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lem (and the related facility location problem), whichhas been considered in graph-theoretic and �xed dimen-sional geometric settings, where it becomes hard whenk is part of the input. In contrast, we study the prob-lem when k is �xed, but the dimension is part of theinput. Our algorithms are based on a dimension reduc-tion construction for the Hamming cube, which may beof independent interest.1 IntroductionSuppose we are given a set X of n data points in Rdand we wish to �nd a \good" partition of the points intotwo non-empty sets X1 and X2 (called clusters). Therecould be many di�erent measures of the quality of thepartition. The measure we adopt here is the following:Assign to the set Xi a center point ci 2 Rd, for i = 1; 2.Then, sum up the (Euclidean) distances between eachdata point and the center of the set that contains it.The smaller the sum, the better we deem the partition.Another way to interpret the problem is the follow-ing. If the centers are known, then obviously the bestpartition is to assign each point to the closest center.Thus, our problem is to �nd centers c1; c2 2 Rd so as tominimize the quantityXx2Xminfkx� c1k2; kx� c2k2g:More generally, we also consider variations of this prob-lem with k centers, for a �xed k > 2, using other dis-tance measures (such as the L1 norm, and the square ofEuclidean distance), and in other vector spaces (such asthe binary cube). We refer to these problems as (geo-metric) k-clustering. In this paper, we give polynomial



time approximation schemes for k-clustering in severalhigh dimensional geometric settings, including the bi-nary cube with Hamming distance, and Rd with eitherEuclidean distance, or the square of Euclidean distance,or L1 distance. As discussed in detail below, previousresults provided constant approximation guarantees, orwere limited to �xed dimension.Clustering of data has signi�cant importance inmany�elds, including operations research, computational bi-ology, data mining, statistics, computer vision and pat-tern recognition (see, for example, [10, 36, 21, 32, 7, 37]and references therein). In many applications, the goalis to cluster data into several clusters according to somemeasure, where the data has many incomparable at-tributes and thus can be cast as a high dimensionalclustering problem [32, 18, 7, 37]. In this paper, weconsider the case where the dimension is very large butthe number of clusters that we need to produce is rel-atively small. This is usually the case when a largecollection of documents must be clustered according toa small number of topics that can be inspected by a per-son in order to assist further classi�cation and search-ing. Examples of the methods include latent seman-tic indexing [20, 16, 19, 9], and the \scatter/gather"project [14, 13]. Another example is the \Manjara"project [30, 24], which is a \back-end" clustering of aweb meta-search engine, where after the meta-search en-gine produces an \answer" which consists of a large col-lection of pages (several thousands) they must be clus-tered according to several topics. In all these examples,the dimension is very large, but the number of clustersshould remain relatively small.When k is part of the input, the problem is alsoknown as the k-median problem. In graph-theoreticsettings (where the points are placed in a �nite met-ric space which is part of the input), the k-clusteringproblem (�xed k) trivially has a polynomial time so-lution: Simply enumerate over all possible choices forthe centers. For arbitrary k, in �nite metrics, the k-median problem was shown to be APX-hard by Guhaand Khuller [25]. A breakthrough result by Charikar,Guha, Shmoys, and Tardos [11] gave a constant factorapproximation algorithm, based on a rounding proce-dure for a natural linear programming relaxation. Theconstant has been improved by Jain and Vazirani [28],and further by Charikar and Guha [12], using the primal-dual method.Similarly, in �xed dimension d, the k-clustering prob-
