows:De�nition 11 If for each i, the communication-deliberation process is âi = fa0i ; : : : ; atii g (atii = si), thepayo� is�i(âi; : : : ; ân) = ui(s1; : : : ; si; : : : ; sn)� (Ci(a0i ) + : : :+Ci(atii ))� �Ci(N � ti)where �Ci > 0 is the waiting cost, which is assumed con-stant per time unit.We assume that costs of activities are independent, soif the process is âi = (a1i ; : : : ; aNi ), its cost Ci(âi) is equalto the sum of the costs of the activities, Ci(a0i ) + : : :+Ci(atii ) + �Ci(N � ti).Now a new game can be de�ned which explicitly takesthe deliberation and communication actions as part ofeach agent's strategy. This follows the approach of [6]where such actions are explicitly incorporated into the



solution concept. It di�ers from other DAI approachesto coalition formation where the solution concept onlyanalyzes �nal outcomes [10; 7; 8].De�nition 12 From G, fDigni=1 and t > 0, a newgame can be de�ned, Gt = ((Dti � Si)ni=1; P ), whereP : Qni=1(Dti � Si) ! Rn such that for each â 2Qni=1(Dti � Si), P (â) = (�1(â1); : : : ; �n(ân))The length of the game, t, depends critically on theavailable communication-deliberation activities and onthe sequential choice of activities. We assume that thetime limit is a given. To justify this, we suppose thateach agent i has a degree of impatience, given by a max-imum time to make a �nal decision ti. In Subsection 5.2we will relax this assumption.In order to maximize payo�s, our self-interested agentsengage in negotiations. The �nal outcomes represent theresult of agreements among agents. To justify the self-enforcement of these agreements we need a criterion forthe stability of the coalition structure:De�nition 13 A process â = fa0; : : : ; atg 2Qni=1(Dt�1i � Si) de�nes a stable coalition structure ifat 2 Qni=1 Si cannot be blocked (see Section 3) by anycoalition formed in another process â0 = fa00 ; : : : ; at0gThe relationship between stable coalition structures andthe �-core is given by the following lemma.Lemma 2 If the process â = fa0; : : : ; atg 2Qni=1(Dt�1i � Si) is in the �-core of the game Gt then âde�nes a stable coalition structure.Proof 2 Suppose that there exist a coalition T such thatexists s 2 Qni=1 Si that veri�es that uj(s) � uj(at)for j 2 T and uj�(s) > uj�(at) for a j� 2 T . Thenâ0 = fa00 ; : : : ; �sg is a process in which T is formed andobtains �s, where �sj = sj and Pj(â0 ) � Pj(â), for j 2 T .Contradiction because â is in the �-core of Gt 2We can easily restate the notions given in Section 2 inorder to �nd conditions for the stability of the coalitionstructure. First, we de�ne the characteristic function forGt, vGt , replacing the optimal achievable utilities by theoptimal achievable payo�s which incorporate delibera-tion and communication:De�nition 14 Given Gt = ((Dti � Si)ni=1; P ), andT � I, the set of optimal achievable payo�s for T =fj1; : : : ; jjT jg is the set of �Ps such that exists â 2Qni=1(Dti � Si) and P (â) = �P . Moreover, 6 9â 2Qni=1(Dti �Si), such that P (â) = �P 0 with, for all ji 2 T ,�P 0ji � Pji , and for at least one j� 2 T , �P 0j� > Pj�This means, again, that �P is an optimal achievablepayo� for coalition T if there is no other payo� vectorsuch that the payo� is no worse for any member and itis better for at least one|for all (in particular for theworst) processes that nonmembers can pick. Now,Proposition 3 â 2 Qni=1(Dt�1i � Si) is such thatP (â) 2 vGt(fig) for each i i� â is in 
C� (Gt).

