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Abstract: Rice is the staple food for half of the world’s population. Therefore, accurate information of
rice area is vital for food security. This study investigates the effect of phenology for rice mapping
using an object-based image analysis (OBIA) approach. Crop phenology is combined with high
spatial resolution multispectral data to accurately classify the rice. Phenology was used to capture
the seasonal dynamics of the crops, while multispectral data provided the spatial variation patterns.
Phenology was extracted from MODIS NDVI time series, and the distribution of rice was mapped
from China’s Environmental Satellite (HJ-1A/B) data. Classification results were evaluated by a
confusion matrix using 100 sample points. The overall accuracy of the resulting map of rice area
generated by both spectral and phenology is 93%. The results indicate that the use of phenology
improved the overall classification accuracy from 2%—4%. The comparison between the estimated rice
areas and the State’s statistics shows underestimated values with a percentage difference of —34.53%.
The results highlight the potential of the combined use of crop phenology and multispectral satellite
data for accurate rice classification in a large area.
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1. Introduction

Studies on the extent of rice areas provide useful information for food security, water resources
management and environmental sustainability. Rice is the major food for nearly half of the world’s
seven billion people, mostly in developing countries in Asia, Africa and Latin America [1]. Rice
agriculture is mostly irrigated and consumes 24%-30% of world’s developed fresh water resources [2].
Therefore, determining the total rice area is an important input for the effective management of global
water resources. On the other hand, the world’s rice production is not increasing significantly, and
present annual rice demand exceeds annual production; thus, food security remains uncertain [3].
Rapid urbanization, industrialization, changing patterns of precipitation and rising global temperature
affect the land and water resources for rice production [4]. Hence, it is urgent to monitor the rice area to
meet the growing food demand, efficient water resource management and environmental sustainability.

Remote sensing (RS) has demonstrated its potential for rice area mapping employing either
optical or synthetic aperture radar (SAR) images [5-10]. Time series multi-spectral and multi-temporal
data from MODIS, NOAA-AVHRR, LANDSAT, IRS, SPOT and Chinese HJ-1A /B were used by many
researchers at the national and sub-national scale for rice mapping [11-15]. Though optical data
cover a wide range of spatial and temporal resolutions, it is weather dependent, and cloud cover
hampers its operation. To overcome this drawback, weather-independent SAR has been used [9,10,16].
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Unfortunately, the low temporal resolution and high price of SAR data limit its use at a large
scale. A number of techniques have been applied to discriminate rice area, mainly the thresholding
method [17-19], the supervised classification method [20,21] and phenology-based mapping [11,22].
However, these methods have limitations. Thresholding requires appropriate thresholding values
for accurate classification. Supervised classification requires training data for each year, which is a
challenge for large area mapping. The phenology-based mapping requires a long and continuous time
series. Moreover, all of these methods underperform in the areas where the crop fields are small.

Compared to traditional pixel-based classification, object-based image analysis (OBIA) considers
a group of pixels instead of a single pixel for classification [23]. The OBIA produces more meaningful
and reliable classification by contributing additional information, including spectral, textural and
geometric features [24]. The OBIA includes two steps: image segmentation and classification. In
segmentation, the entire image is partitioned into regions or objects that are more internally uniform
and homogeneous than neighboring objects [25]. The segmented image generates extra spectral,
textural and geometric information of objects. In the classification process, each object is assigned to a
specific class according to its spectral, textural, geometric and customized properties. Previous studies
have demonstrated the successful use of OBIA in many applications [24,26-28]. Small fragmented rice
fields are common in India [29]; therefore, the OBIA approach is particularly useful by focusing on
objects or parcels instead of concentrating only on the properties of single pixels.

Rice mapping for a large area is generally performed at low spatial resolution due to the
insufficient availability of high resolution temporal data [17,19]. To obtain the temporal data at
high spatial resolution, image fusion or blending algorithms are commonly applied combing high and
low spatial resolution images. The fusion algorithm can predict accurate surface reflectance [30] and
has shown the potential of dense time series generation for phenology studies [31].

Phenology refers to the timing of growing events of plants, such as bud-burst, leafing, peak
growth stage, flowering and abscission [32]. In recent studies, phenology has been used for crop
classification [11,22,33,34]. However, the capability of phenology has not been investigated yet for
the OBIA-based rice classification. This study focuses on the use of phenology for rice classification
under the OBIA framework. Its main objective is to investigate the applicability of phenology for
OBIA-based rice mapping.

