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Abstract. Constraint solving and satisfiability checking play an impor-
tant role in various tasks such as formal verification, software analysis
and testing. In this paper, we identify a particular kind of constraints
called ordering constraints, and study the problem of deciding satisfia-
bility modulo such constraints. The theory of ordering constraints can
be regarded as a special case of difference logic, and is essential for many
important problems in symbolic analysis of concurrent programs. We
propose a new approach for checking satisfiability modulo ordering con-
straints based on the DPLL(T) framework, and present our experimental
results compared with state-of-the-art SMT solvers on both benchmarks
and instances of real symbolic constraints.

1 Introduction

In the past decade, constraint solving and satisfiability checking techniques and
tools have found more and more applications in various fields like formal meth-
ods, software engineering and security. In particular, Satisfiability Modulo The-
ories (SMT) solvers play a vital role in program analysis and testing. This work
is motivated by the increasingly important use of SMT solving for symbolic
analysis of concurrent programs.

It is well-known that concurrent programs are error-prone. Analyzing con-
current programs has been a big challenge due to subtle interactions among the
concurrent threads exacerbated by the huge thread scheduling space. Among the
broad spectrum of concurrency analysis techniques, symbolic analysis is proba-
bly the most promising approach that has attracted significant research attention
in recent years [7,9,16,17,18,20,23,25,27,30]. Generally speaking, it models the
scheduling of threads as symbolic constraints over order variables correspond-
ing to the execution order of critical operations performed by threads (such as
shared data accesses and synchronizations). The symbolic constraints capture

? This work is supported in part by National Basic Research (973) Program of China
(No. 2014CB340701), National Natural Science Foundation of China (Grant No.
91418206).



2 Cunjing Ge1, Feifei Ma1, Jeff Huang2, Jian Zhang1

both data and control dependencies among threads such that any solution to
the constraints corresponds to a valid schedule.

A key advantage of symbolic analysis is that it allows reasoning about thread
schedules with the help of automated constraint solving. By encoding interesting
properties (such as race conditions) as additional constraints and solving them
with a constraint solver, we can verify if there exists any valid schedule that can
satisfy the property. Such an approach has been used for finding concurrency
bugs such as data races [18,25], atomicity violations [30], deadlocks [7], null
pointer executions [9], etc, and has also been used to reproduce concurrency
failures [20,23], to generate tests [8], and to verify general properties [16,17]. In
our prior work [18], we developed a tool called RVPredict, which is able to detect
data races based on symbolic analysis of the program execution trace.

Despite its huge potential, symbolic analysis has not been widely adopted
in practice. The main obstacle is the performance of constraint solvers. For real
world applications, the size of complex constraints can be extremely large that
is very challenging for existing SMT solvers to solve. For example, for data race
detection in RVPredict, the number of constraints is cubic in the trace size, which
can grow to exascale for large programs such as Apache Derby1, the traces of
which contain tens of millions of critical events [18]. We provide an illustrative
example for RVPredict in Section 2.

To improve the scalability of symbolic analysis for analyzing concurrent pro-
grams, we need highly efficient constraint solvers. Fortunately, we note that the
symbolic constraints in many problems [9,16,17,18,20,23,25] take a simple form.
Each constraint consists of conjunctions and disjunctions of many simple Boolean
expressions over atomic predicates which are just simple ordering comparisons.
An example is: O1 < O2∧O3 < O4∧(O2 < O3∨O4 < O1). Here each variable Oi
denotes the occurrence of an event; and the relation Oi < Oj means that event
ei happens before event ej in certain schedules. A constraint like this is called
an ordering constraint (OC). The relational operator could also be ≤, ≥, etc.
However, the specific value difference between variables is irrelevant, because
in many applications we do not concern about the real-time properties among
events. Therefore, to solve ordering constraints, it is not necessary to use the
full (integer) difference logic (DL), which is the most efficient decision procedure
used by existing solvers for OC.

