
Latent factors and dynamics in motor cortex and their
application to brain-machine interfaces

In the fifty years since Evarts first recorded single neurons in motor cortex of behaving

monkeys, great effort has been devoted to understanding their relation to movement. Yet

these single neurons exist within a vast network, the nature of which has been largely

inaccessible. With advances in recording technologies, algorithms, and computational

power, the ability to study network-level phenomena is increasing exponentially. Recent

experimental results suggest that the dynamical properties of these networks are critical

to movement planning and execution. Here we discuss this dynamical systems

perspective, and how it is reshaping our understanding of the motor cortices. Following an

overview of key studies in motor cortex, we discuss techniques to uncover the “latent

factors” underlying observed neural population activity. Finally, we discuss efforts to

leverage these factors to improve the performance of brain-machine interfaces, promising

to make these findings broadly relevant to neuroengineering as well as systems

neuroscience.
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Abstract: 
In the fifty years since Evarts first recorded single neurons in motor cortex of behaving monkeys, great 
effort has been devoted to understanding their relation to movement. Yet these single neurons exist within 
a vast network, the nature of which has been largely inaccessible. With advances in recording 
technologies, algorithms, and computational power, the ability to study network-level phenomena is 
increasing exponentially. Recent experimental results suggest that the dynamical properties of these 
networks are critical to movement planning and execution. Here we discuss this dynamical systems 
perspective, and how it is reshaping our understanding of the motor cortices. Following an overview of 
key studies in motor cortex, we discuss techniques to uncover the “latent factors” underlying observed 
neural population activity. Finally, we discuss efforts to leverage these factors to improve the performance 
of brain-machine interfaces, promising to make these findings broadly relevant to neuroengineering as 
well as systems neuroscience. 
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Introduction 
Our knowledge of the motor cortices (MC) is rapidly evolving. Traditional models of motor cortical activity 
held that the firing rates of individual neurons “represent” externally-measurable movement covariates, 
such as hand or joint kinematics, forces, or muscle activity. Much effort in related studies was devoted to 
finding the “correct” coordinate system. However, the increased ability to record from many neurons 
simultaneously has revealed many features of population activity that are difficult to reconcile with a 
purely representational viewpoint. First, much of the observed, high-dimensional activity of neural 
populations in MC can be explained as a combination of a modest number of “latent factors” – abstract, 
time-varying patterns that cannot be observed directly, but represent the correlated activity of the neural 
population. Second, during movements, these factors appear to evolve in time by obeying consistent 
dynamic rules, much like the lawful dynamics that govern physical systems. Through this lens, the 
complex, often-puzzling responses of individual neurons are naturally explained as minor elements in a 
coordinated underlying dynamical system. These findings have provided a new framework for evaluating 
neural activity during many of the functions that are ascribed to MC, such as motor preparation and 
execution, motor learning, bimanual control, and the production of muscle activity. 
 
Beyond their application to the motor cortices, the dynamical systems framework and related 
computational methods may have broad applicability throughout the brain. Over the past decade, the 
ability to record from large populations of neurons has increased exponentially (Stevenson and Kording, 
2011; Sofroniew et al., 2016; Jun et al., 2017; Stringer et al., 2018). These data collection tools promise 
to further transform our understanding of the brain, but only if we can process and interpret the coming 
wave of massive datasets. Trying to interpret the “tuning” of 10,000 neurons is not only onerous but a 
missed opportunity – much of the brain’s computation is inaccessible from the activity of individual 
neurons, but instead instantiated via population-level dynamics. Fortunately, modeling neural populations 
as low-dimensional dynamical systems is providing new insights in many cortical areas, including areas 
that mediate cognitive processes such as decision-making (Mante et al., 2013; Raposo et al., 2014; 
Carnevale et al., 2015), interval timing (Remington et al., 2018), and navigation (Harvey et al., 2012; 
Morcos and Harvey, 2016). This has deep implications for systems neuroscience: moving forward, the 
central thrust in understanding how brain areas perform computations and mediate behaviors may be 
through uncovering their population structure and underlying dynamics. MC is a critical model for studying 
these phenomena, as its activity appears strongly governed by internal dynamics, yet is well-related to 
observable behavior. These characteristics make MC an excellent “proving ground” for tools that may be 
useful in a wide variety of brain areas. 
 
Further, our increasing knowledge of latent factors and dynamics in MC creates new opportunities to 
harness cortical activity to build high-performance and robust brain-machine interfaces (BMIs) to restore 
mobility to people with paralysis. BMIs aim to restore function by directly interfacing with the brain and 
reading out neural activity related to a person’s movement intent. To date, the vast majority of BMIs that 
leverage MC activity have used a representational viewpoint, with the assumption that individual neurons 
represent external movement covariates. Incorporating knowledge of the latent structure and dynamics 
of MC population activity potentially offers the means to develop BMIs whose performance and long-term 
stability are greatly improved. 
 
Our review is divided to cover three broad areas: (1) an overview of the dynamical systems view of MC, 
including key studies that have tested its applicability and demonstrated new insight into the structure of 
population activity in MC; (2) current techniques to uncover latent structure and dynamics from the activity 
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of neural populations; (3) recent efforts to leverage latent factors and dynamics to improve BMI 
performance. 
 
