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Abstract. In this paper, we study reversible circuits as cascades of
multi-target Toffoli gates. This new type of gates allows to shift parts
of a gate to the preceding gate within a circuit provided that a cer-
tain independence condition holds. It turns out that shifts decrease the
so-called waiting degree such that shifting as long as possible always ter-
minates and yields shift-reduced circuits. As the main result, we show
that shift-reduced circuits are unique canonical representatives of their
shift equivalence classes. Canonical circuits are optimal with respect to
maximal and as-early-as-possible parallelism of targets within gates.
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1 Introduction

Reversible computation is an alternative to conventional computing motivated
by the fact that the integration density of circuits reaches physical limits in scale
and power dissipation. Due to the fact that energy dissipation is significantly
reduced or even eliminated in reversible circuits [1], reversible computing is a
very promising research area.

Reversible circuits are cascades of reversible gates that compute invertible
functions on Boolean vectors. To specify reversible circuits, the gate model in-
troduced by Toffoli [9] is frequently used. In the past this model has been gener-
alized in different ways. In this paper we want to generalize this model further
by introducing multi-target Toffoli gates.

A (single-target multi-controlled) Toffoli gate consists of a target line and
a set of control lines each of which is different from the target line. The lines
represent Boolean variables. The target line gets negated if and only if all control
lines are carrying the value 1. All other values are kept invariant by the evaluation
of the gate. In particular, a Toffoli gate is reversed by itself. Consider now a set of
Toffoli gates such that the target lines are pairwise different and all control lines
are disjoint from all target lines. Such gates may be called independent because
their evaluation in every sequential order yields the same Boolean function.
Moreover, their evaluation can be done in parallel because the various negations
cannot interfere with each other. This motivates us to introduce such sets of
independent Toffoli gates as a multi-target Toffoli gate.

As the parallel as well as each sequential evaluation of independent gates
yield the same result, a multi-target Toffoli gate can be sequentialized with
respect to every partition of the set of target lines. Conversely, two gates can be
parallelized into one gate if their sets of target lines are disjoint and no target
line is control line of the other gate. There is a weaker form of combining two
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multi-target Toffoli gates that can be applied much more frequently than the
full parallelization: One of the gates is sequentialized first and then only one of
the parts is parallelized with the other gate if possible. In this case, a part of
a gate is shifted to another gate. The shifts (together with the parallelization)
define a relation on multi-target Toffoli circuits with quite significant properties.
First of all, the shift relation has the local Church-Rosser property meaning that
the circuits resulting from two shifts on a given circuit can be further shifted
into a common result. Secondly, shifts decrease the so-called waiting degree. For
each target line of some gate, there is a number of preceding gates. If evaluation
is done gate by gate, this is the number of steps a negation must wait before
it is executed. The waiting degree sums up all these numbers. As the waiting
degree decreases with each shift, the lengths of shift sequences are bounded by

the maximum waiting degree (which is m(m−1)
2 for the number m of target lines

of a circuit). In particular, the iteration of shifts as long as possible terminates
always with a circuit reduced with respect to shifting. Combining both results,
the shift-reduced circuits turn out to be unique normal forms within the classes
of shift-equivalent circuits. Therefore, it is justified to call shift-reduced multi-
target Toffoli gates canonical. Canonical circuits are optimal with respect to
maximal and as-early-as-possible parallelism of targets within gates.

Shifts, shift equivalence and shift-reduced normal forms as unique canonical
representatives of their shift equivalence classes were studied by the first author
quite some time ago for parallel derivations in graph grammars (see [5–7]). Al-
though multi-target Toffoli circuits as considered in this paper provide a setting
quite different from parallel graph grammar derivations, the same ideas work.

The paper is organized as follows. Section 2 introduces the characteristics
of reversible functions and circuits. In Section 3 multi-target Toffoli circuits are
defined, followed by considering sequentialization, parallelization and shift in
Section 4. Section 5 introduces the waiting degree. Section 6 covers our theorem
on canonical circuits. Finally, Section 7 contains a conclusion.

2 Reversible Circuits

In this section we introduce the background on reversible functions and their
relation to reversible circuits.

2.1 Reversible Functions

Reversible logic can be used for realizing reversible functions. Reversible func-
tions are special multi-output functions and defined as follows.

