
Theoretical Computer Science 322 (2004) 567–613
www.elsevier.com/locate/tcs

Abstractions for fault-tolerant global computing
Tom Chothia, Dominic Duggan∗

Department of Computer Science, Stevens Institute of Technology, Castle Point on Hudson, Hoboken,
NJ 07030, USA

Received 19 February 2003; received in revised form 13 July 2003; accepted 2 September 2003

Abstract

Global computing (WAN programming, Internet programming) distinguishes itself from local
computing (LAN computing) by the fact that it exposes some aspects of the network to the
application, rather than seeking to hide them with network transparency, as in LAN program-
ming. Global computing languages seek to provide useful abstractions for building applications
in such environments. The lqp(·)-calculus is a family of programming languages that use the
abstraction of logs to specify application-speci7c protocols for distributed agreement and fault
tolerance in global applications. Re8ecting the motivation for global computing, the abstrac-
tion of logs isolates the communication requirements of such protocols. Two speci7c instances
of the lqp(·)-calculus are provided, the lqp(dc)-calculus and the lqp(dcu)-calculus. These are
intended as kernel programming languages for fault-tolerant distributed programming. The cal-
culi incorporate various abstractions for fault tolerance, from which several forms of distributed
transactions and optimistic computation may be built. As an example application, a calculus of
atomic failures is presented, the atf-calculus, and its encoding in the lqp(dc)-calculus used to
verify a correctness property.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Fault-tolerance; Transactions; Process-calculli; Global computing

1. Introduction

Global computing, sometimes referred to as wide-area computation, wide-area net-
work programming or Internet programming [10], poses interesting challenges for ap-
plication developers. This is because the traditional programming environments for dis-
tributed application development are based on applications spanning local-area networks
and enterprise intra-networks. The characteristics of local computing environments are
di?erent from those of global computing, and suggest a need for di?erent approaches.

∗ Corresponding author. Fax: +1-201-216-8249.
E-mail addresses: tomc@cs.stevens-tech.edu (T. Chothia), dduggan@cs.stevens-tech.edu (D. Duggan).

0304-3975/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2003.09.014

mailto:tomc@cs.stevens-tech.edu
mailto:dduggan@cs.stevens-tech.edu

568 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

Local computing languages are organized around the principle of location trans-
parency, hiding the network behind the abstraction of RPC or RMI [6]. In contrast
global computing languages expose the network to the application, recognizing that
dealing with the network is an important aspect of global applications, and seeking to
provide useful high-level abstractions for application developers. A commercial exam-
ple of this is given by the Java Jini system [3], while a formal approach is given by
the Ambient Calculus [11].

Work on the semantics of global computing languages has focused on mobility of
various kinds [11,12,26,33,48]. There has been little attention paid to providing support
for fault tolerance, aside from work based on fail-stop failure models, that may not
always be appropriate in global computing [10]. An example of a local computing
language that provided support for fault tolerance is the Argus language [39]. Fault
tolerance was based on guardians and nested transactions [40,42]. Similar support for
transactions was provided by languages such as Avalan=C++ and Venari=ML [21,32],
and is an integral part of various well-known distributed computing platforms, including
CORBA OTS, COM MTS, and Java Jini and JavaBeans [37].

There are two aspects of transactions, as a tool for building fault-tolerant global
applications, that we wish to address:

(1) The 7rst aspect is the somewhat monolithic concept of transactions themselves.
Transactions include notions of failure atomicity, concurrency control, persistence,
and undoing of e?ects. This particular combination is useful for the kinds of
database applications for which transactions were originally designed. It is not
clear that this particular combination, or any particular combination, is appropriate
for all global applications. For example, there are many variants of transactions
that have been proposed for various other classes of applications, particularly for
long-lived applications [23].

In this paper we propose a set of largely orthogonal abstractions, that can be
combined to build di?erent classes of fault-tolerant applications. Transactions are
one of the mechanisms that can be built through such a combination. Fig. 1 pro-
vides our set of abstractions.

(2) At the heart of mechanisms for building fault-tolerant applications are some col-
lections of protocols, that in turn rely on a communication system for delivering
protocol messages. In global computing, establishing communication channels may
itself be an important part of a global application. For example Internet communi-
cation must nowadays navigate through 7rewalls, proxies, network address trans-
lators and load balancers. Currently, this is done in an ad hoc fashion, in a way
that violates data abstraction and the supposed layering of protocols. The ambient
calculus is based on the notion of applications explicitly navigating administrative
domains delimited by 7rewalls. If fault-tolerance protocols are part of the under-
lying support for building global applications, how are the protocol messages to
be delivered in a semantically correct (and secure) manner?

In this paper we make some progress towards providing an answer to this issue,
by isolating the communication requirements of protocols in the semantics of the

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 569

(Sect 6)

(Sect 4)

(Sect 4)

(Sect 7)

(Sect 7)

(Sect 3)

(Sect 4)

(Sect 2)

ATF
Calculus

Transaction

Split–Join
Transaction

Sagas

Causality

Conclaves, Logs

Extended by

Used in definition of

Multicast
Ordered

Optimistic
Computation

AnticommitmentCommitment

Fig. 1. Applications of abstractions.

underlying abstractions for building fault-tolerant global applications. There is a
notion of stable storage and logs; processes may query and extend their own
local logs, but may only query the logs of remote sites. The issue of how to
query the logs of a remote site, without relying on an underlying communication
infrastructure, is left to a sequel.

The Jini system’s [3] support for fault tolerance provides interfaces for the two-phase
commit protocol [5], and a default implementation of the protocol. We take the position
that this approach is too high level and too protocol-speci7c. It is too high level in the
sense that atomic commitment is, in general, impossible to achieve in asynchronous
distributed systems [25,31]. On the other hand, building a particular (potentially block-
ing) protocol for atomic commitment into the language semantics overcommits the
language design to particular implementations. Our emphasis is instead on isolating the
invariants that should be maintained by stable storage, and providing mechanisms that
applications can use to change stable storage in such a way that these invariants are

570 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

preserved. Protocols such as two-phase commit can then be provided as libraries on top
of these primitives. As such, our approach is akin to a type system for a global pro-
gramming environment, albeit one where the invariant-preserving operations on stable
storage are checked at run-time. This is represented in our calculus by operations for
appending to logs, that require preconditions to be satis7ed before such an appending
is allowed.

At the core of the abstractions in Fig. 1 is the concept of process groups. We refer
to such a process group as a conclave. A conclave is at its simplest level a group of
processes

c{P1 | : : : |Pk};
where the conclave identi7er c serves as a name for the group. The processes in a
conclave share a log, which only they may modify. Logs are used to specify proto-
cols for global agreement, on an application-speci7c basis. The operations for adding
log entries are restricted to ensure certain global invariants are preserved; what those
invariants are depends on the particular protocols being speci7ed. In fact, we obtain
a family of calculi, all sharing the same kernel language, the lqp(·)-calculus. Each
instance in this family is obtained by adding a particular set of log entry types, and
associated rules for appending new log entries, to the lqp(·)-calculus.

Conclaves can also be considered as a unit of atomic failure. When we consider
using conclaves to model transactions, the intention is that if any process in a con-
clave “fails,” then all of the processes in that conclave “fail.” We identify causality as
the fundamental yardstick for measuring dependencies between the failures of di?er-
ent conclaves, and we propose causal consistency as a correctness criterion for proper
executions involving atomic failures. If a conclave c1 consumes some of the output of
another conclave c2, this establishes a causal dependency from c2 to c1. If c2 subse-
quently aborts, then c1 must also abort. The intuition of causal consistency is that, as
with traditional transactions, a run of conclaves with failures should be in some sense
equivalent to one in which no failures occurred, or in which at least no e?ects besides
failure are visible for the failed conclaves (the latter alternative is possible with nested
transactions). By “visible” we mean informally that no database updates or messages
issued by failed processes are observed by processes outside the corresponding con-
claves. Rather than restricting causal relationships to tree structures, we allow arbitrary
directed graph structures, including cyclic graphs.

In Section 2 we review the basic mechanisms in the lqp(·)-calculus, including the
message-passing primitives of the pi-calculus, and the notion of process groups and logs
added by the lqp(·)-calculus. In Sections 3 and 4 we provide the lqp(dc)-calculus, an
instance of the lqp(·)-calculus that provides dependencies and commitment. We use this
to model transactional mechanisms for distributed programming. We verify a notion of
correctness for the lqp(dc)-calculus in Section 5. As an extended example, we provide
a calculus of atomic failures, the atf-calculus, in Section 6. We provide an encoding of
the atf-calculus in the lqp(dc)-calculus, and use the correctness of the latter to verify a
correctness property for the former. In Section 7 we describe the lqp(dcu)-calculus, an
extension of the lqp(dc)-calculus with mechanisms for atomic anticommitment, undoing
the e?ects of conclaves that have been committed optimistically. In Section 8 we verify

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 571

the correctness of the lqp(dcu)-calculus. Finally Section 9 provides a comparison with
related work and conclusions.

We deliberately do not consider any particular failure model in our work
[1,2,13,27,47] since they are orthogonal to the issues addressed in this paper. Although
there are well-known impossibility results for achieving agreement in asynchronous
distributed systems [25,31], these results can be circumvented by making further as-
sumptions about the environment (e.g., partial synchrony, unreliable failure detectors
[13]) or by weakening the correctness requirements of the protocols used to achieve
distributed agreement. Indeed, the whole point of this work is that the application de-
veloper can use the approach presented here with any failure model and any protocol
correctness conditions that she considers appropriate to the particular application. For
example, a traditional transaction system may rely on unreliable failure detectors, abort-
ing an uncommitted transaction if it times out while waiting to be contacted for a run
of the commitment protocol. Other variants may rely on a fail-stop model to detect a
crashed protocol administrator and elect a new administrator (for example, using three-
phase commit); the protocol then fails to work when the network is partitioned. All
of these approaches, and others based on more powerful unreliable failure detectors,
can be added to our model. But we take the point of view that this should be done
on an application-by-application basis, rather than building particular failure models or
consistency conditions into the language.

2. Logs and conclaves

This paper does not introduce one calculus, but a family of calculi. Each calculus
in this family shares certain features:

(1) An abstraction of logs that are used to specify protocols for global agreement.
Each calculus in the family speci7es a particular set of log entry types, correctness
conditions for each form of log entry, and a collection of log append rules that
should be veri7ed to preserve correctness.

(2) A notion of conclaves, process groups that share the same logs. All processes
execute within a conclave. There is an implicit notion of locality associated with
conclaves; all processes executing in a conclave should be on the same machine
since they may all change the same shared log.

The common core of the family of calculi is described by the lqp(·)-calculus. This
calculus has no log entry types, only the common structure used by all calculi in
the family. The syntax for the lqp(·)-calculus is given in Fig. 2. As usual in such
calculi, processes are simple “assembly language” concurrent programs, with operations
for message-passing. In this case the language is an extension of the asynchronous
pi-calculus [35,41,49], a popular calculus for describing distributed programs where
channel names are globally unique and may be transmitted in messages. For example,
a client–server application can be described by having the client send a private reply
channel to the server. In addition to constructs for sending and receiving messages,
there is also an operation for generating new channel names, for replicating processes

572 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

v ∈ Value ::= x Variable
| n; c Name

P ∈ Process ::= stop Stopped process
| send v!〈v1; : : : ; vk〉 Message
| receive n?(x1; : : : ; xk); P Message receive
| new n; P Scoped name
| repeat P Replication
| (P1 | P2) Parallel composition

(a) Core pi-calculus

P ∈ Process ::= logif c{{L}} then P1 else P2 Check for log entry
| logawait (x1; : : : ; xn)c{{L}}; P Wait for log entry
| logappend 〈vk〉 with rule-name; P Append to log
| c{P} Fork new conclave
| loginit; P Initialize the log

C ∈ Net ::= c{P} Process in conclave
| c{{L}} Log
| new n; C Scoped name
| (C1 | C2) Parallel composition, wire

L ∈ Log ::= true | L1 ∧ L2 Empty log, conjunction

(b) Extensions for the lqp(·)-calculus

Fig. 2. Syntax of the lqp(·)-calculus.

(this can be used to de7ne recursive process descriptions) and for forming the parallel
composition of processes. For formal reasoning purposes, messages are restricted to
tuples of values.

In the version of the asynchronous pi-calculus used here and elsewhere [49], pro-
cesses can communicate output capability, but not input capability. The join calculus
has a similar restriction [26]. There are both theoretical and practical reasons for this
restriction [49, Section 2.5.2]. For our purposes, the reason for making this restriction
is that otherwise an implementation of our calculus would require atomic commitment
(presumably using two-phase commit), which would of course defeat the whole point
of the calculus. As long as an input capability is not shared between di?erent network
sites, the restriction ensures that this invariant is preserved during execution. There are
sound pragmatic reasons for weakening this restriction to allow transmission of input
capability within a conclave, since conclaves imply locality [16]; however, we eschew
pursuing this elaboration in this presentation.

A process P executing as part of a conclave c is represented by the network term
c{P}. These network terms represent a group of processes that share a log. So each
conclave should run on a single host, to avoid the need for distributed coordination
as a primitive in the language. De7ning protocols for distributed coordination is after
all the whole point of de7ning the lqp(·)-calculus. A network C is a collection of
processes executing in conclaves, and the logs associated with the conclaves.

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 573

c{stop} | C ≡ C stop | P ≡ P
C1 | C2 ≡ C2 | C1 P1 | P2 ≡ P2 | P1

(C1 | C2) | C3 ≡ C1 | (C2 | C3) (P1 | P2) | P3 ≡ P1 | (P2 | P3)
new n1; new n2; C ≡ new n2; new n1; C new n1; new n2; P ≡ new n2; new n1; P

new n; C ≡ C; n =∈ fn(C) new n; P ≡ P; n =∈ fn(P)
c{new n; P} ≡ new n; c{P}; n �= c c{P1 | P2} ≡ c{P1} | c{P2}

true∧ L ≡ L L1 ∧ L2 ≡ L2 ∧ L1 (L1 ∧ L2) ∧ L3 ≡ L1 ∧ (L2 ∧ L3)
(new n; C1) | C2 ≡ new n; (C1 | C2); n =∈ fn(C2)
(new n; P1) | P2 ≡ new n; (P1 | P2); n =∈ fn(P2)

repeat P ≡ P | repeat P

Fig. 3. Equivalence rules for the lqp(·)-calculus.

Besides organizing processes into conclaves, the other innovation in this calculus
is the addition of logs. A log in the lqp(·)-calculus is represented by a multiset of
located propositions, abstractly representing the entries in the “log.” Each conclave has
a log, represented by a collection of logical propositions L. The fact that a log is for
a conclave named c is represented by a “located” log of the form c{{L}}. We require
consistent networks to have exactly one log for each conclave, as shown in Section 5.
Some of the log predicates are derived predicates, meaning that there will in general
not be log entries of those forms (except for caching purposes). Rather they represent
queries that may be made of a remote site.

The semantics for any calculus in the lqp(·)-calculus family are speci7ed using
various judgement forms:

P1 ≡ P2; L1 ≡ L2 ; C1 ≡ C2 Equivalence Fig. 3
C1 −→ C2 Computation Fig. 4
C |= c{{L}} Log query Fig. 4 and 6

C; c |= (xk)
rule-name−−−−−−−→L Log append rule Fig. 6, 7, 18 and 19.