2. Study Area

The study area includes five districts (Bongaigaon, Barpeta, Goalpara, Nalbari and Kamrup) of
Assam in northeast India, with an area about 14,000 square km. The center of the area is located
at 26°23'N and 91°09’E (Figure 1). Assam is mainly the flood plain of two rivers: Brahmaputra and
Barak. The region experiences heavy rainfall with an average of 3000 mm annually. Rice, the principal
crop of the region, is cultivated during very wet summers, as well as in very dry winters. The area
under rice cultivation is 25 million hectares, which is 71% of the total cultivated area [35].

The crop is cultivated in many environmental conditions in the region based on the hydrological
characteristics. The most commonly-practiced cultivation types are: (1) rainfed lowland rice, where
the flooding of the fields is non-continuous and water depth varies around 1 cm-50 cm; the water
availability of the fields primarily depends on the rainfall; (3) irrigated rice, where the water depth
of the fields varies between 5 cm and 10 cm; the fields are kept constantly flooded throughout the
growing seasons; two crops are harvested per year from these fields, and often, the production is high;
(3) flood-prone rice, which is cultivated in deep-water areas with a water depth of 0.5 m-3 m; this rice
is generally grown near the rivers and submerged frequently; the production is relatively low due to
the effect of floods; and (4) upland rice, which is mostly cultivated on the hill slopes of the region; it is
practiced in the rainfed conditions without the flooding and accumulation of water in the fields; the
water requirement is low for this type of rice.

The region has two distinct growing seasons of rice: rabi (February/March—June/July) and kharif
(June/July-November/December) (Figure 2). Most farmers prefer to plant kharif rice due to the
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abundant rain and favorable temperature. Rabi rice is mainly distributed near the river and the lakes
to take advantage of the captured or retained water of the monsoon rain or the irrigation infrastructure.
The distribution of double-cropped rice is scattered on the north bank of Brahmaputra River, where
irrigation is available. The selected study area has all of the rice types, and all were considered for
the mapping.
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Figure 1. Study site (Bongaigaon, Barpeta, Goalpara, Nalbari and Kamrup districts of Assam).
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Figure 2. Calendar of the major crops in the study area.

3. Datasets and Preprocessing

3.1. MODIS Data

Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day composited Normalized
Difference Vegetation Index (NDVI) products (MOD13Q1, Collection 5) were obtained from the
Land Processes Distributed Active Archive Center (LP DAAC) [36]. MODIS NDVI is a 250-m spatial
resolution 16-day composite dataset. The MODIS NDVI is suitable for crop monitoring with 23 images
per year. All of the available MODIS NDVI data were acquired from April 2014-March 2015. All of the
datasets were re-projected to WGS 84/UTM Zone 36 N and then resampled to 30-m spatial resolution
to make them compatible with the HJ-1A /B datasets.

3.2. HI-1A/B Data

The Chinese HJ-1 A/B satellite’s CCD (charge coupled device) sensors’ data acquired during
the growth period of rice for the year of 20142015 were used in this study (Table 1). The HJ-1 A/B
CCD images have good quality and can be used to extract crop areas [5,37]. This dataset is available
for download from CRESDA (China Centre for Resources Satellite Data and Application) [38]. The
sensors characteristics of this satellite are given in Table 2. The radiometric calibration was performed
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using the coefficients provided by the CRESDA [38]. The atmospheric correction of the images was
performed using the FLAASH atmospheric correction model of ENVI 5 [39].

Table 1. Satellite datasets used for the study.

Satellite Sensor Acquisition Date
HJ-1A CCD2 22 October 2014
HJ-1A CCD1 5 December 2014
HJ-1B CCD1 9 March 2015

MODIS Terra April 2014-March 2015

Table 2. Specification of HJ-1A /B CCD sensors.

. Wavelength Spatial Swath Width Repeat Cycle
Satellite Sensor Bands Range (um) Resolution (m) (Km) (Day)
CCD1 1 0.43-0.52 30
HJ-1A
CCD2 2 0.52-0.60 30 360 4
CCD1 3 0.63-0.69 30
HJ-18 CCD2 4 0.76-0.90 30

3.3. Field Survey Data

In May 2015, a field survey was conducted by using the GVG (GPS-video-GIS) instrument
developed by Wu et al. [40]. GVG is capable of producing the crop area estimation and crop type
proportion of the surveyed area with very high accuracy [41]. A distance of 400 km was covered across
the study area during the survey, and around 1800 ground truth points were collected (Figure 1). The
ground truth points include the rice fields and other major land cover classes.