Definition 1. Let B = {0, 1} be the set of truth values with the negations
0 = 1 and 1 = 0 and ID be a set of identifiers serving as a reservoir of Boolean
variables. Let BX be the set of all mappings a : X → B for some X ⊆ ID where
the elements of BX are called assignments. If the set of variables is ordered, each
assignment corresponds to a Boolean vector. Then a bijective Boolean (multi-
output) function f : BX → BX is called reversible.

2.2 Reversible Circuits

Reversible circuits are used for representing reversible functions because a re-
versible function can be realized by a cascade of reversible gates. Reversible
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circuits differ from conventional circuits: while conventional circuits rely on the
basic binary operations and also fanouts are applied in order to use signal values
on several gate inputs, in reversible logic fanouts and feedback are not directly
allowed because they would destroy the reversibility of the computation. Also the
logic operators AND and OR cannot be used since they are irreversible. Instead
a reversible gate library is applied. Since the Boolean operator NOT is inverse,
the NOT-gate is part of this reversible library. To increase the expressiveness
the universal Toffoli gate has been introduced, which is a multi-controlled NOT-
gate. Since the Toffoli gate is universal, all reversible functions can be realized
by cascades of this gate type alone (cf. [9]).

A (multiple-control) Toffoli gate consists of a target line t ∈ ID and a set
C ⊆ ID − {t} of control lines and is denoted by TG(t, C). The gate defines the
function ft,C : BX → BX for each X ⊆ ID with {t} ∪ C ⊆ X which maps an

assignment a : X → B to ft,C(a) : X → B given by ft,C(a)(t) = a(t) if a(c) = 1
for all c ∈ C. In all other cases, ft,C(a) is equal to a. Hence, ft,C(a) inverts the
value of the target line if and only if all control lines are set to 1. Otherwise
the value of the target line is passed through unchanged. The values of all other
lines always pass through a gate unchanged. Consequently, ft,C is a mapping on
BX which is inverse to itself and, therefore, reversible in particular. A multiple-
control Toffoli gate can be realized by a sequence of Toffoli gates with two control
lines.

Example 2. The four simplest multi-controlled Toffoli gates are NOT , CNOT ,
CCNOT , and C3NOT .

x1 x1

x2 x2

x3 x3

x4 x4

NOT
(x1, ∅)

CNOT
(x1, {x2})

CCNOT
(x1, {x2, x3})

C3NOT
(x1, {x2, x3, x4})

Fig. 1. The four simplest multi-controlled Toffoli gates

In the graphical representation, the target line is indicated by ⊕ and the
control lines by • vertically connected with their target line (Fig 1).

In addition to positive control lines, in the recent past also negative- and
mixed-control Toffoli gates have been considered [8]. This gains smaller circuits
in general. Nevertheless, the expressiveness remains the same, since each negative
control can be replaced by a positive one with a negation before and after the
control. For this reason, in this work we focus on positive control Toffoli gates.

An extended-target Toffoli gate, as proposed in [2], with multiple control lines
and multiple target lines, denoted by the sets C and T , respectively, holding
C ∪ T ⊆ X, T 6= ∅ and C ∩ T = ∅, realizes the function f(a)(x) = a(x) if x ∈ T
and a(y) = 1 for all y ∈ C, and a(x) otherwise. This means that the values of
all target lines are negated if the value of each control line is 1. We discuss a
further generalization in the following section.

3 Multi-Target Toffoli Circuits

In this section, we introduce the notion of multi-target Toffoli circuits as cascades
of multi-target Toffoli gates. Such a gate has a set of target lines where each
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target line is controlled by a set of control lines which is disjoint from the set of
target lines.

Definition 3. 1. A multi-target Toffoli gate over a set X of lines is a pair
mtg = (T, c : T → 2X) with T ⊆ X, T 6= ∅ and T ∩ c(T ) = ∅ where
c(T ) =

⋃
t∈T

c(t). T is the set of target lines, and c(t) is the set of control lines

of t for t ∈ T .
2. A multi-target Toffoli gate mtg = (T, c) models the following semantic func-

tion fmtg on BX :

fmtg(a)(x) =

{
a(x) if x ∈ T and a(y) = 1 for all y ∈ c(x),
a(x) otherwise.