The re8exive transitive closure of the computation relation is denoted by C1
∗−→ C2.

The structural equivalence rules for processes and conclaves are provided in Fig. 3.
The rules for processes P are the usual equivalence rules for the pi-calculus, including
extrusion of scope of locally generated names. The rules for conclaves replicate the
rules for processes, and also include the following:

c{P1 | P2} ≡ c{P1} | c{P2}; c{new n; P} ≡ new n; c{P}; n �= c:

These rules relate processes to conclaves; a collection of processes located in conclaves
is equivalent to a collection of “atomic” processes, each executing a local operation
(message send or message receive, or an operation on the logs as speci7ed below)
located in conclaves. Each such atomic process has the form c{P} where P has one
of the aforesaid forms and where c denotes the “location” of the process. In this
calculus, we take processes up to �-conversion (renaming) of scoped names, so that
all substitutions over processes and conclaves are assumed to be capture-avoiding.
The forking construct c{P} still does not imply any nesting of conclaves, rather it is
simply a way for a conclave to extrude code that executes in another conclave. The

574 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

loginit construct allows an initial empty log to be created for a conclave. The syntactic
restriction on the context C, and the static scoping rules for the pi-calculus, ensure that
there are no other logs for this conclave present. We use these operations to de7ne a
construct in Section 4 that allows a new transaction to be de7ned.

Some operations require examining all of the log entries for a conclave, for example
to ensure the absence of a particular log entry. Therefore each conclave c is required
to have a single log, of the form c{{L}} where L is a conjunction of log entries. There
are three constructs for interacting with stable storage:

P ::= logif c{{L}} then P1 else P2

| logawait (x1; : : : ; xk)c{{L}}; P

| logappend 〈v1; : : : ; vk〉 with rule-name; P

The semantics for these constructs, as well as the semantics for message-passing, are
provided in Fig. 4(a). The logawait construct blocks until log entries matching the
pattern are in stable storage. For example an undo action can be speci7ed to have the
form

logawait ()c{{Aborted}}; P

If the conclave c is aborted, then the process P will execute, The transition rule in the
operational semantics for the await construct has the form:

c{{L′}} |= c{{{nk=xk}L}}
(c{{L′}} | c′{logawait (xk)c{{L}}; P}) −→ (c{{L′}} | c′{{nk=xk}P})

(RED WAIT)

This uses the general judgement form C |= c{{L}} (in this particular case as c{{L′}} |=
c{{{nk=xk}L}}) to query if the proposition L is present in the logs for the conclave
c. The rules for querying the logs are provided in Fig. 4(b). The rules fairly straight-
forwardly decompose a surrounding context for a log entry of the required form. The
general form of the log query rules is useful for checking the preconditions of the log
append rules, provided in subsequent sections. In Section 7 we allow transactions to
anti-commit. This raises the possibility of having two occurrences of the same predicate
in a log, with di?erent arguments. Hence the logawait action may be non-deterministic.
To avoid any problems with substituting the names from the log, we require that each
occurrence of a predicate always has the same number of arguments.

The logappend construct is used to add to the contents of the log. The operations
for adding to the log are speci7ed by named rules. Each rule requires some precondi-
tions and adds some new collection of propositions to the log. The rules are prede7ned
as part of the calculus, in order to ensure some consistency properties of the opera-
tional semantics. These log append rules are speci7ed in Figs. 6, 7, 17, 18 and 19,

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 575

(c1{send n!〈nk〉} | c2{receive n?(xk); P}) −→ c2{{nk =xk}P} (RED RECEIVE)

c{{L′}} |= c{{{nk =xk}L}}
(c{{L′}} | c′{logawait (xk)c{{L}}; P}) −→ (c{{L′}} | c′{{nk =xk}P})

(RED WAIT)

c{{L′}} |= c{{L}}
(c{{L′}} | c{logif c{{L}} then P1 else P2}) −→ (c{{L′}} | c{P1})

(RED IFLOGTRUE)

c{{L′}} �|= c{{L}}
(c{{L′}} | c{logif c{{L}} then P1 else P2}) −→ (c{{L′}} | c{P2})

(RED IFLOGFALSE)

C = (C′ | c{logappend 〈vk〉 with rule-name; P} | c{{L1}})

C; c |= (vk)
rule-name−−−−−→ new nm; L2 nm ∩ fn(L1) = { }

C −→ (C′ | c{P} | new nm; c{{L1 ∧ L2}})
(RED APPEND)

C =
∏
ck{Pk} c =∈ {ck}

new c; (c{loginit; P} |C) −→ new c; (c{{true}} | c{P} |C)
(RED LOGINIT)

E[·] ::= [·] | (E[·] | C) | new n; E[·]

C1 ≡ E[C′
1] C′

1 −→ C′
2 C2 ≡ E[C′

2]

C1 −→ C2
(RED CONG)

c1{c2{P}} −→ c2{P}
(RED EXEC)

(a) Computation Rules

Ci |= c{{L}} for some i ∈ {1; 2}
(C1 | C2) |= c{{L}}

(PRED PAR)

n =∈ fn(L) ∪ {c} C |= c{{L}}
(new n; C) |= c{{L}}

(PRED NEW)

L ≡ L′ ∧ L′′

c{{L}} |= c{{L′}}
(PRED LOG)

(b) Log Query

Fig. 4. Semantics of lqp(·)-calculus (without log append rules).

using judgements of the form

C; c |= (vk)
rule-name−−−−−−−→ new nm; L

where rule-name is the name of the rule, C the surrounding context (used for checking
preconditions), c the name of the conclave executing the rule, L the propositions added
to storage by the rewrite rule, and v1; : : : ; vk are values (names or variables) that are
inputs to the append rule. The names n1; : : : ; nm are new names generated as part of the
addition of the log propositions; they are the free names in L output by the append rule.
This new name generation as part of appending a log entry is used in the lqp(dcu)-
calculus, in the undoing of anticommitment in Section 7. Then the transition rule for

576 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

changing storage is given by:

C = (C′ | c{logappend 〈vk〉 with rule-name; P} | c{{L1}})

C; c |= (vk)
rule-name−−−−−→ new nm; L2

C −→ (C′ | c{P} | new nm; c{{L1 ∧ L2}})
(RED APPEND)

A conclave c can only add to its own log entries. It is possible to check for precon-
ditions in the surrounding context C. This context includes the log for c, c{{L1}}. For
some rules it may be necessary for a conclave to examine the logs of other conclaves,
though only for positive conditions (the presence, but not the absence, of log entries at
other sites). In some cases this may require communication with remote sites holding
those logs. These remote sites are captured by the part of the context C′. The semantics
abstracts from how communication with remote logs should be done. An obvious ap-
proach is to send and receive system messages “under the hood,” possibly piggybacked
on application messages. This assumes the availability of point-to-point communication
channels between processes, which may not always be available. We comment on an
alternative approach in the conclusions. The point is that the only assumption about
the remote communication of state made, in this model, is that processes are able to
query the logs of remote conclaves.

We disallow querying for the absence of remote log entries because of obvious race
conditions in any implementation of such querying. An implementation that avoided
such race conditions would require distributed agreement, which is provably impossible
in asynchronous distributed systems [25,31]. For example, we might imagine a protocol
where two remote sites compete for a token: a conclave adds a log entry declaring
that it has the token if the other conclave has no such log entry. The remote query
for the absence of the log entry must be done atomically with the local addition of
the log entry. But the implementation of such an atomic operation would require a
protocol for distributed mutual exclusion. This is related to the impossibility result of
Palamidessi [45], who shows that a distributed election protocol cannot be implemented
in the asynchronous pi-calculus. The logif construct allows a process to check for the
presence of a particular log entry. There is an else part to check if the log entry
is absent. Since we disallow checking for the absence of entries in remote logs, we
restrict the logif to only check for the presence or absence of local log entries. The
logif is used in the encoding of the atf-calculus into the lqp(dc)-calculus, provided in
Section 6.

Stable storage in our calculus is used to safely save the state of the conclaves,
where state is recorded by several proposition types, for causal relationships, commit-
ment protocol state, etc. As a preliminary example, we have speci7ed what it means
for a conclave to commit or abort. In a database application, abortion means that up-
dates must be undone and locks released, while commitment means that scheduled
updates must be written to the database. We leave the exact semantics of abortion or
commitment to the application, and only require that a record be kept in storage of the
aborted or committed state of the conclave.

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 577

For a conclave that has no causal dependencies with other conclaves, we could
supply two rewrite rules, for committing and aborting, respectively:

C �|= c{{Aborted}}
C; c |= ()

CommitEx1−−−−−−−→Committed
(RED COMMIT EX1)

C �|= c{{Committed}}
C; c |= ()

AbortEx1−−−−→Aborted
(RED ABORT EX1)

These rules are only illustrative examples. The actual, more complex log append rules
are provided in the following sections.

However, these rules are an example of the facility of being able to view all log
entries for the local conclave when checking the precondition for the rewrite rules,
and therefore being able to check the absence of certain log propositions. This ability
to view all of the local log entries relies on the invariant of every conclave having a
single log.

For a conclave that has causal predecessors, if all of the causal predecessors of that
conclave are committed, then the following rewrite rule allows that conclave to itself
commit. The antecedent for the following rule checks that any causal predecessors c′

of the conclave c have committed:

C �|= c{{Aborted}}
(C |= c{{c′ → c}} implies C |= c′{{Committed}}) for all c′ ∈ fn(C)

C; c |= ()
CommitEx2−−−−−−−→Committed

(RED COMMIT EX2)
Here we understand the implication in terms of the classical encoding:

(C |= c{{L}} implies C |= c{{L′}}) ≡ (C �|= c{{L}} or C |= c{{L′}}):

So the antecedent for such an implication must only involve local log entries, since
our calculus does not allow querying for the absence of remote log entries.

3. Causality

In this section and the next section, we present one particular instance of the lqp(·)-
calculus, the lqp(dc)-calculus. This calculus adds log entry types and log append rules
for tracking dependencies between conclaves, and for committing or aborting a col-
lection of conclaves in a way that is consistent with the dependencies between those
conclaves. We consider dependencies in this section, and we consider commitment in
the next section. The log entry types for the lqp(dc)-calculus are provided in Fig. 5.
There is one derived log entry type:

c{{IPreds(S)}} denotes that S is the set of the immediate predecessors of c. This
is useful for some of the consistency rules that are used to reason about the
correctness of the calculus.

Causality is already recognized in the distributed systems community as important
for reasoning about distributed computations, in characterizing global states, com-
puting distributed snapshots, designing fault-tolerant replicated systems, etc. [19,53].

578 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

L ∈ Log ::= c1 → c2 c1 immediately precedes c2
| PreClosed | Closed(S) No further causal preds
| PreCommitted Commitment protocol
| Committed | Aborted Committed, aborted
| IPreds(S) Derived predicates

S ∈ Set ::= {v1; : : : ; vk}

Fig. 5. Log entry types for the lqp(dc)-calculus.

Traditionally, causality is characterized by dependencies induced by messages ex-
changed between concurrently executing sequential processes (for example, Lamport’s
“happened-before” relation [38]). However, the approach of tracking causal dependen-
cies at the communication level has been criticized [14,55], both for missing depen-
dencies and for detecting “false” dependencies. The former may happen because of
hidden channels outside the communication system (for example, physical pressure in
a pipe), while the latter may happen because there is no causal dependency (at the
application level) between a message that is sent and a message that was received
just before the message send. Cheriton and Skeen [14] argue that what is required is
a mechanism for tracking causal dependencies at the application level rather than the
communication level, since the application can be aware of hidden channels and can
avoid false dependencies.

We use conclaves as a mechanism for tracking causality at the application level.
Causality is not a relationship between message send and receive events, but rather
is a failure dependency relationship between conclaves: if a conclave fails, then con-
claves that depend on it are also required to fail. Furthermore, it would be a mistake
to track causal dependencies based on communication between conclaves. For exam-
ple two conclaves on di?erent machines may communicate via 7rewall daemons, but
we would not expect a 7rewall daemon to fail because a process whose message it
delivered failed. Instead we allow the application itself to assert causal dependencies
between conclaves. Because of this, there is no scalable way to prevent cycles in the
causal dependency graph.

This has implications for completing distributed conclaves. To maintain causal con-
sistency, a conclave cannot commit until all of its causal predecessors have committed
or are also willing to commit. Because of causal cycles, it may be necessary for sev-
eral conclaves (all of the members of a strongly connected component in the causality
graph) to commit simultaneously. We require each conclave to execute at a speci7c
network site, but conclaves may communicate with other conclaves at other sites. So it
may be necessary to run an atomic commitment protocol involving several conclaves
over an unreliable network. Since this is in general an unsolvable problem, we adopt
an approach that can be the basis for widely used protocols such as two-phase commit
and early-prepare commit, but it is not tied to any particular implementation.

When a transaction aborts, its e?ects must be undone. If changes have been made
to a database, the previous values of the changed variables must be restored. We do
not provide automatic support for undoing the e?ects of conclaves that abort. Except
for the special case of databases, it is not clear what form undoing should take. For
example, undoing a transfer of funds may involve sending an attorney’s letter through

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 579

C �|= c{{PreClosed}}
C; c |= (c′) CausalPred−−−−−−−−→ (c′ → c)

(RED CAUSAL PRED)

C; c |= ()
PreClosed−−−−−−→PreClosed

(RED PRECLOSED)

S =
⋂{S′ | c ∈ S′ and ∀c′ ∈ S′:∃S′′: (C |= c′{{IPreds(S′′)}} and S′′ ⊆ S′)}

C; c |= ()
Closed−−−→Closed(S)

(RED CLOSED)

(a) Log Append Rules

C |= c{{c′ → c}}
C |= c′ ⇒ c
(PRED CAUSAL LOG)

C |= c⇒ c
(PRED CAUSAL REFL)

C |= c1 ⇒ c2 C |= c2 ⇒ c3
C |= c1 ⇒ c3

(PRED CAUSAL TRANS)

C |= c{{PreClosed}} S = {c′ | C |= c{{c′ → c}}}
C |= c{{IPreds(S)}} (PRED PREDS)

(b) Log Query Rules

Fig. 6. Semantics of causality in the lqp(dc)-calculus.

the ordinary mail. In any case if the receiver of the original message has accepted a
causal dependency on the sender of the message, the receiver will be prevented from
completing.

Causality is recorded in storage using located propositions of the form c{{c′ → c}},
recording (in c’s logs) that c′ is a causal predecessor of c. These propositions are added
by processes using the logappend construct, using the (RED CAUSAL PRED) transition
rule in Fig. 6. The causal log entries give rise to a re8exive transitive relation c1 ⇒ c2,
with rules given in Fig. 6.

Some decisions must be made based on the assumption that all causal predecessors
of a conclave are known, i.e., causal predecessors cannot be added after such decisions
are made. Therefore, we add another log entry type c{{Closed(S)}} that denotes that
no further causal predecessors can be added for the conclave c, and that S (a set
of conclave names) is the set of all causal predecessors of c. We also add another
proposition Closed() that is derived from the former proposition type, and simply
denotes that the set of causal predecessors is closed.