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xxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxFigure 1: Two clustering instances in (R2; L2)lem has a polynomial time solution. To illustrate thisfor k = 2 (in Rd with Euclidean distances), notice thatthe clusters must be separated by a hyperplane. In �xeddimension, the number of combinatorially distinct sep-arations is polynomial in n, and we can check each ofthem e�ciently. However, the combinatorial complex-ity of the problem grows exponentially with the dimen-sion. Indeed, the k-clustering problem was shown tobe NP-hard even for k = 2 in several cases. Kleinberg,Papadimitriou, and Raghavan [33] show it for the bi-nary cube, and Drineas, Frieze, Kannan, Vempala, andVinay show it for Rd with squared Euclidean distances.The NP-hardness of the Euclidean distances case is stillopen. We note that in �xed dimension, for arbitrary k,Arora, Raghavan, and Rao [6] give a polynomial timeapproximation scheme, using dynamic programming.Our measure of the quality of our clustering is by nomeans the obvious choice. In fact, other measures havebeen proposed in the literature. The most common al-ternatives are min-sum clustering, and min-max clus-tering (or k-center). In min-sum clustering, the qualityof the clustering is measured by the sum of intra-clusterdistances (so there are no centers associated with theclusters). In min-max clustering, the quality is mea-sured by the maximum distance of a data point to thecenter of the cluster containing it. None of these mea-sures seem to produce the intuitively \best" clusteringon all instances. For example, Figure 1
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xxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxFigure 2: Min-sum clusteringshows two instances of points in the Euclidean plane(requiring a partition into two clusters). Figures 2 and 3show the results of min-sum and 2-clustering, respec-tively, on these two instances.Clearly, min-sum is intuitively better on the bottominstance, whereas 2-clustering is intuitively better onthe top instance. (Notice that in the case of squared L2distances, if C is a cluster, then the cost of C under themin-summeasure is 12Px;y2C kx�yk22 and the cost of Cunder the 2-clustering measure is mincPx2C kx� ck22.The latter expression is minimized at c = 1nPx2C x,and is proportional to the former expression. However,the factor of proportionality is jCj, so the two measuresdo not necessarily produce the same optimal clustering.)Clustering problems, and in particular min-sum clus-tering, have been considered recently by several authors.A prevalent technique is sampling: One takes a small(random) sample of the data points, enumerates over allpossible partitions of the sample, extends each partitionto a partition of the entire data set, and outputs the bestsolution. Schulman [37] gives a polynomial (linear) timeapproximation scheme for min-sum clustering in geo-metric settings (including squared Euclidean distances),provided that the dimension d = o(logn= log logn). His
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xxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxFigure 3: 2-clusteringalgorithm works in higher dimension too, but the run-ning time degrades to nO(log logn). Indyk [26] givesa polynomial time approximation scheme for min-sumclustering in �nite metric spaces (when two clusters areneeded), based on the polynomial time approximationscheme of de la Vega and Kenyon [17] for metric MAXCUT. Alon and Sudakov [4] give a polynomial time ap-proximation scheme for the maximization version of ourproblem in the binary cube (i.e., when the objective isto �nd a partition and centers that maximize the sumover all data points of the overlap between the point andthe center of the cluster containing it). Notice that anoptimal solution to their problem is also an optimal so-lution to our problem. However, this is not the case withnear-optimal solutions (so their approximately optimalsolution could be far from optimal by our measure). Allthese results use one form or another of sampling.Sampling is not a common tool in the design of poly-nomial time approximation schemes. It has been usedsuccessfully in the context of dense graphs [5, 23]. In ge-ometric settings (and in general), the ubiquitous methodis dynamic programming (see [10]). One example inour context is the k-center algorithms of Agarwal andProcopiuc [1]. They give an nO(k1�1=d)-time exact al-gorithm and a polynomial time approximation scheme