3. A multi-target Toffoli circuit mtc = mtg1 . . .mtgn is a sequence of multi-
target Toffoli gates. Its length n is denoted by |mtc|.

4. Let mtc be a multi-target Toffoli circuit. It models the semantic function
fmtc defined as the sequential composition of the semantic functions of the
gates, i.e.

fmtc = fmtgn ◦ · · · ◦ fmtg1 .

If a multi-target Toffoli gate mtg has the set T of target lines and T ′ is a
subset of T , then mtg can be restricted to T ′ and its complement T ′′ = T − T ′

yielding the multi-target Toffoli gates mtg′ and mtg′′. It turns out that the
sequential composition mtg′mtg′′ is semantically equivalent to mtg.

Proposition 4. Let mtg = (T, c) be a multi-target Toffoli gate, let T ′ ⊆ T with
∅ 6= T ′ 6= T .

1. Then mtg′ = (T ′, c′) with c′(t′) = c(t′) for t′ ∈ T ′ is a multi-target Toffoli
gate. This gate may be denoted by mtg|T ′ , called the restriction of mtg
to T ′.

2. Accordingly, mtg′′ = (T ′′, c′′) with T ′′ = T − T ′ and c′′(t′′) = c(t′′) for
t′′ ∈ T ′′ is also a multi-target Toffoli gate.

3. The sequential composition mtg′mtg′′ is semantically equivalent to mtg, i.e.
fmtg = fmtg′mtg′′ .

Proof. 1. T ′ ∩ c′(T ′) = T ′ ∩
⋃

t′∈T ′
c′(t′) = T ′ ∩

⋃
t′∈T ′

c(t′) ⊆ T ∩
⋃
t∈T

c(t) =

T ∩ c(T ) = ∅.
2. T ′ ⊆ T and ∅ 6= T ′ 6= T imply T − T ′ ⊆ T and ∅ 6= T − T ′ 6= T such that

Point 1 applies to T ′′ = T − T ′.
3. By definition, we get the following equations for all a ∈ BX and x ∈ X:

fmtg′mtg′′(a)(x) = (fmtg′′ ◦ fmtg′)(a)(x) = fmtg′′(fmtg′(a))(x)

=

{
fmtg′(a)(x) if x ∈ T ′′ and fmtg′′(a)(y) = 1 for all y ∈ c′′(x),
fmtg′(a)(x) otherwise,

as well as

fmtg′(a)(x) =

{
a(x) if x ∈ T ′ and a(y) = 1 for all y ∈ c′(x),
a(x) otherwise.
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Combining these results and using T ′ ∩ T ′′ = ∅, T ′ ∪ T ′′ = T and the
disjointness of control and target lines, we get:

fmtg′mtg′′(a)(x) =


a(x) if x ∈ T ′′ and a(y) = 1 for all y ∈ c′′(x),

a(x) if x ∈ T ′ and a(y) = 1 for all y ∈ c′(x),
a(x) otherwise,

=

{
a(x) if x ∈ T and a(y) = 1 for all y ∈ c(x),
a(x) otherwise,

= fmtg(a)(x).

This proves the statement.

Given the situation of Proposition 4, the circuit mtg′mtg′′ may be seen as a
sequentialization of mtg and mtg as a parallelization of mtg′mtg′′. In the next
section, both operations are considered within arbitrary circuits.

4 Sequentialization, Parallelization and Shift

Sequentialization and parallelization can be done within large circuits inducing
an equivalence relation on multi-target Toffoli circuits. As parallelization, a par-
ticular composition of a sequentialization and a parallelization shifts some target
lines of a gate to the preceding gate.

Shifts are defined formally as a generalization of parallelization. The shift
operation is quite nondeterministic as there may be many gates within a circuit
that allow shifting. But it turns out that shifting has the local Church-Rosser
property meaning that two circuits obtained by two shifts on a circuit can always
be shifted into a common circuit.

Definition 5. Let mtg = (T, c) be a multi-target Toffoli gate and T ′ ⊆ T with
∅ 6= T ′ 6= T . Let mtg′ be the restriction of mtg to T ′ and mtg′′ the restriction
of mtg to T ′′ = T − T ′. Then

1. mtg′mtg′′ is called sequentialization of mtg wrt T ′ and mtg parallelization
of mtg′mtg′′. The parallelization is also denoted by mtg′ + mtg′′.