3.4. Agriculture Statistics Data

Agricultural statistics at the district level were obtained from the Directorate of Economics and
Statistics, Government of Assam [42]. The dataset contains district-level estimation of cropped area,
yield and production for the different crops. The data of the rice areas were used to check the agreement
between the remote sensing-based results and the government rice area statistics.

3.5. Ground Reference Data

The following auxiliary information has been used to generate the ground reference map:
(1) LULC (land use/land cover) map of 2013-2014 (scale: 1:250 K); (2) LULC: SIS-DP (space-based
information support for decentralized planning) (scale: 1:10 K); (3) field survey data; and (4) Google
Earth images. Datasets (1) and (2) are available at Bhuvan [43]. The datasets were integrated into the
systems as OGC Web Services using the open source geographic information system QGIS [44]. The
Google Earth images helped to identify crop types. The final ground reference map was created after
the analysis of above-mentioned data and manually digitizing all of the homogeneous rice fields for
the years of 2014-2015. The dataset was utilized in training sample selection and accuracy assessment.

4. Methods

The flowchart of the method is shown in Figure 3. The major steps include data pre-processing,
fusion of the MODIS and H] NDVI, phenology extraction from the NDVI time series, segmentation of
the images, classification, as well as validation. The main feature of the method is that the phenological
variables were extracted from the fused time series high resolution NDVI data and combined with the
H]J CCD spectral data for OBIA-based rice classification. The approach utilized not only the seasonal
features through phenological variables, but also the spectral features of H] CCD data.
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Figure 3. Flowchart of object-based rice classification. ESTARFM, enhanced spatial and temporal

adaptive reflectance fusion.

4.1. Construction of Smooth Time Series NDVI

Although MODIS NDVI is calculated from atmospherically-corrected surface reflectance and
has reduced noise, cloud and aerosol effects, the time series exhibits noise and produces inaccurate
phenology. The Savitzky—Golay (S-G) filter [45] was applied to smooth the data. This is achieved by
applying a locally-adaptive moving window, which uses a polynomial least square regression to fit the
data. In Figure 4, smoothed NDVI is shown for an agriculture landscape.

Figure 4. Raw and filtered NDVI time series for an agriculture pixel in the study region.
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4.2. Blending of Time Series MODIS NDVI and H] NDVI

An enhanced spatial and temporal adaptive reflectance fusion (ESTARFM) [30] was selected to
fuse MODIS and HJ NDVI. The algorithm uses two or more pairs of fine and coarse resolution images
acquired on the same date and a coarse resolution image acquired on the prediction date. It predicts
the pixel values based on the temporal weight determined by the spectral similarity between fine
and coarse pixels [30]. To obtain an improved prediction, three H] NDVI images acquired at key rice
growth stages covering the whole growing seasons were utilized. The H] NDVI images were acquired
22 October 2014, 5 December 2014 and 9 March 2015, which corresponds to the flowering, matured
ripened and heading stages of rice, respectively. The H] NDVI pairs nearest to the MODIS NDVI date
were selected for the fusion. The index-then-blend (IB) approach was adopted for the fusion, where
vegetation indices were calculated first and then using these indices for the fusion [46]. The fusion
produced time series MODIS NDVI at enhanced spatial resolution of 30 m. Figure 5 shows an example
of a MODIS input image and a corresponding synthetic MODIS image. The synthetic image will be
similar, like the nearest time 30-m HJ CCD NDVI image with very little expected change in 5 days.
The ESTARFM is computationally intensive [30]; for this study, it took around 103 computing hours
with an Intel Core i7, 16 GB RAM, Windows 7 Computer. Therefore, to save computation time, it is
suggested to use parallel processing or GPU (graphics processing unit)-enabled processing.

27°0'0"N
1
27°00°N

26°0'0"N
1
26°0'0"N

0 15 30 60 Km

Figure 5. (a) H] CCD NDVI of entire study area; (b) input MODIS NDVI; (c) synthetic MODIS NDVI;
(d) HJ CCD NDVI nearest to the MODIS synthetic date. The red box in (a) indicates the enlarged area

in (b-d).

