
Revocable Privacy: Principles, Use Cases, and
Technologies?

Wouter Lueks1, Maarten H. Everts2, and Jaap-Henk Hoepman1

1 Radboud University, Nijmegen, The Netherlands
{lueks,jhh}@cs.ru.nl

2 TNO, Netherlands Organisation for Applied Scientific Research
maarten.everts@tno.nl

Abstract. Security and privacy often seem to be at odds with one another. In this
paper, we revisit the design principle of revocable privacy which guides the cre-
ation of systems that offer anonymity for people who do not violate a predefined
rule, but can still have consequences for people who do violate the rule. We first
improve the definition of revocable privacy by considering different types of sen-
sors for users’ actions and different types of consequences of violating the rules
(for example blocking). Second, we explore some use cases that can benefit from
a revocable privacy approach. For each of these, we derive the underlying abstract
rule that users should follow. Finally, we describe existing techniques that can im-
plement some of these abstract rules. These descriptions not only illustrate what
can already be accomplished using revocable privacy, they also reveal directions
for future research.

1 Introduction

Privacy and (homeland) security seem to be at odds with one another: it is a commonly
held belief that we cannot strengthen one without weakening the other. And it seems se-
curity is winning. The governmental hunger for data—and its ability to actually gather
these—seems bigger than ever. And who would argue against collection of these data?
Surely we all want to stop terrorists, pedophiles and tax evaders. Yet, security versus
privacy does not have to be a zero-sum game [15, 17]. Hoepman also argued that this
contradiction between security and privacy is a false one, and that we can design sys-
tems that have privacy without neglecting security [11].

Hoepman introduced a design principle to create systems that have both security
and privacy: revocable privacy. The core idea of revocable privacy arises from the re-
alisation that it is not the data itself that is (or should be) important, but rather the
? This paper is based on our earlier technical report on revocable privacy [13]. The work de-

scribed in this paper has been supported under the ICT theme of the Cooperation Programme
of the 7th Framework Programme of the European Commission, GA number 318424 (Fu-
tureID) and the research program Sentinels (www.sentinels.nl) as project ‘Revocable Privacy’
(10532). Sentinels is being financed by Technology Foundation STW, the Netherlands Orga-
nization for Scientific Research (NWO), and the Dutch Ministry of Economic Affairs. This
research is conducted within the Privacy and Identity Lab (PI.lab) and funded by SIDN.nl
(http://www.sidn.nl).



violations of certain rules that manifest themselves in the data. Data related to people
who do not violate any rules are irrelevant, and, in fact, these people should remain
anonymous, as if no data on their behavior was ever collected. Revocable privacy is a
design principle that ensures this property. Informally speaking, a system offers revo-
cable privacy if users of the system are guaranteed to be anonymous except when they
violate a predefined rule.

To ensure privacy, the system’s anonymity guarantees cannot rely on policy and reg-
ulations alone. It is all too easy to ignore policy, to sidestep it, or to change it retroac-
tively. As a result, data that was collected for one specific purpose can easily be reused
for another—violating people’s privacy. A key aspect of a system implementing revoca-
ble privacy is to prevent this type of function creep through technical means: it should
not be possible to change the rules retroactively.

It is known that building such systems is possible. One example is the anonymous
electronic cash system proposed by Chaum [6], which actually implements revocable
privacy (although he did not use this term). Users have electronic coins, which they
can spend as if they were physical coins, in effect making an untraceable digital pay-
ment system in which the users’ privacy is guaranteed. However, to maintain security,
this anonymity cannot be unconditional. If it were, it would allow misbehaving users
to double-spend the digital coins without consequence. Instead, the revocable privacy
aspect of the design guarantees that users are anonymous, as long as they spend the dig-
ital coins only once. When they do spend a coin twice, their identity can be recovered
from the two transaction records of the two spendings. Any single transaction record,
however, gives no information about the identity of the user.

In general, to ensure anonymity for rule-abiding users, data must be collected in
a special manner. In Chaum’s electronic cash system, the cut-and-choose paradigm is
used to ensure that a single transaction record gives no information, whereas two reveal
the identity of the culprit. Distributed encryption [12, 14] offers another method for
creating threshold based rules. Data is collected for every event, but the user’s identity
is revealed only if she causes an event to happen at sufficiently many different locations.

While Chaum’s electronic cash could be seen as such a scheme with a threshold
of two, it differs significantly from distributed encryption. In the first, the user actively
partakes in the transaction, whereas in the second, the user deliberately does not take
part. As a result, these systems have different privacy guarantees and trust assumptions.
These aspects of revocable privacy had not yet been explored.

In all previous work on revocable privacy [11–14], the focus was on identifying
users who violate the rules. However, in some situations, such an approach might be
too strong. For example, anonymity is the core property of Tor [8], so it should never
be possible to deanonimize users. Yet, Tor can also be abused. In order to stop abuse,
some approaches, like blacklistable anonymous credentials (BLAC), aim to block mis-
behaving users, rather than to identify them [18].3

Our first contribution, in Section 2, is to re-examine revocable privacy in a more
general setting, where we consider the implications of different security models, and

3 Nymble [19] is a related system that can be used to block misbehaving users. However, it
relies on a trusted party that can make users linkable if they misbehave, so we do not consider
it further in this paper.



explore ramifications of users’ actions that are less invasive than simply identifying
users, for example, blocking users and linking their actions.

Next, we explore and classify some use cases for revocable privacy in Section 3.
We generalize the underlying rules of the use cases into abstract rules. These use cases
illustrate that even if a user has violated a rule, she did not necessarily do something
wrong. In fact, we will explore some systems where a violation only means that closer
examination is necessary.