2. Let mtc = mtc′mtgmtc′′ be a multi-target Toffoli circuit and mtg′mtg′′ be
the sequentialization of mtg wrt T ′. Then mtc and mtc = mtc′mtg′mtg′′mtc′′

are in seq-relation wrt T ′ in gate i = |mtc′|+ 1, denoted by

mtc −−−−−−→
seq(i,T ′)

mtc

as well as in par -relation after gate i− 1 = |mtc′|, denoted by

mtc −−−−−−→
par(i−1)

mtc.

Let ∼seq be the equivalence relation induced by seq, i.e. the reflexive, sym-
metric, and transitive closure of seq and ∼par the corresponding equivalence
relation induced by par. Then, obviously, ∼seq and ∼par are equal because seq
and par are inverse to each other.
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Definition 6. Let mtc and m̃tc be two multi-target Toffoli circuits. Then m̃tc
is a shift of mtc if mtc −−−−−−→

par(i−1)
m̃tc or mtc −−−−−−−→

seq(i+1,T ′)
mtc −−−−−−→

par(i−1)
m̃tc for

some i ≥ 1 and T ′ ⊆ X, denoted by

mtc −−−−−→
sh(i,T ′)

m̃tc

where T ′ is the set of target lines of the gate i + 1 in case that the shift is
just a parallelization. If i and T ′ are clear from the context, then we may write
mtc −→

sh
m̃tc.

Example 7. Consider the mtc over four lines x1 to x4 including the gates mtg1 =
({x3}, c1) with c1(x3) = {x1}, mtg2 = ({x2}, c2) with c2(x2) = {x1}, mtg3 =
({x4}, c3) with c3(x4) = {x3}, mtg4 = ({x4}, c4) with c4(x4) = {x1, x3} and
mtg5 = ({x2}, c5) with c5(x2) = {x3} as depicted in Fig. 2(a).

Obviously, mtg1 and mtg2 can be parallelized because the target line of
the one gate is no target or control line of the other gate. The same holds for
gates mtg4 and mtg5. Hence, we get mtc −−−−→

par(0)
mtc′ −−−−→

par(2)
mtc′′ with mtc′ =

mtg′1mtg3mtg4mtg5 and mtc′′ = mtg′1mtg3mtg′4 where mtg′1 = ({x2, x3}, c′1)
with c′1(x2) = c′1(x3) = {x1} and mtg′4 = ({x2, x4}, c′4) with c′4(x2) = {x3} and
c′4(x4) = {x1, x3}. Afterwards we can apply the shift sh(2, {x2}) to mtc′′ by
sequentializing mtg′4 wrt {x2} and parallelizing the resulting circuit after mtg′1.
This yields the circuit depicted in Fig. 2(b) where mtg′2 = ({x2, x4}, c′2) with
c′2(x2) = c′2(x4) = {x3}.

x1 x1

x2 x2

x3 x3

x4 x4

(a) mtg1mtg2mtg3mtg4mtg5

x1 x1

x2 x2

x3 x3

x4 x4

(b) mtg′1mtg′2mtg4

Fig. 2. Shifting a multi-target Toffoli circuit

Proposition 8. The shift relation has the local Church-Rosser property mean-
ing that two shifts on a circuit mtc

mtc
mtc1

sh

mtc2sh

imply mtc
mtc1

sh
∗

mtc2 sh
∗

for some circuit mtc where
∗−→
sh

is the reflexive and transitive closure of the shift

relation sh.

Proof. A shift changes two successive gates of a circuit and keeps the rest in-
variant. Hence two shifts that change four different gates cannot interfere with
each other so that they can be applied in any order yielding the same result.
The situation becomes more complicated if the two shifts change two or three
successive gates. Then various cases can occur. They are listed in Fig. 3.

Let us start with shifts on the same two gates. Then both shifts may be
proper shifts of different parts of the second gate or one of the shifts is the
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parallelization of the two gates. If both shifts are proper, the parts shifted may
be incomparable or one may be a subpart of the other. Hence there are three
cases to be considered. As an abbreviation, we write g for mtg.