Proof 3 Immediate from Theorem 1 2This means that a communication-deliberation-actionprocess in the �-core corresponds to a Pareto-optimalpayo�. For many games (the Prisoner's Dilemma beingan example) a Pareto-optimal payo� can be reached onlythrough the coordinated activity of agents. Let us giveanother example:Example 2 Consider again the game G of Example 1,and assume thatDa = Db = fd; d0; d00gand Ca(d) = Cb(d) = 0:1Ca(d0) = Cb(d0) = 0:1Ca(d00) = Cb(d00) = 0:5where the actions are described as follows:� d: evaluate options (we will say that any of the otherchoices require this deliberation step before they canbe chosen)� d0: engage in negotiations� d00 : reach an enforceable agreementMoreover, we assume that the evaluation d has as aconsequence the realization that if no enforceable agree-ment is reached, the outcome will be hnc; nci. So, thesequence (hd; di; hd0; d0i; hd00; d00i; hc; ci) is in the core, be-cause the payo� for every player, 5 � (0:1 + 0:1 + 0:5)is higher than any other payo�, considering that d is anunavoidable step in the process. If an agent chooses theprocess fd; ncg she know that the other will do the same,so the payo� will be 2� 0:1.5.1 Incorporating Belief RevisionThe previous example is very simple, but it shows the se-quential nature of an agent's choice of action. This sub-section introduces a more sophisticated decision makingmodel for an agent that takes part in coalition forma-tion. This model is used to show results on the jointoutcomes and the joint process.To choose the action that maximizes expected pay-o� at each step, an agent may need to evaluate the ex-pected payo�s of di�erent actions. We will show whenthis procedure leads to the formation of a stable coali-tion structure. To give a mathematical characterization,we introduce the notion of \expected payo�":De�nition 15 Given a sequence of actions performedby an agent i, âti = (a0i ; : : : ; ati) 2 Dt+1i , we say thatagent i can de�ne a subjective probability distribution onQni=1 Si, such that �ti(sjat+1i ) is the conditional probabil-ity of an outcome s, given that the next action is at+1i . Aprobability distribution on the total costs associated withthe process to reach s 2 Qni=1 Si can be also de�ned,



such that �ti(Ci(s)jat+1i ) is the conditional probability ofa cost Ci(s) 7, given that the next action is at+1i . Then,the expected payo�, given that the next action is at+1i is��ti(at+1i ) = Xs2Qni=1 Si ui(s)�ti(sjat+1i )� XCi(s); s2Qni=1 Si Ci(s)�ti (Ci(s)jat+1i )An agent can try to maximize her expected payo� ineach step, i.e. to choose a ati 2 (Di [Si) that maximizes��ti(�). This is a greedy procedure, and agents that useit may not always converge on a joint solution. Butwhen this procedure is performed in conjunction withcoordination among agents (in the sense that they agreeon a process that is in the �-core), they will convergeto the belief that a particular outcome s is the mostprobable one (later we show that s is Pareto-optimal).Proposition 4 If â = (a0; : : : ; at; : : : ; aN ) is in the �-core (Proposition 4 showed that this means that for eacht, at = (at1; : : : ; atn) is the vector of optimal decisions)then 9m such that for t > m exists an s 2 Qni=1 Si thatgives the maxs2Qni=1 Si�t�1i (sjati) for each i.Proof 4 If â is in the �-core, P (â) is in vGN (fig)(by Theorem 1). Suppose that for each m exists at > m such that it does not exist an s 2 Qni=1 Si thatgives the maxs2Qni=1 Si�t�1j (sjati). In particular, givenm = N � 1, for t = N it does not exist a s giv-ing the maxs2Qni=1 Si�N�1i (sjaNi ). If so, it means thatat least an agent will deviate, making another strategypro�le more probable. Then, as aNi 2 Si it is clearthat for at least an agent i�, �i�(â0 ) > �i� (â), wherea0 = (a10 ; : : : ; aN 0), aNj = aN 0j = sj for j 6= i� and aN 0i� 6=aNi� = si� . Contradiction because P (â) 2 vGN (fi�g) 2The converse is not true. A process that leads to astable coalition structure may not be in the �-core. Itis intuitive that a stable structure can be formed in acost-ine�cient process. This process could be blockedby another one leading to the same coalition structure,thus preserving stability. Therefore, Proposition 4 onlygives a necessary condition for a process to be an elementof the �-core. However, this is all we need since thefollowing result shows that a coalition structure is stableif it leads to a convergence of beliefs about the strategypro�le to be chosen.Theorem 4 For GN , given a process â = (a0; : : : ; aN ),9m such that for all t > m exists an s 2 Qni=1 Si thatgives the maxs2Qni=1 Si�t�1i (sjati) for each i i� â de�nesa stable coalition structure.7Ci(s) is the average cost of a process with the form â =(a0i ; : : : ; si), incorporating also an estimate of the length oftime to reach s