In this paper, we study properties and decision procedures for ordering con-
straints (OCs). The theory of ordering constraints is a fragment of difference
logic, which can be decided by detecting negative cycles in the weighted di-
graph. However, we find that detecting negative cycles is not essential to the
consistency checking of ordering constraints. In fact, the problem is closely re-
lated to the decomposition of a digraph into its strongly connected components.
Based on Tarjan’s strongly connected components algorithm, we propose a linear
time decision procedure for checking satisfiability of ordering constraints, and
investigate how to integrate it with the DPLL(T) framework. We have also de-
veloped a customized solver for SMT(OC), and conducted extensive evaluation

1 http://db.apache.org/derby/
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initially x=y=0 resource z=0
Thread t1 Thread t2
1. fork t2
2. lock l

3. x = 1
4. y = 1
5. unlock l

6. { //begin
7. lock l
8. r1 = y
9. unlock l

10. r2 = x
11. if (r1 == r2)
12. z = 1 (auth)
13. } //end

14. join t2
15. r3 = z (use)
16. if (r3 == 0)
17. Error

Fig. 1. An example with a race (3,10).

initially x = y = z = 0
1. fork(t1, t2)
2. lock(t1, l)
3. write(t1, x, 1)
4. write(t1, y, 1)
5. unlock(t1, l)

6. begin(t2)
7. lock(t2, l)
8. read(t2, y, 1)
9. unlock(t2, l)
10. read(t2, x, 1)
11. branch(t2)
12. write(t2, z, 1)
13. end(t2)

14. join(t1, t2)
15. read(t1, z, 1)
16. branch(t1)

Fig. 2. A trace corresponding to the
example

of its performance compared with two state-of-the-art SMT solvers, Z3 [5] and
OpenSMT [3], on both benchmarks and real symbolic constraints from RVPre-
dict. Though not optimized, our tool achieves comparable performance as that
of Z3 and OpenSMT both of which are highly optimized. We present our exper-
imental results in Section 6.

The rest of the paper is organized as follows. We first provide a motivating
example to show how ordering constraints are derived from symbolic analysis of
concurrent programs in Section 2. We then formally define ordering constraints
and the constraint graph in Section 3 and present a linear time decision procedure
for OC in Section 4. We further discuss how to integrate the decision procedure
with the DPLL(T) framework to solve SMT(OC) formulas in Section 5.

2 Motivation

To elucidate the ordering constraints, let’s consider a data race detection problem
based on the symbolic analysis proposed in RVPredict [18].

The program in Figure 1 contains a race condition between lines (3,10) on a
shared variable x that may cause an authentication failure of resource z at line
12, which in consequence causes an error to occur when z is used at line 15. Non-
symbolic analysis techniques such as happens-before [10], causal-precedes [28],
and the lockset algorithm [19,26] either cannot detect this race or report false
alarms. RVPredict is able to detect this race by observing an execution trace of
the program following an interleaving denoted by the line numbers (which does
not manifest the race). The trace (shown in Figure 2) contains a sequence of
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events emitted in the execution, including thread fork and join, begin and end,
read and write, lock and unlock, as well as branch events.

The constructed symbolic constraints (shown in Figure 3) based on the trace
consist of three parts: (A) the must happen-before (MHB) constraints, (B) the
locking constraints, and (C) the race constraints. The MHB constraints encode
the ordering requirements among events that must always hold. For example,
the fork event at line 1 must happen before the lock event at line 2 and the
begin event of t2 at line 6, so we have O1 < O2 and O1 < O6. The locking
constraints encode lock mutual exclusion consistency over lock and unlock events.
For example, O5 < O7 ∨ O9 < O2 means that either t1 acquires the lock l first
and t2 second, or t2 acquires l first and t1 second. If t1 first, then the lock at line
7 must happen after the unlock at line 5; otherwise if t2 first, the lock at line 2

should happen after the unlock at line 9.

The race constraints encode the data race condition. For example, for (3,10),
the race constraint is written as O10 = O3, meaning that these two events are
un-ordered. For (12,15), because there is a branch event (at line 11) before line
12, the control-flow condition at the branch event needs to be satisfied as well.
So the race constraint is written as O10 = O3 ∧ O3 < O10 ∧ O4 < O8, to ensure
that the read event at line 10 reads value 1 on x, and that the read event at line
8 reads value 1 on y. The size of symbolic constraints, in the worst case, is cubic
in the number of reads and writes in the trace.

Putting all these constraints together, the technique then invokes a solver
to compute a solution for these unknown order variables. For (3,10), the solver
returns a solution which corresponds to the interleaving 1-6-7-8-9-2-3-10, so
(3,10) is a race. For (12,15), the solver reports no solution, so it is not a race.

