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Abstract
We present NN-grams, a novel, hybrid language model inte-
grating n-grams and neural networks (NN) for speech recog-
nition. The model takes as input both word histories as well
as n-gram counts. Thus, it combines the memorization capac-
ity and scalability of an n-gram model with the generalization
ability of neural networks. We report experiments where the
model is trained on 26B words. NN-grams are efficient at run-
time since they do not include an output soft-max layer. The
model is trained using noise contrastive estimation (NCE), an
approach that transforms the estimation problem of neural net-
works into one of binary classification between data samples
and noise samples. We present results with noise samples de-
rived from either an n-gram distribution or from speech recog-
nition lattices. NN-grams outperforms an n-gram model on an
Italian speech recognition dictation task.
Index Terms: speech recognition, language models, neural net-
works

1. Introduction
A language model (LM) is a crucial component of natural lan-
guage processing technologies such as speech recognition [1]
and machine translation [2]. It helps discriminate between well-
formed and ill-formed sentences in a language. Traditionally,
n-gram LMs have formed the basis for most language modeling
approaches. It has only been in the past few years that alterna-
tive approaches such as maximum-entropy models [3] and neu-
ral network models including feed-forward networks [4, 5, 6],
recurrent neural networks (RNNs) [7] and variants such as long
short term memory (LSTM) networks [8] have started outper-
forming n-gram models [9].

Neural network LMs have advantages over n-gram mod-
els. First, they provide better smoothing for rare and unknown
words owing to their distributed word representations [9]. Neu-
ral network Models such as LSTMs have the ability to remem-
ber long-distance context, an attribute that has eluded several
language models in the past. Even with these potential advan-
tages, LSTMs and other neural network models have not been
used extensively for language modeling in speech recognition
because they are more resource intensive at both training and
run time when compared to n-gram models. This continues to
be the case despite recent efforts at speeding up training and
test times using techniques such as pipelined training and vari-
ance regularization [10]. LSTMs do not scale well to the large
quantities of text training data typically used for estimating n-
gram LMs. This is a substantial disadvantage during training
because a larger LSTM which attains a better performance than
a smaller LSTM is also slower to converge. At run time, an
LSTM is expensive in terms of both memory and speed rela-

tive to an n-gram model. Specifically, the output soft-max layer
is computationally expensive at both training and run time if
the vocabulary size is in the order of millions of words, a com-
mon characteristic of current speech recognition systems (e.g.
[11]). Therefore, most neural network language modeling ap-
proaches for speech recognition have employed smaller vocab-
ularies consisting of at most several thousands of words [5, 7].
Speech recognizers for voice search and dictation typically op-
erate on short utterances on which n-gram models perform
fairly well. This has further limited the usefulness of LSTM
LMs for these tasks.

In this paper, we investigate a flavor of neural network LMs
that combines the strengths of a neural network in generalizing
to novel contexts with the scalability and memorization ability
of an n-gram model. Our main proposal is to train a neural net-
work that is able to learn a mapping function given both the
previous history of a given word as well as the n-gram counts,
which are sufficient statistics for estimating an n-gram model.
By providing n-gram counts as inputs, we expect this model
to learn simultaneously a function of the counts as well as the
word history and estimate the probability of the current word
given the history. Specifically, this model is a feed-forward
neural network that takes as input the current word, K previous
words, and counts for the N n-grams ending at the current word,
where N < K. We call this model neural network-ngrams
(NN-grams), to emphasize that it makes direct use of n-gram
count statistics. While there have been earlier efforts at incor-
porating hashes of n-gram features as inputs to an RNN [7],
we are not aware of a neural network model that directly takes
n-gram counts as inputs.

To reduce computation, we do not include an output soft-
max layer in NN-grams. While the NN-grams’ score can be
interpreted as a log probability of the current word given the
history, the absence of a soft-max layer means that these proba-
bilities do not necessarily sum to one over the entire vocabulary.