Proof 4 � !) Trivial: if a coalition T formed in astage t � m can block âN it means that there ex-ists âN 0 2 Qni=1 Si, such that uj(aN 0 ) � uj(aN ) forj 2 T and for a j� 2 T , uj�(aN 0) � uj�(aN ) andaN 0 maximizes ��N�1j (�). Contradiction because theoptimal decision in N is aN .�  ) Suppose that for all m exists a t > msuch that there is no s 2 Qni=1 Si that gives themaxs2Qni=1 Si�t�1i (sjati) for each i. If so, for m =N�1, there exists a i� and a s� 6= aN verifying that��N�1i� (s�) > ��N�1i� (aN ), but then, fi�g is a coalitionthat blocks aN . Contradiction 2This result can be generalized as follows:Theorem 5 In GN , â = (a1; : : : ; aN ) de�nes a sta-ble coalition structure i� there exist an m such thatfor each i and for all t > m, there exists a pair(aN ; ati) 2 (Qni=1 Si) � Di such that ui(�)�t�1i (�j�) andCi(�)�t�1i (Ci(�)j�) achieve a maximum and a minimum(respectively) in (aN ; ati).Proof 5 � !) Assume that for all m exists i 2 Isuch that forall ati 2 Di [ Si exists t > m for whichui(�)�t�1i (�j�) and Ci(�)�t�1i (Ci(�)j�) do not achievea maximum and a minimum in (aN ; ati). Takingm = N � 1 it results that exists s 2 Qni=1 Si suchthat ui(s)�N�1i (sjsi) > ui(aN )�N�1i (aN jaNi ) andCi(s)�N�1i (Ci(s)jaNi ) < Ci(aN )�N�1i (Ci(aN )jaNi ).Therefore i can block aN . Contradiction.�  ) suppose that exists a coalition T � I that canbe formed in a another process â0 . Therefore for atleast one i 2 T , exists s 2 Qni=1 Si (si = aN 0i )suchthat ui(s)�N�1i (sjsi) > ui(aN )�N�1i (aN jaNi ) andCi(s)�N�1i (Ci(s)jsi) < Ci(aN )�N�1i (Ci(aN )jsi).Contradiction because for (aN ; aNi ) ui(�)�t�1i (�j�)and Ci(�)�t�1i (Ci(�)j�) achieve a maximum and aminimum 2Put together, Theorem 5 gives the conditions underwhich the greedy process of De�nition 15 is guaranteedto lead to a stable coalition structure. Sometimes theprocess that leads to this coalition structure is stableaccording to the �-core and sometimes not.5.2 Deliberation-CommunicationProcesses of Di�erent LengthsThe previous result is highly dependent on the lengthof the process: two processes â and â0 are comparableonly if their lengths are the same. If not, the previousresult cannot be applied. If we maintain that the degreeof impatience of each agent, ti, is given beforehand, itis clear that the game has a de�nite length maxi2I ti.If not, a condition on the convergence of beliefs can begiven. The following result shows also that every conver-gent process (in the sense that agents agree in their be-liefs about the �nal outcome), de�nes a stable coalition



structure in an endogenously de�ned timing. In otherwords, there always exists a process that provides theoutcome on which the agents agree, and the length ofthe process is �nite:Theorem 6 If there exists an m such that for each iand for each t > m, ui(�)�t�1i (�j�) and Ci(�)�t�1i (Ci(�)j�)have a maximum and a minimum (respectively) in a pair(s�; ati), then there exists an N such that aN = s�.Proof 6 Given that for each i, for each t > m,ui(�)�t�1i (�j�) and Ci(�)�t�1i (Ci(�)j�) have a maximumand a minimum (respectively) in a pair (s�; ati), we knowthat for every i, exists ti such that s�i = atii (otherwisethe process âi is in�nite and Ci(s�) ! 1 and therefore�(âi) ! �1). For t > ti, ati is the action of wait-ing for the decision of the other agents. Then, takingN = maxiti, we see that aN = s� 25.3 Comparing Outcomes of Rational andBounded Rational AgentsCommunication-deliberation processes were introducedin order to describe the dynamic formation of coalitionstructures in the original game G. Theorem 7 showsthat the outcome of a process that converges to a stablecoalition structure is Pareto-optimal (part of the Pareto-frontier of the original gameG). Conversely, any Pareto-optimal outcome can be supported by a process thatconverges to a stable coalition structure. 8 Formally,the relationship between outcomes in a stable coalitionstructure formed in a communication-deliberation pro-cess, and outcomes achieved by perfectly rational agentsin the original game G is as follows:Theorem 7 A process â = (a1; : : : ; aN ) generates astable coalition structure i� there does not exists s 2Qni=1 Si, such that ui(s) � ui(aN ) for all i and ui�(s) >ui�(aN ) for at least one i�.Proof 7 � !) Suppose that exists s 2 Qni=1 Si,ui(s) � ui(aN ) for all i and at least for one i�,ui�(s) > ui�(aN ). Then, another process â0 =(a01; : : : ; a0N ) can be generated, a0N = s. Contra-diction.�  ) Suppose that there exists another process â0 =(a01; : : : ; a0N ), a0N = s, such that for at least onei�, ui�(s) > ui�(aN ). Contradiction 26 ConclusionsWe analyzed the problem of coalition formation in gameswithout sidepayments. First, the �-core solution conceptwas reviewed in the context of games in which agents are8There is an analogy between this result and the Folk the-orems for repeated games [4]. Both show that the outcomeof a process lies in a particular region of the strategy space:above the minimax point in the Folk result and the Pareto-frontier here.