4.3. Image Segmentation and Object Feature Selection

The main purpose of this study is to identify area cropped with rice. Rice fields can be extracted
as an object or segment by applying image segmentation methods. Image segmentation generates
the segments as regions or groups of pixels with certain homogeneity criteria and includes additional
spectral, spatial and textural information as compared to a single pixel [23]. Our study utilized these
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additional features for rice crop classification. The detailed description of an object’s features can be
read in Definiens [47]. However ,spatial and textural features have not been considered, as they do not
contribute much for agricultural crop identification [48]; textural features result in longer computation
time and provide only minor improvement in classification results [24,28]. The multi-resolution
segmentation algorithm [49] implemented in eCognition software has been used to generate the rice
field objects. Cloud-free HJ-1A/B images with spectral Bands 2, 3 and 4, i.e., green, red and near
infra-red (NIR), have been selected for the segmentation. Three segmentation parameters, shape,
compactness and scale, were selected as 0.1, 0.7 and 25, respectively, after a series of tests. The value
of the shape parameter determines the contribution of spectral weight. The compactness criteria
decide the closeness of image objects. The scale parameter determines the size of the image objects.
To investigate the optimum segmentation results, a pixel-based empirical discrepancy method [50] has
been applied. For this purpose, a reference segmented image has been generated randomly, by ground
truth objects covering the rice fields and compared to the algorithm-generated segmented image. The
obtained average accuracy for pixel-based discrepancy was 90.8%. Moreover, the visual assessment
of segmented results indicated comparable matching with the actual field sizes. The result of image
segmentation is shown in Figure 6. At the last step in this process, for each segmented object, the mean
value of all phenological variables and NDVI were calculated and assigned to each object.

91°0'0"E 92°0'0"E

= 27°0'0"N

26°00"N

Figure 6. Segmentation results (scale: 25; shape: 0.1; compactness: 0.7). (a) The entire study area shown
in the HJ CCD image; (b) subset area; (c) segmentation of the subset area.
4.4. Derivation of Crop Phenology

The phenological variables were extracted from the fused 30-m NDVI time series using the
TIMESAT toolbox [51], a widely-used software package for extracting seasonality from time series
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satellite data. The NDVI time series data were fitted to an asymmetric Gaussian (AG) function to extract
the phenological variables [52]. The parameter values of the AG model were adjusted interactively
using the TIMESAT GUI to achieve the close fitting results. The seasonality parameter value was
selected as 0.1 in order to fit the double growing season of agricultural landscapes. To remove the
spikes and outliers, the medium filter option with a parameter value of 2 was selected. To remove
negatively-biased noise from NDVI, an upper envelope with a parameter value of 2 was selected,
while adaptation strength was kept at the value of 1 to maintain the close fit result.

The phenology variables were extracted from NDVI time series by the commonly-used
thresholding method, assuming that a specific phenology phenomenon occurs when NDVI values
exceed a given threshold [52,53]. The TIMESAT program iterates for each pixel of the time series,
extracting the phenology variables according to the changing patterns of NDVI over time. In TIMESAT,
the start and the end of the season is defined from the model function as the point in time for which
the value has increased by a certain threshold [52]. In this study, the threshold value is set to 10% of
the distance between the minimum level and the maximum.

The large and small integrals (Table 3) are the annual integrated values of NDVI. These values
are often used as a measure of net primary production [53,54]. To achieve a good estimation of the
vegetation production, only the growing season is considered for the integration of NDVI [52].

Among the other phenological variables extracted are the seasonal amplitude, the largest seasonal
value, the seasonal base value and the length of the growing season. The meaning and the proxy
information of extracted phenological variables is given in Table 3. In Table 3, only the first three lines
describe actual phenological variables; the remaining ones are biomass related. In this study, all of the
variables are referred to as a phenological variables. All of the listed variables in Table 3 are used in
this study.

Table 3. Phenological variables and their definitions according to [52,53].

Phenological Variables Definition Meaning

Time for which the left edge has increased to 20% of the

Start of the season (SOS) seasonal amplitude measured from the left minimum level

Time of start of season

Time for which the right edge has decreased to 20% of the

End of the season (EOS) seasonal amplitude measured from the right minimum level Time of end of season
Length of the season (LOS) Time from the start to the end of the season Total length of season
Base value (BV) The average of the left and right minimum values Level of biomass
Largest value (LV) Largest value between the start and end of the season Level of biomass
Seasonal amplitude (SA) Difference between the maximum value and the base level Level of biomass