A conclave cannot autonomously close up the set of its causal predecessors, because
one of its predecessors may be open to causal extensions. A conclave could wait
until each of its predecessors are closed before it closes itself up to further extensions.
However this may lead to deadlock if there are causal cycles. We therefore add a bu?er
state, PreClosed , that a conclave can transition to unconditionally. A transition to the
Closed state is enabled when all of the causal predecessors of a conclave, including

580 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

the conclave itself, are in the PreClosed state. This is given by the (RED CLOSED)
transition in Fig. 6.

In the latter transition, the set S is the set of all causal predecessors, transitively
closed, of the conclave c:

(1) The root c is required to be in S.

(2) For any c′ ∈ S, the log of c′ should be available in the context C, and c′ should
be preclosed. Let S ′′ be the set of its immediate predecessors. Then all of these
should be in the transitive closure S.

(3) No conclave name should be in S unless it is required to be by one of the two
rules above.

The transition rule uses the derived predicate IPreds(Si) to check that the conclave
ci is “preclosed” and that the current (and therefore permanent) set of ci’s immediate
predecessors is Si. These two checks must be done both to ensure that the set of
immediate predecessors of ci is not enlarged between the time that it is reported to
c, and the time that ci becomes preclosed. The set of predecessors of c is then the
smallest set containing c and closed under the addition of these sets of immediate
predecessors.

Other protocols for causal closure can be built on top of this framework, using the
transitivity property of causality to trim the logs. For example, a conclave must have
evidence that all of its causal predecessors, not just its immediate causal predecessors,
are either in the closed or preclosed state. Using the property that if a conclave is
causally closed, then all of its causal predecessors are closed, a protocol can restrict
its attention to all of the conclaves in a strongly connected component of the causal-
ity graph. A coordinator for the strongly connected component can use a two-phase
commit protocol to check that all conclaves in the component are preclosed, and that
all immediate causal predecessors outside the component are closed, to authorize the
transition of the conclaves in the component to the closed state:

Closed

Closed

Preclosed

Preclosed

Preclosed

Preclosed

Preclosed

Closed
Closed

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 581

C �|= c{{PreCommitted}}
C; c |= ()

AtStAbort−−−−−−→Aborted
(RED AT STABORT)

C |= c′ ⇒ c C |= c′{{Aborted}}
C; c |= ()

AtPcAbort−−−−−−→Aborted
(RED AT PCABORT)

C |= c{{Closed()}} C �|= c{{Aborted}}
C; c |= ()

AtStPreCommit−−−−−−−−→PreCommitted
(RED AT STPRECMT)

C |= c{{Closed(S)}} ∀c′ ∈ S: C |= c′{{PreCommitted}}
C; c |= ()

AtPcCommit−−−−−−−−→Committed
(RED AT PCCOMMIT)

Fig. 7. Semantics of commitment in the lqp(dc)-calculus.

In this picture, nodes represent conclaves in various states (causally closed, prepared
to close), edges represent causal dependencies, and the large oval represents a collection
of mutually dependent conclaves that can cooperate using some atomic commitment
protocol to achieve causal closure, using the fact that predecessor conclaves outside
this collection are already closed.

4. Commitment

A conclave encapsulates a set of processes that perform some set of actions that
eventually either succeed or fail. We refer to these alternatives as commitment and
abortion. Commitment builds on causality, since a conclave cannot commit unless all
of its causal predecessors commit. It is tempting to de7ne a log append rule that
allows a conclave to enter the Committed state if all of its causal predecessors are
in the Committed state. However (as with causal closure) this is insuScient if there
are causal cycles. As with causal closure, we introduce a bu?er state PreCommitted ,
to which a conclave in the started state can make a transition to, once it is causally
closed (Rule (RED AT STPRECMT) in Fig. 7). The transition to the Committed state
is enabled when all causal predecessors are precommitted (Rule (RED AT PCCOMMIT)).
So if a conclave is committed, then it is precommitted and it is closed.

In contrast with causal closure, there is also the possibility of making a transition to
an Aborted state. A conclave that has not yet precommitted can abort (Rule (RED AT

STABORT)). A conclave in the precommitted state can only abort if one of its causal
predecessors has aborted (Rule RED AT PCABORT). A summary of the possible state
transitions for a conclave is given by:

Started

Aborted

CommittedPreCommitted

582 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

The transition from the committed state to the aborted state is provided by anticom-
mitment in the lqp(dcu)-calculus, described in Section 7.

4.1. Example: distributed transactions

Ignoring aspects of locking for now, we identify a distributed transaction [5] with
a collection of conclaves. There is a parent conclave for the start of the transaction
at the original site. This transaction invokes operations at remote sites; each instance
of the transaction at a remote site is represented by a conclave at that remote site,
spawned by the parent conclave. Each child conclave accepts a causal dependency on
the parent conclave, and vice versa. At the conclusion of the transaction, the parent
conclave executes a two-phase commit protocol:

(1) The parent conclave acts as an administrator for the protocol. It contacts each child
conclave to induce the latter to enter the PreCommitted state, and determines if
any children have failed.

(2) If all children have entered the PreCommitted state, “evidence” of this is gathered
by the administrator and transmitted to the children. The latter use this evidence
to enter the Committed state. Otherwise the administrator aborts and induces the
remaining children to abort (enter the Aborted state).

4.2. Example: split-join transactions

Such transactions support a split operation that breaks a transaction into two transac-
tions, and a join operation that does the converse [46]. We can de7ne a split operation
using the operation for “forking” code that executes within another conclave, as well
as the operation for initializing the log of a new conclave:

(split c in P2;P1) ≡ (new c; (c{loginit; P2} |P1))

Then we have the following execution:

c1{split c in P2; P1} ≡ c1{new c2; c2{loginit; P2} |P1}
≡ new c2; c1{c2{loginit; P2} |P1}
≡ new c2; (c1{c2{loginit; P2}} | c1{P1})

−→ new c2; (c2{loginit; P2} | c1{P1})

−→ new c2; (c2{{true}} | c2{P2} | c1{P1}):

The join operation is provided by having the conclaves for the two transactions become
mutually dependent on each other.

5. Correctness

We have two notions of well-formedness for processes; one is a simple syntactic
condition that every conclave have exactly one log, while the other is a more sophisti-
cated condition on the consistency of the logs. The latter consistency rules check that

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 583

C1 logged S1 C2 logged S2q S1 ∩ S2 = {}
(C1 |C2) logged S1 ∪ S2

(WF PAR)

C logged S

(new n; C) logged S − {n}
(WF NEW)

c{{L}} logged {c}
(WF CONJ)

c{P} logged {}
(WF PROC)

Fig. 8. Well-formedness rules for lqp(dc)-calculus.

� C; C1; C2

� C; (C1 |C2)
(CONS CTXT PAR)

n =∈ fn(C) � C; C
� C; (new n; C)

(CONS CTXT NEW)

∃S: (C1 | · · · |Ck) logged S ∀i ∈ {1; : : : ; k}: (C1 | · · · |Ck) �Ci
� Ck

(CONS CTXT LOGS)

C � c{P}
(CONS PROC)

C � c{{L1}} C � c{{L2}}
C � c{{L1 ∧ L2}}

(CONS CONJ)

C � c{{true}}
(CONS TRUE)

C � c{{c′ → c}}
(CONS CAUSAL PRED)

C � c{{PreClosed}}
(CONS PRECLOSED)

∀c′ ∈ (fn(C) − S): C �|= c′ ⇒ c

∀c′ ∈ S: (C |= c′ ⇒ c and C |= c′{{PreClosed}})

C � c{{Closed(S)}}
(CONS CLOSED)

Fig. 9. Log consistency rules for lqp(dc)-calculus.

certain antecedents hold in the logs if a particular form of log entry is present. For
example, if a conclave has a log entry recording that it has committed, then all of its
causal predecessors must have committed or must be prepared to commit. The well-
formedness and log consistency conditions are enforced by the following judgement
forms (see Fig. 8):

C logged S Well-formed conclave Fig. 8
� C Consistent Eval Context Figs. 9 and 10
C �C′ Log consistency Figs. 9 and 10

The individual log consistency rules are provided in Figs. 9 and 10. Log consistency
is denoted by the judgement form C �C′. Since evaluation takes place inside an eval-
uation context, there are also rules in Fig. 9 for checking the log consistency of the
evaluation context, with conclusions of the form � C, where C is a multiset of network
expressions. These rules breakdown evaluation contexts until all logs are exposed, and
then check (using the remaining rules) that each log is consistent with the other logs.

584 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

C �|= c{{Aborted}}
C � c{{PreCommitted}}

(CONS PRECMT SIMPLE)

C �|= c{{PreCommitted}}
C � c{{Aborted}}

(CONS ABORTED SIMPLE)

C |= c{{Aborted}}
C |= c′ ⇒ c C |= c′{{Aborted}} C �|= c′{{PreCommitted}}

C � c{{PreCommitted}}
(CONS PRECMT PREDABT)

C |= c{{Closed(S)}}
∀c′ ∈ S: C |= c′{{PreCommitted}} and C �|= c′{{Aborted}}

C � c{{Committed}} (CONS COMMITTED)

C |= c{{PreCommitted}}
C |= c′ ⇒ c C |= c′{{Aborted}} C �|= c′{{PreCommitted}}

C � c{{Aborted}}
(CONS ABORTED PREDABT)

Fig. 10. Log consistency rules for lqp(dc)-calculus (cont’d).

The (CONS CAUSAL PRED) rule requires that only a conclave can record its causal
predecessors; this cannot be done by arbitrary third parties. The (CONS CLOSED) rule
for causal closure checks that the set S contains all and only the causal predecessors
of c. Furthermore, every causal predecessor c′ must be prepared to be causally closed
(the latter condition is explained in Section 3). This rule also requires that all of the
logs for the conclaves in S are present in the context C. This ensures that the transitive
closure of the set of causal predecessors of c cannot be enlarged with the addition of
another log, since the logs of c and its predecessors have enumerated all conclaves in
the transitive closure.

Now, turning to Fig. 10, the (CONS PRECMT) rules ensure consistency of precommit-
ment log entries. The (CONS PRECMT SIMPLE) rule handles the simplest case, when a
conclave is not aborted. The check for the absence of a log entry for abortion there-
fore requires that the log for the conclave c be present in the context. The (CONS

PRECMT PREDABT) rule handles the case where a conclave may be both precommitted
and aborted; this can be the case when a predecessor of the conclave is aborted.

The (CONS COMMITTED) rule requires that the conclave c be causally closed, and that
each of its causal predecessors be prepared to commit (as explained in Section 4).
Some of these predecessors may actually have committed, but precommitment is all
that is required for consistency. For consistency we also require that none of the causal
predecessors of c be aborted, requiring that the logs of all of these predecessors be in
the context of the consistency check.

There are two consistency rules for abortion. The (CONS ABORTED SIMPLE) rule han-
dles the simplest case, when a conclave is not precommitted and therefore there are no
restrictions on abortion. The (CONS ABORTED PREDABT), analogous to the (CONS PRECMT

PREDABT) rule for precommitment, handles the case where a precommitted conclave’s
abortion is justi7ed by an abort log entry for one of its causal predecessors.

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 585

The (CONS PRECMT PREDABT) rule checks for the existence of at least one aborted,
non-precommitted conclave. This check stops us from writing down a consistent net-
work that reduces to an inconsistent one. For example, without this restriction the
following network would be consistent.

c1{{PreCommitted ∧ PreClosed ∧ Closed({c1; c2; c3}) ∧ Aborted}}
| c2{{PreCommitted ∧ PreClosed ∧ Closed({c1; c2; c3}) ∧ Aborted}}
| c3{{PreCommitted ∧ PreClosed ∧ Closed({c1; c2; c3})}}

The conclave c3 could commit, even though its other predecessors are aborted. So,
if this network was consistent we would have a consistent network reducing to a
inconsistent one.

We now consider the correctness of the semantics, and in particular the correctness
of the log append rules.

De�nition 5.1 (Log consistency). A network C is log-consistent if � C is derivable
using the derivation rules in Figs. 9 and 10. We sometimes write this as � C.

Lemma 5.1. Suppose the following hold:

(1) C; c |= (v)
rule-name−−−−−→ (new n; L).

(2) � C; C; C′ where (fn(C) ∪ fn(C) ∪ fn(C′)) ∩ {n} = {}.

Then (C |C′); c |= (v)
rule-name−−−−−→ (new n; L). In other words, a log append rule is not

disabled by the addition of logs C′ that are consistent with the logs C already enabling
the rule.

Proof (Sketch). By induction on the additional collection of logs C′. The base case
considers all possible combinations of log entry and log append rule.

The following key lemma veri7es that the log append rules preserve log consistency.

Lemma 5.2. Suppose the following hold:
(1) C ≡ (C′

0 | c{{L0}}).

(2) C; c |= (v)
rule-name−−−−−→ (new n′; L′

0).
(3) � C; C where (fn(C) ∪ fn(C)) ∩ {n′} = {}.
Then � C; (C′

0 | c{{L0 ∧L′
0}}). In other words, if a collection of logs C is consistent

with the logs in {C} and moreover enables a log append rule, then the collection of
logs resulting from executing this log append is still consistent with the logs in {C}.

Proof. We use the assumption � C; (C′
0 | c{{L0}}), i.e., that the logs are consistent be-

fore the log append, to show that the logs remain consistent after the log append:
� C; (C′

0 | c{{L0 ∧L′
0}}). We verify the lemma by induction on the size of the multi-

set {C}. The inductive step is for the case where C =C′; C′. We already have that
� C′; C′; C. Therefore by Lemma 5.1 we have that

(C |C′); c |= (v)
rule-name−−−−−→ (new n′; L′

0);

586 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

where (C |C′) ≡ (C′ |C′
0 | c{{L0}}). Since � C′; (C |C′) by Rule (CON CTXT PAR), we

may apply the induction hypothesis with C′ and (C |C′) to obtain � C′; (C′ |C′
0 |

c{{L0 ∧L′
0}}), so we must have a subderivation for � C′; C′; (C′

0 | c{{L0 ∧L′
0}}).

It remains to consider the base cases, one for each log append rule, where we have
a derivation for � C. The details are provided in a technical report [15].

Lemma 5.3. Suppose the following hold:
(1) � C; C.
(2) C ≡ E[C0] for some evaluation context E[·].
Then for some n′ and C′, we have that E[·] ≡ (new n′; ([·] |∏C′)) and � C; C′; C0.
In other words, any consistency derivation gives rise to an equivalent derivation (i.e.,
same conclusion) where an evaluation context in one of the network descriptions in
the conclusion is veri8ed consistent as the last step in the derivation (equivalently, is
decomposed from the root).

Theorem 1 (Preservation of log consistency). If � C; C and C −→C′, then � C; C′.

Proof. By induction on the derivation for the reduction step:
Case (RED CONG): We have C ≡ E[C0] and C′ ≡ E[C′

0] and C0 −→C′
0. Then by

Lemma 5.3 we have that E[·] ≡ (new n′; ([·] |∏C′)) and � C; C′; C0. By the
induction hypothesis applied to C0 −→C′

0, we have that � C; C′; C′
0, and therefore

� C; E[C′
0] by applications of (CONS PAR) and (CONS NEW).

Case (RED APPEND): This is an easy consequence of Lemma 5.2.
Since the remaining reduction rules have no e?ect on the logs, we are done.

Corollary 5.1. For the lqp(dc)-calculus, if � C1 and C1
∗−→C2, then � C2.