The abstract rules for the use cases make it possible to link them to specific tech-
niques. Our final contribution, in Section 4, is to give a non-technical overview of ex-
isting techniques that can be used to implement revocable privacy. For each technique,
we indicate which abstract rules it can implement. This not only shows which use cases
we can already solve, but also highlights which abstract rules we cannot yet implement.
We analyse the latter in Section 5 to reveal interesting new research directions. We also
discuss some general limitations of revocable privacy. Finally, we conclude our paper
in Section 6.

Revocable privacy is not a license for unchecked surveillance. The use cases explored
in this report come from various sources. Some of them are real, others are purely
hypothetical. In many cases the legality and/or morality of the situation described in the
use case is debatable. We have included them for the sole purpose of investigating the
types of rules a system with revocable privacy might need to implement in the future.
Inclusion of a use case in this paper does not mean that we endorse it in any way.

2 Revisiting the concept of revocable privacy

In this section we will (re)define revocable privacy. We first explore what it means to be
anonymous and what levels of anonymity exist.

2.1 Levels of anonymity

At first sight it may seem that anonymity is an all-or-nothing property: either you have
it or you do not. This is false. There are many shades of anonymity, ranging from fully
anonymous to fully identified. For example, users might be pseudonymous: their ac-
tions are known under a fixed identifier—the pseudonym—but it is not known which
pseudonym belongs to which user. In fact, users may have different pseudonyms de-
pending on the situation.

Pseudonymity is often even equated with anonymity. However, stronger forms of
anonymity are possible. When a user’s actions are unlinkable, it is impossible to de-
termine whether two actions were performed by the same user or by different users.
(This linking is trivial in a pseudonymous system.) When we say that a system is fully
anonymous, we mean that it has this level of unlinkability.

We can traverse the range between fully anonymous to fully identified by adding
pieces of information. Some have a small impact on anonymity, like gender, nationality
or age. We can also add a pseudonym to make a user’s action linkable within a specific



domain. The most natural pseudonym is one that does not change. Then all the user’s ac-
tions will be linkable. However, we can also make pseudonyms that change frequently,
and thus make the user’s actions linkable within a short time period. Finally, some data,
like social security numbers, license plates and bank account numbers, effectively make
the user fully identified.

These ranges in anonymity have two consequences when dealing with revocable
privacy. First, you can lose anonymity (because you violated a rule) without becoming
fully identified. Second, it is better to see losing anonymity in relation to other partici-
pants in the system, as some systems may not offer full anonymity in the first place.

2.2 Improving the definition

Hoepman [11] originally defined revocable privacy as follows:

“A system implements revocable privacy if the architecture of the system guar-
antees that personal data are revealed only if a predefined rule has been vio-
lated.”

There are some problems with this specific definition. First, the rule explicitly mentions
personal data. Companies, however, might have an equally big desire for protecting
their corporate data (e.g., their business processes). Moreover, as we explored in the
previous section, revealing personal data is not always necessary; there are other ways
to lose anonymity.

The definition could also be extended to include cases where revealing a user’s
personal information could be positive to the user, rather than just negative, as we have
discussed so far.4 One example is privacy-friendly matching on a dating site, where
you get each other’s contact information only if the profiles match. However, we think
that such systems should not be classified as having revocable privacy, as this makes the
definition too broad, almost to the point of including all privacy enhancing technologies.

The second problem we have with this definition is that it is very easy to misread
it and assume that if a person were to violate the rule then personal data are revealed.
However, it does not say that. It states just that personal data may be revealed only if
the rule is violated.

We incorporate these suggestions into the following revised definition of revocable
privacy. We focus on anonymity rather than personal data and rephrase the rule to clarify
that violating a rule does not necessarily imply the release of personal information.

Definition 1. A system implements revocable privacy if the architecture of the system
guarantees a predefined level of anonymity for a participant as long as she does not
violate a predefined rule.

As required, this definition does not say anything about the consequences when a par-
ticipant does violate the rule. In practice there will be a consequence. If the system
implements revocable privacy this usually means that the participant loses anonymity,
but it can also mean that the participant is blocked from making further actions.

4 In fact, we suggested this approach in our technical report [13].



2.3 Systems and rules

In the above definition, we consider the system as the environment with which the user
interacts, and within which certain rules should be maintained. For example, in Chaum’s
electronic cash scheme, this system is the payment environment.

Rules are part of the system, and we require them to be predefined, including their
parameters. For example, if the abstract rule is “A participant is allowed to cause an
event at most t times”, then the threshold t should be defined for every instantiation.
This requirement prevents function creep and ensures clarity. If, instead, parameters
should be configurable afterwards—for example, if certain criteria are not known in
advance—the rule should explicitly state this.

We impose no other restrictions on the rules as this allows us to best capture the
notion of ‘anonymity until violation of the rules’ that we see in many systems. In par-
ticular, we do not demand the rules to be known to the participants. While it is better
that the rules are known, there might be circumstances where they must be kept secret.

We realize that the freedom in choosing rules (and keeping them secret) makes
them very powerful. In fact, a rule might simply require all events to be output, or allow
parameters to be set to non privacy-friendly values. Thus, careful scrutiny of the rules
is of the utmost importance. The designers of the rules must ensure that the reduction
in privacy that results from violating a rule is proportional to the detected behavior.