2. NN-grams
An LM is a probability distribution over the current word given
the preceding words: P (wi|wi−1, wi−2, . . . , w1). An n-gram
LM makes the assumption that the current word depends only
on the previous N − 1 words: i.e.

P (wi|wi−1, . . . , w1) = P (wi|wi−1, . . . , wi−(N−1)).

The architecture of the NN-grams model is given in Fig-
ure 1. The model takes as input the current word, K preceding
words and counts for the N n-grams ending at the current word
and estimates the log likelihood of the current word given the
history:
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Figure 1: Architecture of the NN-grams model. The previous
words are “please” “set” “an” and the current word is alarm.
N = 2, K = 3 and the embedding dimension is 2.

fnng(wi, . . . , w1) = logP (wi|wi−1, . . . , wi−K , c)

where c is a vector of n-gram counts of length (K + 1)N
such that c1 = Count(wi), c2 = Count(wi, wi−1),..., CN =
Count(wi, wi−1, . . . , wi−(N−1)) are counts of n-grams ending
at the current word, cN+1 through c2N are counts of n-grams
ending at the previous word,..., and cKN+1 through c(K+1)N

are counts of n-grams ending at word wi−K (See the count ma-
trix in Figure 1 for an example), and the log probability is esti-
mated by the neural network. Each of the words wi, . . . , wi−K

is presented as a 1-hot vector to the network. The number of
previous words, K, can be larger than N, the order of the n-gram
counts. This enables the model to take into account longer con-
text. Like other neural network LMs [4], the NN-grams model
maps words into a high dimensional space and learns an em-
bedding for each word in this space while simultaneously also
learning the network parameters. The word embeddings and the
n-gram counts are passed through separate layers with rectified
linear unit (ReLu) activations [12] and then concatenated. The
result is passed through a third ReLu layer and provided as an
input to NCE. The output of the NCE layer approximates the
log probability of the current word given the history and the
n-gram counts. Unlike other neural network language model-
ing approaches [4, 5, 13], there is no explicit soft-max over the
vocabulary.

2.1. Model Estimation

We train the neural network using noise contrastive estimation
(NCE), a method for training unnormalized probabilistic mod-
els [14, 13, 15]. NCE transforms the estimation problem of
the network into a classification problem where the goal is to
differentiate between samples from the training data (D = 1)
and those from a pre-specified noise distribution (D = 0). For
brevity, we abbreviate the current word, wi as w and its history
wi−1 . . . , wi−K , c as h. Our goal is to fit the neural network to
the training data distribution Pdata(w|h).

Suppose we have f noise samples for each training data
sample, the posterior probability that the sample (h,w) arises
from the training data is given by [15]:

P (D = 1|w, h) =
Pdata(w|h)

Pdata(w|h) + Pnoise(w|h)f
.

We estimate this probability by replacing the data distribution
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Figure 2: Extracting speech noise samples via lattice pinching.
All hypotheses in a lattice (top panel) are aligned with respect to
the 1-best hypothesis (shown in bold). For each lattice edge, the
alignment relative to the 1-best hypothesis is determined (mid-
dle panel). The list of noise samples is then extracted for each
position (bottom panel).

logPdata(w|h) with that of the neural network NN(w, h):

logit(D = 1|w, h) = log
(

P (D = 1|w, h)

1− P (D = 1|w, h)

)
= logPdata(w|h)− log(f)− logPnoise(w|h)
≈ NN(w, h)− log(f)− logPnoise(w|h).

2.2. Noise Distributions

NCE training works best when the noise distribution is close to
the data distribution. In this case, the training data samples are
hard to distinguish from noise samples and the model is forced
to learn about the structure of the data [14]. We experiment with
two types of noise distributions. In the first type, we sample the
noise word from the n-gram distribution over the words given
the history. We will refer to this as text noise. In the second
type, we sample the noise word from the word level confusions
generated from a speech recognition system. We will refer to
this as speech noise. Unlike text noise, speech noise consists of
words which are acoustically confusable with the words in the
training data.