Case 1: Let g = (T, c) and g′ = (T ′, c′). Then the given shifts of T̂ and
ˆ̂
T in

gate |mtc′|+ 2 with T̂ − ˆ̂
T 6= ∅ 6= ˆ̂

T − T̂ are defined because T̂ ∩ T = ∅ =
ˆ̂
T ∩ T

and T ∩ c′(T̂ ) = ∅ = T ∩ c′(
ˆ̂
T ). The changed gates after the shifts are:

g + g′|T̂ = (T ∪ T̂ , ĉ), g′|T−T̂ = (T − T̂ , c′|T−T̂ ),

g + g′| ˆ̂
T

= (T ∪ ˆ̂
T, ˆ̂c), g′|

T− ˆ̂
T

= (T − ˆ̂
T, c′|

T− ˆ̂
T

)

with ĉ(x) = ˆ̂c(x) = c(x) for x ∈ T , ĉ(x) = c′(x) for x ∈ T̂ , ˆ̂c(x) = c′(x) for

x ∈ ˆ̂
T . Moreover, the following holds:

(
ˆ̂
T − T̂ ) ∩ (T ∪ T̂ ) = ((

ˆ̂
T − T̂ ) ∩ T ) ∪ ((

ˆ̂
T − T̂ ) ∩ T̂ ) ⊆ ˆ̂

T ∩ T = ∅,

(T ∪ T̂ ) ∩ c′(
ˆ̂
T − T̂ ) = (T ∩ c′(

ˆ̂
T − T̂ )) ∪ (T̂ ) ∩ c′(

ˆ̂
T − T̂ ) ⊆ T ∩ c′(

ˆ̂
T ) = ∅.

Therefore the shift of
ˆ̂
T − T̂ in gate g′|T−T̂ to the preceding gate g + g′|T̂ is

defined because
ˆ̂
T − T̂ 6= ∅. Analogously the shift of T̂ − ˆ̂

T in gate g′|
T− ˆ̂

T
to the

preceding gate g + g′|T̂ is defined because T̂ − ˆ̂
T 6= ∅. The changed gates are:

(g + g′|T̂ ) + (g′|T−T̂ )| ˆ̂
T

= g + g′|
T̂∪ ˆ̂

T
, (g′|T−T̂ )|

(T−T̂ )− ˆ̂
T

= g′|
T−(T̂∪ ˆ̂

T )
,

(g + g′| ˆ̂
T

) + (g′|
T− ˆ̂

T
)|T̂ = g + g′|

T̂∪ ˆ̂
T
, (g′|

T− ˆ̂
T

)|
(T− ˆ̂

T )−T̂
= g′|

T−(T̂∪ ˆ̂
T )
.

This proves that the two further shifts yield the same circuit.

Case 2: The situation is similar to Case 1 with the exception that T̂ ⊆ ˆ̂
T

implies T̂ − ˆ̂
T = ∅. But then the shift of

ˆ̂
T − T̂ after the shift of T̂ yields the

same result as the shift of
ˆ̂
T in the first place using arguments similar to Case 1.

Case 3: Given a shift and a parallelization as in Fig. 3(c), the parallelization
after the shift is defined and yields the same result as the parallelization directly
using arguments similar to Case 1.

Cases 4-7: Now we consider two shifts changing three successive gates. Then
both shifts may be parallelization or one is a parallelization and the other one a
proper shift or both are proper shifts.

The argumentation that the given shifts can be continued by further shifts
into the same result is in all four cases similar to the argumentation in Case
1. Nevertheless, we go into the details of Case 5 because, in this very case,
two further shifts are applied after the given proper shift to keep up with
the given parallelization. The circuit after the shift has the form mtc′g(g′ +
g′′|T̂ )g′′|T ′′−T̂mtc′′ where the gate |mtc′|+ 2 can be sequentialized wrt T ′ yield-

ing the circuit mtc′gg′g′′|T̂ g′′|T ′′−T̂mtc′′. By assumption g and g′ can be par-

allelized. Both together establish the shift of T ′ in gate |mtc′| + 2 yielding the
circuit mtc′(g + g′)g′′|T̂ g′′|T ′′−T̂mtc′′ where g′′|T̂ g′′|T ′′−T̂ is a sequentialization

of g′′ so that the parallelization is defined yielding mtc′(g+ g′)g′′mtc′′ as stated.
As there are no cases left, the local Church-Rosser property of shifts is proved.
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mtc′gg′mtc′′

mtc′(g + g′|T̂ )g′|T ′−T̂mtc′′

sh(|mtc′|+ 1, T̂ )

mtc′(g + g′| ˆ̂
T

)g′|
T ′− ˆ̂

T
mtc′′sh(|mtc′|+ 1,

ˆ̂
T )

mtc′(g + g′|
T̂∪ ˆ̂

T
)g′|

T ′−(T̂∪ ˆ̂
T )
mtc′′

sh(|mtc′|+ 1,
ˆ̂
T − T̂ )

sh(|mtc′|+ 1, T̂ − ˆ̂
T )