Ensuring proportionality is particularly important when violation of a rule does not
necessarily imply that the participant is misbehaving. It may only be an indication of
misbehavior (as in the canvas cutters use case, see Section 3.1) or even that the partici-
pant might be harmed (as in the detecting child abuse case, see Section 3.3).

2.4 Architecture of a System

What does it mean for the architecture of the system to protect the anonymity of well-
behaving users? As we argued before, policies and procedures do not offer sufficient
protection against function creep and misuse of the data in the future. We cannot as-
sume that the raw data remain secure forever. Instead, we rely on the architecture of the
system (the manner in which it is built, including the cryptography) to guarantee the
anonymity of rule-abiding participants.

However, systems implementing revocable privacy cannot always offer uncondi-
tional anonymity either. It matters how the user’s actions are observed within the sys-
tem. For example, if the system sees what the user does, but chooses to forget it, we have
to trust the system to actually do this. In this section, we explore the trust assumptions
in a system implementing revocable privacy.

To determine these assumptions we examine how data is collected—is the identity
of the user ever known?— and how it is stored. We consider three conceptually different
methods. For reference, we first describe the traditional method where the user is known
and the data is stored in the clear. In the second method, the user is still identified, but
only processed information is stored. In the third, the user is never identified.

In all of these situations data resulting from the user’s actions are stored. A final
post-processing procedure, that is based on the rule, takes these data and outputs data
such that a negative consequence for the participants can be effected. Usually, these



data will reduce the anonymity, but they might also be used just to block further access
to the system—as is the case in BLAC. Both how the data is encoded and how it is
post-processed depend on the rule. In a system with revocable privacy, it is not possible
to change the rule and then reprocess old data (that was collected using a different rule)
according to the new rule.

Plaintext logging For contrast, we first describe the obvious method for implementing
a system with rules. Users are never anonymous with respect to the system. Every rel-
evant action by the user—relevant with respect to the rules that are to be enforced—is
stored together with the user’s identity.

Violations of the rules are detected by checking the rules against the stored data.
Since the user’s identity is also stored, any consequence to the user’s actions can imme-
diately be enforced.

Any anonymity guarantees offered by such a traditional system rely on the policies
and regulations that protect access to the stored data and govern the data retention poli-
cies. Hence, trust lies in the policies. Because this is not an architectural protection, we
say that such a system does not offer revocable privacy.

One way to bolster the protection is to add one or more trusted third parties that
decide if the rule is violated and then carry out the desired consequence. Hoepman [11]
says such a system, which he calls of the spread responsibility type, does have revocable
privacy. However, since the system does not enforce the rule we do not consider that
to be the case in this paper. Instead, we focus solely on systems that, according to
Hoepman, have a self-enforcing architecture, where the architecture determines if the
anonymity guarantee can be weakened.

Non-interactive sensors with encoding The second method is a direct alternative to
traditional methods. It drastically improves the anonymity guarantees, without requir-
ing changes to the users of the system. As with plaintext logging, the actions of the
participant and its identity are visible to the system, however, in contrast, they are never
stored directly. Instead, a sensor (there can be many sensors in a system) observes these
actions and identities, and then transforms them, based on the rule, into encrypted data.
Only these encrypted data are stored.

The encryption method is special. There is no key that can be used to decrypt the
data. Only when the encrypted data corresponds to a violation of the rule, can they be
decrypted to produce some useful output.

To guarantee anonymity, we need to trust that the sensors behave as specified. In
particular, we trust that sensors do not store their inputs. In addition, many sensors use
private keys, in which case we trust them to keep these secret too. These private keys
ensure that even if the sensors’ outputs are deterministic (i.e., the sensors do not use
randomness) an attacker cannot simply confirm a suspected event based on the stored
data by simply calculating the same function as the sensor.

Despite these strict trust assumptions on the sensor, these systems can be very useful
because they can be used as a drop-in replacement for traditional systems. In particular,
they do not require any changes to the user’s side. Of course, the sensors and the rest of



the system still need to be adapted to work with the encrypted data. In some sense, the
sensors act on behalf of the user.

Mitigating the trust needed in the sensors. In some cases, like the threshold system that
we describe in Section 4.1, the sensors are distributed. In this case, it may be possible
that some are compromised, while the system as a whole still offers (some) anonymity.

Another approach that is useful in this setting is to make sure that the system is
forward secure. Loosely speaking this would imply that if a sensor is compromised, it
impacts only future events.

Interactive sensors In the third and final method, there is no sensor that simply ob-
serves the user; the user herself needs to be actively involved and interact with the
sensor. The user usually keeps track of some secret information.

The advantage of this approach is that the user’s identity is never known to the
system, so the user’s anonymity does not rely on the trustworthiness of parties within
the system. The downside is that the user needs to interact with the sensors.

The sensor cannot rely on its own inputs to verify the correctness of the supplied
information. Instead, this burden falls on the participant: she needs to convince the
sensor that the supplied information is correct (even if the sensor does not know the
content of the information).

3 Use Cases

We now present a number of use cases that could benefit from revocable privacy. These
use cases are the result of interviews with security experts, internal discussions and
privacy enhancing technologies literature. This overview is by no means exhaustive.
Instead, it serves as a motivation for revocable privacy and as a source of insight into
the abstract rules underlying these cases. We use these abstract rules to determine which
cases we can already solve, and for which ones we need to develop new primitives.

We omit some of the use cases from our original analysis [13]. As we discussed
in Section 2.2, we omit cases where the user would benefit from having its anonymity
revealed. Other cases we omit because they are too vague or not interesting. Finally,
we omit cases that simply give too much power to a government agency, even if only
suspicious behavior would be detected.