Large integral (LI) Sum of all values from the season start to the end Net primary production
Small integral (SI) Integral of the difference between the function defining season Net primary production

and the base value

4.5. Classification

The extracted phenology variables (Section 4.4) were composited with the H] CCD spectral
data. The composited data contained not only the spectral features of H] CCD data, but also the
phenological variables extracted from time series MODIS NDVI. A step-wise OBIA was performed
on this composited dataset. An object-based image classification includes the process of image
segmentation followed by assigning a specific class to the objects based on spectral, textural, geometric,
as well as customized features. The entire OBIA classification algorithm was implemented in
eCognition software [47]. Under the OBIA framework, a top-down hierarchical approach has been
adopted to identify the rice areas, as shown in Figure 7. At first, the broad general classes were
identified and further sub-divided into smaller specific classes. The classification has been conducted
mainly by applying an NN (nearest neighbor) classifier and a threshold to mean values of spectral
features, NDVI and phenological features of image objects. In NN classification, at first, the classifier
is trained by certain image objects as samples; then, all of the objects based on their nearest sample
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neighbors are classified [47]. The threshold decides whether an image object qualifies as a specific
condition or not for a specific class description [47]. The classification of the images was carried out
separately for the kharif and rabi seasons rice according to the crop calendar information. At first, the
water and the land classes were distinguished by using mean NIR band values. The land was further
sub-divided into vegetation and non-vegetation using NDVL. The vegetation was then classified into
forest and non-forest by the mean value of the red band. Again, the non-forest was classified into
cropland and grassland by the mean NDVI value. The grassland tends to have high NDVI all year
with less seasonal changes. On the other hand, croplands have variable NDVI with high values only
in the peak growing seasons. Further, the NN supervised classification was applied to sub-divide
the cropland class into rice and non-rice (grassland, built-up and other crops) classes. The mean
value of the red, green and NIR bands, as well as phenological variables were utilized to perform
the NN classification. Finally, the classes other than rice were re-assigned to one “non-rice” class
in order to obtain a final rice and non-rice classification. To analyze the effect of the phenology on
rice classification, two classification approaches were used: (1) using only the multi-spectral bands;
(2) using multi-spectral bands and phenological variables.

Satells

Satellite
images

v

/@

l knowledge

Figure 7. Classification scheme used for rice crop extraction. Doted boxes represent
intermediate classes.

4.6. Accuracy Assessment

To validate the thematic accuracy of object-based image classification, image objects should be
used as sampling units [55], as this approach helps the evaluation of the entire classification process,
including the segmentation [48]. A confusion matrix was generated comparing classified image
objects and reference image objects to evaluate the classification accuracy. In order to obtain the
confusion matrix, a totally independent reference sample, i.e., 100 image objects (50 for rice; 50 for
non-rice classes), was collected randomly with the help of ground reference data. Subsequently, overall
accuracy, user’s and producer’s accuracy, as well as the kappa coefficient were calculated to assess the
results [55,56]. Additionally, derived rice area was compared to the agricultural statistics data. The
percentage difference was measured to check the agreement between the estimated results and the rice
area statistics.
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5. Results

5.1. Phenological Characteristics

Figure 8 shows the phenological variables derived from 16-day NDVI time series data according
to the different vegetation types present in the region. The area under agriculture shows distinct
phenological patterns. The concept of phenology is pointless in non-vegetated areas, which are also
characterized by low NDVI variability over time. The hills and evergreen vegetation area show a long
growing season (~176 days) with an earlier start and a later end. The variable used as a proxy for the
green biomass, such as base value (BV) and the largest NDVI value (LV), shows lower values in the
cultivated land, whereas higher values area recorded in the high biomass regions. The large integral
(LI) value, which is related to net primary production [53], shows the highest values in the cropped
land and forested area as compared to other land cover classes. The seasonal amplitude (SA) and
small integral (SI), which is linked to plant biomass [57], varied according to the forest cover type, as
evident from the southern part of the region. All of the phenological variables demonstrated typical
patterns for the various vegetation classes and showed potential for crop identification. However,
further research is required to fully utilize all of the variables for crop classification.

Days 255

A,

T %
B
0.1”;’ o W e
;‘f/
j 4
4

High: 12

Low:

High: 17

Figure 8. Extracted phenological variables: (a) start of the seasons; (b) end of the season; (c) length of
season; (d) base value; (e) largest value; (f) seasonal amplitude; (g) large integral; (h) small integral.