The dynamical systems view and evidence in motor cortex 
 
Early work to understand the relationship between MC activity and movements drew inspiration from 
studies in sensory areas, such as the experiments of Hubel and Wiesel in visual cortex. In those 
experiments, the response of a neuron was modeled as a function of carefully-controlled features of the 
presented stimuli (Hubel and Wiesel, 1959). Similarly, studies in MC revealed that the responses of 
individual neurons (e.g., spike counts over hundreds of milliseconds) could be reasonably well-modeled 
as a function of kinetic or kinematic movement parameters (Evarts, 1968; Georgopoulos et al., 1982; 
Schwartz et al., 1988). A complication of the motor domain is that these movement covariates could only 
be studied by training animals to produce highly stereotypic movements, replete with many correlations 
across limb segments and measurement systems. Over the next decades, a long-simmering debate that 
had originated perhaps with Hughlings Jackson over which parameters of movement were represented 
(Jackson, 1873; Phillips, 1975) was given new fuel. Anatomical considerations argue for a strong, direct 
link between primary motor cortex and muscle activity (Landgren et al., 1962; Jankowska et al., 1975; 
Cheney and Fetz, 1985), supported by many studies which found that neural activity co-varies with 
muscle activation and kinetics (Evarts, 1968; Hepp-Reymond et al., 1999; Gribble and Scott, 2002; 
Holdefer and Miller, 2002). Yet correlates of higher-level parameters such as endpoint position (Riehle 
and Requin, 1989), velocity (Georgopoulos et al., 1982), speed (Churchland et al., 2006b), and curvature 
(Hocherman and Wise, 1991) could all be found as well. As this list became longer, some began to notice 
that these representations could also break down quite badly (Fu et al., 1995; Churchland and Shenoy, 
2007a), and that such correlations could be spurious (Mussa-Ivaldi, 1988). This lead many to wonder 
whether viewing MC as a representational system is appropriate (Fetz, 1992; Scott, 2008; Churchland et 
al., 2010). 
  
Rather than asking which parameters constitute the output of MC, one might instead view the system 
from a generative perspective: how does MC generate its output? From this perspective, MC is seen as 
a computational engine whose activity translates high-level movement intention into the complex patterns 
of muscle activity required to execute a movement (Todorov and Jordan, 2002; Scott, 2004; Shenoy et 
al., 2013). If so, how might this computation be performed? 
 
For decades, theoreticians have posited that brain areas may perform computation through network-level 
phenomena in which information is distributed across the activity of many neurons, and processed via 
lawful dynamics that dictate how the activity of a neural population evolves over time (rev. in (Yuste, 
2015). We formalize this dynamical view in Fig. 1A. We assume that at a given time point t, the activity 
of an population of D neurons can be captured by a vector of spike counts n(t) = [n1(t), n2(t), … nD(t)]. 
The neural population acts as a coordinated unit, with a K-dimensional internal ‘state’ x(t) = [x1(t), x2(t), 
… xK(t)]. In many brain areas, x(t) has been observed to be much lower-dimensional than the total number 
of observed neurons (i.e., K<<D; Fig. 1B; (Cunningham and Yu, 2014)). This dimensionality is likely 
somewhat constrained due to the recurrent connectivity of the network, which restricts the possible 
patterns of co-activation that may occur (rev. in (Gallego et al., 2017a)). A notable consideration, 
however, is that the observed dimensionality is often lower than might be expected due to network 
constraints alone – this particularly low dimensionality may be further induced by the simplicity of common 
behavioral paradigms (Gao and Ganguli, 2015; Gao et al., 2017). 
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The dynamical systems view posits an additional constraint: the evolution of the population’s activity in 
time is largely determined by internal rules (dynamics). In the limit of an autonomous dynamical system 
(i.e., a system that operates independently of any external factors), and without noise, the system’s 
evolution follows the equation , that is, its future state changes are completely dependent upon 
(and predicted by) the current state. A conceptual example of a low-dimensional system with simple 
rotational dynamics (a 1-D pendulum), and its related dynamical flow-field, is presented in Fig. 1C,D. We 
note that MC clearly cannot be autonomous. It must receive and process inputs, such as sensory 
information, to produce responsive behaviors. However, as discussed below, the model of an 
autonomous dynamical system is reasonable for MC activity during the execution of well-prepared 
movements. During behaviors that are unprepared, or where unpredictable events necessitate 
corrections (such as responding to task perturbations), MC activity may be well-modeled as an input-
driven dynamical system, analogous to a pendulum started from particular initial conditions, and subject 
to external perturbations (Pandarinath et al., 2018).  
 