(a) Case 1

mtc′gg′mtc′′

mtc′(g + g′|T̂ )g′|T ′−T̂mtc′′

sh(|mtc′|+ 1, T̂ )

mtc′(g + g′| ˆ̂
T

)g′|
T ′− ˆ̂

T
mtc′′sh(|mtc′|+ 1,

ˆ̂
T )

sh(|mtc′|+ 1,
ˆ̂
T − T̂ )

(b) Case 2

mtc′gg′mtc′′

mtc′(g + g′)mtc′′

par(|mtc′|)

mtc′(g + g′|T̂ )g′|T ′−T̂mtc′′
sh(|mtc′|+ 1, T̂ )

par(|mtc′|)

(c) Case 3

mtc′gg′g′′mtc′′

mtc′(g + g′)g′′mtc′′

par(|mtc′|)

mtc′g(g′ + g′′)mtc′′
par(|mtc′|+ 1)

sh(|mtc′|+ 1, T ′)

(d) Case 4

mtc′gg′g′′mtc′′

mtc′(g + g′)g′′mtc′′

par(|mtc′|)

mtc′g(g′ + g′′|T̂ )g′′|T ′′−T̂mtc′′
sh(|mtc′|+ 2, T̂ )

mtc′(g + g′)g′′|T̂ g
′′|T ′′−T̂mtc′′

par(|mtc′|+ 1)

sh(|mtc′|+ 1, T ′)

(e) Case 5

mtc′gg′g′′mtc′′

mtc′(g + g′|T̂ )g′|T ′−T̂ g
′′mtc′′

sh(|mtc′|+ 1, T̂ )

mtc′g(g′ + g′′)mtc′′
par(|mtc′|+ 1)

mtc′(g + g′|T̂ )(g′ + g′′)|(T ′∪T ′′)−T̂mtc′′

par(|mtc′|+ 1)

sh(|mtc′|+ 1, T̂ )

(f) Case 6

mtc′gg′g′′mtc′′

mtc′(g + g′|T̂ )g′|T ′−T̂ g
′′mtc′′

sh(|mtc′|+ 1, T̂ )

mtc′g(g′ + g′′| ˆ̂
T

)g′′|
T ′′− ˆ̂

T
mtc′′sh(|mtc′|+ 2,

ˆ̂
T )

mtc′(g + g′|T̂ )(g′ + g′′)|
(T ′∪ ˆ̂

T )−T̂
g′′|

T ′′− ˆ̂
T
mtc′′

sh(|mtc′|+ 2,
ˆ̂
T )

sh(|mtc′|+ 1, T̂ )

(g) Case 7

Fig. 3. The 7 cases of the shift relation
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5 Waiting Degree

Besides the local Church-Rosser property, the shift operation has a second sig-
nificant property: It does not allow infinite shift sequences. In other words, the
lengths of shift sequences starting in some circuit are bounded. Consequently,
shifting as long as possible always terminates in a circuit that is reduced with
respect to shifting. To prove this, we introduce the waiting degree and show that
it decreases with each shift. The waiting degree of a circuit sums up, for each
target line, the number of gates that precede the gate of the target line.

Definition 9 (Waiting degree). Let mtc = (T1, c1) . . . (Tn, cn) be a multi-
target Toffoli circuit. Then the waiting degree of mtc is

wait(mtc) =

n∑
j=1

(j − 1) ·#Tj

where #Tj denotes the number of elements of Tj .

Example 10. The waiting degree of the circuit in Fig. 2a is 10 and the waiting
degree of the circuit in Fig. 2b is 4.

Proposition 11.

1. If mtc −−−−−−→
par(i−1)

m̃tc, then wait(m̃tc) = wait(mtc)−
n∑

j=i+1

#Tj .