with running time O(n logk) + (k=�)O(k1�1=d) for the k-center problem in Rd with Lp distances, for all p, usingdynamic programming. (See also the survey of Agarwaland Sharir [2] for previous and related work.)A di�erent idea is advocated by Drineas, Frieze, Kan-nan, Vempala, and Vinay [18]. They give a 2-approximationfor k-clustering (�xed k) for the case of squared Eu-clidean distances, using methods from linear algebra(speci�cally, singular value decomposition, see also [20,16, 19, 9, 24] for its uses in information retrieval andclustering). Prior to our work, this was the best resultfor arbitrary dimension. Notice that there is a trivial 2-approximation algorithm for the case of metric distances(such as Euclidean distances), because if we restrict thecenters to be data points, we lose at most a factor of 2in the quality of the solution (thanks to the triangle in-equality). This immediately implies a 4-approximationin the case of squared Euclidean distances. The advan-tage of the Drineas et al. method is that the clusteringcan be computed very quickly using methods for ap-proximating the singular value decomposition (which inturn use sampling).Our results use neither sampling of the data points,nor dynamic programming, nor the singular value de-composition. For the Hamming cube, we use randomlinear transformations to reduce the dimension. Morespeci�cally, Kushilevitz, Ostrovsky, and Rabani [34] showthat a certain random linear transformation into a lowdimensional cube can be used to test for a speci�c Ham-ming distance. We strengthen their analysis to showthat this transformation guarantees low distortion fora range of distances, while for distances outside therange it doesn't shrink large distances too much andit doesn't expand small distances too much. We be-lieve that this observation might be of independent in-terest. We note that in Hilbert space (e.g., (Rd; L2))the Johnson-Lindenstrauss Lemma [29] uses a randomlinear transformation (a projection onto a random sub-space) for nearly isometric dimension reduction of �nitesubsets. This lemma has found recent applications incombinatorics [22], graph algorithms [35], nearest neigh-bor search [27], and learning mixtures of Gaussians [15].It does not seem to be useful in our case.In the low dimensional cube, we can enumerate overthe possible center locations and compute a candidateclustering for each possibility. The value of a candidateclustering in the low dimensional cube is not necessarilyproportional to its value in the original space. However,

we can check the value of each candidate clustering inthe original space and output the best solution. Thisprocedure is relatively simple for k = 2. For larger k,computing the clustering from the choice of cluster cen-ters in low dimension is more complicated. The locationof cluster centers induces for every data point a tour-nament among the clusters. We assign a data point toan apex of its tournament, an idea previously used byKleinberg [31] in the context of nearest neighbor search.Our other results are derived essentially by reducing theproblem to clustering in the Hamming cube. This isnot a \black-box" reduction, as we have to modify thecube algorithm to test the candidate clusterings in theoriginal space. Thus, our results imply that in all thesettings we consider, in order to get a close to optimalclustering we only need to consider a polynomial num-ber of possible cluster centers. The set of centers toconsider can be generated e�ciently from a distributionthat depends (in a complicated fashion) on the inputdata points.2 Low Dimensional EmbeddingsRecall that a metric space is a pair (P; d) where P is aset (whose elements are called points), and d is a func-tion d : P � P ! R (called a metric or a distance),such that for every p1; p2; p3 2 P the following hold:(i) d(p1; p2) � 0; (ii) d(p1; p2) = 0 $ p1 = p2; (iii)d(p1; p2) = d(p2; p1); and (iv) d(p1; p2) + d(p2; p3) �d(p1; p3). The last property is called the triangle in-equality. If P is a vector space and k � k is a norm; then,de�ning d(p; q) = kp � qk we get a metric space, whichwe denote by (P; k � k).De�nition. LetM = (P; d) andM0 = (P 0; d0) be twometric spaces. Let X;Y � P . A mapping ' : P ! P 0 is(�; �; `)-distorted on (X;Y ) 1 i� there exists `0 such thatfor every x 2 X and y 2 Y , the following holds:1. If d(x; y) < �` then d0('(x); '(y)) < (1 + �)�`0.2. If d(x; y) > `=p� then d0('(x); '(y)) > (1��)`0=p�.3. If �` � d(x; y) � `=p� then(1� �)`0=` � d0('(x); '(y))=d(x; y) � (1 + �)`0=`.Intuitively, a (�; �; `)-distorted mapping approximatelypreserves distances close to `, and furthermore it doesn't1If X = Y we simply say that ' is (�; �; `)-distorted on X.