The dynamical systems framework makes testable predictions about the nature of MC activity. First, it 
predicts that the initial conditions of the system, such as those observed during movement preparation, 

 
Figure 1. Intuition for latent factors and dynamical systems. (A) n(t) is a vector representing observed 
spiking activity. Each element of the vector captures the number of spikes a given neuron emits within a 
short time window around time t. n(t) can typically be captured by the neural state variable x(t), an abstract, 
lower-dimensional representation that captures the state of the network. Dynamics are the rules that govern 
how the state updates in time. For a completely autonomous dynamical system without noise, if the dynamics 
f(x) are known, then the upcoming states are completely predictable based on an initial state x(0). (B) In a 
simple 3-neuron example, the ensemble’s activity at each point in time traces out a trajectory in a 3-D state 
space, where each axis represents the activity of a given neuron. Not all possible patterns of activity are 
observed, rather, activity is confined to a 2-D plane within the 3-D space. The axes of this plane represent 
the neural state dimensions. Adapted from Cunningham & Yu, 2014. (C) Conceptual low-dimensional 
dynamical system: a 1-D pendulum. A pendulum released from point p1 or p2 traces out different positions 
and velocities over time, and the state of the system can be captured by two state variables (position and 
velocity). (D) The evolution of the system over time follows a fixed set of dynamic rules, i.e., the pendulum’s 
equations of motion. Knowing the pendulum’s initial state (x(0), filled circles) and the dynamical rules that 
govern its evolution (f(x), grey vector flow-field) is sufficient to predict the system’s state at all future time 
points. 
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largely determine the subsequent evolution of activity. Second, the activity of neurons in MC should relate 
not only to the inputs and outputs of the system, but also to the computations being performed. Finally, 
distinct computations may be appropriated into different, non-overlapping, neural dimensions. Here, we 
explore experimental evidence related to each of these predictions. 
  
Early studies exploring the dynamical systems hypothesis in MC examined whether preparatory activity 
served as an “initial condition” for the subsequent dynamics. In tasks with delay periods, where a subject 
has knowledge of the movement condition prior to execution, neural activity in MC approaches distinct 
“preparatory states” for distinct movements (Tanji and Evarts, 1976). In a dynamical system, initial 
conditions determine subsequent activity patterns, so the same dynamical “rules” can give rise to different 
activity patterns and behaviors if the initial condition is different. Similarly, in MC, an altered preparatory 
state relates to altered movement execution. If neural preparatory activity is not in the right state at the 
time of the go cue, either due to natural fluctuations (Churchland et al., 2006a; Afshar et al., 2011; 
Michaels et al., 2015, 2018), sub-threshold microstimulation during the delay period (Churchland and 
Shenoy, 2007b), or a change in the location of the target (Ames et al., 2014), the reaction time is delayed 
compared to well-prepared trials. This suggests that, if motor preparation is incorrect, subjects do not 
move until their preparation has been corrected. Furthermore, motor adaptation to a visuo-motor rotation 
(Vyas et al., 2018) or visuo-motor scaling (Stavisky et al., 2017a) has been shown to modify the motor 
preparatory state. These modifications correspond to altered execution trajectories, and the associated 
changes in preparation states and execution trajectories transfer from covert settings (BMI tasks without 
movement) to overt movements (normal reaching movements) (Vyas et al., 2018). Additional work has 
tested whether dynamical system models continue to predict observed neural activity during the transition 
from preparation to movement. A simple model in which preparatory activity seeds the initial condition for 
rotational dynamics during movement generation fits neural activity well in non-human primates (Fig. 2A; 
(Churchland et al., 2012; Elsayed et al., 2016; Michaels et al., 2016; Pandarinath et al., 2018)) and 
humans (Pandarinath et al., 2015; Pandarinath et al., 2018). Furthermore, recurrent neural networks 
trained to generate muscle activity after receiving preparatory input display dynamics similar to those 
recorded in MC (Hennequin et al., 2014; Sussillo et al., 2015; Kaufman et al., 2016), suggesting that a 
dynamical system that uses preparatory activity as the initial condition for subsequent movement 
dynamics may be a natural strategy for generating muscle activity during reaching. 
  
Another important prediction of the dynamical systems model is that not all of the activity in MC must 
directly relate to task parameters or muscle activity, but may instead relate to internal processes that 
subserve the current computation. For example, the switch from movement preparation to movement 
generation is accompanied by a substantial change in dynamics (Kaufman et al., 2014; Elsayed et al., 
2016). Recent work has posited that this change is accomplished by a large, condition-invariant 
translation in state-space which triggers the activation of movement generation dynamics. Indeed, this 
condition-invariant signal is not only present at the switch from preparation to generation, but is the largest 
aspect of the motor cortical response (Kaufman et al., 2016). Further, during movement generation itself, 
the dominant patterns of neural activity may also play a role in supporting neural dynamics, rather than 
directly encoding the output. One challenge for a dynamical system results when the flow-field is highly 
“tangled”: when there are points in the space in which very similar states lead to very different future 
behavior. If two nearby points lead to different paths, then small amounts of noise in the system can lead 
to dramatic differences in the evolution of the neural state (Fig. 2B). A robust dynamical system, 
therefore, must ensure that the tangling is low, potentially by adding in additional dimensions of activity 
whose job is to “pull apart” points of high tangling (Fig. 2C). In MC, while some components of neural 
activity resemble muscle-like signals during movement generation, the largest patterns of neural activity 
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during movement generation appear to function to reduce tangling. (Fig. 2D; (Russo et al., 2018)). Thus, 
within MC, evidence has been found that some signals primarily support and drive dynamics, rather than 
directly encoding input or output. 
 