We sort and categorise the use cases based on the type of rule that the system
should enforce. The rules are roughly ordered by complexity. We start with three simple
classes. The first class is that of threshold rules, where an event should not happen too
often. The second class, containing predicate rules, consists of rules for logical combi-
nations of simpler events. The third class covers cases where the rule encodes a human
decision making element—for example, a judge signing a warrant.

Next, we consider two classes of more complicated rules. The first covers rules that
are more complex than any of the aforementioned. For example, rules about flows on
graphs (useful in tax situations) and about combining (private) information into the de-
cision making process. The second covers rules that are fuzzy and would normally, even
when no anonymity is required, involve machine learning and data mining techniques.



Table 1. An overview of the use cases and their sensor type, source, and applicable techniques.
The sensor type is non-interactive (N-I), interactive (I) or both. The techniques are distributed
encryption (DE, Section 4.1), n-times anonymous credentials (n-AA, Section 4.1), blacklistable
anonymous credentials (BLAC, Section 4.2), group signatures (GS, Section 4.2) and secure multi-
party computation (MPC, Section 5). A question mark indicates that we are not sure if this tech-
nique fully solves the problem. Biskup and Flegel proposed a system [2] to solve the cases marked
with an asterisk (*). However, it requires the sensor to store a (partial) record of all events, it thus
does not offer the anonymity that our definition of revocable privacy requires. We do not know of
a solution for these cases that implements revocable privacy as we defined here.

Use case Type Source Technique

Canvas cutters N-I Dutch National Police (KLPD) DE
Object surveillance N-I Dutch National Police (KLPD) (*)
Average speed checking N-I Dutch National Police (KLPD) & Lueks et al. [14] DE
Anomalies in logs N-I Biskup and Flegel [2] (*)
Sharing anon. resources I Camenisch et al. [4] n-AA
No-show reservation I Internal discussion Unknown
Electronic cash I Chaum [6] n-AA

Social welfare fraud both Municipality of Groningen Unknown
Terrorist activity N-I Internal discussion Unknown

Child abuse N-I Internal discussion DE
Anonymous editing I Tsang et al. [18] BLAC
Deanonymizing comments both Interview GS?
Wiretapping policy N-I Interview Unknown

Riot control N-I Dutch National Police (KLPD) Unknown
Money flow anomalies I Sharemind application [3] MPC?

Object surveillance 2 N-I Internal discussion Unknown
Camera footage N-I Internal discussion and Sound Intelligence [16] Unknown

For each of these classes we present several use cases. For every use case, we de-
scribe the case, extract an abstract rule and note the consequence of violating that rule.
While the use cases focus on specific scenarios, the abstract rules generalize the rule
within these scenarios. It ignores the scenario specific details. This makes it easier to
determine which use cases have similar rules, and which techniques might be used to
solve a use case using revocable privacy. Table 1 records the type of sensor, the source
of the use case, and potential solutions.

3.1 Threshold rules

A threshold rule has the form “a certain action should be performed no more that k
times within a certain time period”. The most common consequence of violating the
rule is to reveal the violator’s identity, however, it is also possible to block the user. A
threshold of one is possible in some of these scenarios. The following use cases work
with threshold rules.



Canvas cutters This case, as well as the following two cases, focusses on detecting bad
or suspicious behavior involving cars. As cars are generally not able to communicate
with roadside equipment, we focus on the scenario where an automatic number plate
recognition system reads the license plates of passing cars. This makes using a non-
interactive sensor the only option.

Criminals frequently loot trucks parked at rest stops by cutting the canvas that pro-
tects the goods. One way to detect these criminals is to look for cars that enter several
different rest stops within a couple of hours. These cars are suspicious. While false
positives cannot be eliminated—e.g., police cars and road-side assistance vehicles may
cause them as well—most hits will correspond to suspicious behavior.

Abstract rule Given n sensors at different locations, a participant should trigger at
most threshold t different sensors within a given time period.

Consequence The system learns the identity of the participant.

Object surveillance Related to the previous problem is the problem of casing: crim-
inals checking out a location, like a sensitive piece of infrastructure, multiple times.
These criminals can be detected by looking for cars that pass by this location rather
frequently. This case is not the same as the canvas cutters use case. In particular, here
all events contribute to the threshold, whereas for the canvas cutters case the number of
different locations of the events matters. Again, false positives cannot be eliminated.

Abstract rule Given one or more sensors at one locations, a participant should trigger
at most threshold t sensors (counting repeats) within a given time period.

Consequence The system learns the identity of the participant.

Average speed checking Besides spot checking with a speed camera, some countries
have deployed average speed checking systems which measure a car’s speed along a
stretch of road [14]. For spot checks it is immediately clear whether an observed car
is speeding. However, average speed checking requires some form of storage to deter-
mine the time it took a car to traverse a stretch of road. Phrased as a revocable privacy
problem: the system should output the license plates of cars that pass two measuring
station—one in the beginning and one at the end—within a too short time period.

Abstract rule Given n sensors at different locations, a participant should trigger at
most threshold t different sensors in any time period of a given length.

Consequence The system learns the identity of the participant.

Anomalies in logs Servers keep activity logs. These logs can be used to detect attacks.
One example of such an attack are repeated log-in attempts from the same remote sys-
tem. These are easy to spot in the logs as they all originate from the same system.
However, it is usually not necessary keep the logs for all the authentic users.

By nature of the system (the remote systems are identified by IP address) we an use
non-interactive sensors to detect which remote system makes frequent fraudulent login
attempts. These systems can then be blocked.