This can be viewed as a form of subject reduction. Typically, subject reduction proofs
verify that certain static properties remain invariant during program execution, and this
invariant is then used to con7rm some property of program execution. For example
subject reduction may be used to con7rm progress: a program does not get stuck
because of type errors. In our approach the invariants (represented by the consistency
of the logs) and the properties that they enforce are completely application dependent.
For example, the consistency of logs with commitment, abortion and dependencies
could be used to verify that any trace of the execution of a collection of processes is
equivalent to a trace where the traces of the processes of the uncommitted conclaves
have been erased. In particular none of the remaining processes relies on the results
of a process that has aborted or may potentially abort.

6. Extended example: the ATF-calculus

The atf-calculus [22] is a process calculus with atomic failure as its central organiz-
ing principle. For a committed transaction in the atf-calculus, it is guaranteed to have
only received messages from other committed transactions. So the “e?ects” of uncom-

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 587

mitted transactions, the messages they sent, are guaranteed to be ignored by committed
transactions. This example demonstrates how particular patterns of programming with
atomic failures can be constructed atop the primitives of the lqp(dc)-calculus.

6.1. De8nition of the atf-calculus

The syntax of the atf-calculus is given by:

A ∈ Process ::= stop | repeat A | (A1 |A2) | new n; A

| send v!〈vk〉 | receive n?xk ; A

| receive committed n?xk ; A

| prepare | abort | commit

T ∈ Trans ::= t〈A〉 | t〈〈L〉〉 | (T1 |T2) | new n; T

L ∈ Log ::= prepare | abort | commit | t1〈send v!〈vk〉〉 | t1 → t2
| true | L1 ∧ L2

The semantics of the atf-calculus is presented in Figs. 11 and 12.
We assume similar structural equivalence rules as for the lqp(dc)-calculus. So for ex-

ample both parallel composition and log conjunction are associative and commutative.
Besides the usual operations for stopped processes, replication, parallel composition,
new name generation, and message passing, there are operations for aborting and com-
mitting transactions. Commitment is similar to the early prepare commit protocol [54],
whereby participants prepare for commitment and an administrator then decides if the
participants should commit. It is also similar to completion in the lqp(dc)-calculus,
except that the latter has more freedom for the application to decide when to enter
the phases of the commitment protocol. The prepare operation puts a participant into
the prepared state, recorded by a log entry of the form t〈〈prepare〉〉. A participant can
commit if all of its causal predecessors are either committed or prepared. A participant
can abort if any of its causal predecessors has aborted. A participant can autonomously
abort any time before it enters the prepared state.

As with the lqp(dc)-calculus, there are logs of the form t〈〈: : :〉〉, at most one per
transaction. There are 7ve types of log entries that are actually stored in the log.
Three of these log entry types record if a transaction is in the prepared, committed or
aborted state. The fourth log entry type, t1〈send v!〈vk〉〉, records that (a process in) the
current transaction received a message sent by (a process in) the transaction t1. This
log entry type is useful for undoing the e?ects of an aborted transaction, retransmitting
any messages that the transaction had received before aborting. This is done by the
(RED ATF UNDO) rule in Fig. 11. The 7fth log entry type, t1 → t2, records immediate
causal dependencies. Initially such an entry is added to the log when a message receipt
is logged establishing a dependence of t2 on t1. Since message undo removes the log
of message receipt, a separate log record of the dependency is required to ensure
log consistency, since an aborted prepared transaction requires an aborted predecessor
which is not prepared and which might not be an immediate predecessor.

588 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

E[·] ::= [·] | (E[·] | T) | new n; E[·]

T1 ≡ E[T ′
1] T ′

1 −→ T ′
2 T2 ≡ E[T ′

2]

T1 −→ T2
(RED ATF CONG)

T1 = t1〈send v!〈v1; : : : ; vk〉〉 T2 = t2〈receive v?x1; : : : ; xk ; P〉
t2〈〈L〉〉 �|= t2〈〈prepare〉〉

T1 | T2 | t2〈〈L〉〉 −→ t2〈{vk =xk}P〉 | t2〈〈L ∧ T1 ∧ (t1 → t2)〉〉 (RED ATF RECEIVE)

T1 = t1〈send v!〈v1; : : : ; vk〉〉 T2 = t2〈receive committed v?x1; : : : ; xk ; P〉
t1〈〈L1〉〉 |= t1〈〈commit〉〉

T1 | T2 | t1〈〈L1〉〉 | t2〈〈L2〉〉 −→ t2〈{vk =xk}P〉 | t1〈〈L1〉〉 | t2〈〈L2 ∧ T1〉〉
(RED ATF RECVCOMM)

T = t′〈send v!〈v1; : : : ; vk〉〉
t〈〈L ∧ T ∧ abort〉〉 −→ t〈〈L ∧ abort〉〉 | T

(RED ATF UNDO)

t〈〈L〉〉 �|= t〈〈prepare〉〉
t〈abort〉 | t〈〈L〉〉 −→ t〈〈L ∧ abort〉〉

(RED ATF ABORT)

t〈〈L〉〉 �|= t〈〈abort〉〉
t〈prepare〉 | t〈〈L〉〉 −→ t〈〈L ∧ prepare〉〉

(RED ATF PREPARE)

t〈〈L〉〉 �|= t〈〈commit〉〉 t〈〈L〉〉 |= t〈〈prepare〉〉
(T | t〈〈L〉〉) |= t′ ⇒ t; t′〈〈abort〉〉

t〈abort〉 | t〈〈L〉〉 | T −→ t〈〈L ∧ abort〉〉 | T
(RED ATF PREPABT)

T = (t〈〈L〉〉 | T ′)
∃S: t ∈ S and ∀t′ ∈ S: (T |= t′〈〈prepare〉〉) and (∀t′′: T |= t′〈〈t′′ → t′〉〉 implies t′′ ∈ S)

t〈commit〉 | t〈〈L〉〉 | T ′ −→ t〈〈L ∧ commit〉〉 | T ′
(RED ATF COMMIT)

Fig. 11. Semantics of ATF calculus: computation rules.

T |= t〈〈t′ → t〉〉
T |= t′ ⇒ t

(PRED ATF CAUSAL HYP)

T |= t⇒ t
(PRED ATF CAUSAL REFL)

T |= t1 ⇒ t2 T |= t2 ⇒ t3
T |= t1 ⇒ t3

(PRED ATF CAUSAL TRANS)

Fig. 12. Semantics of ATF calculus: causality rules.

The semantics for the atf-calculus are speci7ed using various judgement forms:

A1 ≡A2 Process equivalence Not shown
L1 ≡L2 Log equivalence Not shown
T1 ≡T2 Transaction equivalence Not shown
T1 −→ T2 Computation Fig. 11
T |= t〈〈L〉〉 Log query Some in Fig. 12.

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 589

The re8exive transitive closure of the computation relation is denoted by T1
∗−→ T2.

The rules for the derived causality relation are given in Fig. 12, with the base case
given by an immediate predecessor link in the logs (Rule (PRED ATF CAUSAL HYP)).

There are two operations for receiving messages. The 7rst operation corresponds to
receiving a message and accepting a causal dependency on the sending transaction.
A transaction cannot in general receive new messages if it has entered the prepared
state, since that might introduce new causal dependencies on transactions that could then
abort, invalidating any earlier decision to commit. This is enforced by the antecedent in
the (RED ATF RECEIVE) rule. The second message receive operation restricts received
messages to those that were sent by committed transactions (so a process can isolate
itself from the e?ects of uncommitted transactions). Once a transaction has entered the
prepared state, it can only receive messages from other committed transactions. This
prevents further causal dependencies from being introduced while committing a trans-
action, and prevents a committed transaction from gaining a causal dependency from
an aborted transaction. This is handled by the (RED ATF RECVCOMM) rule that only
receives messages from committed transactions. Both forms of the message receive
operation keep a log of the message to allow the message receive to be undone if the
receiver subsequently aborts. The 7rst form of receive also records a causal dependency
of the receiver on the sender.

The (RED ATF UNDO) rule allows a message receipt to be undone, using the logs,
once the receiving process has aborted. Undoing a message receipt involves putting that
message back on the channel from which it was removed. The causal dependency that
may be recorded in the log after the transaction originally received the message is left
in the log, since it may be required for a causal chain that allows a prepared transaction
to abort. The (RED ATF ABORT) and (RED ATF PREPARE) rules allow a transaction to
abort or enter the prepare state, respectively, provided that it has not yet entered any
other state. The (RED ATF PREPABT) rule allows a transaction to abort while it is in the
prepare state, if it has not yet committed and one of its causal predecessors has aborted.

Finally the heart of the atf-calculus is the (RED ATF COMMIT) rule, that allows a
transaction to commit, provided that all of its causal predecessors are in the prepared
state (some of them may have already committed). This condition is checked by ensur-
ing that the transitive closure of the predecessor relation rooted at the transaction t is
well-de7ned. The de7nition of transitive closure requires that the logs for all predeces-
sors be available in the context, and that all such predecessors be in the prepare state.

6.2. Correctness overview

The atf-calculus’ key property is that messages sent to transactions, which then abort,
are not “lost”. The proof that this property holds is easily veri7ed, as it follows from
the way in which the reduction rules are written:

Lemma 6.1. If T ≡ (T1 | t1〈send v!〈v1; : : : ; vk〉〉) and T ∗−→ T ′ then either:
• T ′ contains an unaborted transaction with the log entry (t1〈send v!〈v1; : : : ; vk〉〉),
or

590 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

• there exists some T ′′ and T ′′
1 such that T ′ ∗−→T ′′ and T ′′ ≡ (T ′′

1 | t1〈send v!〈v1; : : : ;
vk〉〉).

Proof. If the reduction from T to T ′ does not involve the send v!〈vk〉 action then it
must still be an unguarded part of the process, so T ′ ≡T ′

1 | t1〈send v!〈vk〉〉.
If on the other hand, the reduction did involve the send v!〈vk〉 action it must then

have used the (RED ATF RECEIVE) rule or the (RED ATF RECVCOMM) rule, as these
are the only two rules that involve a send v!〈vk〉 action. Both of these rules add a
t1〈send v!〈vk〉〉 entry into a log. We now have two further cases. If the transaction has
not aborted, we are done. If the particular transaction in question has aborted then its
log contains an abort entry. The (RED ATF UNDO) rule can then be applied to T ′ to
show that T ′ −→T ′

1 | t1〈send v!〈vk〉〉.
If the (RED ATF UNDO) was applied to resend the message, then we have returned

to our 7rst case and we start again.

So if a message sent by a transaction t1 is received by a transaction t2, then as
long as t2 is not aborted, the latter’s logs will record the receipt of the message. But
if t2 does abort, then eventually the message will appear again on the output channel
its receipt having been undone by the semantics of the atf-calculus. As we are using
asynchronous communication where an output message never guards a process, this
rebroadcasting of the output cancels the e?ect of the aborting process accepting the
communication from the outputting process.

However, this property is of little use if a transaction’s logs are inconsistent. To
this end, correctness for the atf-calculus is de7ned in much the same way as for the
lqp(dc)-calculus, in terms of log consistency. The well-formedness and log consistency
conditions for the atf-calculus are enforced by the following judgement forms:

T logged S Well-formed transaction Not shown
� T Consistent Eval Context Fig. 13
T � T ′ Log consistency Fig. 13.

De�nition 6.1. A transaction T is log-consistent if � T is derivable using the derivation
rules in Fig. 13.

These rules are similar to the consistency rules for commitment in the lqp(dc)-
calculus. The last 7ve rules in Fig. 13 correspond to the rules in Fig. 10.

The lqp(dc)-calculus is intended as a “base language” atop which other more high-
level languages can be designed and implemented. The atf-calculus is an example of
this. As such, we can make use of the correctness results for the lqp(dc)-calculus to
leverage a correctness proof for the atf-calculus. We do this by 7rst giving a translation
from the atf-calculus to the lqp(dc)-calculus, that preserves and re8ects log consistency.
We then show operational correspondence [43]: a reduction by a transaction in the
atf-calculus can always be matched by a number of reductions of that transaction’s
translation. Theorem 1 veri7es that reductions in the lqp(dc)-calculus preserve log
consistency. Therefore if the original transaction in the atf-calculus is consistent, then

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 591

� T ; T1; T2

� T ; (T1 | T2)
(CONS ATF CTXT PAR)

n =∈ fn(T) � T ; T
� T ; (new n; T)

(CONS ATF CTXT NEW)

∃S: (T1 | · · · | Tk) logged S
∀i ∈ {1; : : : ; k}: ∏

Tk � Ti
� Tk

(CONS ATF CTXT LOGS)

T � t〈A〉
(CONS ATF PROC)

T � t〈〈L1〉〉 T � t〈〈L2〉〉
T � t〈〈L1 ∧ L2〉〉

(CONS ATF CONJ)

T � t〈〈true〉〉
(CONS ATF TRUE)

T � t〈〈t′ → t〉〉
(CONS ATF PRED)

T |= t〈〈t′ → t〉〉
T � t〈〈t′〈send v!〈vk〉〉〉〉

(CONS ATF MSG)

T |= t′〈〈commit〉〉
T � t〈〈t′〈send v!〈vk〉〉〉〉

(CONS ATF MSG COM)

T �|= t〈〈abort〉〉
T � t〈〈prepare〉〉

(CONS ATF PREP SIMPLE)

T �|= t〈prepare〉
T � t〈〈abort〉〉
(CONS ATF ABORT SIMPLE)

∀t′: (T |= t′ ⇒ t) implies (T |= t′〈〈prepare〉〉 and T �|= t′〈〈abort〉〉)
T � t〈〈commit〉〉

(CONS ATF COMMIT)

T |= t〈〈abort〉〉 T |= t′ ⇒ t

T |= t′〈〈abort〉〉 T �|= t′〈〈prepare〉〉
T � t〈〈prepare〉〉

(CONS ATF PREP PREDABT)

T |= t〈prepare〉 T |= t′ ⇒ t

T |= t′〈〈abort〉〉 T �|= t′〈〈prepare〉〉
T � t〈〈abort〉〉
(CONS ATF ABORT PREDABT)

Fig. 13. Log consistency rules for the atf-calculus.

any terms that the transaction’s translation reduces to will also be consistent. So, by
way of these operational correspondence and encoding results, we verify that reduction
in the atf-calculus preserves log consistency.

6.3. Translating the ATF-calculus to the lqp(dc)-calculus

The translation of the atf-calculus into the lqp(dc)-calculus is provided in Fig. 14.
The aim of this translation is to allow us to reason about the correctness of the atf-
calculus in terms of the lqp(dc)-calculus. As such the translation does not provide a
particularly eScient implementation of the atf-calculus but it does preserve consistency.
This translation is speci7ed using various meta-functions:

T <T = Top-level translation of transactions to conclaves
T<T =� Translation of transactions to conclaves
T<L=t Translation of log entries to undo code
L <L=S t Translation of atf-calculus logs to lqp(dc)-calculus logs
P <A=t Translation of ATF-calculus processes to the lqp(dc)-calculus.