Ideally, these noise samples would be words which are tran-
scribed incorrectly by the speech recognition system when com-
pared with a human transcription. However, the quantity of hu-
man transcriptions is limited. Therefore, we run the recognizer
on utterances where human transcriptions are not available and
additionally, a 1-best recognition hypothesis with high confi-
dence exists. The noise words are the alternatives to the 1-best
recognition hypothesis. We align the 1-best hypothesis to the
paths in the recognition word lattice using lattice pinching [16]
(Figure 2) and obtain a set of noise samples for each word in
the 1-best hypothesis. Within each such set, the noise proba-
bility of a given word is its posterior probability. We exclude
those words in the 1-best hypothesis which a) do not have con-
fusions in the lattice e.g. are and you in Figure 2, and b) align
to word sequences with more than more word e.g. Hello aligns
with well o in Figure 2.

2.3. Count Rescaling

One of the inputs to NN-grams is a vector of n-gram counts.
Since this count can have a large dynamic range from 0 to
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several millions, we rescale the count to improve the conver-
gence of neural network training using gradient descent [17].
If C is the original count, the rescaled count is obtained as
C′ = 0.1 log(C) if C > 0 and −1 if C = 0.

3. Experiments
We evaluated the NN-gram language model (LM) on Italian
voice-search and dictation speech recognition tasks. Since the
NN-gram model does not yield probability estimates that are
guaranteed to be normalized, we do not report perplexities. Our
test sets consisted of a voice-search (VS) set with 12,877 ut-
terances (27.4 hours, 47,867 words) and a dictation (DTN) set
with 12,625 utterances (19.2 hours, 82,121 words). All utter-
ances were anonymized. The acoustic models were trained us-
ing convolutional, LSTM, fully connected deep neural networks
as described in [18]. All LMs were trained on anonymized and
aggregated search queries and dictated texts. A 5-gram LM with
Katz backoff was trained using a total of 26B words, and con-
sisted of a total of 102M n-grams. The initial word lattice was
generated using this 5-gram LM and a recognition vocabulary
consisting of 3.9M words.

The NN-grams model was trained on the same corpus as the
5-gram LM. Since the NN-grams model takes 6-gram counts as
input, we additionally trained a 6-gram LM with Katz backoff
to provide a fair baseline. Prior work [19, 20] has shown that
when using pruning, n-gram models with Katz backoff outper-
form those with Kneser-Ney smoothing [21]. Hence, we used
Katz backoff as the smoothing technique for all our n-gram lan-
guage models. We limited the vocabulary size to 2M words
for both models. Even though the NN-grams model has fewer
parameters than the 6-gram LM (Table 1), it requires the avail-
ability of n-gram counts at run time.

LM parameter type # of parameters
6gram n-grams 9.6B

NNgram NN parameters 517M

Table 1: Model Parameters of NN-grams and 6-gram LMs.

The word lattices generated in the initial recognition pass
were rescored using either the 6-gram LM or the NN-grams
model. In the case of the NN-grams LM, there is no exact al-
gorithm for rescoring the lattice. We note that there have been
approximate algorithms to rescore lattices using long-span neu-
ral network language models [22, 23]. However, we did not
employ these lattice rescoring methods and instead, extracted
and reranked the 150-best word hypotheses from the lattice.1

The score (log probability) of the either the 6-gram LM or the
NN-grams model was interpolated with the log probability of
the 5-gram LM using a fixed weight of 0.5. The 5-gram LM
gave a Word Error Rate (WER) of 17.9% on VS and 11.8% on
DTN.