Abstract rule Same as for object surveillance.
Consequence The system learns the identity of the participant.



Sharing anonymous resources Some systems give people anonymous access to a
resource on the basis that they can prove something—e.g., that they have a license to
a game, or that they are of a certain age. While this anonymity is good for the user, it
also makes it trivial to share the access with any number of people without detection.
To limit this sharing, people could be allowed only a limited number of accesses per
time period. When this value is exceeded—it should be chosen in such a way that under
normal use it is not—the identity of the presumed sharer is revealed or the presumed
sharer is blocked from accessing the system.

As the user and the system already interact, we prefer interactive sensors.

Abstract rule A participant of the system can perform an action at most n times per
time period.

Consequence The system learns the identity of the participant.

No-shows in anonymous reservations Consider anonymous reservations of resources
like cinema seats, museum access or computing resources based on unlimited access
subscriptions. Resources, however, are often scarce, making no-shows undesirable. If
the system is fully anonymous, it is not possible to discourage no-shows. Instead, we
would like to construct a system that either blocks or deanonymizes a user if she does
not use a reservation, or fails to do so too often, but lets honest users be anonymous.

Abstract rule A participant of the system that reserves a resource may fail to claim
this resource only t times.

Consequence The system learns the identity of the participant or the system block the
participant from making further reservations.

Electronic cash As we discussed in the introduction, another common case for revo-
cable privacy is electronic cash [6]. Users are given digital coins that they can spend
anonymously. However, they are not allowed to spend the same coin twice. This form
of electronic cash is a threshold system with a threshold of two.

As before, using a non-interactive sensor is not desirable as the user already interacts
with the receiver of the coin when she is spending it.

Abstract rule A participant can perform an action (e.g., spend one coin) at most once.
Consequence The system learns the identity of the participant.

3.2 Predicate rules

Not all rules are as simple as limiting the occurrence of an event. In this section we
consider a class of rules that combine different indicators, similar to logical formulas.

Social Welfare Fraud In the Netherlands people can receive social welfare when they
are unemployed. The amount received depends on the number of people in the house-
hold. In particular, they receive less welfare when they share living expenses. Some
people defraud the system by incorrectly reporting that they live alone.



To detect possible cases of fraud, the municipality of Groningen looked for peo-
ple who received social welfare and who indicated living alone but had higher utility
consumptions (water, gas, electricity and waste) than would correspond to a one person
household.5 This search required collecting information from different sources. Using
revocable privacy, it would be possible to combine these data, and only recover the
suspected violations.

Data can be supplied to the system either using non-interactive sensors (for exam-
ple, the utility companies and the government) or directly by the cooperating welfare
recipients (the system verifies that they behave honestly).

Abstract rule Let every participant have a set of associated data items, and let P be a
predicate over these data items. The predicate must be false.

Consequence The system learns the identity of the participant.

Detecting terrorist activity Contrary to the canvas cutters use case, a lot of law-
enforcement-like cases depend on combining various indicators to find criminals. One
rather primitive example works as follows. A person who buys fertilizer, rents a van and
scouts a government building in a short period of time may be planning to make and set
off a bomb.

Any one of these events might be totally benign. It is only the combination that
leads to suspicion. In practice, the rules may be more complicated and involve different
data items. Usually, the actual actions and the identity of the person performing them
are known, making non-interactive sensors the most obvious choice.

Abstract rule Same as for social welfare fraud.
Consequence The system learns the identity of the participant.

3.3 Decision rules

All previous rules depend only on the inputs they receive. Given these inputs, the out-
come is clear. People do not take part in the decision making process. However, some-
times this decision process is essential. For example, we do not know how to codify
the rule “posts should not be offensive.” Such a rule is better suited for human decision
making. In this section, we discuss a few rules that include human decision making.

Detecting child abuse This first rule is actually a threshold rule, but with human de-
cisions as input. Professionals working with children, e.g., doctors and teachers, may
suspect abuse. However, for fear of causing undue panic and because reports would
become part of the child’s record, they may decide not to report this. These concerns

5 The original source, http://gemeente.groningen.nl/algemeen-nieuws/2010-1/sociale-
dienst-spoort-bijna-driehonderd-gevallen-van-bijstandsfraude-op (Dutch, last accessed
January 29, 2012), is currently unavailable. The same technique is mentioned on
http://www.nu.nl/politiek/2670044/aanpak-bijstandsfraude-bestandskoppeling.html (Dutch,
last accessed May 31, 2015)



would be alleviated if these reports could be made in such a way that a child’s iden-
tity becomes available only when a predetermined number of professionals agree that a
child might be abused. In this situation using an interactive sensor is truly undesirable
as it would alert the child or its guardians to the suspicion of abuse.

Abstract rule Same as for canvas cutters.
Consequence The system learns the identity of the participant.

Blocking anonymous editing In the previous case it was essential that there was no
interaction with the participant (the child). Here, we consider another case where in-
teraction is possible: anonymously editing Wikipedia pages. Given the sensitive nature
of some Wikipedia pages, it would be beneficial to allow anonymous edits. Yet, this
anonymity can also facilitate abuse, and this abuse is usually not easily detected auto-
matically. Yet, people are good at this task, in fact, Wikipedia is based on this principle.

To protect the system, an anonymous user should be blocked from making further
edits if one or several of her edits have been classified as abusive. Even though a mod-
erator can classify an edit as abusive, and thus block a user, she should never be able to
recover the identity of the editor.

Abstract rule Participants are not allowed to perform more than t bad actions.
Consequence The system blocks the participant from performing further actions.