 
Figure 2. Overview of results supporting the dynamical systems view of motor cortex. (A) The neural state 
achieved during the delay period (green-red dots) predicts the subsequent trajectory of movement activity 
(green-red lines). Each dot/line is a single reach condition, recorded from a 108-reach condition task (inset). 
Adapted from Churchland et al., 2012. (B) In dynamical systems, places where neighboring points in state 
space have very different dynamics are indications of ‘tangling.’ Such regions would be highly-sensitive to 
noise – small perturbations yield very different trajectories. (C) Conceptual example illustrating tangling. 
Imagine a system that needs to produce two sine waves, one of which has double the frequency of the other. 
If it contains these sine waves with no additional dimensions, activity would trace out a figure eight, with a 
point of “high tangling” in the center. By adding in a third dimension, the system can move from a “high 
tangling” to a “low tangling” configuration, using the third dimension to separate the tangled points. Adapted 
from Russo et al., 2018. (D) While EMG often displays highly-tangled points (x-axis), MC’s neural activity 
maintains low tangling (y-axis). (E) Illustration of muscle-potent/muscle-null concept. Imagine a muscle which 
is driven with a strength equal to the sum of the firing rates of two units. If the units change in such a way 
that one unit’s firing rate decreases as the other increases, then the overall drive to the muscle will remain 
the same (muscle-null). If, on the other hand, the neurons increase or decrease together, then the drive to 
the muscle will change (muscle-potent). In this way, neural activity can change in the muscle-null space while 
avoiding causing a direct change in the command to the muscles. Adapted from Kaufman et al., 2014. (F) 
Neural activity in MC occupies a different set of dimensions during motor preparation than during movement. 
Red: neural activity across different reach conditions in “preparatory” dimensions. Green: neural activity 
across different reach conditions in “movement” dimensions. Adapted from Elsayed et al., 2016. 
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Finally, the dynamical systems framework predicts that to perform different computations, neural activity 
may leverage different dimensions (Mante et al., 2013). While this need not be a property of every 
possible dynamical system, leveraging different dimensions for different functions allows a system to 
better maintain independence between its different roles. It has long been observed that many neurons 
are active both during movement preparation and movement generation. How then does preparatory 
activity avoid causing movement? Traditional views held that preparatory activity lies below a movement-
generation threshold (Tanji and Evarts, 1976; Erlhagen and Schöner, 2002) or is under the influence of 
a gate (Bullock and Grossberg, 1988; Cisek, 2006). However, sub-threshold activation fails to explain 
why preferred directions are minimally correlated between preparation and movement (Churchland et al., 
2010; Kaufman et al., 2010), and there is little evidence for gating, as inhibitory neurons in MC are not 
preferentially activated during motor preparation (Kaufman et al., 2013). The dynamical systems model, 
by contrast, makes a different prediction: that unwanted movements can be avoided by avoiding specific 
neural dimensions. Some dimensions, termed “output-potent”, correspond to activation patterns that are 
output to the muscles, while others, termed “output-null”, do not (Fig. 2D; (Kaufman et al., 2014)). In MC, 
different dimensions are activated during movement preparation and generation (Fig. 2E; (Elsayed et al., 
2016)). Furthermore, the dimensions that best correlate with muscle activity are preferentially active 
during movement generation, suggesting that output-potent dimensions are selectively avoided during 
preparation (Kaufman et al., 2014). Similarly, distinct dimensions may be explored during cortically-
dependent movement versus non-cortically-dependent movement (Miri et al., 2017), and sensory 
feedback initially enters MC in different dimensions from those of the muscle-potent activity (Stavisky et 
al., 2017b). This division of different functions into different neural dimensions is not limited to only 
muscle-related activity. In BMIs, where output-potent dimensions can be specified explicitly, activity that 
is informative about experimentally-induced perturbations is initially orthogonal to the corresponding 
corrective responses (Stavisky et al., 2017b). During long-term BMI use, activity in output-potent 
dimensions is more stable than output-null dimensions (Flint et al., 2016). Neural activity also tends to 
occupy different dimensions for different movement categories: for example, pedaling in a forward vs. 
reverse direction (Russo et al., 2018), isometric force production versus limb movement (Gallego et al., 
2017b), or moving with the contralateral versus ipsilateral arm (Ames and Churchland, 2018). Leveraging 
different neural dimensions for different functions may allow the MC flexibility to generate activity patterns 
that support a wide variety of functions without interfering with one another (Perich et al., 2017). 
 
Methods for estimating and evaluating motor cortical dynamics 
 
As detailed above, much of the activity of MC neurons is naturally explained as a reflection of a low-
dimensional dynamical system. Studying such dynamic processes requires techniques that can infer 
latent structure and its dynamics from observed, high-dimensional data. Related techniques have been 
applied to a wide variety of model systems and brain areas over the last two decades (rev. in 
(Cunningham and Yu, 2014)). However, MC holds particular value for testing these techniques, as its 
activity is closely tied to observable behavior (e.g., movement conditions, arm or hand kinematics, 
reaction times), which provides a key reference for validating the inferred state estimates. Here we review 
common techniques to estimate latent state and dynamics that have been applied in MC. We first present 
a general framework for discussion. Next, we review techniques that are applied to time points 
independently (i.e., do not explicitly model neural dynamics). Finally, we review techniques that do 
explicitly model neural dynamics, thereby resulting in better latent state estimates. 
 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27217v1 | CC BY 4.0 Open Access | rec: 16 Sep 2018, publ: 16 Sep 2018



 8 

Techniques for latent state estimation typically view spiking activity as being “generated” by an underlying 
state x(t) (Fig. 3A). A common assumption is that for any given trial, the observed high-dimensional spike 
counts n(t) reflect a noisy sample from each neuron’s underlying firing rate distribution r(t), a distribution 
that is itself derived from the latent state x(t). For motor cortical data, the distinction between observations 
n(t) and underlying rates r(t) captures the empirical observation that the spiking of any given neuron 
across multiple repeats (trials) of the same movement is highly variable. 
 