shrink too much large distances and doesn't expand toomuch small distances.The following lemma is central to the analysis of ouralgorithms:Lemma 1. Let �; �; ` > 0, with �=(1��) � (1��)=(1+�). Let M = (P; d) and M0 = (P 0; d0) be two metricspaces. Let x; y; z 2 P , with ` � d(y; z) � 2`. Let 'be (�; �; `)-distorted on (fxg; fy; zg). If d0('(x); '(y)) �d0('(x); '(z)); then, d(x; y) � (1 + �)d(x; z), where � =maxf(2�� 1)=(1� �); 2p�; 2�=(1� �)g.Proof. We consider four cases:Case 1: If d(x; y) < �`, then by the triangle inequality,d(x; z) > (1 � �)`. Therefore, the claim holds in thiscase.Case 2: If d(x; z) < �`, then d(x; y) > (1��)`. However,because ' is (�; �; `)-distorted on (fxg; fy; zg), then forsome `0 > 0,d0('(x); '(z)) < (1 + �)�`0� (1� �)(1 � �)`0< d0('(x); '(y));in contradiction to the assumption of the lemma.Case 3: If d(x; y) > `=p�, then by the triangle inequal-ity d(x; z) � d(x; y)+2` < (1+2p�)d(x; y), so the claimholds in this case too.Case 4: Otherwise, �` � d(x; y) � `=p�, �` � d(x; z),and we may assume that d(x; z) � `=p� (otherwise thelemma is clearly true). Thus we haved(x; y) � ` � d0('(x); '(y))(1 � �)`0� ` � d0('(x); '(z))(1� �)`0� 1 + �1� � d(x; z)Notation. The �eld with two elements is denoted Z2.A d-dimensional vector space over Z2 is Denoted Zd2.The d-dimensional Hamming distance (i.e., the L1 normin Zd2) is denoted Hd. The Hamming cube Qd is themetric space (Zd2;Hd).The Hamming cube. Consider a probability distribu-tionAd;d0 (p) on d0�dmatrices overZ2 (i.e., linear trans-formations fromZd2 into Zd02 ), where the entries are in-dependent, identically distributed random 0=1 variables

with Pr[1] = p. The following lemma is an extension ofa lemma in [34].Lemma 2. For every  > 0 there exists � > 0 suchthat for every � > 0, and for every positive integers n, d,and `, with ` 2 [1; d], the following holds: Let X �Zd2,with jXj = n. Let d0 = � lnn=�, and let A be a randommatrix drawn fromAd;d0 (�=`). Then the linear mappingx 7! Ax is (p�; �; `)-distorted on X (with respect to theHamming distance in both spaces) with probability atleast 1� n� .Proof. Let x; y 2 X. Consider a probability distribu-tion D over vectors r 2 Zd2, where the entries of r areindependent, identically distributed, random 0=1 vari-ables with Pr[1] = �=`. We estimate the probability ofthe event r � (x� y) 6= 0, denoted in what follows as E.We �rst notice that the probability of E is monoton-ically increasing in Hd(x; y) (assuming �=` � 12 ). To seethis, pick r by selecting coordinates independently withprobability 2�=` each, and then setting each selected co-ordinate independently as 1 with probability 12 (with allthe remaining coordinates being set to 0). The proba-bility of E is precisely half the probability that in the�rst step we select at least one coordinate where x andy di�er. The latter probability is clearly monotonicallyincreasing in Hd(x; y).Let S be the set of coordinates where x and y di�er(so jSj = Hd(x; y)), and let (the random variable) X =jfi 2 S; ri = 1gj. Then,Pr[E] = Pr[X � 1 mod 2] � Pr[X = 1] � (1)� jSj � �̀ ��jSj2 � � � �̀�2 � �1� �jSj2` � � �jSj` ;where the second inequality follows from the BonferroniInequalities. On the other hand,Pr[E] � Pr[X � 1] = 1� �1� �̀�jSj : (2)IfHd(x; y) is in the interval [�`; `=p�], then (1) is at least(1 � p�=2)�Hd(x; y)=`, and (2) is at most �Hd(x; y)=`.By the monotonicity of Pr[E], if Hd(x; y) > `=p�, thenPr[E] > (1 � p�=2)p�, and if Hd(x; y) < �`, thenPr[E] < �2.Now, picking a random matrix A from Ad;d0 (�=`)amounts to picking the rows of A as d0 independentsamples from D. The value of Hd0(Ax;Ay) is preciselythe number of times the event E happens for the d0 sam-ples. The expectation is d0Pr[E]. By standard Cherno�



bounds (see [3, Appendix A]), The probability that wedeviate from the expectation by more thanp�d0Pr[E]=2(either way) is at most 2e��d0=9 < n�2�, assuming � issu�ciently large. Summing up this probability over all�n2� pairs x; y 2 X completes the proof.Other metric spaces. For instances in (Rd; L1) and(Rd; L2), we use embeddings into the Hamming cube.Let Bp(x; `) denote the Lp ball of radius ` around x 2Rd. The following lemma was proven in [34]:Lemma 3 (Kushilevitz, Ostrovsky, and Rabani).Let p 2 f1; 2g, and consider the metric space (Rd; Lp).For every �; �; ` > 0, and for every positive integer d,there exist � = �(�) > 0 and a positive integer d0 =poly(d; ��1; log��1), such that � ! 0 as � ! 0, andsuch that for every x 2 Rd there is a distribution � =�(x; `; �; �) over mappings ' : Rd ! Zd02 with the fol-lowing properties:1. Every mapping � in the distribution � is de�nedby poly(d0) rationals; given these rationals, for ev-ery y 2 Rd, �(y) can be computed using poly(d0)arithmetic operations; and, it is possible to gener-ate the rationals de�ning a random sample � of �in poly(d0) time.2. If � is drawn from �, then with probability at least1��, � is (�; �; `)-distorted on (Bp(x; `);Rd) (withrespect to the Lp distance inRd, and the Hammingdistance inZd02 ).For our approximation schemes we need the followingstronger claim:Lemma 4. Let X = fx1; x2; : : : ; xng � Rd. For every�; �; `; d, there exist � = �(�) > 0 and a positive integerd0 = poly(n; d; ��1; log��1), such that there is a dis-tribution � = �(X; `; �; �) over mappings ' with thefollowing properties:1. Every mapping � in the distribution � is de�nedby poly(d0) rationals; given these vectors, for ev-ery x 2 Rd, �(x) can be computed using poly(d0)arithmetic operations; and, it is possible to gener-ate the rationals de�ning a random sample � of �in poly(d0) time.2. If � is drawn from �, then with probability at least1 � �, � is (�; �; `)-distorted on([ni=1Bp(xi; `=p�);Rd).

The proof of this lemma follows closely the constructionfrom the proof of Lemma 3 in [34]. We do not includeit here.3 Clustering in the HypercubeObserve that for any given cluster C (a subset of thedata set), the best cluster center c can be computedeasily. Indeed, for i = 1; 2; : : : ; d, ci = majorityfxi;x 2Cg.Two clusters. Our basic algorithm is a polynomialtime approximation scheme for instances in Qd and fork = 2. The approximation scheme for k > 2 uses sim-ilar ideas in a more complicated way. The algorithmsfor other metrics use variations of these schemes as sub-routines.Let X � Zd2 denote the input set of points. Ouralgorithm for k = 2 proceeds as follows. We guess thedistance ` between the two centers (by enumerating overall d possible values). We then project the data pointsinto a dimension d0 = O(logn) cube. In the smallercube, we enumerate over all 22d0 possible locations forthe projections of the optimal solution cluster centers.Each choice induces a partition of the data set into twosubsets. Each subset is associated with a cluster centerprojection, and contains all the points whose projec-tions are closer to this center's projection than to theother center's projection, ties broken arbitrarily. Wecheck each possible partition in the original space, bycomputing the best cluster center for each subset, andsumming up the distances from the points to their as-signed centers. Finally, we output the best partition,over all guesses of ` and over all guesses of the clus-ter centers projections. More formally, the algorithm isgiven by the following pseudo-code:Hamming2Clustering�(X)d0  � ln(n + 2)=�;for ` = 1; 2; : : : ; d doDraw a random A` from Ad;d0 (�=`);for all choices of ~c1; ~c2 2Zd02 doC1  fx 2 X; Hd0(A`x; ~c1) � Hd0 (A`x; ~c2)g;C2  X nC1;cost HammingCost(C1) +HammingCost(C2);Output the partition (C1; C2) with the smallest cost.