592
T
.
C
hothia,

D
.
D
uggan

/T
heoretical

C
om

puter
S
cience

322
(2004)

567
–
613

T <new t; T = = new t; T <T ={t �→ S| where Si = {t′ | ∃T ′: T ≡ (new n; (T ′ | t〈〈L ∧ t′ → t〉〉))}}
where T has no bound occurrences of transaction names

T <t〈〈L〉〉=� = (T <L=t | t{{L <L=S t}}) where S =
⋂{S′ | t ∈ S′ and ∀t′ ∈ S′: �(t′) ⊆ S′}

T <new n; T =� = new n; T <T =� T <T1 | T2=� = (T <T1=� | T <T2=�) T <t〈A〉=� = t{P <A=t}
T <t0〈send v!〈vk〉〉=t = t{logawait t0{{Aborted}}; send v!〈t0; vk〉}

T <L1 ∧ L2=t = (T <L1=t |T <L2=t)

T <L=t = t{stop} otherwise

L <prepare=S t = PreCommitted ∧ PreClosed

L <commit=S t = Committed ∧ Closed(S)

L <abort=S t = Aborted

L <(t′ → t)=S t = (t′ → t)

L <L1 ∧ L2=S t = (L <L1=S t) ∧ (L <L2=S t)

L <L=S t = true otherwise

P <prepare=t = logappend 〈〉 with AtStPreCommit; logappend 〈〉 with PreClosed ; stop ==etc for other log commands

P <receive n?xk ; A′=t = receive n?(y; xk); logif t{{PreClosed}} then send n!〈y; xk〉 else
((logappend 〈y〉 with CausalPred ; P <A′=t) | (logawait t{{Aborted}}; send n!〈y; xk〉))

P <receive committed n?xk ; A′=t = new trig; ((repeat receive trig?(); LOOP) | send trig!〈〉)
where LOOP = receive n?(y; xk); logcheck y{{Committed}} then P1 else P2
and P1 = (P <A′=t | (logawait t{{Aborted}}; send n!〈y; xk〉))
and P2 = (send n!〈y; xk〉 | send trig!〈〉)

P <new n; A=t = new n; P <A=t P <A1 | A2=t = (P <A1=t | P <A2=t) P <send v!〈vk〉=t = send v!〈t; vk〉

Fig. 14. Translation of the atf-calculus.

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 593

We make the following simplifying assumption about the structure of transactions for
the translation. We assume that names are separated into two disjoint sets: transaction
names and channel names (with renaming respecting this set membership; a renaming
of a bound name must be to a name in the same set). A transaction log t〈〈: : :〉〉 requires
that t be a transaction name. We assume that a top-level transaction network description
has the form new t; T , for some T , where {t} are all transaction names, where the
only free transaction names in T are in {t}, and where T cannot bind any transaction
names. This assumption simpli7es reasoning about the translation.

The translation at the top-level is de7ned as T <new t; T =, where the binder binds
all transaction names in T . The translation of transactions T<T =� is parameterized by
a mapping � from each transaction t to the set of its immediate causal predecessors.
This is used to compute the set of causal predecessors S when the translation generates
log entries of the form Closed(S).

For a log L, the translation T<L=t constructs a collection of processes that wait for the
corresponding transaction to abort and then resend messages that were received by that
transaction. The translation L<L=S t converts from atf-calculus log entries to lqp(dc)-
calculus log entries. The translation T<T =� invokes both of the aforesaid translations
when applied to a log in the atf-calculus; otherwise the only other interesting case
is for processes, where it invokes the translation P <A=t translating from atf-calculus
processes to lqp(dc)-calculus processes.

In the latter translation, in the translation of the 7rst message receive operation
(the operation that accepts messages from uncommitted transactions), messages are
augmented with the conclave identi7er of the transaction sending the message, and this
is used at the receiver to record the causal dependency between sender and receiver.

For the second message receive operation, the receive-commit operation that only
receives messages from committed transactions, the receiving operation polls the input
channel until it receives a message that was sent by a transaction that has committed.
For this we assume a de7nable extension of the lqp(dc)-calculus with a logcheck
construct, for checking the presence or absence of remote log entries. This has the
computation rules:

c{{L′}} |= c{{L}}
(c{{L′}} | c′{logcheck c{{L}} then P1 else P2}) −→ (c{{L′}} | c′{P1})

(RED CHKLOGTRUE)

(c{{L′}} | c′{logcheck c{{L}} then P1 else P2}) −→ (c{{L′}} | c′{P2})
(RED CHKLOGFALSE)

As noted in Section 2, we disallow querying for the absence of remote log entries
because an implementation would require distributed agreement to avoid race condi-
tions. Therefore the (RED CHKLOGFALSE) rule allows the conditional to pessimistically
assume that a remote log entry is not present. The logcheck can be de7ned in terms

594 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

of logawait:

logcheck c{{L}} then P1 else P2 ≡
new a; (logawait c{{L}}; receive a?(); P1

| receive a?(); P2

| send a!〈〉)
Even though the construct may nondeterministically pick the false branch even when
the log entry is present, the process in this case simply loops to check the condition
again, for another message on the channel. The process that does this polling is de7ned
using the standard encoding of recursive processes in the pi-calculus [41]:

new a; ((repeat receive a?(); P(a)) | (send a!〈〉))
where a is a “trigger” channel for forcing invocations of the process. If the process body
P(a) wishes to perform a recursive invocation of itself, it sends a message send a!〈〉.

6.4. Correctness of the encoding

To relate log consistency in the atf-calculus and in the lqp(dc)-calculus, we observe
that there is a very strong relationship based on erasing processes and only considering
logs and contexts:

De�nition 6.2 (Process erasure). De7ne E <T = to be the erasure of all processes from
a network description. It is the obvious homomorphic extension of:

E <t〈A〉= = t〈stop〉:

Lemma 6.2. For any transaction T , we have � T if and only if � E <T =.

A similar de7nition and lemma are possible for networks in the lqp(dc)-calculus,
E <C=. The following theorem veri7es that the encoding of the atf-calculus in the
lqp(dc)-calculus preserves and re8ects log consistency.

Theorem 2 (Equivalence of log consistency). Assume T is closed. � T if and only if
� T <T =.

Proof. By Lemma 6.2, we have � T if and only if � E <T =, and � T <T = if and only if
� E <T <T ==. We have E <T =≡ new ; new ;

∏
t〈〈L〉〉 for some {t}, {n} and {L}, and

E<T<T ==≡ newVt; new Vn;
∏

T<t〈〈L〉〉=� for some {t}, {n} and {L}, and � constructed
based on the logs in

∏
t〈〈L〉〉. We show that a derivation of a consistency judgement

for a log entry in one calculus can be used to construct a derivation of a consistency
judgement for the corresponding log entry in the other calculus. This involves induction
on derivability of log entries from the context, for log entries that are required to be
present by log consistency rules, and derivation of contradictions for log entries that

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 595

are required to be absent. The interesting cases are for the prepare, commit and abort
log entries in the atf-calculus:
Case L≡L0 ∧ prepare and L′ ≡L′

0 ∧PreClosed ∧PreCommitted : Then (CONS ATF
PREP SIMPLE) is derivable in the atf-calculus if and only if (CONS PRECMT SIMPLE)
and (CONS PRECLOSED) are derivable in the lqp(dc)-calculus. And (CONS ATF PREP

PREDABT) is derivable in the atf-calculus if and only if (CONS PRECMT PREDABT) and
(CONS PRECLOSED) are derivable in the lqp(dc)-calculus.
Case L≡L0 ∧ commit and L′ ≡L′

0 ∧ Closed(S) ∧ Committed : Then (CONS ATF
CLOSED) is derivable in the atf-calculus if and only if (CONS CLOSED) and (CONS

COMMITTED) are derivable in the lqp(dc)-calculus. The key part in the veri7cation is
that the set of all causal predecessors S computed during the translation agrees with
the set of causal predecessors of t as de7ned by the causality relation t′ ⇒ t. Since
the de7nition of S is well-de7ned in the translation, the logs of all causal predeces-
sors of t are in the context. The compatibility of the environment, Eatf [T] |= �, ensures
that �(t′) maps to the immediate causal predecessors of t′, according to the logs, for
every predecessor of t. Therefore the de7nition of S in the translation agrees with the
requirement of it in the (CONS CLOSED) consistency rule in the lqp(dc)-calculus: that S
be the transitive closure under predecessor of the set containing t. This is enough to
then show that (CONS COMMITTED) holds.
Case L≡L0 ∧ abort and L′ ≡L′

0 ∧ Aborted : Then (CONS ATF ABORT SIMPLE) is
derivable in the atf-calculus if and only if (CONS ABORT SIMPLE) is derivable in the
lqp(dc)-calculus. And (CONS ATF ABORT PREDABT) is derivable in the atf-calculus if
and only if (CONS ABORT PREDABT) is derivable in the lqp(dc)-calculus.

We are now ready to verify that an encoding of a atf-calculus network in the lqp(dc)-
calculus can simulate the behavior of the former. De7ne the following barb predicates,
where evaluation contexts E[·] for the atf-calculus are de7ned in Rule (RED ATF
CONG) in Fig. 11:

T ↓n i? T ≡ E[t〈send n!〈v〉〉] where E[·] does not bind n

T ⇓n i? ∃T ′: T ∗−→ T ′ and T ′ ↓n
Analogous de7nitions can be given for C ↓n and C ⇓n
De�nition 6.3 (Compatible environment). Given T does not bind any transaction
names. Say that the environment � is compatible with the network T , written T |= �,
if the following hold:
• dom(�) contains at least all of the free transaction names in fn(T), and
• for all t ∈dom(�), if T ≡ (new n; (T ′ | t〈〈L〉〉)), so the log for t is visible in T , then
t′ ∈ �(t) if and only if L≡L′ ∧ t′ → t, i.e., if and only if t′ is listed as an immediate
predecessor in the log for t.

In other words, the mapping � from transaction names to sets of immediate successors
is compatible with the logs in T .

De�nition 6.4 (Translation of evaluation contexts). Given an atf-calculus evaluation
context Eatf [·] and a transaction T , neither of which bind transaction names. Given

596 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

mapping � and a set of names n, such that dom(�) ∩ {n} = {} and Eatf [T] |= �. De7ne
the translation of this context with respect to T , denoted T <Eatf [·]=�, as follows:
• If Eatf [·] = [·], then

T <Eatf [·]=� = [·]:

• If Eatf [·] = (E0[·] |T ′), let E1[·] =T <E0[·]=� and C′ =T <T ′=�, and de7ne

T <Eatf [·]=� = (E1[·] |C′):

• If Eatf [·] = (new n; E0[·]), where n is not a transaction name, then let E1[·] =
T<E0[·]=�, and de7ne

T <Eatf [·]=� = (new n; E1[·])

Lemma 6.3. Given an atf-calculus evaluation context Eatf [·], T and � as in the
previous de8nition. If

T <Eatf [·]=�= Elqp[·];

T <T =�=C;

then T <Eatf [T]=�= Elqp[C].

De�nition 6.5 (Simulation relation). Given an environment � mapping transaction
names to sets of transaction names (sets of immediate causal predecessors). De7ne
the following simulation relation between networks in the atf-calculus and networks in
the lqp(dc)-calculus, where the former does not bind transaction names. The relation
T 4� C is the largest binary relation R satisfying these conditions:
(1) (May-testing) For (T; C) ∈R, if T ↓n then C ⇓n for any n.
(2) (Simulation) For (T; C) ∈R, if T −→ T ′ then C ∗−→ C′ for some C′ such that

(T ′; C′) ∈R.
(3) (Log equivalence) For (T; C) ∈R, we have E <T <T =�=≡E <C=. So the two pro-

cesses have isomorphic structures (up to structural equivalence) after erasing pro-
cesses.

(4) (Congruence) R is a congruence: For (T; C) ∈R, and for any evaluation context
Eatf [·] (not binding transaction names) such that Eatf [T] |= �, let

Elqp[·] = T <Eatf [·]=�:

Then (Eatf [T]; Elqp[C]) ∈R.

Theorem 3 (Simulation). Given T not binding transaction names, and � compatible
with it, T |= �. Then T 4�T <T =�.

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 597

Proof. We de7ne the binary relation

R = {(T;T <T =�) | T |= �}

and show that R ⊆ (4�), by induction on T . Congruence and log equivalence are
easy consequences of the de7nition of R. We concentrate on verifying simulation, by
cases based on the atf-calculus reduction rule applied:
Case (RED ATF CONG): By induction on the height of the evaluation context.
Case (RED ATF RECEIVE): By Theorem 2, the logs are consistent in T only if they

are consistent in its encoding T <T =�. So the logif in the encoding of receive chooses
the else part if the log check in (RED ATF RECEIVE) succeeds in determining that the
transaction is not prepared. So the encoding will execute the corresponding receive,
and then apply the coinduction hypothesis to the continuation.
Case (RED ATF RECVCOMM): As before, if the reduction (RED ATF RECVCOMM)

is enabled, then the log check in the encoding succeeds. The message receipt in T
is simulated in the encoding by unfolding the loop, receiving the message that was
sent by a committed process and then con7rming that it is committed. Then apply the
coinduction hypothesis to the continuation.
Case (RED ATF UNDO): Again log equivalence ensures that the corresponding com-

putation in the encoding is enabled. Apply the coinduction hypothesis to the result of
the reduction.

The remaining cases are similar.

We have veri7ed one-half of a traditional operational correspondence result. We
can use the preservation and re8ection of log equivalence (Theorem 2), and a very
simple part of the simulation result, to verify the preservation of log consistency by
computation in the atf-calculus, based on the earlier result of this form for the lqp(dc)-
calculus (Theorem 1).

Theorem 4 (Preservation of log consistency). For any closed atf-calculus network T ,
if � T and T −→ T ′, then � T ′.

Proof. Suppose � T , then Theorem 2 tells us that T and its encoding are in agreement
on log consistency: � T if and only if � T <T =. By the top-level restriction on trans-
actions, we know T = new t; T0 for some T0 that does not bind transaction names.
Let � be an environment compatible with T0. By Theorem 3 we know that com-
putation in T0 can be simulated by its encoding: T0 4�T <T0=�. So if T0 −→ T ′

0 for
some T ′

0, then T <T0=�
∗−→ C′

0 for some C′ such that T ′
0 4� C

′
0. In particular we have

E <T <T ′
0=�=≡E <C′

0= by the de7nition of T ′
0 4� C

′
0. Let T ′ = new n; T ′

0 and C′ = new n;
C′

0. C′ = new n; C′
0. Therefore by Lemma 6.2 we have that � T <T ′= if and only if

� C′. But by preservation of log consistency for the lqp(dc)-calculus under computa-
tion, Theorem 1 in Section 5, we have that � C′ if � T <T =, since T <T = ∗−→ C′ in the
lqp(dc)-calculus.

598 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

We can now putting these deductions together as illustrated in the following 7gure,
where the arrows show the derivation of consistency:

 C’

Theorem 2 Theorem 2

Lemma 6.3Theorem 1
Theorem 3 Theorem 3

 T

[T] [T’]

T’

So, we have that � T if and only if � T <T =, and � T <T = implies � C′, and we have
� C′ if and only if � T <T ′=, and 7nally we have � T <T ′= if and only if � T ′ (by a
second use of Theorem 2). Therefore we may conclude that � T ′.