A standard approach to de-noising n(t) and approximating r(t) is trial-averaging. Trial-averaging assumes 

all trials of a given movement condition are identical, and reduces single-trial noise in the estimate of r(t) 
by averaging n(t) across repeated trials. r(t) is often further de-noised by convolving it with a smoothing 
kernel. A common approach to estimate the lower dimensional x(t) is to perform Principal Component 
Analysis (PCA). Performing PCA on r(t) rather than n(t) is preferred – if performed on n(t), PCA often 

 
Figure 3. Applications of latent state and dynamics estimation methods to MC ensemble activity. (A) Generative 
model of observed neural activity. Population spiking activity is assumed to reflect an underlying latent state x(t) 
whose temporal evolution follows consistent rules (dynamics). Firing rates for each neuron r(t) are derived from 
x(t), and observed spikes n(t) reflect a noisy sample from r(t). (B) dPCA applied to trial-averaged MC activity 
during a delayed reaching task separates condition-invariant and condition-variant dimensions. Each bar shows 
the total variance captured by each dimension, with red portions denoting condition-invariant fraction, and blue 
portions denoting condition-variant fraction. Traces show projection onto first dimension found by dPCA. Each 
trace corresponds to a single condition (inset: kinematic trajectories with corresponding colors). Adapted from 
Kaufman et al., 2016. (C) GPFA reveals single-trial state space trajectories during a delayed reaching task. Gray 
traces represent individual trials. Ellipses indicate across-trial variability of the neural state at reach target onset 
(red shading), go cue (green shading), and movement onset (blue shading). Adapted from Yu et al., 2009. (D) 
SLDS enables segmentation of individual trials by their dynamics. Each horizontal trace represents a single trial 
for the first state dimension found by the SLDS. Trace coloring represents time periods with distinct (discrete) 
dynamics for each trial, recognized in an unsupervised fashion. Switching between dynamic states reliably follow 
target onset and precede movement onset, with time lags that are correlated with reaction time. Adapted from 
Petreska et al., 2011. 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27217v1 | CC BY 4.0 Open Access | rec: 16 Sep 2018, publ: 16 Sep 2018



 9 

results in poor latent factor estimation, because it simply maximizes the variance captured by the low-
dimensional space, without separating variance that is shared among neurons from variance that is 
independent across neurons (rev. in (Yu et al., 2009)). When performed on r(t), PCA is typically 
accompanied by firing rate normalization, so that neurons with high rates (and thus higher variability) do 
not dominate the dimensionality reduction. Further, PCA can be extended by integrating some 
supervision into the dimensionality reduction step, e.g. by integrating information about task conditions 
in order to identify dimensions that capture neural variability related to particular task variables, using 
demixed PCA (dPCA, Fig. 3B; (Kobak et al., 2014; Kaufman et al., 2016; Gallego et al., 2017b)). The 
strategy of trial-averaging followed by PCA has led to several insights into latent structure and dynamics 
in MC (Churchland et al., 2012; Ames et al., 2014; Kaufman et al., 2014; Pandarinath et al., 2015; Elsayed 
et al., 2016; Kaufman et al., 2016; Gallego et al., 2017b; Russo et al., 2018).  
 
However, circumventing the need to average over trials is critical for elucidating inherently single-trial 
phenomena, such as the trial-to-trial variability of real movements (and their corresponding error 
corrections), non-repeated behaviors such as natural behaviors, random target tasks, and tasks involving 
learning. Likewise, studying “internal” processes that vary substantially across trials and have limited 
behavioral correlates, such as decision-making, vacillation, and internal state estimates (Golub et al., 
2015; Kaufman et al., 2015), is also impossible with trial-averaged data. Factor Analysis (FA; (Everitt, 
1984)) is often favored for analyzing single-trial phenomena (Santhanam et al., 2009; Sadtler et al., 2014; 
Golub et al., 2015; Athalye et al., 2017; Golub et al., 2018). A key assumption of FA is that activity that is 
correlated across neurons represents “signal” (comprising the latent factors x(t)), and activity that is not 
correlated across neurons represents “noise.” This assumption matches the graphical model in Fig. 3A. 
A recent, complementary approach to capturing trial-dependent variability in n(t) without corrupting the 
latent factors is to integrate information regarding trial ordering into the dimensionality reduction step, 
and introduce a set of “trial factors” that accommodate variability across trials, as in Tensor Components 
Analysis (TCA; (Williams et al., 2018)). 
 