HammingCost(C)c (majorityfxi;x 2 Cg)di=1;Return Px2C Hd(x; c).For simplicity, we left out the initialization and up-dating of the auxiliary variables needed to �nd the min-imum cost and to store the solution in the main pro-cedure. Clearly, for �xed �, the running time of thealgorithm is polynomial in n and in d. The followingtheorem states the performance guarantee for this algo-rithm.Theorem 5. For every  > 0, there exists � > 0 suchthat for every 14 � � > 0, the above algorithm �nds asolution whose value is within a factor of 1+4p� of theoptimum, with probability at least 1� n� .Proof. Put � = �() to be the constant stipulatedin Lemma 2. It is su�cient to show that one of theguesses that the algorithm uses produces a solution withvalue within a factor of 1 + 4p� of the optimum, withprobability at least 1 � n� . To see this, consider thesolutions produced by the algorithm for ` such that ` =Hd(c1; c2). By Lemma 2, with probability at least 1 �n� , the mapping x 7! A`x is (p�; �; `)-distorted onX[fc1; c2g. So, from now on we assume that this eventhappens. Of course, we don't know where the images ofc1 and c2 are, but one of the guesses that the algorithmenumerates over is correct. So, consider the solutiongiven by the algorithm for A` and the correct guess ofthe images ~c1 = A`c1 and ~c2 = A`c2. Denote by bC1, bC2,the clusters computed by the algorithm, and let ĉ1, ĉ2be their centers, respectively. (A point x 2 X is placedin bC1 i� Hd0(A`x; ~c1) � Hd0(A`x; ~c2), and otherwise itis placed in bC2.) Using Lemma 1,Xx2 bC1Hd(x; ĉ1) + Xx2 bC2Hd(x; ĉ2)� Xx2 bC1Hd(x; c1) + Xx2 bC2Hd(x; c2)� (1 + 4p�)Xx2XminfHd(x; c1);Hd(x; c2)g :More than two clusters. We now consider partition-ing the data set into k clusters, for an arbitrary (�xed)

k > 2. The algorithm is similar to the case of k = 2.We enumerate over the possible distances between cen-ters (�k2� values this time). However, for a given guess,the assignment of data points to clusters is more com-plicated. Recall that a tournament is a directed graphwhere every pair of distinct nodes is connected by anarc (in one of the two directions). An apex of a tourna-ment is a node of maximumout degree. Every apex hasthe property that there is a path of length at most twofrom it to any other node in the tournament. The algo-rithm for k > 2 proceeds as follows. After guessing thedistances `st between every pair s; t of cluster centersin the optimal solution, we project the data points into�k2� cubes, each of dimension O(logn). Each projectionis set to check a particular pair of cluster centers. Ineach O(logn)-dimensional cube, we enumerate over allthe possible locations for the projections of the clustercenters. Given a such a choice, for every data pointand for every pair of cluster centers, we decide whetherthe data point is closer to one center or the other ac-cording to the situation with the projected points. Thisinduces, for every data point, a tournament among thecluster centers. We assign each data point to an apexof its tournament. The assignment of all data pointsinduces a partition of the data set into k subsets. Wecheck this partition in the original space, as we did fork = 2. Finally, we output the best partition among allthe choices for inter-cluster center distances, and clustercenters projections. The following pseudo-code gives amore formal description of the algorithm:HammingClustering�(X)d0  � ln(n + k)=�;8` 2 f1; 2; : : :; dg, draw a random A` from Ad;d0 (�=`);for all (`st)1�s<t�k 2 f1; 2; : : : ; dg(k2) dofor all (~cij)ki6=j=1 2 (Zd02 )k(k�1) do(C1; C2; : : : ; Ck) (;; ;; : : : ; ;);for x 2 X doCompute a tournament Tover node set f1; 2; : : :; kg:for 1 � i < j � k,ij is an edge of Ti� Hd0 (A`ijx; ~cij) �� Hd0(A`ijx; ~cji),and otherwise ji is an edge of T ;Find an apex i of T ;Ci  Ci [ fxg;cost Pki=1HammingCost(Ci);