7. Anticommitment

In the lqp(dc)-calculus, a committed conclave can never abort. In this section we
describe the lqp(dcu)-calculus, an extension of the lqp(dc)-calculus that provides mech-
anisms for anticommitment. A problem with transactions is their unsuitability for long-
lived applications [23], since they retain locks on database variables until the transaction
eventually commits. One solution to this problem is to optimistically commit, making
e?ects visible, and then provide a mechanism for subsequently undoing the commit-
ment if necessary. We provide the latter mechanism through support for atomic anti-
commitment, atomically transforming a collection of committed conclaves to aborted
conclaves. This constitutes the support for optimistic computation in our calculus.

We call the calculus with support for undoing commits the lqp(dcu)-calculus; it ex-
tends the lqp(dc)-calculus of dependencies and commitment with undoability of com-
mitment. Its log entry types are provided in Fig. 15. There is one derived log entry
type:

c{{ISuccs(S; c; n)}} denotes that c is in a run of the anticommitment protocol
uniquely identi7ed by n, and S is the set of its immediate successors.

Commitment allows a collection of mutually dependent conclaves to commit, provided
the result is causally consistent: there is no committed conclave that has aborted causal
predecessors. Anticommitment allows a collection of committed conclaves to abort,
provided again that the result is causally consistent: there is no aborted conclave that
has committed causal successors.

In this calculus we therefore distinguish between conclaves whose commitment can
be undone, and those where this is not true. They are distinguished by log entries:
conclaves of the former form have a log entry Undoable, while conclaves of the latter

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 599

L ∈ Log ::= c1 → c2 | c17c2 c1 immediately precedes c2
| PreClosed | Closed(S) No further causal preds
| PreCommitted Commitment protocol
| Committed | Aborted Committed, aborted
| Undoable | Permanent Anticommitment
| UndoAdmin(S; n) | UndoAuth(n) Anticommitment admin
| UndoPrep(c1; n) Prepared to undo commit
| ¬L Undone log entry
| IPreds(S) | ISuccs(S; c; n) Derived predicates

S ∈ Set ::= {v1; : : : ; vk}

Fig. 15. Log entry types for the lqp(dcu)-calculus.

form have a log entry Permanent. Since “permanent” conclaves will never undo their
commitment, they do not need to store their successors as the “undoable” conclaves
have to.

With commitment, conclaves make a transition to the precommitted state. From there
they can only make a transition to the aborted or committed state, in the former case
only if a causal predecessor has aborted. It is safe for a conclave to make a transition
to the committed state once all of its causal predecessors have either committed or
precommitted, since the precommitted predecessors must then eventually commit. In
contrast, if we are to allow anticommitment to fail (i.e., when it is not possible to abort
a collection of conclaves), it is possible for a conclave that has prepared to anticommit
and abort to revert back to the committed state. This leads to a potential race condition
with other conclaves that have chosen to anticommit based on the readiness of this
conclave to anticommit.

We give a formulation of anticommitment that avoids the aforesaid race condition.
Anticommitment is based on a two-phase commit protocol, where a collection of con-
claves that desire to anticommit choose (using some application-level protocol) some
conclave to be the administrator for the protocol. Once the participants have entered
the UndoPrep(c; n) state, where c is the name of the administrator conclave and n
identi7es the run of the anticommitment protocol, they cannot leave this state until
the administrator has make a transition to the aborted state. On the other hand, the
administrator cannot make a transition to the aborted state until all participants have
made a transition to the UndoPrep(c; n) state.

If the anticommitment protocol fails, the administrator and participants should be
able to retreat back to the committed states that they were in before they attempted
anticommitment. Then for example they can retry anticommitment, perhaps under dif-
ferent circumstances. Since we can only add log entries, and never remove them, we
model this retreat to a previous state using negative literals for log propositions. This
is also the reason that we allow the log append operation to generate new names.
The idea is that a log entry that can be undone has a unique name associated with it,
and the log entry is then undone by adding the negation of that log entry to stable
storage.

600 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

Undoing(C; c; n) = ∃c′; S: ∃L ∈ {UndoPrep(c′; n);UndoAdmin(S; n)}:
C |= c{{L}} and C �|= c{{¬L}}

Undoing(C; c) = ∃n: Undoing(C; c; n)
notUndoing(C; c) = ∀c′; S; n: ∀L ∈ {UndoPrep(c′; n);UndoAdmin(S; n)}:

(C |= c{{L}} implies C |= c{{¬L}})
uniqUndoing(C; c; L) = (C |= c{{L}} and C �|= c{{¬L}} and ∀c′; S; n:

∀L′ ∈ {UndoPrep(c′; n);UndoAdmin(S; n)}:
((C |= c{{L′}} and L �= L′) implies C |= c{{¬L′}}))

jointUndoing(C; c; c′) = ∃c′′; S; n:
∃L; L′ ∈ {UndoPrep(c′′; n);UndoAdmin(S; n)}:

(C |= c{{L}}; C �|= c{{¬L}} and C |= c′{{L′}}; C �|= c′{{¬L′}})
Undone(C; c) = (C |= c{{Aborted}} and Undoing(C; c))

Fig. 16. Meta-predicates for undoability.

So the possible states that a conclave can be in are provided by the following:

~Undoadministrator

Undoadministrator
UndoPrepared

~UndoPrepared

CommittedStarted

Aborted

PreCommitted

The log append rules and consistency rules make use of the meta-predicates in Fig. 16.
The Undoing(C; c; n) predicate checks that the conclave c is currently undoing its com-
mitment, either as a participant or as an administrator in the anticommitment protocol
labelled by the unique identi7er n. The Undoing(C; c) predicate checks this condition
for any n. The notUndoing(C; c) predicate, on the other hand, checks that any log en-
tries 8agging c as the administrator or the participant in the anticommitment protocol
have been negated. The uniqUndoing(C; c; L) predicate checks that the log entry L is
the only one, for c, for a current run of the anticommitment protocol. All other such
log entries have been negated. The jointUndoing(C; c; c′) predicate checks that both
c and c′ are involved in the same run of the anticommitment protocol. It should be
noted that the jointUndoing(C; c; c′) predicate is only ever used by consistence rules,
never the semantics. So, it may check for the absence of a remote log without risking
a race condition. Finally, the Undone(C; c) predicate checks that c is aborted due to
a run of the anticommitment protocol.

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 601

C �|= c{{PreClosed}} C |= c′{{Permanent}}
C; c |= (c′) CausalPredP−−−−−−→ (c′ → c)

(RED CAUSAL PRED PERM)

notUndoing(C; c) C |= c′{{c17c′}}
C; c |= (c′) CausalSucc−−−−−→ (c→ c′)

(RED CAUSAL SUCC)

C �|= c{{PreClosed}} C |= c′{{Undoable}}
C; c |= (c′) CausalPredT−−−−−−−−→ (c′7c)

(RED CAUSAL PRED TENT)

C �|= c{{PreClosed}} C |= c′{{c′ → c}}
C; c |= (c′) CausalSucc−−−−−−→ (c′ → c)

(RED CAUSAL PRED CONF)

C |= c{{Permanent}} or C |= c{{Undoable}}
S = {c′ | C |= c{{c′ → c}}} {c′′ | C |= c{{c′′7c}}} ⊆ S

C; c |= ()
PreClosed−−−−−−→PreClosed

(RED PRECLOSED)

S =
⋂{S′ | c ∈ S′ and (∀c′ ∈ S′:∃S′′: C |= c′{{IPreds(S′′)}} and S′′ ⊆ S′)}

C; c |= ()
Closed−−−→Closed(S)

(RED CLOSED)

(a) Log Append Rules

C |= c{{PreClosed}} S = {c′ | C |= c{{c′ → c}}}
C |= c{{IPreds(S)}} (PRED PREDS)

C |= c{{UndoPrep(c0; n)}} S = {c′ | C |= c{{c→ c′}}} ∀c′ ∈ S: C |= c′{{c→ c′}}
C |= c{{ISuccs(S; c0; n)}}

(PRED SUCCS)

(b) Log query rules

Fig. 17. Semantics of anticommitment in the lqp(dcu)-calculus: new causality rules.

The causal dependency rules of the lqp(dc)-calculus are changed by anticommitment
in the lqp(dcu)-calculus, as shown in Fig. 17. A conclave that anticommits should
ensure that its (immediate) successors have aborted or will abort, in order to maintain
some notion of causal consistency in the presence of the undoing of commitment. So
in this system, conclaves may also have log entries of the form c′{{c′ → c}}, recording
their successors. To ensure mutual consistency we require that a log entry recording a
causal successor be justi7ed by the presence of a log entry recording a causal prede-
cessor. This is enforced by the antecedent of the (RED CAUSAL SUCC) rule, for adding
a log entry recording a causal successor.

Now there is a complication for causal consistency introduced by anticommitment:
As we have said, if a conclave has committed, and subsequently anticommits and
aborts, it must check 7rst that its successors have aborted, or are aborting with it in the
same run of the anticommitment protocol. This is the motivation for the successor links
in the logs. But if then a conclave c has committed and has not yet anticommitted,

602 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

but may do so in the future, then it must keep track of its immediate successors,
even successors that make themselves dependent on c after it has committed. This
introduces a synchronization requirement into the calculus: for a conclave c′ to make
itself dependent on c, it must 7rst add a tentative predecessor link (log entry of the
form (c7 c′) so the log of c′ entails c′{{c7 c′}}), then wait for c to add a successor
link (so the latter’s log entails c{{c→ c′}}), and c′ then makes its own predecessor
link permanent (so its log entails c′{{c→ c′}}). All of this is described by the (RED

CAUSAL PRED TENT), (RED CAUSAL SUCC) and (RED CAUSAL PRED CONF) rules in Fig. 17.
We ameliorate the burden of this synchronization by not requiring it for conclaves

that are not undoable. So we add two states to the possible log entries: Undoable
for conclaves that may anticommit and Permanent for conclaves that may not. For a
conclave c that is “permanent,” the (RED CAUSAL PRED PERM) may be used as before by
another conclave c′ to unconditionally make itself dependent on c. The lqp(dc)-calculus
of the previous sections can be considered as a subset of the lqp(dcu)-calculus where
all conclaves have the Permanent log entry. Needless to say, a conclave cannot have
both of these states as log entries.

The other change in the causality rules is in the de7nition of the immediate prede-
cessors of a conclave. Recall that this is used in the reduction rule (RED CLOSED) for
computing the transitive closure of the set of predecessors of a conclave, and closing
that conclave to further additions of predecessors. The modi7cation, as given by the
(PRED PREDS) rule in Fig. 17, is that all tentative predecessor links must have been
con7rmed before the closure can be formed. We also add the de7nition of an anal-
ogous concept of immediate successors, used in anticommitment. For this we require
that every successor link have a con7rmed predecessor link in the immediate successor
conclave, as given by rule (PRED SUCCS) in Fig. 17. Since this rule is used (by the
administrator) in anticommitment to compute the set of immediate successors of the
conclaves that are anticommitting, we require that the conclave be in the “prepared to
anticommit” state.

The log append rules for the calculus with anti-commitment are given in Figs. 18 and
19. (RED AT STABORT) and (RED AT STPRECMT) are unchanged. A notUndoing(C; c)
meta-predicate has been added to the rules for aborting and committing conclaves.
This stops a transaction moving to one of these states part way through a run of the
anti-commitment protocol.

The (RED AT STUNDO) and (RED AT STPERM) rules allow a conclave to decide at the
outset if it will be undoable or permanent. The (RED AT PCCOMMIT) rule for committing
replaces the (RED AT PCCOMMIT) rule for committing in Fig. 7 in Section 4. The only
addition is an extra check that the current conclave is not already in the process of
anticommiting.

The (RED ANTI ADMIN) rule allows a conclave to become an administrator in a run
of the anticommitment protocol. For this, the conclave must be precommitted, must
be undoable and must not already be in a run of the protocol. The (RED ANTI PREP)
rule allows a conclave to enter the “prepared to anticommit” state, i.e., to become
a participant in a run of the anticommitment protocol. The preconditions are as for
the administrator, and in addition there must be an administrator already that includes
this conclave in the set of conclaves it is administering for the protocol. The reason

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 603

C �|= c{{PreClosed}} C �|= c{{Permanent}}
C; c |= ()

AtStUndo−−−−−→Undoable
(RED AT STUNDO)

C �|= c{{PreClosed}} C �|= c{{Undoable}}
C; c |= ()

AtStPerm−−−−−→Permanent
(RED AT STPERM)

C �|= c{{PreCommitted}}
C; c |= ()

AtStAbort−−−−−→Aborted
(RED AT STABORT)

C �|= c{{Aborted}}
C; c |= ()

AtStPreCommit−−−−−−−−→PreCommitted
(RED AT STPRECMT)

C |= c′ ⇒ c C |= c′{{Aborted}} notUndoing(C; c)

C; c |= ()
AtPcAbort−−−−−−→Aborted

(RED AT PCABORT)

C |= c{{Closed(S)}} ∀c′ ∈ S: C |= c′{{PreCommitted}} notUndoing(C; c)

C; c |= ()
AtPcCommit−−−−−−−−→Committed

(RED AT PCCOMMIT)

Fig. 18. Commitment in the lqp(dcu)-calculus.

for requiring an administrator before a conclave can become a participant is that the
creation of the former generates a new unique identi7er for this run of the anticom-
mitment protocol. This identi7er is used to determine if a conclave has backed out of
the protocol, by adding the negation of the administrator or participant log entry to
its logs, and also matches up administrators and participants where conclaves may exit
runs of the anticommitment protocol and enter new runs.

The heart of the new calculus with anticommitment is the (RED ANTI AUTHABORT)
rule for authorizing the abortion of a collection of conclaves in a run of the anticom-
mitment protocol. Speci7cally this is the rule that allows the administrator to decide
to abort, and all participants must then follow its lead. The administrator c is currently
running a session of the anticommitment protocol identi7ed by the unique name n. The
administrator 7rst uses the immediate successors predicate to check that all participants
are in the “prepared to anticommit” state (with itself as acknowledged administrator,
and in the same particular run of the protocol identi7ed by n).

The administrator also computes its own immediate successors, and checks that all
of them have matching con7rmed predecessor links in their logs. The main condition
to be checked then is that all of the successors computed by the administrator have
aborted. If they are, the administrator makes a transition to the UndoAuth(n) state,
recording that the anticommitment protocol uniquely identi7ed by n has succeeded.
The administrator and each participant can then make a transition to the aborted state,
using the (RED ANTI ADMABORT) and (RED ANTI PARTABORT) rules, respectively.