The symbolic constraints above are easy to solve, since the size of the trace is
small in this simple example. However, for real world programs with long running
executions, the constraints can quickly exceed the capability of existing solvers
such as Z3 [5] as the constraint size is cubic in the trace size. As a result, RVPre-
dict has to cut the trace into smaller chunks and only detects races in each chunk
separately, resulting in missing races across chunks. Hence, to scale RVPredict to
larger traces and to find more races, it is important to design more efficient
solvers that are customized for solving the ordering constraints. Although we
focus on motivating this problem with RVPredict, the ordering constraints are
applicable to many other concurrency analysis problems such as replay [23],
failure reproduction [20], concurrency property violation detection [9,17], model
checking [16], etc.

We next formalize the ordering constraints and present our algorithm to solve
this problem with a linear time decision procedure.

3 Preliminaries

Definition 1. An ordering constraint (OC) is a comparison between two nu-
meric variables. It can be represented as (x op y), where op ∈ {<,≤, >,≥,=, 6=}.
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A. MHB

O1 < O2 < . . . < O5

O14 < . . . < O16

O6 < O7 < . . . < O13

O1 < O6 ∧ O13 < O14

B. Locking O5 < O7 ∨ O9 < O2

C. Race (3,10) O10 = O3

Race (12,15)
O15 = O12

O3 < O10 ∧ O4 < O8

Fig. 3. Symbolic constraints of the trace

Fig. 4. Example 1

The theory of ordering constraints is a special case of difference logic, where
the constant c in the difference theory atom ((x− y) op c) is restricted to 0.

Definition 2. An SMT formula φ over ordering constraints, i.e., an SMT(OC)
formula, can be represented as a Boolean formula PSφ(b1, . . . , bn) together with
definitions in the form: bi ≡ x op y, where op ∈ {<,≤, >,≥,=, 6=}. That means,
the Boolean variable bi stands for the ordering constraint (x op y). PSφ is the
propositional skeleton of the formula φ.

Without loss of generality, we can restrict the relational operators to < and
≤. In other words, the problem at hand is a Boolean combination of atoms of
the form x < y or x ≤ y.

A set of ordering constraints can be naturally represented with a directed
graph.

Definition 3. Given a set of ordering constraints, the constraint graph of
the ordering constraints is a digraph G = {V,E} which is constructed in the
following way:

1. For each variable xi, introduce a vertex vi ∈ V .
2. For each constraint xi < xj, introduce an edge e<i,j ∈ E from vi to vj.

3. For each constraint xi ≤ xj, introduce an edge e≤i,j ∈ E from vi to vj.

Definition 4. The out-degree of a vertex v of digraph G is the number of edges
that start from v, and is denoted by outdeg(v). Similarly, the in-degree of v is
the number of edges that end at v, and is denoted by indeg(v).

Example 1. Consider a set of ordering constraints: {x1 < x2, x2 ≤ x3, x3 ≤
x4, x4 ≤ x3}. Figure 4 shows the constraint graph constructed by Definition 3.
The variables {x1, x2, x3, x4} are represented by the nodes {v1, v2, v3, v4},
respectively, and outdeg(x3) = 1 and indeg(x3) = 2.

Recall that difference logic also has a graph representation. A set of difference
arithmetic atoms can be represented by a weighted directed graph, where each
node corresponds to a variable, and each edge with weight corresponds to a dif-
ference arithmetic atom. Obviously the constraint graph of ordering constraints
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can be viewed as a special case of that of difference logic, where all weights can
only take two values. The distinction between ordering constraints and difference
logic seems to be slight. However, in the rest of the paper we will show how this
minor difference leads to a new decision procedure with lower time complexity.

4 The Decision Procedure for Ordering Constraints

It is well known that DL can be decided by detecting negative cycles in the
weighted directed graph with the Bellman-Ford algorithm [24]. The complexity
of the classical decision procedure for DL is O(nm), where n is the number of
variables, and m is the number of constraints. As a fragment of difference logic,
ordering constraints can be directly checked with the aforementioned algorithm.
However, through exploring the structure of the constraint graph of ordering
constraints, we observe that detecting negative cycles is not essential to the
consistency checking of OC. In this section, we propose a new way to check the
inconsistency ofOC, which needs only to examine the constraint graph in linear
time.