Deanonymizing comments Like edits on Wikipedia, some posts on an online bulletin
board might be made anonymously. Another method of discouraging abusive comments
is to actually reveal the identity of the author. However, since this decision is rather
invasive, the identity of the author should only be revealed if a sufficient number of
moderators agree to do so.

It is possible to build this system with a non-interactive sensor. However, the user
already interacts with the system, so an interactive sensor provides better privacy.

Abstract rule Participants are not allowed to perform actions that are deemed bad by
more than t moderators.

Consequence The system learns the identity of the participant.

Wiretapping policy Typically, law enforcement agencies require permission, for ex-
ample from a judge or other authority, before they can legally tap phone and internet
connections. However, this is enforced only by policy.

To increase privacy, telecom operators could send the requested data to law enforce-
ment agencies in such a way that the agencies can only access this information after the
required permission has been obtained. In this case, it is the telecom operator that acts
as a non-interactive sensor.

Abstract rule Participants can perform actions. No trusted party decides that the par-
ticipant’s behavior is suspicious.

Consequence The system learns the future actions of the participant.



3.4 Complex rules

We now discuss rules that are more complex, for example because they operate on
graphs and labeled data, or because they use auxiliary information that should be pro-
tected as well.

In principle, the rules in this class can be described by any deterministic computer
program. However, to illustrate how hard some of these tasks can be, we also discuss
fuzzy rules, based on for example machine learning, in the next section.

Riot control In 2009/2010 there were riots between two ethnic groups in Culemborg (a
Dutch city). The police knew that the rioters might receive reinforcements from certain
parts of the country. To prevent them from arriving, they wanted to detect these groups
en route, and block the exits to Culemborg at the appropriate times.

To detect these groups, they automatically read license plates. If a group of more
than four cars originating from the reinforcement area was detected on the highway,
they closed the high-way exit.

Two things make this case interesting. First, the goal is not to deanonymise specific
cars, but rather to detect a group of cars from a specific area. Second, in order to make
this system work auxiliary information is required about where cars are registered.

Abstract rule A sensor should observe at most n objects (with associated data) satis-
fying a predicate P within a time period.

Consequence The system learns that a match has been found.

Money flow anomalies Some types of tax fraud manifest themselves in in discrepan-
cies in money flows between companies. In particular, whatever company A claims to
have sold to B should also be reported as bought from A by B. However, cash flows
between companies also reveal strategies and other sensitive economical information
that companies would rather not share. Instead of just sharing this information, the tax
office and the companies could build a revocable privacy system where a company’s
name is revealed only if it incorrectly reported its cash flow.

Abstract rule Given a graph, with the participants represented by nodes and the edges
representing money flows between them. Participants should report the flows over
their adjacent edges correctly.

Consequence The system learns the identity of the participants.

3.5 Fuzzy rules

Until now we discussed situations where the participants are easy to recognize because
they have a unique identifier (e.g., license plate, social security number, name). How-
ever, this is not the case, for example, when only video of a person is available. Even if it
is possible to recognize people using facial recognition, we may still need to recognize
suspicious behavior. This brings us to the realm of fuzzy and probabilistic computation.
We consider this class separately because we suspect it is even harder to solve these
cases using revocable privacy.



Object surveillance based on people This first use case is similar to the object surveil-
lance case earlier, but with the twist we described in the previous paragraph: we have
only video of the people in the system. We want to know if someone cases a location,
but without the convenience of a fixed identifier.

In a system without revocable privacy, we could (maybe) collect facial features of
all recorded people and determine how often they show up. To do this in a privacy
friendly manner would require a system that can take faces as input, and keep track of
how often a specific face has been seen. Furthermore, even if this works on features that
are derived from the image, the original(s) are necessary to make future identification
possible. This is why we classify this case as fuzzy.

Abstract rule As for the object surveillance rule, but now with video as input.
Consequence The system obtains a picture or video of the participant.

Retrieving camera footage after a crime Many cities install cameras to increase
safety. One way to use these cameras is as a remote viewing tool, so that it is easier
to monitor many locations at once. However, often the camera feeds are also stored in
case something untoward happens later on. However, when nothing bad happens, the
data can safely be discarded. The data is only stored to obtain more information after a
crime has been detected.

If the system automatically detects bad situations (for example based on sounds [16]),
the system could encode the data, and only release past records when a bad situation
is detected. Hence, the system guarantees that the privacy sensitive recordings are kept
and released only when necessary.

Relying on a human operator to make the decision to reveal footage, would put this
use case are back in the decision-making class of cases.

Abstract rule Participants should behave properly on camera (as determined by the
system or operator).

Consequence The system obtains footage around the violation.

4 Technologies

In this section, we review some technologies from the past twenty years that can be
used to implement revocable privacy. Table 1 shows which techniques apply to which
use cases.

4.1 Threshold primitives

We begin by discussing primitives that can be used to implement threshold rules.

Distributed Encryption The distributed encryption primitive [12, 14] was specifically
designed to solve revocable privacy problems with a threshold rule, in particular, the
canvas cutters scenario. As such, it describes how non-interactive sensors (ANPR sta-
tions at the rest stops) can encrypt messages (license plates) in such a way that only if



enough encryptions (by different stations) of the same message are available they can
be combined to recover the original message.

Obviously, any corrupted sensor can encrypt any message of an attacker’s choosing.
So the system guarantees security only as long as not too many sensors are corrupted.