5.2. Identified Rice with and without the Phenological Variables

The classification was performed for the two approaches: (1) using only the spectral feature and;
(2) using both the phenological and spectral features, as shown in Figure 9. In each approach, rice
fields were identified effectively. Classification performed with phenology increased the accuracy by
2%-3%. The confusion among grasslands, other crops and rice was minimized by the use of phenology.
Using only one image, acquired at the ripening stage of rice (December), provided better results than
the image of the heading stage (October). This is because mature ripened rice has typical spectral
characteristics. The best classification result with an overall accuracy of 93% was achieved when all
three images (October, December and March) were used. The changes of rice canopy structure over
time is captured by using more images and increases the spectral separability. Figure 10 show the
differences between the spectral and phenology + spectral classification results. It has been observed
that the difference lies in the areas where vegetation has similar spectral characteristics, like rice crops.
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Figure 9. Classification results for different data combinations. (a) Classification results for October
with spectral and spectral + phenological variable; (b) classification results for December with
spectral and spectral + phenological variable; (c) classification results for March with spectral and
spectral + phenological variable; (d) classification results for combined October, December and March
with spectral and spectral + phenological variable.
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Figure 10. (a) Classification result differences between the spectral and spectral + phenological variable
with respect to the October classification in Figure 9a; (b) classification result differences between the
spectral and spectral + phenological variable with respect to the December classification in Figure 9b;
(c) Classification result differences between the spectral and spectral + phenological variable with
respect to the March classification in Figure 9¢; (d) classification result differences between the spectral
and spectral + phenological variable with respect to the combined October, December and March
classification in Figure 9d.

5.3. Spatial Distribution of Rice

At 30-m spatial resolution, maps of the rice growing areas were generated (Figure 11). Most of
the area cultivates kharif rice. The rabi rice is mainly distributed near the river and the lakes to take
advantage of the captured or retained water of the monsoon rain or to benefit from irrigation facilities.
However, rabi rice and double-cropped rice are less practiced in the region due to insufficient irrigation
infrastructure. The distribution of double-cropped rice is scattered over the northern region. The map
also shows that rice cultivated fields are small and medium in size over the region.
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Figure 11. Spatial distribution of the derived rice cultivated area.

5.4. Accuracy Assessment

The accuracy assessment showed a fairly high accuracy for the rice and the non-rice map (Table 4).

Table 4. Classification accuracy assessment (%).

Overall Producer User

Combination of Data Accuracy Class Accuracy Accuracy Kappa

HJ CCD spectral (October) 82.00 N(I;lfreice gg'gz gg'gg 0.64

HJ CCD spectral (December) 88.00 Nolil%eice gggg zggg 0.76

HJ CCD spectral (March) 89.00 N(ilijice 1£10'9060 12%?0 0.78

HJ CCD Spectral (October, 89.00 Rice 88.23 90.00 078
December, March) . Non Rice 89.79 88.00 ’

HJ CCD Spectral (October) + PV 84.00 NOI:C;CP_ ggg gggg 0.68

H]J CCD Spectral (December) + PV 90.00 N(f:('}{eice gggg gggg 0.80

Rice 100.00 82.00

HJ CCD Spectral (March) + PV 91.00 Non Rice 84.74 100.00 0.82

HJ CCD Spectral (October, 93.00 Rice 92.15 94.00 0.86
December, March) + PV . Non Rice 93.87 92.00 ’

Note: PV: phenological variables.

Overall classification accuracy was above 84% for all of the cases when using phenological
variables. The assessment showed that the overall accuracy was increased by 2%—4% by adding
phenology with the spectral data. The kappa coefficient value was improved by 9%. The user accuracy
for rice and non-rice was increased by 5% and 4.5%, respectively. The producer accuracy for both
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the rice and non-rice classes showed an improvement of approximately 4.3%. The errors are mainly
due to the relatively small field sizes (less than one pixel). The rice fields are fragmented and usually
mixed with other land cover classes, which leads to a mixed pixel problem and further decreases the
classification accuracy.

5.5. Comparison with Agricultural Statistics Data

The estimated rice areas were compared to the State’s rice area statistics at the district level
(Table 5). The percentage difference was calculated for the estimated and the statistics rice areas to
check the agreement between them. The estimated rice areas were comparable to the statistics for
the Bongaigaon and Nalbari districts with a percentage difference of 9.31% and —5.19%, respectively.
However, derived rice areas were underestimated for the Barpeta, Goalpara and Kamrup with a
percentage difference of —53.68%, —47.13% and —51.29%, respectively. The discrepancy between the
estimated and the statistics rice areas possibly is due to: (1) the limitations of the 30-m spatial resolution
of H] CCD in identifying small patches of paddy rice; and (2) where the compared datasets were from
the different years and inconsistent statistics-generation methods for different districts.

Table 5. Difference between estimated rice area and statistics (thousand ha).