A key limitation of the above techniques (PCA, FA) is that they treat neighboring time points as though 
they are independent. However, as discussed, a core assumption of the dynamical systems framework 
is that time points are intimately related, and in particular, previous states are predictive of future states. 
Therefore, methods that simultaneously infer latent states and dynamics should provide more accurate 
state estimation, by leveraging the inter-dependencies of data points that are close in time. Two well-
developed families of models are Gaussian Process-based approaches (Fig. 3C; (Yu et al., 2009; 
Lakshmanan et al., 2015; Zhao and Park, 2017; Duncker and Sahani, 2018)) and linear dynamical 
systems (LDS)-based approaches (Macke et al., 2011; Buesing et al., 2012; Aghagolzadeh and Truccolo, 
2015; Gao et al., 2015; Kao et al., 2015; Gao et al., 2016; Kao et al., 2017). Gaussian Process 
approaches assume that the latent state x(t) is composed of factors that vary smoothly and independently 
in time, with each factor having its own characteristic time constant. In comparison, LDS-based 
approaches assume that the latent state at a given time point is a linear function of the previous state 
(i.e., ), which incorporates linear interactions between latent dimensions. One issue with the 
LDS approach is that the matrix A is time-invariant, yet must capture the dynamics at all time points. In 
MC, this is potentially problematic, as activity during different behavioral phases (e.g., preparation and 
movement) is governed by very different dynamics (Kaufman et al., 2014; Elsayed et al., 2016; Kaufman 
et al., 2016). A promising approach to address this challenge is Switching LDS (SLDS), which assumes 
that at any given time point, the system’s evolution obeys one of a discrete set of possible dynamics, 
each of which must be learned (Fig. 3D; (Petreska et al., 2011; Linderman et al., 2017; Wei et al., 2018)). 
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An alternate approach to uncovering single-trial population dynamics uses recurrent neural networks 
(RNNs). Known as Latent Factor Analysis via Dynamical Systems (LFADS; (Sussillo et al., 2016a; 
Pandarinath et al., 2018)), the approach trains an RNN as a generative model of the observed spiking 
activity. RNNs are powerful nonlinear function approximators, capable of modeling complex, highly 
nonlinear dynamics through adjustment of their recurrent connectivity (Fig. 4A). LFADS uses a sequential 
autoencoder (SAE) framework (Fig. 4B), allowing the potentially nonlinear dynamics to be learned from 
noisy, single-trial neural population activity using stochastic gradient descent. This allows LFADS to 
accurately infer dynamics on a single-trial, moment-to-moment basis (Fig. 4C). A critical confirmation 
that these dynamics are accurate and meaningful is that they lead to dramatic improvements in the ability 
to predict behavior – as shown, the LFADS-inferred latent representations were considerably more 
informative about subjects’ reaching movements than was the population activity that was directly 
observed (Fig. 4D). These findings reinforce that population states, rather than the activity of individual 
neurons, may be a key factor in understanding how brain areas mediate behaviors, and further, that 
SAEs provide a powerful new avenue towards linking the activity of neural populations to the behaviors 
they mediate. 
 
Leveraging latent factors and dynamics for brain-machine interfaces 
 
Brain machine interfaces (BMIs) aim to recover lost motor function by directly decoding movement intent 
from neuron spiking activity to control external devices or recover movement (Taylor et al., 2002; 
Carmena et al., 2003; Hochberg et al., 2006; Ethier et al., 2012; Hochberg et al., 2012; Collinger et al., 

 
Figure 4. LFADS uses recurrent neural networks to infer precise estimates of single-trial population 
dynamics. (A) A recurrent neural network (simplified) is a set of artificial neurons that implements a nonlinear 
dynamical system, with dynamics set by adjusting the weights of its recurrent connections. Conceptually, the 
RNN can be “unrolled” in time, where future states of the RNN are completely predicted based in an initial 
state g(0) and its learned recurrent connectivity (compare to Fig. 3A). (B) The SAE framework consists of an 
encoding network and decoding network. The encoder (RNN) compresses single-trial observed activity n(t) 
into a trial code g(0), which sets the initial state of the decoder RNN. The decoder attempts to re-create n(t) 
based only on g(0). To do so, the decoder must model the ensemble’s dynamics using its recurrent 
connectivity. The output of the decoder is x(t), the latent factors, and r(t), the de-noised firing rates. (C) The 
de-noised single-trial estimates produced by LFADS uncover known dynamic features (such as rotations, Fig. 
2A) on single trials. (D) Decoding the LFADS-de-noised rates using simple optimal linear estimation leads to 
vastly improved predictions of behavioral variables (hand velocities) over Gaussian smoothing, even with 
limited numbers of neurons. Adapted from Pandarinath et al., 2018. 
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2013; Sadtler et al., 2014; Gilja et al., 2015; Ajiboye et al., 2017; Pandarinath et al., 2017). BMIs have 
largely decoded neural activity into movement through a representational viewpoint: each neuron 
represents a reach direction and if the neuron fires, it votes for movement in that direction (Georgopoulos 
et al., 1982; Taylor et al., 2002; Gilja et al., 2012; Hochberg et al., 2012; Collinger et al., 2013). Efforts to 
decode EMG activity have been essentially similar, though in a higher-dimensional, more abstract space 
(Pohlmeyer et al., 2007; Ethier et al., 2012). However, as previously discussed, this representational 
model has important limitations in describing MC activity. Here we review recent studies that have asked 
whether representational assumptions also limit BMI performance, and if so, whether performance and 
robustness can be increased by incorporating MC latent factors and dynamics. 
 