The distributed encryption primitive counts only events, while many of the use cases
count events per time period. In most cases, it suffices to restart the system for every
new time period. If it is required that no more than a number of events happen in any
time interval of a given length, then it is necessary to start overlapping instances of
the system. The extensions by Lueks et al. [14] make it efficient to do so and ensures
forward secrecy: even if a sensor is corrupted, it cannot be used to obtain information
about previous time periods.

Combining the encrypted messages to recover the messages is not very efficient; it
is exponential in the threshold. However, if the number of messages is small and they
can be enumerated, like for license plates, then another technique by Lueks et al. [14]
allows the system to trade space for time, making it reasonably efficient.

n-times anonymous credentials Whereas the previous primitive uses non-interactive
sensors, n-times anonymous credentials [4] allow participants to directly interact with
the sensors. As a result, the trust assumptions are much weaker. The system gives every
user a credential. The user can use this credential to anonymously authenticate n times
per time period. If the user authenticates more often, its identity becomes known.

Effectively, the user can create n different (random) numbers per interval. If the user
authenticates more often, she is bound to reuse one of the previous ones. This makes it
easy and efficient to detect violations of the rule. Extensions make it also possible for a
user to exceed the limit a couple of times (possibly in different time periods) before its
identity is revealed. These schemes are a generalization of electronic cash schemes [1,
5, 6] where the limit is to spend every coin only once.

4.2 Decision primitives

We now discuss techniques that can be used to implement decision-based revocable
privacy rules.

Blacklistable anonymous credentials Blacklistable anonymous credentials [18] make
it possible for a service provider to block users from future authentication if the user
misbehaved in an earlier session. To enable this, the user uses his (certified) private key
to generate a new, random token for every authentication. These tokens are bound to
the user (but, without the user’s private key it is impossible to determine to which user
they belong). In addition, the user proves that it did not generate any of the tokens that
the service provider placed on the blacklist.

If the service provider later detects abuse, it can add that session’s token to the
blacklist. The corresponding user can then no longer prove that its tokens are not on the
blacklist and loses access to the service. Alternatively, the user can prove that it has no
more than n tokens on the blacklist, thus the system allows a few bad actions.

The complexity of this protocol is linear in the number of items on the revocation
list, making it inefficient. Some techniques can be used to reduce the complexity [10].



Group Signatures with Distributed Management A group signature scheme allows
members of a group to digitally sign documents on behalf of the group [7]. The signers
are anonymous in the sense that it is known only that they belong to the group, not who
they are. A special party, the tracing agent, can overcome this anonymity and determine
who created a specific signature, thereby revealing the identity of the signer.

Already this scheme can be used to implement the simple rule that you lose your
anonymity when the tracing agent decides that this should happen. However, in some
sense we are then back to having a single, trusted third party. Instead, we can distribute
the powers of the tracing agent. In a group signature scheme with a distributed tracing
agent, several agents need to cooperate before the identity of the signer can be recov-
ered [9]. As long as a decent subset of the tracing agents is trusted, the anonymity of
the user’s identities is guaranteed.

5 Analysis

In the preceding section, we reviewed some techniques that can be used for revocable
privacy. Unfortunately, we do not know of existing primitives for many of the more
complex rules. Only the threshold use cases are covered reasonably well by existing
techniques. This suggests that there might be relatively simple techniques that work for
the object surveillance and anomalies in logs use cases.

For decision-based rules, there are some existing techniques that help solve some of
the use cases. This again suggests that we might be able to develop techniques for the
remaining cases (deanonymizing comments and wiretapping policy).

Nevertheless, there are some very generic techniques that could help implement
the remaining rules using the revocable privacy paradigm. First, the field of privacy-
preserving data mining might help in solving some of the anomalies like social welfare
fraud.

Finally, there is multi-party computation. This technique allows multiple parties,
each with their own private input, to compute any shared function over the data. All
inputs are kept private; only the output is shared. While this technique works, in theory,
for any computation, including machine learning algorithms, it is also very compu-
tationally intensive. Yet, the Sharemind company successfully used their multi-party
computation platform to solve several real-world problems on private data [3], one of
which is the money flow problem.

5.1 Limitations

We briefly discuss two limitations of revocable privacy. The first is that to obtain better
anonymity without losing security, we have to pay in computing power. This is espe-
cially the case for the non-interactive sensor techniques that we discussed. However, we
think that this cost is often acceptable.

The other limitation stems from the fact that most use cases and all solutions de-
scribe positive effects. A participant performs an action, and as a result of doing so, can
violate a rule. It seems much harder to handle negative events: what if you follow the
rules if you do something, rather than not do it? For example, if you observe someone
misbehaving, but fail to report it.



6 Conclusions

We have argued why revocable privacy is an important construct that can be used to
increase the privacy of a system’s participants while maintaining security. We have
classified systems with revocable privacy into two classes: those with non-interactive
sensors and those with interactive sensors. Furthermore, we have clarified the definition
and have generalized it to include different types of consequences for violating the rules.

We have also explored use cases that benefit from a revocable privacy approach.
This not only illustrates the usefulness of revocable privacy, but also allows us to com-
pile some abstract rules that revocable privacy techniques should be able to implement.
We have described some of these techniques and showed which problems they solve.

The comparison between the abstract rules and existing revocable privacy tech-
niques identifies interesting directions of future work in the area of revocable privacy.
Based on the fact that many threshold-based rules and decision-based rules already have
corresponding primitives, we expect that the remaining ones may be solvable as well.
Furthermore, we identify whole classes of more challenging research direction in find-
ing techniques for the other use cases that lack corresponding techniques, most notably
social welfare fraud detection, riot control, and object surveillance based on people.