As long as it has not added the UndoAuth(n) log entry, the administrator can always
back out of the anticommitment protocol, using the (RED ANTI ADMCMT) rule that adds
the negation of the administrator log entry to the log. This allows the conclave to
subsequently participate in another run of the anticommitment protocol, either as an

604 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

C |= c{{PreCommitted}} C |= c{{Undoable}} notUndoing(C; c)

n =∈ {c; c1; : : : ; ck}
C; c |= (c1; : : : ; ck)

AntiAdmin−−−−−−−−→ new n; UndoAdmin({c; c1; : : : ; ck}; n)
(RED ANTI ADMIN)

C |= c{{PreCommitted}} C |= c{{Undoable}} notUndoing(C; c)

C |= c0{{UndoAdmin(S; n)}} c ∈ S; c �= c0

C; c |= (c0)
AntiPrep−−−−−−−−→UndoPrep(c0; n)

(RED ANTI PREP)

C |= c{{UndoAdmin(S; n)}} C �|= c{{¬UndoAdmin(S; n)}}
S − {c} = {ck} ∀i ∈ {1; : : : ; k}: C |= ci{{ISuccs(Si; c; n)}}
S0 = {c′ | C |= c{{c→ c′}}} ∀c′ ∈ S0: C |= c′{{c→ c′}}

∀c′ ∈ (S0 ∪ S1 ∪ · · · ∪ Sk) − S: C |= c′{{Aborted}}
C; c |= ()

AntiAdmCommit−−−−−−−−→UndoAuth(n)
(RED ANTI AUTHABORT)

C |= c{{UndoAdmin(S; n)}} C �|= c{{¬UndoAdmin(S; n)}} C |= c{{UndoAuth(n)}}
C; c |= ()

AntiPartCommit−−−−−−−−→Aborted
(RED ANTI ADMABORT)

C |= c{{UndoPrep(c0; n)}} C �|= c{{¬UndoPrep(c0; n)}} C |= c0{{UndoAuth(n)}}
C; c |= ()

AntiPartCommit−−−−−−−−→Aborted
(RED ANTI PARTABORT)

C |= c{{UndoAdmin(S; n)}} C �|= c{{UndoAuth(n)}}
C; c |= ()

AntiAdmAbort−−−−−−−−→ ¬UndoAdmin(S; n)
(RED ANTI ADMCMT)

C |= c{{UndoPrep(c0; n)}} C |= c0{{¬UndoAdmin(S; n)}}
C; c |= ()

AntiPartCommit−−−−−−−−→ ¬UndoPrep(c0; n)
(RED ANTI PARTCMT)

Fig. 19. Anticommitment in the lqp(dcu)-calculus.

administrator or as a participant. Once the administrator has backed out, its negated
log entry allows any of the participants to back out, using the (RED ANTI PARTCMT)
rule.

7.1. Example: sagas

A saga [28,29] is a collection of transactions T1; : : : ; Tk that execute in sequence.
If transaction Ti aborts, for i∈ {1; : : : ; k}, then none of the subsequent transactions
execute, and moreover a collection of “antitransactions” [36] T−1

k−1; : : : ; T
−1

1 execute in
sequence. So the end of a run of a saga is either T1; : : : ; Tk or T1; : : : ; Ti; T−1

i ; : : : ; T−1
1 .

Sagas are implemented fairly obviously using anticommitment. In addition anticom-
mitment generalizes the approach of sagas to allow arbitrary dependency graphs, not
just the simple linear ordering provided with sagas.

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 605

C |= c′{{Permanent}}
C � c{{c′ → c}}

(CONS CAUSAL PRED PERM)

C |= c′{{Undoable}}
C � c{{c′7c}}

(CONS CAUSAL PRED TENT)

C �|= c{{Permanent}}
C � c{{Undoable}}

(CONS UNDOABLE)

C �|= c{{Undoable}}
C � c{{Permanent}}

(CONS PERMANENT)

C |= c′{{Undoable}} C |= c{{c′7c}}
C � c′{{c′ → c}}

(CONS CAUSAL SUCC)

C |= c′{{Undoable}} C |= c′{{c′ → c}}
C � c{{c′ → c}}

(CONS CAUSAL PRED CONF)

C |= c{{Permanent}} or C |= c{{Undoable}}
S = {c′ | C |= c{{c′ → c}}} {c′′ | C |= c{{}}}(c′′7c) ⊆ S

C � c{{PreClosed}} (CONS PRECLOSED)

∀c′ ∈ (fn(C) − S): C �|= c′ ⇒ c

∀c′ ∈ S: (C |= c′ ⇒ c and C |= c′{{PreClosed}})

C � c{{Closed(S)}} (CONS CLOSED)

Fig. 20. Log consistency rules for lqp(dcu)-calculus.

For example, the following shows a saga containing two transactions C1 and C2,
where C2 follows after C1 commits, and C1 undoes its commit if C2 aborts:

C1 ≡ c1{logappend 〈〉 with AtStUndo;
logappend 〈c2〉 with CausalSucc;
P1 | logawait c2{{Aborted}}; P′

1 }

C2 ≡ c2{logappend 〈〉 with AtStUndo;
logappend 〈c1〉 with CausalPredT ;
logappend 〈c1〉 with CausalPredP;
logawait c1{{Committed}}; P2}

where P′
1 is the code that runs the anticommitment protocol, in this case where c1 itself

is the only conclave involved in the protocol run.

8. Correctness of anticommitment

We now consider the correctness of the lqp(dcu)-calculus. The additional and
changed log consistency rules are provided in Figs. 20–22. The (CONS CAUSAL PRED

PERM) rule allows a predecessor link in a log provided that the predecessor is per-
manent. The (CONS CAUSAL PRED TENT) rule allows a tentative predecessor link in a
log if the predecessor is undoable. A con7rmed predecessor link is allowed in a log,
where the predecessor is undoable, if the predecessor has a matching successor link
(Rule (CONS CAUSAL PRED CONF)). The latter successor link in turn requires the ten-
tative predecessor link in the successor’s log (Rule (CONS CAUSAL SUCC)). The three
(CONS CAUSAL PRED) rules here replace the (CONS CAUSAL PRED) rule in Fig. 9 in
Section 5.

606 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

C �|= c{{Aborted}}
C � c{{PreCommitted}}

(CONS PRECMT SIMPLE)

Undone(C; c)

C � c{{PreCommitted}}
(CONS PRECMT UNDONE)

C �|= c{{PreCommitted}}
C � c{{Aborted}}

(CONS ABORTED SIMPLE)

C |= c{{Aborted}}
C |= c′ ⇒ c C |= c′{{Aborted}} C �|= c′{{PreCommitted}}

C � c{{PreCommitted}} (CONS PRECMT PREDABT)

C |= c{{Closed(S)}} ∀c′ ∈ S: C |= c′{{PreCommitted}}
∀c′ ∈ S: C |= c′{{Aborted}} implies (Undone(C; c) or jointUndoing(C; c; c′))

C � c{{Committed}}
(CONS COMMITTED)

C |= c{{PreCommitted}}
C |= c′ ⇒ c C |= c′{{Aborted}} C �|= c′{{PreCommitted}}

C � c{{Aborted}} (CONS ABORTED PREDABT)

Undoing(C; c; n) C |= c′{{UndoAuth(n)}}
S = {c′ | C |= c{{c→ c′}}} ∀c′ ∈ S: (c′{{Aborted}} or jointUndoing(C; c; c′))

C � c{{Aborted}}
(CONS ABORTED UNDONE)

C |= c{{UndoAdmin(S; n)}} C �|= c{{¬UndoAdmin(S; n)}}
∀n′: C |= c{{UndoAuth(n′)}} implies n = n′

S0 = {c′ | C |= c{{c→ c′}}} ∀c′ ∈ S0: C |= c′{{c→ c′}}
S = {ck} ∀i ∈ {1; : : : ; k}: C |= ci{{ISuccs(Si; c; n)}}

∀c′ ∈ (S0 ∪ S1 ∪ · · · ∪ Sk) − S: c′{{Aborted}}
C � c{{UndoAuth(n)}} (CONS UNDO AUTH)

Fig. 21. Log consistency rules for lqp(dcu)-calculus (cont’d).

The (CONS UNDOABLE) and (CONS PERMANENT) rules merely signal that these log en-
tries are mutually exclusive, while the PreClosed log entry requires one or other of the
form (Rule (CONS PRECLOSED)). The latter replaces the instance of (CONS PRECLOSED)
in Fig. 9.

In Section 5 we provided two consistency rules in the lqp(dc)-calculus for the
PreCommitted log entry: Rule (CONS PRECMT SIMPLE) for a precommitted conclave
that is not aborted, and Rule (CONS PRECMT PREDABT) for a precommitted conclave
that can be aborted because one of its predecessors is aborted. In Fig. 21 we add a third
case in the lqp(dcu)-calculus, for when a PreCommitted log entry can be consistent:
the conclave is aborted due to the fact that it has been undone, i.e., anticommitted.
This is given by the (CONS PRECMT UNDONE) rule.

The rule for commitment in the lqp(dc)-calculus, rule (CONS COMMITTED) in Fig. 10
in Section 5, required that a committed conclave be causally closed and that all of its
predecessors be precommitted and not aborted. For the lqp(dcu)-calculus, we replace
this with rule (CONS COMMITTED) in Fig. 21. This rule allows a predecessor to be

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 607

C |= c{{PreCommitted}} C |= c{{Undoable}} C |= c{{¬UndoAdmin(S; n)}}
∀S′: C |= c{{UndoAdmin(S′; n)}} implies S = S′

C � c{{UndoAdmin(S; n)}}
(CONS UNDOADM PAST)

C |= c{{PreCommitted}} C |= c{{Undoable}} (∀c′ ∈ S: C �|= c′{{¬UndoPrep(c; n)}})

uniqUndoing(C; c;UndoAdmin(S; n))
∀S′: C |= c{{UndoAdmin(S′; n)}} implies S = S′

C � c{{UndoAdmin(S; n)}}
(CONS UNDOADM CURR)

C |= c{{UndoAdmin(S; n)}} C �|= c{{UndoAuth(n)}}
C � c{{¬UndoAdmin(S; n)}} (CONS UNDOADM NEG)

C |= c{{PreCommitted}} C |= c{{Undoable}}
C |= c{{¬UndoPrep(c0; n)}} C |= c0{{¬UndoAdmin(S; n)}} c ∈ S; c �= c0

∀c′0: C |= c{{UndoPrep(c′0; n)}} implies c0 = c′0
C � c{{UndoPrep(c0; n)}}

(CONS UNDOPREP PAST)

C |= c{{PreCommitted}} C |= c{{Undoable}}
uniqUndoing(C; c;UndoPrep(c0; n))

C |= c0{{UndoAdmin(S; n)}} c ∈ S; c �= c0
∀c′′0 : C |= c{{UndoPrep(c′′0 ; n)}} implies c = c′′0

C � c{{UndoPrep(c0; n)}}
(CONS UNDOPREP CURR)

C |= c{{UndoPrep(c0; n)}} C |= c0{{¬UndoAdmin(S; n)}}
C � c{{¬UndoPrep(c0; n)}}

(CONS UNDOPREP NEG)

Fig. 22. Log consistency rules for lqp(dcu)-calculus (cont’d).

aborted, but if so, then either:

(1) the commitment of the current conclave must have been undone by a run of the
anticommitment protocol (one that was not backed out of); or

(2) both the current conclave and its aborted predecessor are participating in the same
run of the anticommitment protocol; since the predecessor has aborted when it was
precommitted, it must have aborted because of the anticommitment protocol; so
the administrator has aborted and the current conclave will also abort (if it makes
progress), but it will not back out of the anticommitment protocol.

Fig. 10 in Section 5 provided two rules for the consistency of log entries for abortion
in the lqp(dc)-calculus. The (CONS ABORTED SIMPLE) rule allowed a conclave to abort
if it had not precommitted. The (CONS ABORTED PREDABT) rule allowed a precommitted
conclave to be aborted if one of its predecessors was aborted. In Fig. 21 we add a third
rule for the lqp(dcu)-calculus, rule (CONS ABORTED UNDONE), that allows a conclave to
be aborted because of anticommitment. In this case, any immediate successor must also

608 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

be aborted, or else be in the same run of the anticommitment protocol as the current
conclave. As in the previous case of the commitment rule, since the current conclave
aborted during the current run of the anticommitment protocol, the successor can only
conclude the protocol by aborting.

The (CONS UNDOADM PAST) and (CONS UNDOPREP PAST) rules in Fig. 22 check the
consistence of undo log entries for administrators and participants that have 7nished
backing out of a run of the anticommitment protocol. The conclave must be precom-
mitted and undoable, and in the case of a participant prepared to anticommit, there
must have been an administrator for that run of the protocol that also backed out of
the protocol. For a current administrator, Rule (CONS UNDOADM CURR), none of the
participants can have backed out of the protocol if the administrator has not backed
out. Also of course the current conclave cannot be involved in any other run of the
anticommitment protocol. For a current participant, Rule (CONS UNDOPREP CURR), there
must be an administrator for the protocol that has agreed to include this conclave as a
participant.

To extend the consistency preservation result from Section 4, Theorem 1, to the
system with anticommitment, we need to extend the proof of Lemma 5.2. The extended
proof is provided in a technical report [15]. The proof of the following is similar to
the proof of Theorem 1, using the proof of the aforesaid lemma for the base cases in
the induction.

Theorem 5. For the lqp(dcu)-calculus, if � C1 and C1
∗−→C2, then � C2.

9. Related work and conclusions

As alluded to in the introduction, there is a large body of literature on various forms
of transaction models, particularly for long-lived applications. See e.g. [23] for a sur-
vey. We do not claim that the lqp(dc)-calculus or the lqp(dcu)-calculus is uniformly
better than other transaction models that have been proposed, and in fact there are
aspects of various transaction models that are missing. For example the ACTA model
[17,18], that attempts to unify many forms of extended transaction models, has both
success and failure dependencies between transactions, while the lqp(dcu)-calculus has
only failure dependencies. The point of the current article is rather, 7rst, to show how
various transaction models can be decomposed into building blocks from which more
complicated transaction models can be built up, and second, to show how the abstrac-
tion of logs in the lqp(·)-calculus family isolates the communication requirements upon
which these building blocks rely.

Numerous process algebras have been proposed as the foundations of program-
ming languages for wide-area applications. Most of the work in the literature is based
on mobile computation and mobile code to deal with latency and 7rewall problems
[11,12,26,33,48]. Much of the aforesaid work has focused on access control for mobile
computation in networks, as well as tracking the trustworthiness of hosts. Although
some work has looked at failures [1,2,27,47], it has assumed a fail-stop model of fail-
ures that is not always a good match for programming in Internet environments. The

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 609

M-calculus [52] gives broader control over locations and makes it possible to simulate
network failure as well as a fail-stop model. The synchronous message sending op-
erations of CCS and the pi-calculus require global atomic commitment and therefore
are unimplementable in an asynchronous distributed system [25,31]. Palamidessi [45]
shows that the leadership election problem can be solved in the pi-calculus, but not
in the asynchronous pi-calculus. Herescu and Palamidessi [34] describe a variant of
the asynchronous pi-calculus with a probabilistic choice operation, and show that it is
possible to implement a leadership election algorithm in this calculus.

There are many ways in which conclaves di?er from ambients, from the ambient
calculus [11], and we only mention the two that are most relevant. First, ambients
do not have the distributivity rule for parallel composition. This re8ects the di?erent
objectives of the calculi: ambients want to make all communication local, whereas we
do not want boundaries for atomic failure to interfere with communication. Therefore
we do not complicate our calculus with operations for “navigating” conclaves, whereas
such navigation is at the heart of the ambient calculus. Second, conclave execution
cannot be nested within another conclave. We do not pursue this complication of the
calculus because we take conclaves to represent the most basic area of distribution
that could fail or succeed as a single unit. A desire for nesting might be motivated
by something analogous to nested transactions [40,42]. However nested transactions
are suSciently complicated in a global computing environment that we prefer to build
them up from simpler notions, as alluded to in Section 9.