2. If mtc −−−−−−−→
seq(i+1,T ′)

mtc −−−−−−→
par(i−1)

m̃tc, then wait(m̃tc) = wait(mtc)−#T ′.

Proof. 1. In this case, m̃tc = (T1, c1) . . . (Ti−1, ci−1)(Ti+Ti+1, c)(Ti+2, ci+2) . . .

(Tn, cn) = (T̃1, c̃1) . . . (T̃n−1, c̃n−1) with c(x) = ci(x) for x ∈ Ti and c(x) =
ci+1(x) for x ∈ Ti+1. Therefore,

wait(m̃tc) =

n−1∑
j=1

(j − 1)#T̃j

=

i−1∑
j=1

(j − 1)#T̃j

+ (i− 1)#T̃i +

n−1∑
j=i+1

(j − 1)#T̃j

=

i−1∑
j=1

(j − 1)#Tj

+ (i− 1)#(Ti + Ti+1) +

n−1∑
j=i+1

(j − 1)#Tj+1

=

i−1∑
j=1

(j − 1)#Tj

+ (i− 1)#Ti + i#Ti+1 −#Ti+1 +

n∑
j=i+2

(j − 2)#Tj

=

i+1∑
j=1

(j − 1)#Tj

−#Ti+1 +

n∑
j=i+2

((j − 1)#Tj −#Tj)

=

 n∑
j=1

(j − 1)#Tj

− n∑
j=i+1

#Tj = wait(mtc)−
n∑

j=i+1

#Tj
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2. The proof in this case is analogously.

Proposition 12. Let mtc = (T1, c1) . . . (Tn, cn) be a multi-target Toffoli circuit.

Then wait(mtc) ≤ m(m−1)
2 for m =

n∑
j=1

#Tj .

Proof. Sequentialize mtc as long as possible. Then the result has length m and

waiting degree m(m−1)
2 . But wait(mtc) is not greater because sequentialization

increases the waiting degree.

The two properties imply the following corollary.

Corollary 13. 1. Let mtc
n−→
sh

mtc be a shift sequence of n shifts. Then n ≤
wait(mtc).

2. Let mtc = (T1, c1) . . . (Tn, cn) be a multi-target Toffoli circuit. Let m =
n∑

i=1

#Ti. Then shifting as long as possible terminates with a circuit that is

reduced wrt shifts after at most m(m−1)
2 shifts.

Let ∼ be the equivalence relation generated by the shift relation, called shift
equivalence. Then ∼ is equal to ∼seq = ∼par as par ⊆ shift and shift ⊆
par ∪ par ◦ seq ⊆ par ∪ (par ◦ par−1) ⊆ (par ∪ par−1)∗ = ∼par.

6 Canonical Circuits

Circuits that are reduced wrt shifts are called canonical. They are local op-
tima wrt the waiting degree. But this result can be tremendously improved by
combining the termination with the local Church-Rosser property. The shift-
ing defines an equivalence relation on circuits. Each equivalence class contains
only circuits that are semantically equivalent. Moreover, it turns out that each
canonical circuit is a unique representative of its shift equivalence class so that
it is a global optimum within its class. To show this, we prove first that shift
equivalence is confluent meaning that each two equivalent circuits can be shifted
into a common circuit.

Theorem 14. Shift-equivalent canonical circuits are equal.

Proof. Let mtc and mtc be two shift-equivalent canonical circuits. Due to the
following Lemma, there is a circuit m̃tc and there are shift sequences from mtc
and mtc into m̃tc. Because mtc and mtc are canonical and hence shift-reduced,
both shift sequences have length 0 yielding mtc = m̃tc = mtc as stated.

Lemma 15. mtc ∼ mtc implies m̃tc
mtc

sh
∗

mtc sh
∗ for some multi-target Toffoli

circuit m̃tc.