Districts Estimated (2014-2015) Statistics (2012-2013) Difference (%)
Barpeta 68.93 119.51 —53.68
Bongaigaon 51.22 46.67 9.31
Goalpara 45.89 74.2 —47.13
Kamrup 78.08 131.94 —51.29
Nalbari 72.27 76.13 -5.19
Total 316.39 448.45 —34.53

6. Discussion

The integration of crop phenology has advantages in the rice crop classification. The grassland
and the other crops that are spectrally similar to rice often create confusion for rice discrimination.
Moreover, among the rice fields, variability exists due to the differences in crop planting time, local
weather conditions and other factors [24]. In this study, classification was performed on spectral data
with and without using the phenology. The main differences in the results of the two approaches were
the misclassification of grasslands and crop types. Using only the spectral features, the grasslands
and other crops were misclassified as rice. The reason for the misclassification was that both the
grassland and other crops had spectral properties similar to those of rice. On the other hand, the use of
phenology along with the spectral features improved the classification significantly. The main reason
behind the improvement was that the different crop types had different seasonal behavior, which
is captured through the phenological variables. Additionally, the five phenological variables (base
value, largest value, seasonal amplitude, large and small integral) are actually the statistical values of
NDVI, meaning that they are calculated either by integrating, averaging, differencing or taking the
maximum value of annual NDVL These values are not dependent on the crop planting and harvesting
date, thereby improving the classification by better capturing the crop growth profiles.

Discriminating a specific crop from the various vegetation types using a single image is a
challenge [12,37]. However, the images at the key crop growth stages effectively improve the
classification accuracy. In the study area, the agricultural fields are generally small, fragmented
and irregular. Therefore, a stepwise method has been established to identify the rice fields in a
heterogeneous landscape using an object-based image analysis method.

This study demonstrates the applicability of multi-source remote sensing data (HJ-1A/B and
MODIS) to accurate mapping of rice. The rice usually grows during the rainy season in a humid
tropical climate where obtaining multi-temporal cloud-free optical images for the whole growing
season is a constraint. This constraint becomes particularly critical when considering a large area.
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Therefore, optimal use of available cloud-free images is of great importance. This study demonstrates
how the images from different sensors at peak crop growing stages help with achieving accurate
rice classification. Additionally, the use of multi-source images increases the chance of getting more
cloud-free images for the classification.

The top-down hierarchical classification approach yielded several advantages to discriminate rice
fields. The general classes (e.g., water, forest, built-up, etc.) were classified by applying thresholds
and then removed from further processing. The threshold condition for any class was adjusted to
achieve higher classification accuracy without affecting the condition for the other classes. Along
with the threshold condition, the nearest neighbor classification has also been applied for the initial
classification of rice. The nearest neighbor classification considered the statistical distribution of
the classes. It helped to identify the classes that could not be classified by the threshold condition.
Moreover, the applied top-down hierarchical approach was logical to discriminate the rice class.

Use of object-based image analysis showed an advantage in identifying fragmented rice fields.
Fragmentation of cropland is common in India [29]. During the period between 2001 and 2010, the
operational field size has reduced from 1.33 Ha down to 1.15 Ha [58]. Land is becoming fragmented due
to the absence of land use planning, rapid population growth, economic development, urbanization
and the limited availability of arable land [13]. This study demonstrated that the fragmented rice
fields were well identified by the use of high resolution (30 m) HJ-1A /B images under the object-based
image analysis framework.

In the recent study of Tian et al. [59] and Jia et al. [60,61], the number of base images used to
produce the synthetic time series was much lower than the number used in this study, with six images
in 12 years and one image in one year, respectively. In this study, three H] CCD images of key rice
growth stages were used as a base image for the ESTARFM fusion. When using different base images
in the fusion process, the reported difference is minor between the synthetic and the actual images
on the same date [59,62]. Therefore, in spite of the three base images in our study, the accuracy of the
blended time series was not significantly decreased. The base images were acquired at the beginning,
middle and the end of the growing seasons, which helped the ESTARFM to capture the reflectance
changes caused by phenology, and the synthetic time series reflected the actual changes in the NDVI
trend [30]. Additionally, the index-then-blend approach was adopted, which produces more accurate
synthetic images [46]. The adopted fusion technique yielded accurate synthetic NDVI. However, it is
advised to use dense time series base images in order to achieve high fidelity in the synthetic images
generated by ESTARFM.

Earlier works on rice mapping methods using optical images can be categorized into three groups.
The first group considers individual cloud-free images and uses image statistics approaches, e.g.,
the unsupervised classifiers, like the self-organizing data analysis technique (ISODATA) [63,64], and
supervised classifiers, like maximum likelihood [65] and support vector machine [66].