The D�-calculus of Riely and Hennessy [47] is perhaps the closest to our language.
They have a notion of locations, a rule for distributing parallel composition over lo-
cations (as in the lqp(·)-calculus). They also have an operation for moving processes
between locations, which is one application of the forking construct in the lqp(·)-
calculus. The most important part of their language is the ability to detect failures at
remote locations; they adopt the fail-stop model for their failure semantics. This is the
biggest di?erence between the D�-calculus and the lqp(·)-calculus: the former provides
a particular failure model and relies on failure detection and message-passing to handle
distributed coordination. The lqp(·)-calculus leaves the failure model unspeci7ed, and
focuses on providing a framework for de7ning protocols for distributed coordination.

Concurrent constraint languages [8,20,50,51] replace message bu?ers with a global
store of constraints, with ask and tell operations for querying the store and adding
constraints to the store, respectively. Our model does not replace message bu?ers in the
asynchronous pi-calculus, and indeed we expect that eventually (as alluded to below)
remote querying of logs would be implemented using message-passing. Concurrent
constraint programs may make the store inconsistent; our operations for modifying
stable storage are designed to preserve log consistency, as veri7ed by Theorem 1.

Needless to say, transactions and atomic commitment can be implemented in dis-
tributed programming languages, and therefore in calculi that are intended to be “kernel
languages” for distributed programming. Berger and Honda provide an implementation
of two-phase commit in the pi-calculus [4]. Along the way they extend the pi-calculus
with extra syntax for message loss, timers and process failure. Bruni et al. [7] give an
implementation of a scripting language, for transactions that use two-phase commit, in
the Join calculus, [26]. Both this work, and Berger and Honda’s pi-calculus model, aim

610 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

to make a test-bed for a basic instance of a single kind of atomic commitment pro-
tocol. Busi et al. [9] propose a formal modelling of transactions in JavaSpaces based
on process-calculi techniques. The focus of these e?orts is di?erent from the work
presented here, which proposes a programming model and a set of abstractions for
building di?erent forms of transactions, and di?erent atomic commitment protocols, in
global computing environments.

Field and Varela [24] give a semantics for a domain-speci7c language for program-
ming distributed transactions. The semantics includes a two-phase commit protocol,
as well as tracking of failure dependencies and process rollback. This approach is
somewhat more high level than the approach of the lqp(·)-calculus: it commits to a
particular protocol for global agreement, it assumes powerful but potentially expensive
run-time facilities (distributed process rollback), and it does not address the issue of
decoupling protocols from their communication requirements. As such the language of
Field and Varela is a potentially useful source language that could be translated to the
lqp(dc)-calculus, for example, in a similar manner to the atf-calculus.

Perhaps, the calculus that at least super7cially is closest to ours is the join-calculus
[26,27]. This calculus allows processes to re8ect new process descriptions into the
semantics, based on multiset rewriting rules where the multiset contains bu?ered mes-
sages. Related calculi include KLAIM [44], a distributed language based on the Linda
primitives [30]. However the intention and therefore the mechanisms of the two ap-
proaches are quite di?erent. Our use of a multiset of propositions to model stable
storage is intended to isolate the communication requirements of fault-tolerance pro-
tocols, and the calculus has a prede7ned collection of rules for adding new log en-
tries, with an emphasis on preserving the consistency of the logs. The distributed join
calculus does consider primitives for fault tolerance, but they are based on the fail-stop
model that only holds for synchronous distributed systems.

An interesting further direction suggested by the join calculus would be to allow
applications to de7ne new log entry types, and new rules for adding those log entries
to logs during execution. There are interesting security issues with such an idea: What
relationships are allowed between new log entry types and existing log entry types, and
what log consistency properties could be asserted by applications? What responsibility
does an application have to ensure that any log extension rules that it adds preserve
log consistency? The join calculus allows new atom types to be de7ned, by creating
new ports, and any process can add atoms (send messages to a port), although receipt
of such messages is restricted to the original site. In contrast with the join calculus,
new rules for adding log entries of new user-de7ned types would be global (available
to all processes), rather than local as in the join calculus. This is an area for further
work.

There are several other directions for further work. One direction is to consider
how to extend this model with support for nested transactions and partial failures
[40,42]. A notion of equivalence would also be useful for this calculus, particularly
a recursive description analogous to the bisimulation method for CCS. Finally, our
approach isolates the remote communication aspects of conclaves to the querying of
logs of remote conclaves. We are developing an approach to assigning the application
the responsibility of providing the remote communication for this querying, without

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 611

compromising the security of transitions that a?ect stable storage. We hope to have
the opportunity to report on these developments in subsequent articles.

Acknowledgements

Thanks to Cedric Fournet, Andrew Gordon and Sanjiva Prasad for helpful conversa-
tions. Thanks to the anonymous reviewers for their excellent comments and suggestions.

References

[1] R.M. Amadio, An asynchronous model of locality, failure and process mobility, in:
COORDINATION’97, Lecture Notes in Computer Science, Vol. 1282, Springer, Berlin, 1997.

[2] R. Amadio, S. Prasad, Localities and failures, in: P.S. Thiagarajan (Ed.), Proc. of 14th Conf. on
Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in Computer
Science, Vol. 880, Springer, Berlin, 1995, pp. 205–216.

[3] K. Arnold, B. O’Sullivan, R. Schei8er, J. Waldo, A. Wollrath, The Jini Speci7cation, Addison-Wesley,
Reading, MA, 1999.

[4] M. Berger, K. Honda, The two-phase commitment protocol in an extended pi-calculus, in: Proc. of
EXPRESS ’00: Expressiveness in Concurrency, Electronic Notes in Theoretical Computer Science,
Elsevier, Amsterdam, pp. 105–130.

[5] P.A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery in Database Systems,
Addison-Wesley, Reading, MA, 1987.

[6] A. Birrell, G. Nelson, S. Owicki, E. Wobber, Network objects, in: Symp. on Operating Systems
Principles, ACM Press, New York, 1993, pp. 217–230.

[7] R. Bruni, C. Laneve, U. Montanari, Orchestrating transactions in the Join calculus, in: CONCUR 2002,
13th Internat. Conf. on Concurrency Theory, Lecture Notes in Computer Science, Springer, Berlin,
2002.

[8] F. Bueno, M.V. Hermenegildo, U. Montanari, F. Rossi, Partial order and contextual net semantics for
atomic and locally atomic cc programs, Sci. Comput. Programming 30 (1998) 51–82.

[9] N. Busi, R. Gorrieri, G. Zavattaro, On the serializability of transactions in JavaSpaces, in: ConCoord
2001, Internat. Workshop on Concurrency and Coordination, Electronic Notes in Theoretical Computer
Science, Vol. 54, Elsevier, Amsterdam, 2001.

[10] L. Cardelli, Abstractions for mobile computation, in: J. Vitek, C. Jensen (Eds.), Secure Internet
Programming: Security Issues for Distributed and Mobile Objects, Lecture Notes in Computer Science,
Vol. 1603, Springer, Berlin, 1999.

[11] L. Cardelli, A. Gordon, Mobile ambients, in: M. Nivat (Ed.), Foundations of Software Science and
Computational Structures, Lecture Notes in Computer Science, Vol. 1378, Springer, Berlin, 1998, pp.
140–155.

[12] G. Castagna, J. Vitek, A calculus of secure mobile computations, in: H.E. Bal, B. Belkhouche, L.
Cardelli (Eds.), Internet Programming Languages, Lecture Notes in Computer Science, Springer, Berlin,
1999.

[13] T.D. Chandra, V. Hadzilacos, S. Toueg, The weakest failure detector for solving consensus, J. ACM
43 (4) (1996) 685–722.

[14] D. Cheriton, D. Skeen, Understanding the limitations of causally and totally ordered communication,
in: Symp. on Operating Systems Principles, 1993.

[15] T. Chothia, D. Duggan, Abstractions for fault-tolerant global computing, Tech. Report CS Report 2003-3,
Stevens Institute of Technology, 2003.

[16] T. Chothia, I. Stark, A distributed calculus with local areas of communication, in: P. Sewell (Ed.), High
Level Concurrent Languages, Electronic Notes in Theoretical Computer Science, 2000.

[17] P.K. Chrysanthis, K. Ramamritham, ACTA: a framework for specifying and reasoning about transaction
structure and behavior, in: Proc. of ACM SIGMOD, 1990, pp. 194–203.

612 T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613

[18] P.K. Chrysanthis, K. Ramamritham, Synthesis of extended transaction models using ACTA, ACM Trans.
Database Systems 19 (3) (1994) 450–491.

[19] S.B. Davidson, Optimism and consistency in partitioned database systems, ACM Trans. Database
Systems 9 (3) (1984) 456–481.

[20] F. de Boer, M. Gabbrielli, E. Marchiori, C. Palamidessi, Proving concurrent constraint programs correct,
ACM Trans. Programming Languages and Systems 19 (1998) 685–725.

[21] D. Detlefs, M. Herlihy, J. Wing, Inheritance of synchronization and recovery properties in avalon/C++,
IEEE Comput. (1988) 57–69.

[22] D. Duggan, Atomic failure in wide-area computation, in: S. Smith, C. Talcott (Eds.), Formal Methods
in Open Object-Based Distributed Systems (FMOODS), Kluwer, Stanford, CA, 2000.

[23] A.K. Elmagarmid (Ed.), Database Transaction Models for Advanced Applications, Morgan Kaufmann,
Los Altos, CA, 1992.

[24] J. Field, C. Varela, Towards a programming model for building reliable systems with distributed state,
in: Workshop on Foundations of Coordination Languages and Software Architectures (FOCLASA),
2002.

[25] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed consensus with one faulty process,
J. ACM 32 (2) (1985) 374–382.

[26] C. Fournet, G. Gonthier, The re8exive chemical abstract machine and the join-calculus, in: Proc. 23rd
ACM Symp. on Principles of Programming Languages, St. Petersburg Beach, FL, ACM, New York,
1996, pp. 372–385.

[27] C. Fournet, G. Gonthier, J.-J. LXevy, L. Maranget, D. RXemy, A calculus of mobile agents, in: 7th Internat.
Conf. on Concurrency Theory (CONCUR’96), Lecture Notes in Computer Science, Vol. 1119, Springer,
Pisa, Italy, 1996, pp. 406–421.

[28] H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, K. Salem, Modeling long-running activities as
nested sagas, Bull. IEEE Tech. Committee Data Engrg. 14 (1) (1991) 14–18.

[29] H. Garcia-Molina, K. Salem, Sagas, in: ACM SIGMOD Internat. Conf. on Management of Data, 1987,
pp. 249–259.

[30] D. Gelernter, Generative communication in Linda, ACM Trans. Programming Languages and Systems
7 (1) (1985) 80–112.

[31] V. Hadzilacos, On the relationship between the atomic commitment and consensus problems, in: B.
Simons, A.Z. Spector (Eds.), Fault-Tolerant Distributed Computing, Lecture Notes in Computer Science,
Vol. 448, Springer, Berlin, 1990, pp. 201–208.

[32] N. Haines, D. Kindred, J.G. Morrisett, S.M. Nettles, Composing 7rst-class transactions, ACM Trans.
on Programming Languages and Systems 16 (6) (1994) 1719–1736.

[33] M. Hennessy, J. Riely, Type-safe execution of mobile agents in anonymous networks, in: J. Vitek,
C. Jensen (Eds.), Secure Internet Programming: Security Issues for Distributed and Mobile Objects,
Lecture Notes in Computer Science, Springer, Berlin, 1999.

[34] O.M. Herescu, C. Palamidessi, Probabilistic asynchronous �-calculus, in: J. Tiuryn (Ed.), Proc. of
FOSSACS 2000 (Part of ETAPS 2000), Lecture Notes in Computer Science, Springer, Berlin, 2000,
pp. 146–160.

[35] K. Honda, M. Tokoro, An object calculus for asynchronous communication, in: European Conf. on
Object-Oriented Programming, Lecture Notes in Computer Science, Springer, Berlin, 1991, pp. 133–
147.

[36] H. Korth, E. Levy, A. Silberschatz, Compensating transactions: a new recovery paradigm, in: VLDB
Conf., 1990, pp. 95–106.

[37] D. Krieger, R. Adler, The emergence of distributed component platforms, IEEE Comput. 31 (3) (1998)
43–53.

[38] L. Lamport, Time, clocks and the ordering of events in a distributed system, Comm. ACM 21 (7)
(1978) 558–565.

[39] B. Liskov, Distributed programming in Argus, Comm. ACM 31 (3) (1988) 300–312.
[40] N. Lynch, M. Merritt, W. Weihl, A. Fekete, Atomic Transactions, Morgan-Kaufman, Los Altos, CA,

1994.

T. Chothia, D. Duggan / Theoretical Computer Science 322 (2004) 567–613 613

[41] R. Milner, The polyadic �-calculus: a tutorial, in: F.L. Bauer, W. Brauer, H. Schwichtenberg (Eds.),
Logic and Algebra of Speci7cation, Computer and Systems Sciences, Vol. 94, Springer, Berlin, 1993,
pp. 203–246.

[42] J.E.B. Moss, Nested Transactions: An Approach to Reliable Distributed Computing, MIT Press,
Cambridge, MA, 1985.

[43] U. Nestmann, B.C. Pierce, Decoding choice encodings, in: U. Montanari, V. Sassone (Eds.), CONCUR
’96: Concurrency Theory, 7th Internat. Conf., vol. 1119, Springer, Pisa, Italy, 1996, pp. 179–194.

[44] R.D. Nicola, G. Ferrari, R. Pugliese, KLAIM: a kernel language for agents interaction and mobility,
IEEE Trans. Software Engrg. 24 (5) (1998) 315–330.

[45] C. Palamidessi, Comparing the expressive power of the synchronous and the asynchronous pi-calculus,
in: Proc. of ACM Symp. on Principles of Programming Languages, ACM Press, New York, 1997.

[46] C. Pu, G. Kaiser, N. Hutchinson, Split-transactions for open-ended activities, in: VLDB Conf., 1988,
pp. 26–37.

[47] J. Riely, M. Hennessy, Distributed processes and location failures, in: Proc. of the Internat. Conf. on
Automata, Languages and Programming, 1997.

[48] J. Riely, M. Hennessy, Trust and partial typing in open systems of mobile agents, in: Proc. of ACM
Symp. on Principles of Programming Languages, 1999.

[49] D. Sangiorgi, Asynchronous process calculi: the 7rst-order and higher-order paradigms, Theoret. Comput.
Sci. 253 (2001) 311–350.

[50] V. Saraswat, M. Rinard, Concurrent constraint programming, in: Proc. of ACM Symp. on Principles of
Programming Languages, 1990.

[51] V. Saraswat, M. Rinard, P. Panangaden, Semantic foundations of concurrent constraint programming,
in: Proc. of ACM Symp. on Principles of Programming Languages, 1991.

[52] A. Schmitt, J.-B. Stefani, The M-calculus: a higher-order distributed process calculus, in: Proc. of ACM
Symp. on Principles of Programming Languages, 2003.

[53] R. Schwarz, F. Mattern, Detecting causal relationships in distributed computations: in search of the
Holy Grail, Tech. Report SFB124-15/92, Department of Computer Science, University of Kaiserslautern,
Kaiserslautern, Germany, 1992.

[54] J. Stamos, F. Cristian, A low-cost atomic commit protocol, in: IEEE Symp. on Reliable Distributed
Systems, 1990.

[55] R. van Renesse, Causal controversy at Le Mont St.-Michel, Oper. Systems Rev. 27 (2) (1993) 44–53.

	Abstractions for fault-tolerant global computing