We set the parameters K and N of the NN-grams model to
9 and 6 respectively. The model was trained until convergence
with an AdaGrad optimizer [24] using a learning rate that was
set to 0.01. We used a batch size of 200 in training. The di-
mensionality of the word embedding layer was 256. The ReLu
layer that processed the embeddings (ReLu-A) had 1024 units
while the Relu layer that processed the n-gram counts (ReLu-B)

1If there were fewer than 150 hypotheses for an utterance, we ex-
tracted the maximum number of available hypotheses.

had 256 units. Finally, the ReLu layer that processed the con-
catenation of embeddings and counts (ReLu-C) had 1024 units.
For NCE, we generated one noise sample for each word in the
training data using text noise.

3.1. Comparison with n-gram LMs

We first compared the performance of NN-grams with the 6-
gram LM. The results are shown in Table 2. When compared
with the 6-gram LM, the NN-grams LM showed a better perfor-
mance on the DTN task and an equivalent performance on the
VS task. While additional gains might be potentially obtained
by first rescoring the lattice with a 6-gram model followed by
interpolation with NN-grams, such a system would be too slow
to deploy in a speech recognition system with stringent latency
requirements. Hence, we did not pursue such an interpolation.

VS DTN
6-gram 14.9 8.8

NN-grams 14.8 8.2

Table 2: WER Comparison of NN-grams with 6-gram LM on
voice-search and dictation.

3.2. NN-grams components

NN-grams consist of two components: word embeddings and
the n-gram counts. To determine which of these two compo-
nents had a bigger impact on the overall performance of the
NN-grams model, we trained the model with either one of these
inputs (Figure 1). For both VS and DTN, n-gram counts were
more important than word embeddings (Table 3). We expect
this result considering that using n-gram counts typically im-
proves the performance for short sentences, which is the case for
both VS and DTN (Average number of words/sentence on VS
and DTN is 3.7 and 6.5 respectively). For DTN, word embed-
dings contributed to an additional improvement in WER, that
can be attributed to the longer sentence length in DTN.

NN-grams components VS DTN
Word-embedding,n-gram counts 14.8 8.2

Word Embedding 15.3 8.8
n-gram Counts 14.9 8.5

Table 3: Impact of NN-grams components on WER.

3.3. Type and Quantity of Noise Samples

We next examined whether the type and number of noise sam-
ples influenced the performance of the NN-grams model (Ta-
ble 5). Since the speech noise samples can be obtained only
from lattices, we restricted our training set in this experiment to
only those utterances for which we were able to run the speech
recognizer and generate word lattices. The training set con-
sisted of 1.2B words from a subset of utterances derived from
both voice search and dictation sources on which the 1-best
recognition hypothesis had a high confidence. As a result, the
WERs for these systems are worse than the system trained on
26B words (Table 2). The speech and the text noise samples
were generated using the procedure described in Sec 2.2. The
training data was annotated with n-gram counts derived from
the 26B word corpus used in the earlier experiments.
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1 Reference Poi ha detto per le sagome dei marmi del bagno e che quando lui tornava dava le misure per fare fare i marmi
1 n-gram poi ha detto per le sagome dei bei marmi del bagno è che quando lui torna da quale misura per fare fare i marmi
1 NN-grams poi ha detto per le sagome dei bei marmi del bagno è che quando lui tornava dava le misure per fare fare i marmi
2 Reference È molto più forte rispetto alle altre classi tipo Audi, Mercedes
2 n-gram è molto pi forte rispetto a Mercedes
2 NN-grams è molto pi forte rispetto ad altre classi tv Audi Mercedes
3 Reference Am mo mi puoi sposare C’abbiamo la casa c’abbiamo la chiesa e c’è la sposa
3 n-gram amò mi puoi sposare se abbiamo la casa che abbiamo la Chiesa Ecce la sposa
3 NN-grams amò mi puoi sposare c’abbiamo la casa c’abbiamo la Chiesa e c’è la sposa

Table 4: Examples of recognition hypotheses where the NN-grams LM outperforms the n-gram LM.