Before presenting the decision procedure for OC, we first introduce some
theoretical results on OC and its constraint graph.

Lemma 1. If digraph G has no cycle, then G has a vertex of out-degree 0 and
a vertex of in-degree 0.

Proof. We prove this lemma via reduction to absurdity. Assume for each vertex
v of G, outdeg(v) > 0. Let v1 be a vertex in V . Since outdeg(v1) > 0 by the
assumption, there exists an edge e1 which starts from v1 and ends at v2. Since
outdeg(v2) > 0, there exists an edge e2 which starts from v2 and ends at v3,
and so on and so forth. In this way, we obtain an infinite sequence of vertices
{v1, . . . , vk, . . .}. Note that |V | is finite, there must exist a cycle in this sequence,
which contradicts the precondition that G has no cycle. The proof of case of
in-degree is analogous.

Lemma 2. Given a set of ordering constraints α, if its constraint graph G has
no cycle, then α is consistent.

Proof. Based on the acyclic digraph G, we construct a feasible solution to the
variables of α in the following way:

(1) Set i = 0, and G0 = G.
(2) Find the set V ′i of vertices of in-degree 0 in Gi = (Vi, Ei). For each vertex vt

in V ′i , let the corresponding variable xt = i.
(3) Let E′i = {e|e ∈ Ei and e starts from a vertex in V ′i }. Construct the sub-

graph Gi+1 of Gi by Gi+1 = (Vi+1, Ei+1) = (Vi − V ′i , Ei − E′i).
(4) Repeat step (2) and (3) until Gi is empty.

We now show that this procedure terminates with a solution that satisfies
α. Note that G is acyclic and each Gi is a subgraph of G, so Gi is acyclic.
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According to Lemma 1, we have |V ′i | > 0 every time the iteration reaches step
(2). Therefore, this procedure will terminate.

Consider two adjacent vertices vp and vq with an edge 〈vp, vq〉. As long as vp
remains in the current graph Gi, indeg(vq) > 0. Hence vp must be deleted earlier
than vq, and we have xp < xq. In general, for an arbitrary pair of vertices (vp
and vq), if there exists a path from vp to vq, namely 〈vp, vp1 , . . . , vpk , vq〉, then
we have xp < xp1 < . . . < xpk < xq ⇒ xp < xq.

Theorem 1. Given a set of ordering constraints α and its constraint graph G, α
is inconsistent if and only if there exists a maximal strongly connected component
of G that contains an e< edge.

Proof. ⇐= Let G′ be a maximal strongly connected component of G which
contains an e< edge 〈v1, v2〉. Since v1 and v2 are reachable from each other,
there exists a path from v2 to v1 in G′. Without loss of generality, we assume
the path is {v2, . . . , vn, v1}. The path and the edge 〈v1, v2〉 form a cycle in G′,
which implies that x1 < x2 ≤ . . . ≤ xn ≤ x1. Thus x1 < x1, and α is inconsistent.

=⇒We prove this via reduction to absurdity. Suppose every maximal strongly
connected component of G does not contain an e< edge. Consider an arbitrary
pair of vertices vp and vq that are reachable from each other. Since vp and
vq belong to a maximal strongly connected component, there only exist e≤

edges in the path from vp to vq, then xp ≤ xq. On the other hand, we have
xp ≥ xq. As a result, xp = xq. Let Gs = (Vs, Es) be a maximal strongly
connected component of G. We could merge vertices of Vs into one vertex
v and obtain a new graph G′ = (V ′, E′), where V ′ = (V − Vs) ∪ {v} and
E′ = {〈vi, vj〉|〈vi, vj〉 ∈ E, vi 6∈ Vs, vj 6∈ Vs} ∪ {〈v, vj〉|〈vi, vj〉 ∈ E, vi ∈ Vs, vj 6∈
Vs} ∪ {〈vi, v〉|〈vi, vj〉 ∈ E, vi 6∈ Vs, vj ∈ Vs}. In addition, x = xi,∀vi ∈ Vs.
Consider the following way to construct a solution to α. For each maximal
strongly connected component of G, we merge it into a vertex and finally obtain
G′ = (V ′, E′). Note that such G′ is unique and acyclic. We could construct a
solution from G′ by Lemma 2.