Output the partition (C1; C2; : : : ; Ck) with the smallest cost.Clearly, for �xed � and k this algorithm runs in timepolynomial in n and d. Its performance guarantee isgiven by the following theorem.Theorem 6. For every  > 0, there exists � > 0 suchthat for every 14 � � > 0, the above algorithm �nds asolution whose value is within a factor of (1 + 4p�)2 ofthe optimum, with probability at least 1� n� .Proof. Let c1; c2; : : : ; ck 2Zd2 denote the centers of theclusters in the optimum solution. Take � large enough,so that with probability at least 1�n� , for every inte-ger ` 2 f1; : : : ; dg, the matrix A` is (p�; �; `)-distortedon X [ fc1; c2; : : : ; ckg.2Consider the iteration ofHammingClustering� where`ij = Hd(ci; cj), for all 1 � i < j � k, and ~cij = A`ijcifor all 1 � i 6= j � k. Let x 2 X, and let ci be the cen-ter of the cluster containing x in the optimum solution.Suppose x is clustered in Ct by the algorithm. Then,there is a path of length at most 2 from ct to ci in thetournament for x. Let cj be the middle point in thispath (if the path has length 0, then i = j = t, and ifthe path has length 1, then i = j). Applying Lemma 1at most twice (for A`tj and for A`ji), we get:Hd(x; ct) � (1 + 4p�)Hd(x; cj)� (1 + 4p�)2Hd(x; ci):The rest of the proof follows that of Theorem 5.4 Other MetricsConsider a metric spaceM = (P; d) and an input set ofn points X � P . Let B(x; `) denote the ball of radius` around x inM. We present here polynomial time ap-proximation schemes for k-clustering for several choicesof M. For simplicity, our presentation is restricted tothe case k = 2. The generalization to arbitrary �xedk is straightforward. The details will appear in the fullversion of the paper.The main idea of our approximation schemes is thefollowing generic approach: Guess the distance ` be-tween the cluster centers. Let � = �(�) be such that� ! 0 as �! 0. Map the input data set intoZm2 (where2The case d� n has to be handled with care.

m = poly(n; d; ��1)) using a mapping' which is (�; �; `)-distorted on([x2XB(x; `=p�); P ) (with respect to Hammingdistancein the target space). Now run the procedureHamming2Clustering� on '(X) with the followingchange: Use, instead of HammingCost, a procedureOurSpaceCost that computes the cost of a cluster inM rather than in Qm.For this approach to work, three conditions are re-quired. Firstly, the set of possible guesses for the dis-tance between the two cluster centers has to have poly-nomial size. Secondly, the mapping ' must exist andmust be computable in polynomial time. Thirdly, itmust be possible to compute the cost of a cluster inMin polynomial time. We establish these conditions fora few interesting cases. Before we discuss these con-ditions, we analyze the performance guarantee of theabove approximation scheme. Let C1 and C2 be thepartition of X into clusters in the optimum solution,and let c1 and c2 be the centers of these clusters, re-spectively.Theorem 7. Let � be su�ciently small so that �; � �116 . There exists � = �(�) > 0 such that � ! 0 as �! 0,and such that the following holds. For every  > 0there exists � > 0 such that if ` � d(c1; c2) � 2`; then,the above algorithm produces a clustering whose cost iswithin a factor of 1+� of the optimum, with probabilityat least 1� n� .Proof. Put � = �() to be the constant stipulatedin Lemma 2. Let `0 be the scale for which ' is (�; �; `)-distorted on ([x2XB(x; `=p�); P ). Consider the execu-tion of the modi�edHamming2Clustering on '(X) �Zm2 . Let bC1 and bC2 be the partition of X into clusterswhich is computed by the algorithm in the iteration us-ing `0 and the centers ~c1 = A`0'(c1) and ~c2 = A`0'(c2).Let ĉ1; ĉ2 2 P be the centers of bC1; bC2, respectively.For i = 1; 2, let Ai = fx 2 bCi; d(x; ci) > `=p�g, and letBi = bCi nAi. Now,Xx2 bC1 d(x; ĉ1) + Xx2 bC2 d(x; ĉ2)� Xx2 bC1 d(x; c1) + Xx2 bC2 d(x; c2)= Xx2A1 d(x; c1) + Xx2A2 d(x; c2) ++ Xx2B1 d(x; c1) + Xx2B2 d(x; c2)