The second group considers time series images and uses different algorithms, like threshold-based
and spectral matching techniques (SMT) [7,67]. The third group is phenology- and pixel-based paddy
rice mapping (PPPM) [15,17], where rice is identified for individual pixels based on the flooding
signals of the rice transplanting phase by evaluating the differences between the Enhanced Vegetation
Index (EVI)/NDVI and Land Surface Water Index (LSWI). The first two groups often generate maps
that are difficult to compare for different regions, working groups and years, primarily due to the
spectral heterogeneity, training sample selection, post-classification processing and the capabilities of
the image interpreter [68]. In comparison, the PPPM methods of the third category are less affected
by these issues. The phenology-based methods can capture the growing stages of different crops and
identify the unique signals according to crop calendar and management activities [34]. In this study,
rice growth stages were extracted by the analysis of 16-day MODIS NDVI and HJ CCD datasets, and
they were used to improve the spectral-based mapping of rice. This study provides a rice mapping
method combining phenology and multispectral satellite data (Table 6).
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Table 6. Comparison of some of the existing phenology-based paddy rice mapping algorithms.

Reference Approach Study Area

(1) Based on the relationships between South Asia, Southeast Asia
LSWI and NDVI/EVI during flooding and Southern China

and transplanting time

(2) Timing of flooding and transplanting:

all 8-day composites in one year

Xiao et al. [15,17]

(1) Based on the relationships between
LSWI and NDVI/EVI during flooding
and transplanting time

(2) Timing of flooding and transplanting:
between the date of LST (land surface
temperature) 5 °C and EVI = 0.35

Zhang et al. [69] Northeastern China

(1) Based on the relationships between
LSWI and NDVI/EVI during flooding
and transplanting time

(2) Timing of flooding and transplanting:
according to the calendars of 2000-2010

Teluguntla ef al. [70] Krishna River basin, India

(1) Based on the relationships between
LSWI and EVI2 (Enhanced Vegetation
Index 2) during tillering and heading time
(2) Timing of tillering and heading:
according to EVI2 temporal profiles

Qiu et al. [22] Southern China

(1) Based on the combined use of crop
phenology and spectral data

(2) Phenology extraction: according to
NDVI temporal profiles

This study Assam, India

To apply the proposed approach to other climatic regions and large regions, a few points need to
be considered carefully, such as the appropriate selection of threshold conditions; parallel processing
or cloud-computing is suggested for effective handling of large datasets [71]; and if possible, more
high resolution images should be used. Increasing availability of medium and high spatial resolution
satellite sensors like SPOT 6, Landsat 8, Sentinel-2 and G-F1 is increasing the observation frequency.
An increase in good quality observations would increase the efficiency of the methodology, especially
in the tropical regions, where cloud cover is common [72].

The identification of rice fields was affected by several potential factors. The problem of
mixed pixels remains an issue. Some rice patches were too small to be identified with 30-m spatial
resolution HJ-1A /B data. The widely-used, subtraction-based method could not be applied due to the
unavailability of the SWIR (shortwave infrared) band in the H] CCD sensor. The limited availability
of cloud-free images for the whole growing season affected the rice identification. The vegetation
dynamics could be better captured by using additional HJ-1A /B images during the sowing and
harvesting period of rice. However, the use of phenology significantly reduces the necessity of the
hyper-temporal image requirement for rice classification.

7. Conclusions and Future Works

This study presents an object-based image analysis approach for mapping of rice fields by the
combined use of spectral and phenological features. The rice crop extent can provide important
information for decision makers and government for proper management and monitoring of rice.
Using the segmentation algorithm, image objects were created, which were then classified according
to spectral, vegetation indices and phenological properties. It has been found that the proposed
object-based image analysis approach yielded accurate classification results with an overall accuracy of
93% based on the validation samples. However, total rice areas were underestimated by —34.53% when
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compared to the agricultural statistics. This study shows the importance of phenology for specific
crop classification. This study also shows the applicability of just two season’s multi-temporal high
resolution images for rice crop classification. This is important because of the limited availability of
cloud-free images. The approach presented can also be used to classify other crop types in different
regions by making minor changes in classification threshold conditions and training samples.

Future work could be conduct on: (1) investigating the efficiency of phenological variables for
fractional rice mapping in order to address the sub-pixel heterogeneity; (2) investigating the effects of
fused time series NDVI on OBIA-based rice classification accuracy; (3) exploring the effects of image
segmentation results on the OBIA-based rice classification; and (4) investigating more object features,
such as textural and geometric features, for rice classification.
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