Using latent factors and dynamics to increase BMI performance 
 
The dynamical systems view holds that movement-related variables (such as kinematics or EMG activity) 
are among the many factors that influence the activity of MC neurons. However, BMI decoders based on 
the standard representational model do not take other factors into account when relating observed activity 
to movement intention. Recent work introduced a decoding architecture (graphically represented in Fig. 
5A) that incorporates latent factors and their dynamics (modeled as a simple linear dynamical system; 
(Aghagolzadeh and Truccolo, 2015; Kao et al., 2015)). One advantage of this architecture is that 
modeling latent factors can account for the multiple, diverse influences on observed neural activity to 
better uncover movement-related variables. A second advantage is that latent factors may be more easily 
denoised than the observed high-dimensional activity, resulting in higher BMI performance. Briefly, the 
dynamical systems view holds the temporal evolution of MC states is largely predictable. If so, deviations 
from this prediction may largely correspond to noise. To denoise, MC dynamics can be used to adjust 
the latent factors so that they are more consistent with the dynamic predictions (Fig. 5B). In closed-loop 
BMI experiments, decoding the dynamically denoised latent factors significantly increased performance 
over prior approaches (Fig 5C), including previous representational decoders that (1) denoise activity by 
smoothing using an experimenter-chosen filter (optimal linear estimator, OLE; e.g., (Velliste et al., 2008; 
Collinger et al., 2013)), (2) denoise activity by incorporating prior knowledge about kinematic smoothness 
(kinematic Kalman filter; e.g., (Wu et al., 2003; Kim et al., 2008; Gilja et al., 2012; Hochberg et al., 2012; 
Gilja et al., 2015)), and (3) denoise activity by learning filtering parameters via least-squares regression 
(Wiener filter; e.g., (Carmena et al., 2003; Hochberg et al., 2006)).  
 
BMI performance may also be increased through the use of non-movement signals that become apparent 
by examining latent factors. Recently, Even-Chen et al. (2017) exploited this idea to identify factors that 
reflect errors made during BMI control. The motivation for this work is that errors inevitably happen when 
controlling a BMI; however, instead of the user having to correct an error explicitly, it is possible to detect 
(or predict) its occurrence and automatically correct it (or prevent it). They applied PCA to identify an 
error-related signal in MC and found dimensions where projected neural data reflected task errors 
(example latent factors observed during errors are shown in Fig. 5D). In real-time experiments with 
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monkeys, these latent factors were decoded to both prevent and autocorrect errors, increasing BMI 
performance. 
 

Using dynamics and latent factors to increase BMI longevity 
 
Ideally, a BMI’s performance would be maintained indefinitely. However, neural recording conditions 
frequently change across days, and even within-day in pilot clinical trials, e.g., due to neuron death or 
electrode movement and failure (Barrese et al., 2013; Perge et al., 2013; Sussillo et al., 2016b; Downey 
et al., 2018), which can lead to decoding instability. Current approaches to this problem include decoding 

 
Figure 5. Improving BMI performance and longevity by leveraging neural dynamics. (A) Graphical model of 
decoder with dynamical smoothing. (B) Illustration of smoothing latent state estimates using neural dynamics. 
The instantaneous estimate of the latent state (blue) is augmented by a dynamical prior (grey flow-field) to 
produce a smoother, denoised estimate (orange). (C) Smoothing using neural dynamics results in better 
closed-loop BMI performance than other approaches. Performance is achieved information bitrate. Adapted 
from Kao et al., 2015. (D) Example of low-dimensional signals that can be used to augment intracortical BMIs. 
PCA applied to neural activity around the time of target selection identifies a putative “error signal”, allowing 
real-time detection and correction of user errors in a typing BMI. Adapted from Even-Chen et al., 2017. (E) 
Remembering dynamics from earlier recording conditions can extend performance as neurons are lost. 
Performance measure is (offline) mean velocity correlation. (F) Comparison of closed-loop performance when 
110 channels are “lost” shows a >3x improvement achieved by remembering dynamics. FIT-KF is state of the 
art kinematic Kalman filter (Fan et al., 2014). Adapted from Kao et al., 2017. (G) Dynamic neural stitching with 
LFADS. A single model was trained on 44 recording sessions. Each session used a 24-ch recording probe. 
Left: recording locations in MC. Right: single-trial reaches from an example session. (H) Neural state space 
trajectories inferred by LFADS. Each trace of a given color is from a separate recording session (44 traces per 
condition). Inferred trajectories are consistent across five months. (I) Using LFADS to align five months of data 
(“Stitched”) significantly improves decoding vs. other tested methods. 
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more stable neural signals (e.g., threshold crossings and local field potentials; (Flint et al., 2013; 
Nuyujukian et al., 2014; Gilja et al., 2015; Stavisky et al., 2015)), gradually updating decoder parameters 
using a weighted sliding average (Orsborn et al., 2012; Dangi et al., 2013), automated decoder 
recalibration by updating “tuning” estimates daily (Bishop et al., 2014)  or continuous recalibration by 
retrospectively inferring the user’s intention among a set of fixed targets (Jarosiewicz et al., 2015), and 
training robust neural network decoders on a diversity of conditions using large data volumes (Sussillo et 
al., 2016b). 
 