� Xx2A1[A2 �1 + 2p�1� 2p��minfd(x; c1); d(x; c2)g++ Xx2B1 d(x; c1) + Xx2B2 d(x; c2)� Xx2A1[A2 �1 + 2p�1� 2p��minfd(x; c1); d(x; c2)g++ Xx2B1[B2�1 +max� 2p�1� � ; 2(� +p�+ �p�)(1� � �p�� �p�)��minfd(x; c1); d(x; c2)g;where the last inequality follows from Lemma 1, usingthe fact that A`0 �' is (�0; �0; `)-distorted on X[fc1; c2g,for �0 = �+p�+�p� and �0 = maxf(1+�)�; �=(1��)2g.We now turn our attention to the three conditions re-quired for the success of our approach. The �rst condi-tion is easy to guarantee in every metric space. Indeed,to apply Theorem 7, all we need is to guess d(c1; c2)within a factor of 2. Thus, the number of values wehave to check depends only on the range of possible val-ues. To restrict that range, we useLemma 8. Let dmax be the maximum distance be-tween any pair of points in X. If d(c1; c2) � �dmaxn ,then any partition has a cost within a factor of 1+ 2�nn�2�of the optimum solution.Proof. Let x; y 2 X be two points at distance d(x; y) =dmax. By the triangle inequality, d(x; c1) + d(y; c1) �dmax. Thus, without loss of generality d(x; c1) � dmax=2.However, by the triangle inequality, d(x; c2) � (12 ��n)dmax, so the cost of the optimum solution is at least(12 � �n)dmax. Consider any partition of X into two clus-ters A1 and A2 with cluster centers a1 and a2, respec-tively. Using again the triangle inequality,Xx2A1 d(x; a1) + Xx2A2 d(x; a2)� Xx2A1 d(x; c1) + Xx2A2 d(x; c2)� Xx2C1(d(x; c1) + �dmax=n) + Xx2C2(d(x; c2) + �dmax=n)� Xx2C1 d(x; c1) + Xx2C2 d(x; c2) + �dmax� �1 + 2�nn� 2�� Xx2C1 d(x; c1) + Xx2C2 d(x; c2)! :

As for the second condition, Lemma 4 guaranteesthat we can compute ' for instances in (Rd; L1) andin (Rd; L2). In both cases, the third condition holds aswell. For the L1 norm, implementing OurSpaceCostis easy: On input set C, compute the best center c byci = medianfxi; x 2 Cg, then output Px2C kx � ck1.For the L2 norm, the problem is signi�cantly harder.Finding the best center c amounts to minimizing a con-vex function, and it can be approximated with arbitraryprecision in polynomial time. Thus we get the followingcorollary of Theorem 7:Corollary 9. There are polynomial time approxima-tion schemes for 2-clustering in (Rd; L1) and in (Rd; L2).Finally, we deal with the case of clustering pointsin Rd with distances measured by the square of theL2 norm. The problem with this case is that the dis-tance function does not induce a metric, so our analysisso far does not hold. We solve this problem by usingthe algorithm for L2 distances, but using a di�erentOurSpaceCost procedure that computes cluster costsunder L2 squared distances. Such a procedure is easy toimplement. On input set C, the best center c is given byci = averagefxi; x 2 Cg. The procedure then returnsthe value Px2C kx� ck22. We getTheorem 10. The above algorithm is a polynomialtime approximation scheme for 2-clustering in Rd, withdistances measured by the square of L2 distance.Proof. The proof follows closely the proof of The-orem 7. We use the same notation as in that proof.Our algorithm enumerates over a polynomial number ofguesses ` for kc1 � c2k2. By the discussion above, oneof these guesses satis�es ` � kc1 � c2k2 < 2`. Now,for this `, the algorithm uses a mapping ' : Rd!Zm2 .Let `0 be the scale for which ' is (�; �; `)-distorted on([x2XB(x; `=p�); P ). Consider the execution of themodi�ed Hamming2Clustering on '(X) � Zm2 . LetbC1 and bC2 be the partition of X into clusters whichis computed by the algorithm in the iteration using `0and the centers ~c1 = A`0'(c1) and ~c2 = A`0'(c2). Letĉ1; ĉ2 2 P be the centers of bC1; bC2, respectively. Fori = 1; 2, let Ai = fx 2 bCi; kx� cik2 > `=p�g, and letBi = bCi nAi. Now,Xx2 bC1 kx� ĉ1k22 + Xx2 bC2 kx� ĉ2k22� Xx2 bC1 kx� c1k22 + Xx2 bC2 kx� c2k22
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