Proof. mtc ∼ mtc iff there is a sequence zz = mtc0 . . .mtcn such that mtc0 =
mtc,mtcn = mtc,mtci −→

sh
mtci+1 or mtci+1 −→

sh
mtci for all i = 0, . . . , n − 1,

i.e. a zigzag of shifts.
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Let MTC(zz) = {mtci | i = 0, . . . , n} and let X be a finite set of multi-

target Toffoli circuits. Let reach(X) = {mtc | mtc
∗−→
sh

mtc,mtc ∈ X}. Note

that reach(X) is finite. Then, mtci
mtci−1

sh
mtci+1sh

is a critical pair of zz if mtci /∈

reach(MTC(zz)− {mtci}), i.e. mtci is a critical element of zz.
Induction on #reach(CE(zz)), where CE(zz) denotes the set of critical el-

ements of zz.
Base: #reach(CE(zz)) = 0. Then there is no critical element because each

critical element is reachable by itself by 0 shifts and belongs to reach(CE(zz)).
Therefore, zz must contain a multi-target Toffoli circuit mtci0 with mtci −→

sh

mtci+1 for all i < i0 and mtci+1 −→
sh

mtci for all i ≥ i0.

Step: Let #reach(CE(zz)) = k with k > 0. Let mtci be a critical element
of zz i.e. mtci ∈ CE(zz). Then one can replace mtci−1 ←−

sh
mtci −→

sh
mtci+1

in zz by the shifts that make the shift relation locally Church-Rosser due to
Proposition 8 defining a new zz′. The new elements of zz′ are not critical as none
of them has branching shifts. Hence, CE(zz′) ⊆ MTC(zz) ⊆ reach(CE(zz)).
This implies reach(CE(zz′)) ⊆ reach(reach(CE(zz)) = reach(CE(zz)). The
inclusion is proper as mtci /∈ reach(CE(zz′)) because of the following reason.

Assuming mtci ∈ reach(CE(zz′)) then mtcj
∗−→
sh

mtci for some mtcj ∈ CE(zz′).

As mtcj ∈ MTC(zz) − {mtci} we get mtci ∈ reach(MTC(zz) − {mtci}) in
contradiction to the choice of mtci.

Therefore, #reach(CE(zz′)) < k so that by induction hypothesis, the lemma
holds for zz′ and therefore for zz too.

7 Conclusion

In this paper, we have studied a generalized class of Toffoli circuits that are
sequentially composed of multi-target Toffoli gates. Under certain independence
conditions parts of a gate can be shifted to the preceding gate within a circuit.
It has turned out that shift-reduced circuits are unique canonical representatives
of their shift equivalence classes. To shed more light on the significance of these
considerations, further research on the following topics may be helpful.

1. In the case considered in this paper, the negation on a target line takes place
if and only if all control lines are 1. More generally, there may be two types
of control lines where the lines of one type must be 1 as before, but the other
lines must be 0 to trigger the negation (see e.g., [8]). We are confident that
all the results in this paper still hold if one considers this more general kind
of control with positive and negative control lines.

2. Canonical circuits have minimal waiting degree within their shift equivalence
classes. But they may be the starting point for further optimizations. For
example, it is clear that the sequential composition of a Toffoli gate with itself
yields the identity. Therefore, two identical parts in successive multi-target
Toffoli gates can be removed without changing the semantics. Afterwards
another round of shift optimization can be started. And there are other
operations with such a perspective.

3. Drechsler et al. [4] study exclusive sums of products (ESOPs) which are a
special kind of Toffoli circuits where the target lines and the control lines
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stem from disjoint sets. Therefore, the independence check for ESOPs con-
cerns only the disjointness of target lines and shifting may become more
efficient.

4. Chen et al. [2] and Wille et al. [10] study a special case of our multi-target
Toffoli gates where all target lines have the same set of control lines. In both
cases, the authors relate the special case with quantum circuits. Hence is may
be interesting whether our more general case may yield further improvements
in this line of research.

5. As mentioned in the introduction, shifts on parallel graph grammar deriva-
tions behave like the shifts on multi-target Toffoli circuits (see, e.g., [5, 3]).
Therefore, we wonder whether there is a way to represent Toffoli circuits as
parallel derivations.

References

1. Bennett, C.: Logical reversibility of computation. IBM Journal of Research and
Development 17(6), 525–532 (1973)

2. Chen, J.-L., Zhang, X.-Y., Wang, L.-L., Wei, X.-Y., Zhao, W.-Q.: Extended Toffoli
gate implementation with photons. In: Proceeding of the 9th International Con-
ference on Solid-State and Integrated-Circuit Technology. pp. 575–578. ICSICT
(2008)

3. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
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