A separate class of approaches aims to exploit the underlying neural latent space, which, as a property 
of the neural population, should have a stable relationship with the user’s intention that is independent of 
the specific neurons observed at any moment (Gao and Ganguli, 2015; Dyer et al., 2017; Gallego et al., 
2017b; Kao et al., 2017; Pandarinath et al., 2018). However, it is challenging to relate the observed 
neurons from a given recording condition to the underlying latent space. Recent studies using supervised 
alignment strategies have demonstrated the potential of latent dynamics to maintain BMI performance. 
Kao et al. (2017) exploited historical information about population dynamics (Fig 5E,F), finding that even 
under severe neuron loss, aligning the remaining neurons to previously-learned dynamics could partially 
rescue closed-loop performance, effectively extending BMI lifetime. Alternatively, Pandarinath et al. 
(2018) learned a single LFADS model from 44 independently-recorded neural populations spanning 
many millimeters of MC and 5 months of recording sessions (Fig. 5G,H). They then used a single linear 
decoder to map these latent dynamics onto kinematics (Fig. 5I). This work demonstrated that, in the 
absence of learning, a single, consistent dynamical model describes neural population activity across 
long time periods and large cortical areas, and yields improved offline decoding performance for any 
given recording session than was otherwise possible. 
 
Some settings lack data for supervised alignment, i.e., directly linking neural activity from new recording 
conditions to motor intent may be challenging (settings without structured behaviors, or where intent is 
less clear on a moment-by-moment basis). In these settings, unsupervised techniques may be useful for 
aligning data. Recently, Dyer et al. (2017) introduced a semi-supervised approach called Distribution 
Alignment Decoding (DAD; Fig. 6A-C). This approach aims to map neural data from a new recording 
condition (new data) onto a previously recorded low-dimensional movement distribution. To do this, DAD 
first reduces the dimensionality of the neural data (using PCA or a nonlinear manifold learning technique), 
and then searches for an affine transformation to match the low-dimensional neural data to movements, 
by minimizing the KL-divergence between the two datasets (Fig. 6B). Their results demonstrate that DAD 
can achieve similar performance to that of a supervised decoder that has access to information about 
neural state and movement, if the underlying data distribution contains asymmetries that facilitate 
alignment (Fig. 6C). While a powerful approach for unsupervised alignment, DAD solves a non-convex 
optimization problem with many local minima (Fig. 6B) by using a brute force search. To improve 
alignment and avoid having to first perform dimensionality reduction, neural network architectures such 
as generative adversarial networks (GANs; (Goodfellow et al., 2014; Molano-Mazon et al., 2018)) provide 
a potential method to learn nonlinear mappings from one distribution to another (Fig. 6D). By leveraging 
the fact that low-dimensional representations of neural activity are consistent across days and even 
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subjects, distribution alignment methods like DAD or GANs provide a strategy for decoding movements 
without labeled training data from new recording conditions. 

 
Conclusions 
The increasing ability to monitor large numbers of neurons simultaneously will present new opportunities 
to study neural activity at the population level. Mounting evidence shows that this provides a qualitatively 
different window into the nervous system from that of single-neuron recordings, and that population-level 
dynamics likely underlie neural population activity across a wide range of systems. Here we reviewed 
recent evidence that such dynamics shape activity and drive behavior in MC, outlined key methods for 
inferring latent factors and dynamics that have been applied to MC activity, and showed how uncovering 
latent factors and dynamics can yield higher-performing and more robust BMIs. Continuing advances in 
recording technologies, algorithms, and computational power will enable studies of dynamics that were 
not previously possible, and further, may open new avenues for neural prostheses to address a wide 
variety of disorders of the nervous system. 
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Figure 6. Distribution alignment methods for stabilizing movement decoders across days and subjects. (A) 
Overview of distribution alignment approaches which first reduce data dimensionality, and then align low-
dimensional projected neural activity onto a previously recorded movement distribution. (B) KL-divergence 
provides a robust metric for alignment, but also produces many local minima (points 1, 2, 3, 4) which make 
alignment difficult. The KL-divergence is displayed as a function of the angle used to rotate the data. (C) 
Comparison of the prediction accuracy of 2D kinematics for distribution alignment decoding and supervised 
methods. Left: results for DAD using movements from Subject M (DAD-M), from Subject C (DAD-C), and using 
movements from both Subjects M and C (DAD-MC). Right: results for a standard L2-regularized supervised 
decoder (Sup) and a combined decoder (Sup-DAD) which averages the results of the supervised and DAD 
decoders. All of these results are compared to an Oracle decoder which provides an upper bound for the best 
linear decoding performance for this task. (D) A schematic of a generative adversarial network strategy for 
distribution alignment across multiple days: Generator network (left) receives new data and learns a 
transformation of the data to match the prior (from a previous day). 
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