perfectly rational. We showed that a solution is in the �-core if the corresponding utility pro�le is Pareto-optimal,i.e. an individual utility cannot be improved without di-minishing the utility of another agent. This propertyis closely related with superadditivity, a property indi-cating that shared optimal achievable utilities for di�er-ent coalitions remain optimal achievable utilities for theunion of the coalitions. Superadditivity implies that anytwo coalitions are best o� by merging.Next we explored the relationships between axiomaticand strategic solution concepts. We showed that any so-lution that is stable according to the �-core correspondsto a strong Nash equilibrium (and to a coalition-proofNash equilibrium and a Nash equilibrium). This al-lows us to study games with the �-core solution con-cept while our positive stability results carry over di-rectly to these three strategic equilibrium-based solutionconcepts. This also allows one to con�ne the search forstable �-core solutions to the space of Pareto-e�cientstrong Nash equilibria (or coalition-proof Nash equilib-ria or Nash equilibria).For bounded rational agents we showed that the �-coresolution concept provides clues about the properties ofthe deliberation-communication processes that lead tostable coalition structures. Speci�cally, we showed thata process de�nes a stable coalition structure if its out-come cannot be blocked by a coalition formed in anotherprocess of the same length.We characterized the communication-deliberation pro-cess as a greedy maximization of stepwise expected pay-o� where deliberation and communication actions incurcosts. We showed that when agents agree to a processthat is in the �-core, this greedy algorithm leads to con-vergence of the agents' beliefs in a �nite number of steps.We also showed that the convergence of beliefs impliesthat the �nal outcome is stable (when the protocol lengthis exogenously restricted as well as when agents can en-dogenously decide the length). More general mathemat-ical conditions for such stability were also derived.Finally, we showed that the outcome of anycommunication-deliberation process that leads to a sta-ble coalition structure is Pareto-optimal for the originalgame that does not incorporate communication or de-liberation. Conversely, any Pareto-optimal outcome canbe supported by a communication-deliberation processthat leads to a stable coalition structure.References[1] Aumann, R., Acceptable Points in General Cooperativen-Person Games, in Tucker,A. and Luce,D. (eds.) Con-tributions to the Theory of Games IV, Princeton Uni-versity Press, Princeton 1959.[2] Aumann, R., The Core of a Cooperative Game withoutSide Payments, Transactions of the American Mathe-matical Society 98(3), 1961.



[3] Bernheim, B., Peleg, B., and Whinston, M., Coalition-proof Nash Equilibria: I Concepts, Journal of EconomicTheory 42(1):1-12, 1987.[4] Fudenberg, D. and Tirole, J., Game Theory, MITPress, Cambridge 1991.[5] Kahan, J. and Rapoport, A., Theories of CoalitionFormation, Lawrence Erlbaum Associates, 1984.[6] Sandholm, T. and Lesser, V., Coalition Formationamong Bounded Rational Agents, 14 IJCAI:662-669,1995.[7] Shechory, O. and Kraus, S., Task Allocation viaCoalition Formation among Autonomous Agents, 14IJCAI:655-661, 1995.[8] Shechory, O. and Kraus, S., A Kernel-oriented Modelfor Coalition-formation in General Environments: Im-plementation and Results,AAAI-96:134-140, 1996.[9] Shubik, M., Game Theory Models and Methods in Po-litical Economics, in Arrow,K. and Intriligator,M. (eds.)Handbook of Mathematical Economics vol.I, North-Holland, Amsterdam 1981.[10] Zlotkin, G. and Rosenschein, J., Coalition, Cryptogra-phy and Stability: Mechanisms for Coalition Formationin Task Oriented Domains, AAAI-94:432-437, 1994.