We now show the solution constructed by this procedure satisfies α. That is,
for each pair of vertices (vp, vq), if there exists a path from vp to vq, then xp ≤ xq.
Furthermore, if there exists an e< edge in a path from vp to vq, then xp < xq.
Let vp and vq map to v′p and v′q of G′. If v′p = v′q, then xp = x′p = x′q = xq.
Otherwise, there exists a path from v′p to v′q. By Lemma 2, xp = x′p < x′q = xq.
Hence xp ≤ xq always holds. If there exists an e< edge in a path from vp to vq,
then vp and vq cannot be in the same maximal strongly connected component.
Therefore, v′p 6= v′q ⇒ xp < xq. It can be concluded that α is consistent since the
solution satisfies the constraints of α.

Example 2 Recall in Example 1 that there are 3 strongly connected components
{{v1},{v2},{v3,v4}}. If we add a constraint x3 ≤ x1, the resulting constraint
graph is shown in Figure 5. There is only one strongly connected component,
which itself is a connected graph. Since 〈v1, v2〉 is an e< edge, the conjunction
of ordering constraints is inconsistent by Theorem 1. The conflict x1 < x1 can
be drawn from {x1 < x2, x2 ≤ x3, x3 ≤ x1}.
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Fig. 5. Example 2 Fig. 6. Example 3

Theorem 1 suggests that, to check the consistency of ordering constraints, we
can decompose its constraint graph into maximal strongly connected components
and then examine the edges. We use Tarjan’s algorithm [29] to find the max-
imal strongly connected components in our ordering constraints theory solver.
It produces a unique partition of the graph’s vertices into the graph’s strongly
connected components. Each vertex of the graph appears in exactly one of these
components. Then we check each edge in these components whether it is an e<

edge. Therefore the consistency of conjunctions of ordering constraints can be
decided in O(n+m) time.

5 Integrating DPOC into DPLL(T)

5.1 The DPLL(T) Framework

DPLL(T) is a generalization of DPLL for solving a decidable first order theory
T . The DPLL(T) system consists of two parts: the global DPLL(X) module
and a decision procedure DPT for the given theory T . The DPLL(X) part is
a general DPLL engine that is independent of any particular theory T [13]. It
interacts with DPT through a well-defined interface. The DPLL(T) framework
is illustrated in Figure 7. We assume that the readers are familiar with DPLL
components, such as Decide, BCP, Analyze and Backtrack. The component TP
represents theory propagation, which is invoked when no more implications can
be made by BCP. It deduces literals that are implied by the current assignment in
theory T , and communicates the implications to the BCP part. Although theory
propagation is not essential to the functionality of the solving procedure, it is
vital to the efficiency of the procedure. The component Check encapsulates the
decision procedure DPT for consistency checking of the current assignment. If
inconsistencies are detected, it generates theory-level minimal conflict clauses.

5.2 Theory-level Lemma Learning

We now discuss how to integrate the decision procedure DPOC into the DPLL(T)
framework. In DPLL(T), the decision procedure is called repeatedly to check the
consistency of (partial) assignments. To avoid frequent construction/destruction
of constraint graphs, at the beginning of the solving process, we construct the
constraint graph G of the set of all predicates in the target SMT(OC) formula.
In this graph, each edge has two states: an edge is active if its corresponding
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Fig. 7. The DPLL(T) Framework

boolean variable is assigned a value (true, false); and is inactive if its corre-
sponding boolean variable is undefined.

Notice that initially all edges are inactive. When the solver finds a partial
assignment α, the edges in G corresponding to α are activated. Hence the con-
straint graph Gα of the ordering constraints of α consists of every active edge in
G, and is a subgraph of G. The decision procedure DPOC checks the consistency
of α based on Gα.

Example 3. Consider a formula PSφ(b1, b2, b3, b4, b5) = (b1∧(¬b2)∧(b3∨b4∨b5)),
{b1 ≡ x1 < x2, b2 ≡ x3 < x2, b3 ≡ x3 ≤ x4, b4 ≡ x4 ≤ x3, b5 ≡ x3 ≤
x1}. Figure 6 shows the constraint graph Gβ of all predicates in this formula
with a possible partial assignment β, {b1 = True, b2 = False, b3 = True, b4 =
True, b5 = Undefined}. Note that {〈v1, v2〉, 〈v2, v3〉, 〈v3, v4〉, 〈v4, v3〉} are active
and 〈v3, v1〉 is inactive. Actually, the graph of Example 1 is a subgraph of Gβ ,
which can be constructed by choosing all active edges in Gβ .