References

1. Au, M.H., Chow, S.S.M., Susilo, W.: Short E-Cash. In: Maitra, S., Madhavan, C.E.V.,
Venkatesan, R. (eds.) Progress in Cryptology - INDOCRYPT 2005, 6th International Confer-
ence on Cryptology in India, Bangalore, India, December 10-12, 2005, Proceedings. Lecture
Notes in Computer Science, vol. 3797, pp. 332–346. Springer (2005)

2. Biskup, J., Flegel, U.: Transaction-Based Pseudonyms in Audit Data for Privacy Respecting
Intrusion Detection. In: Debar, H., Mé, L., Wu, S.F. (eds.) Recent Advances in Intrusion
Detection, Third International Workshop, RAID 2000, Toulouse, France, October 2-4, 2000,
Proceedings. Lecture Notes in Computer Science, vol. 1907, pp. 28–48. Springer (2000)

3. Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: How the Estonian Tax and Customs Board
Evaluated a Tax Fraud Detection System Based on Secure Multi-party Computation. In:
Financial Cryptography and Data Security - 19th International Conference, FC 2015, San
Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers. LNCS, Springer (2015),
to appear

4. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.: How
to win the clonewars: efficient periodic n-times anonymous authentication. In: Juels, A.,
Wright, R.N., di Vimercati, S.D.C. (eds.) Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS 2006, Alexandria, VA, USA, October 30 -
November 3, 2006. pp. 201–210. ACM (2006)

5. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: Cramer, R. (ed.)
Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005,
Proceedings. Lecture Notes in Computer Science, vol. 3494, pp. 302–321. Springer (2005)

6. Chaum, D.: Blind Signatures for Untraceable Payments. In: Chaum, D., Rivest, R.L., Sher-
man, A.T. (eds.) Advances in Cryptology: Proceedings of CRYPTO ’82, Santa Barbara, Cal-
ifornia, USA, August 23-25, 1982. pp. 199–203. Plenum Press, New York (1982)



7. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) Advances in Cryptology
- EUROCRYPT ’91, Workshop on the Theory and Application of of Cryptographic Tech-
niques, Brighton, UK, April 8-11, 1991, Proceedings. Lecture Notes in Computer Science,
vol. 547, pp. 257–265. Springer (1991)

8. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The Second-Generation Onion Router.
In: Blaze, M. (ed.) Proceedings of the 13th USENIX Security Symposium, August 9-13,
2004, San Diego, CA, USA. pp. 303–320. USENIX (2004)

9. Ghadafi, E.: Efficient Distributed Tag-Based Encryption and Its Application to Group Signa-
tures with Efficient Distributed Traceability. In: Aranha, D.F., Menezes, A. (eds.) Progress
in Cryptology - LATINCRYPT 2014 - Third International Conference on Cryptology and
Information Security in Latin America, Florianópolis, Brazil, September 17-19, 2014, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 8895, pp. 327–347. Springer
(2014)

10. Henry, R., Goldberg, I.: Thinking inside the BLAC box: smarter protocols for faster anony-
mous blacklisting. In: Sadeghi, A., Foresti, S. (eds.) Proceedings of the 12th annual ACM
Workshop on Privacy in the Electronic Society, WPES 2013, Berlin, Germany, November 4,
2013. pp. 71–82. ACM (2013), http://doi.acm.org/10.1145/2517840.2517855

11. Hoepman, J.H.: Revocable Privacy. ENISA Quarterly Review 5(2) (Jun 2009)
12. Hoepman, J., Galindo, D.: Non-interactive Distributed Encryption: A New Primitive for Re-

vocable Privacy. In: Chen, Y., Vaidya, J. (eds.) Proceedings of the 10th annual ACM work-
shop on Privacy in the electronic society, WPES 2011, Chicago, IL, USA, October 17, 2011.
pp. 81–92. ACM (2011)

13. Lueks, W., Everts, M.H., Hoepman, J.H.: Revocable Privacy 2012 – use cases. Tech. Rep.
35627, TNO (2012)

14. Lueks, W., Hoepman, J., Kursawe, K.: Forward-Secure Distributed Encryption. In: Cristo-
faro, E.D., Murdoch, S.J. (eds.) Privacy Enhancing Technologies - 14th International Sym-
posium, PETS 2014, Amsterdam, The Netherlands, July 16-18, 2014. Proceedings. Lecture
Notes in Computer Science, vol. 8555, pp. 123–142. Springer (2014)

15. Schneier, B.: What Our Top Spy Doesn’t Get: Security and Privacy Aren’t Opposites. Wired
(Jan 2008)

16. Sound Intelligence: Sigard, aggression detection, http://www.soundintel.com/uploads/pdf/
UK/Sound%20Intelligence%20Brochure%20%28EN%29.pdf Last accessed: May 31, 2015

17. Stadler, M.: Cryptographic Protocols for Revocable Privacy. Ph.D. thesis, Swiss Federal In-
stitute of Technology, Zürich (1996)

18. Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: Blacklistable Anonymous Credentials:
Blocking Misbehaving Users without TTPs. In: Ning, P., di Vimercati, S.D.C., Syverson,
P.F. (eds.) Proceedings of the 2007 ACM Conference on Computer and Communications Se-
curity, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007. pp. 72–81. ACM (2007)

19. Tsang, P.P., Kapadia, A., Cornelius, C., Smith, S.W.: Nymble: Blocking Misbehaving Users
in Anonymizing Networks. IEEE Trans. Dependable Sec. Comput. 8(2), 256–269 (2011)