# of noise samples Text Noise Speech Noise
VS DTN VS DTN

1 19.2 11.6 21.7 14.5
5 19.4 12.3 20.9 14.1

10 20.1 12.6 20.4 13.9
100 17.3 10.6 17.5 12.3

Table 5: Impact of the type and number of noise samples on
WER.

For each type of noise, we report WER using 1, 5, 10 and
100 noise samples. For both types of noise, the best perfor-
mance was seen at 100 samples per word. The text noise out-
performed the speech noise on DTN but obtained an equivalent
performance on VS. It is possible that text noise, that relies on
an n-gram distribution, is more suited to the dictation task where
long range context is useful. In contrast, the speech noise sam-
ples which are acoustically confusable alternatives do not al-
ways have long distance dependencies. Based on these results,
we could expect additional gains using 100 noise samples in the
original set up with 26B words (Table 2).

3.4. Embeddings

In the NN-grams model, each word is mapped to a real valued
vector. These word embeddings are key to the generalization
capabilities of a neural network LM. We present examples of
the top-5 nearest neighbors for two Italian words, Roma and
telefono computed using the word embedding estimated in the
NN-grams model (Table 6). The nearest neighbors for Roma
are all cities in Italy while those for telefono consist of terms
related to communication and business. In general, these neigh-
bors in the embedding space are related to the source word, thus
emphasizing the semantic nature of the space.

Roma telefono
Word ED Word ED

Bologna 1.08 cellulare 1.33
Milano 1.09 tel 1.34
Firenze 1.15 contatti 1.41
Torino 1.16 indirizzo 1.47
Napoli 1.17 fax 1.53

Table 6: Top-5 nearest neighbors for two Italian source words:
Roma and telefono computed using the NN-grams word embed-
dings. The Euclidean distance (ED) of each neighbor from the
source word is also shown.

3.5. Examples

We present example recognition hypotheses where the NN-
grams LM substantially outperformed the 6-gram LM (Table 4).
In example 1, while the n-gram model prefers the common
construction torna da (come back from), NN-grams is either
recognizing a complex construction or prefers the tense agree-
ment between tornava and dava. In example 2, the n-gram LM
prefers dropping clauses while NN-grams does not. In example
3, the NN-grams model is possibly recognizing the repeating
pattern in the sentence C’abbiamo la casa c’abbiamo la chiesa
e c’è la sposa (we have a house, we have a church, we have
a bride) while the n-gram model looks independently at each
of the 3 phrases, se abbiamo, che abbiamo and Ecce, and mis-
recognizes all of them. This last example may be a scenario
where the long 10-word window of NN-grams gives it a distinct
advantage over the n-gram LM.

4. Discussion
In this paper, we presented NN-grams, a novel neural network
language modeling framework that builds upon the memoriza-
tion capabilities and scalability of n-gram LMs while still al-
lowing us to benefit from the generalization capabilities of neu-
ral networks. Our model obtains a 7% relative reduction in
word error rate on an Italian dictation task. We showed that the
strength of the NN-grams model comes primarily from the n-
gram counts but both n-gram counts and word embeddings are
important for long-form content such as dictation. We trained
the model using NCE training with either text or speech noise
distributions. While text noise is better for the dictation task,
both noise types perform similarly for voice-search. The biggest
disadvantage of the speech noise approach is that it requires
decoding of utterances. Future work will investigate strategies
which can directly generate acoustically confusable noise sam-
ples from only text using strategies that have been investigated
in the context of discriminative language modeling [25, 26].
These strategies generate noise samples at either the phonetic
or sub-phonetic (e.g. Gaussian) levels. In conclusion, the NN-
grams model is a promising neural network LM that is scalable
to large training texts. By avoiding the output softmax layer, it
has a substantially lower overhead at training and run time com-
pared to current neural network approaches such as LSTMs.
We expect that this model will spur newer hybrid architectures
which will increase the adoption of neural network approaches
to language modeling.
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