To maximize the benefits of integration, the OC solver should be able to
communicate theory lemmas to the SAT engine, including conflict clauses and
deduction clauses at the OC theory level. We next discuss two such techniques.

Minimal Conflict Explanation According to Theorem 1, the OC solver de-
tects an inconsistency of the current assignment if it finds an e< edge in a strongly
connected component of the constraint graph G. Without loss of generality, we
assume the e< edge is e = 〈v1, v2〉, and denote the strongly connected component
by G′. The inconsistency is essentially caused by a cycle that contains e. Note
that all paths from v2 to v1 are in G′. Hence we only have to find a shortest path
from v2 to v1 in G′ instead of G. The shortest path from v2 to v1 and the edge
e = 〈v1, v2〉 form a shortest cycle with an e< edge, corresponding to the minimal
conflict that gives rise to the inconsistency. Therefore, we generate theory-level
conflict clauses according to such cycles.

Theory Propagation In order to improve performance, we apply a “cheap”
theory propagation technique. Our theory propagation is combined with the
consistency check to reduce its cost. However, it is an incomplete algorithm.
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Algorithm 1: Tarjan’s Algorithm Combined With Theory Propagation

Function Tarjan()
initialize v, S, index, scc;
for each v that v.index is undefined in V do

Tarjan DFS(v);

Function Tarjan DFS(v)
v.index, v.lowlink ← index, index ← index + 1, S.push(v);
for each active edge 〈v, w〉 in E do

if w is not visited then
w.father ← v;
if 〈v, w〉 is an e< edge then

w.nf ← v.nf + 1;
else

w.nf ← v.nf;

Tarjan DFS(w);
v.lowlink ← min(v.lowlink, w.lowlink);

else if w in S then
v.lowlink ← min(v.lowlink, w.index);

if v.lowlink = v.index then
repeat

s, t ← S.pop(), s.scc ← scc;
while t.father is defined do

t ← t.father;
if (〈s, t〉 or 〈t, s〉 is inactive) and (s.nf > t.nf or 〈s, t〉 is an e<

edge) then
generate TP clause from s to t by father vertex records;

until (s = v);
scc ← scc + 1;

Algorithm 1 is the pseudocode of the whole consistency check procedure. It
is mainly based on the Tarjan algorithm on the graph G′ = (V, active(E)). Like
the original Tarjan algorithm, the index variable counts the number of visited
nodes in DFS order. The value of v.index numbers the nodes consecutively in
the order in which they are discovered. And the value of v.lowlink represents
the smallest index of any node known to be reachable from v, including v itself.
The scc variable counts the number of strongly connected components. And the
attribute scc of a vertex records the strongly connected component it belongs
to. S is the node stack, which stores the history of nodes explored but not yet
committed to a strongly connected component.

We introduce two values for a vertex v, v.father and v.nf, for theory propaga-
tion. The value of v.father represents a vertex w, that the DFS procedure visits
v through edge 〈w, v〉. Assume the DFS procedure starts from vertex u. Then
we can generate a path from u to v by retrieving the father attribute of each
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vertex on this path from v. The number of e< edges on this path is recorded by
v.nf. We add two parts into the original Tarjan algorithm. In Algorithm 1, the
statements from line 7 to line 12 record the “father” and the “nf” attribute of
w. The loop from line 23 to line 27 recursively checks the vertex t by retriev-
ing father records from s. We can obtain a path pts from t to s in this way. If
t.nf<s.nf, there exists at least one e< edge on this path. Thus pts and edge st
compose a negative cycle if t.nf<s.nf or st is an e< edge. We can determine the
assignment of the Boolean variable which corresponds to the edge ts or st and
generate the Boolean clause of this deduction.

In Example 3, our algorithm starts from v1, and then applies a DFS proce-
dure. When the algorithm visits the last vertex, v4, we have v4.nf = v3.nf =
v2.nf = v1.nf + 1. Then the algorithm starts popping stack S and constructing
strongly connected components. At vertex v3, we find v1 is the father of v3.father,
〈v3, v1〉 is inactive and v3.nf > v1.nf, so we deduce that b5 ≡ 〈v3, v1〉 should be
False and generate a clause, (¬b1) ∨ b2 ∨ (¬b5).

6 Experimental Evaluation

We have implemented our decision procedure in a tool called COCO (which stands
for Combating Ordering COnstraints) based on MiniSat 2.02. We have evaluated
COCO with a collection of ordering constraints generated from RVPredict and two
series of QF IDL benchmarks (diamonds and parity) in SMT-Lib3, which are
also SMT(OC) formulas. The experiments were performed on a workstation
with 3.40GHz Intel Core i7-2600 CPU and 8GB memory. For comparison, we
also evaluated with two other state-of-the-art SMT solvers, i.e., OpenSMT4 and
Z35. The experimental results are shown in Figure 8 and Figure 9. Note that
each point represents an instance. Its x-coordinate and y-coordinate represent
the running times of COCO and Z3/OpenSMT on this instance, respectively. All
figures are in logarithmic coordinates.

Figure 8 shows the results on instances that are generated from RVPredict.
Our tool performs well on some small instances. It takes dozens of milliseconds
for COCO to solve them. Z3 usually consumes more time and memory than COCO,
and it fails to solve some large instances, due to the limit on memory usage. For
such instances, we regard the running time of Z3 as more than 3600 seconds.
Nevertheless, on some larger instances OpenSMT is more efficient. Our investi-
gation of OpenSMT reveals that it adopts an efficient incremental consistency
checking algorithm and integrates minimal conflict with a theory propagation
technique, which COCO currently does not fully support. The advantage of theory
propagation is that it allows the solver to effectively learn useful facts that can
help reduce the chances of conflicts. On the instances generated from RVPredict,

2 N. Eén and N. Sörensson. The MiniSat Page. http://minisat.se/
3 They are available at: http://www.cs.nyu.edu/˜barrett/smtlib/
4 The OpenSMT Page. http://code.google.com/p/opensmt/
5 The Z3 Page. http://z3.codeplex.com/
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Fig. 8. Experiments on instances generated from RVPredict

Table 1. More details about the “Hard” instances.

Instance OpenSMT COCO Z3

Name Dims
TS sat
calls

TS unsat
calls

Time(s)
TS sat
calls

TS unsat
calls

Time(s) Time(s)

Harness 1 19783 40460 1 9.489 21664 12775 59.768 —
Harness 2 19783 41278 1 9.929 18703 12011 50.937 —

JigsawDriver 3 1548 5796 0 0.892 12797 15604 10.447 10.549
JigsawDriver 7 1548 6198 0 0.848 997 1671 0.538 8.813
BubbleSort 3 1195 36989 71 0.868 47643 52508 30.708 15.761

JGFMolDynA 1 7718 11448 0 3.028 3 17 0.074 2.64
JGFMolDynA 2 7718 12914 4 2.972 2214 3181 2.522 748.207

BoundedBuffer 39 828 5640 1 0.500 787 1109 0.312 1.196
BoundedBuffer 40 828 11464 47 0.444 2621 2924 0.830 1.360
BoundedBuffer 41 828 5537 1 0.500 3256 3327 1.252 1.640

main 15 9707 12882 1 3.228 2132 2122 2.184 158.214
“—” means that the tool ran out of memory.

theory propagations are very effective, because the Boolean structures of the
SMT(OC) formulas are quite simple.

Table 1 gives more details on some “hard” instances in Figure 8. “TS sat
calls” and “TS unsat calls” represent the number of satisfiable/unsatisfiable
calls of the theory solver, respectively. “Dims” denotes the number of numeric
variables, i.e., dimension of the search space. The running times of both OpenSMT

and COCO are closely related to the dimension of the instance and the number
of calls of the theory solver. An unsatisfiable call of the theory solver causes
backtracking and retrieving reasons; so it consumes much more time than a
satisfiable call. Notice that OpenSMT hardly encounters unsatisfiable calls. Its
theory propagation procedure greatly reduces the number of unsatisfiable calls.
On the contrary, COCO even encounters more unsatisfiable calls than satisfiable
calls in some circumstances, because its theory propagation is incomplete.

Figure 9 shows the experimental results on SMT-Lib benchmarks “diamonds”
and “parity”. It appears that OpenSMT is often slower than COCO, and Z3 per-
forms well in these cases, in contrast to Figure 8. OpenSMT only applies the
incremental algorithm which cannot skip steps, so it checks consistency incre-
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Fig. 9. Experiments on QF IDL benchmarks in SMT-Lib

mentally whenever it makes decision or propagation. On instances that contain
complicated Boolean components, like some SMT-Lib benchmarks, OpenSMT is
not so efficient, because it has to backtrack often and applies the consistency
checking algorithm step by step again even with complete theory propagations.
On the other hand, Z3 tightly integrates many strategies, some of which are
hand-crafted and fall outside the scope of DPLL(T), such as formula prepro-
cessing, which COCO does not implement. These may be the reasons for the good
performance of Z3 in Figure 9.

In addition to the running time, we also compared the memory usage of these
three solvers. It turned out that COCO always occupies the least memory. The
memory usage of OpenSMT is about 5 to 10 times as much as that of COCO, and
Z3 consumes tens of times even hundreds of times higher memories than COCO.
The detailed data are omitted, due to the lack of space.

To summarize, COCO achieves better scalability than Z3 on the real instances
generated by RVPredict. On the other hand, when comparing COCO with OpenSMT,
there seems no clear winner. The incremental decision procedure with complete
theory propagation enables OpenSMT to perform well on many instances gener-
ated by RVPredict, whereas it results in poor performance of OpenSMT on the
classical SMT-Lib instances. Besides, our current tool has potential to achieve
better performance as we have not designed a complete theory propagation, as
demonstrated by OpenSMT, and many other optimization strategies used by
Z3.

7 Related Work

As we mentioned earlier, there has been a large body of work on solving (in-
teger) difference constraints. See, for example, [22,24,4,12]. Nieuwenhuis and
Oliveras presented a DPLL(T) system with exhaustive theory propagation for
solving SMT(DL) formulas [24]. They reduced the consistency checking for DL
to detecting negative cycles in the weighted digraph with the Bellman-Ford al-
gorithm [24]. The complexity of this decision procedure is O(nm), where n is the
number of variables, and m is the number of constraints. In [4] Cotton and Maler
proposed an incremental complete difference constraint propagation algorithm
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with complexity O(m + nlogn + |U |), where |U | is the number of constraints
which are candidates for being deduced. However, to check the consistency of
conjunctions of constraints, the incremental algorithm has to be called for each
constraint. Therefore, the complexity of the whole procedure is even higher. In
contrast, the complexity of our decision procedure for ordering constraints is
only O(n+m).

Besides, there are some works consider extending a SAT solver with acyclicity
detection. [21] deals with a conjunction of theory predicates, while our work is
concerned with arbitrary Boolean combinations of ordering constraints. Due to
the existence of the logical connectives (OR, NOT) of SMT(OC) formulas, the
equality and disequality relations can be represented by inequality relations.
We only have to consider two types of edges (e>= edge and e> edge) in our
graph, which is more simple than four types of edges in [21]. Moreover, our
theory propagation exploits the information from Tarjans algorithm. [14], [15],
and recent versions of MonoSAT [2] all rely on similar theory propagation and
clause learning techniques. [2], for example, also uses Tarjan’s SCC during clause
learning in a similar way as this paper. However, they don’t have a notion of
e< edges versus e<= edges, and they couldn’t support distinction of e< edges
versus e<= edges without significant modifications.

8 Conclusion

Satisfiability Modulo Theories (SMT) is an important research topic in auto-
mated reasoning. In this paper, we identified and studied a useful theory, i.e.,
the theory of ordering constraints. We demonstrated its applications in sym-
bolic analysis of concurrent programs. We also presented methods for solving
the related satisfiability problems. In particular, we gave a decision procedure
that has a lower complexity than that for the difference logic. We have also
implemented a prototype tool for our algorithm and compared its performance
with two state-of-the-art SMT solvers, Z3 and OpenSMT. Although our current
implementation is not optimized, it achieves comparable performance as that
of Z3 and OpenSMT which have been developed for years and are highly opti-
mized. We explained why a particular tool is more efficient on certain problem
instances. In our future work, we plan to further improve the performance of
our approach by developing incremental and backtrackable decision procedures
with more efficient theory propagation.
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