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Abstract. Mesh networked low-end embedded devices are increasingly
used in various scenarios, including industrial control, wireless sensing,
robot swarm communication, or building automation. Recently, more
and more software vulnerabilities in embedded systems are disclosed, as
they become appealing targets for cyber attacks. In order to patch these
systems, an efficient and secure code update mechanism is required. How-
ever, existing solutions are unable to provide verifiable code updates for
networked commodity low-end embedded devices. This work presents a
novel code update scheme which verifies and enforces the correct instal-
lation of code updates on all devices in the network. After update distri-
bution and installation, devices mutually attest and verify each others’
software state. Devices being in an untrustworthy state are excluded
from the network. In this way, the scheme enforces software integrity as
well as software up-to-dateness on all devices in the network. Issuing a
secure code update, the network operator is able to learn the identity
of all trustworthy and all untrustworthy devices. We demonstrate that
the proposed scheme is applicable to a wide range of existing commodity
low-end embedded systems. Furthermore, we show that the scheme is
practically usable in networks with tens of thousands of devices.

1 Introduction

The continuous cost reduction and miniaturization of electronic devices com-
mences a new technological revolution of omnipresent embedded devices. Trends
like the Internet of Things, Smarter Planet, Industry 4.0, or Smart Cities aim at
applying networked embedded systems in virtually every aspect of our life. Wire-
less technologies like IEEE 802.11s, IEEE 802.15.4, ZigBee, Z-Wave, or Bluetooth
facilitate the establishment of large mesh networks consisting of numerous em-
bedded systems. In a mesh network, all devices cooperate in the distribution of
data in the network, forming a decentralized and self-organized network topol-
ogy. Nowadays, wireless mesh networked embedded devices are already widely
used in industrial control, wireless sensor networks, home automation, building
automation, military communication, or community networks. These systems
often perform security or safety-critical tasks, or process privacy-sensitive infor-
mation. In addition, they commonly lack effective security mechanisms due to
their low production costs as well as their small and simple system architecture.



These circumstances made them appealing targets for cyber attacks. Conse-
quently, many software vulnerabilities in embedded systems have been revealed
lately [11, 19, 35]. In order to fix such vulnerabilities, it is vital that low-end
embedded devices provide secure code update mechanisms.

A secure code update scheme for the above described application must pro-
vide several features. First, it has to ensure that devices verify the novelty,
integrity, and authenticity of code updates before installation. This feature is
necessary to prevent misuse of the code update mechanism, e.g., by downgrad-
ing a software or installing malicious code. Second, the scheme must ensure
that, appropriately executed, it restores the integrity of the software state on a
device, even if the device was compromised before. Thus, an attacker who ex-
ploited a vulnerability in the old software to compromise and gain control over
a device is removed from the device. However, compromised devices can simply
deny the execution of code updates or execute them inappropriately without
restoring software integrity. Therefore, after code update execution, the scheme
must verify whether all devices are in a trustworthy, i.e., an unmodified and
up-to-date, software state. To reduce potential damage caused by compromised
devices, the secure code update scheme should exclude untrustworthy devices
from the network. Furthermore, the scheme must be scalable, as it should allow
for an efficient update of all devices in large mesh networks. Moreover, it should
be applicable to already existing commodity low-end embedded devices. In this
way, the scheme can be retrofitted to currently deployed systems. Finally, a net-
work operator issuing a secure code update should eventually be informed about
the integrity of the software state of all devices in the network.

However, to the best of our knowledge, there is no solution which satisfies
all these requirements. Software- and PoSE-based (Proofs of Secure Erasure)
approaches are applicable to commodity devices, but rely on strong security
assumptions which are hard to achieve in practice [1, 16, 21, 34, 39]. Additionally,
they allow a verifier to attest only one device but not a group of devices, as
they rely on the assumption that during attestation an adversary is unable to
communicate with any other party, except for the verifier. By contrast, hardware-
based solutions provide much stronger security guarantees by relying on secure
hardware modules. Yet, security architectures which are applicable to low-end
embedded systems such as TyTAN, SMART, TrustLite, or SANCUS are still in
research stage [8, 15, 23, 32]. These architectures have only been implemented
as prototypes and their future availability in commodity devices is uncertain.

Contributions. In this work, we present a novel secure code update scheme
for wireless mesh networked commodity low-end embedded devices. As opposed
to existing hardware-based approaches, we require only minimal assumptions on
secure hardware, which makes our scheme applicable to many existing low-end
embedded devices. Nevertheless, by relying on lightweight secure hardware, we
achieve much stronger security guarantees than existing software- and PoSE-
based approaches. This, in particular, allows us to provide secure code updates
for groups of devices. Our scheme allows only fresh and authenticated updates
to be installed on devices. During a proper code update execution, each device



verifies its local software integrity and ensures that only unmodified and up-
to-date software runs on the device. To enforce a proper execution of the code
update, neighboring devices mutually verify each others’ genuine and up-to-date
software state and establish secure channels only if the verification succeeds.
Thus, compromised devices can either refuse an appropriate execution of the code
update, whereupon they are excluded from the network, or perform a correct
code update, whereby any present malware gets eliminated. Issuing a secure
code update for the network, the operator is able to learn the identity of all
trustworthy and all untrustworthy network devices. We implemented the scheme
on exemplary low-end embedded systems that are interconnected via ZigBee.
Simulation results demonstrate that our scheme scales well and is practically
usable in networks with tens of thousands of devices.

Structure. In Section 2, we summarize existing work. Section 3 presents our
system model, device requirements, and our adversary model. In Section 4, we
show how the device requirements can be implemented on commodity devices.
Section 5 describes our secure code update scheme. In Section 6, we evaluate the
performance of the proposed scheme. Finally, Section 7 concludes this work.

2 Related Work

Code Updates. The process of updating software or firmware present in em-
bedded devices is referred to as over-the air programming (OTA), firmware over-
the-air (FOTA), code update, software update, or firmware update. Common
research topics are transmission reliability, transmission scalability, update size
minimization, and energy efficiency [13, 18, 27, 36]. Moreover, several papers ex-
plicitly focus on security aspects and use digital signatures to ensure code update
freshness, authenticity, and integrity [20, 26, 29, 42]. In addition, these works of-
fer features like denial-of-service resilience, extra small or efficient signatures, or
support for multiple code update initiators with different privileges. However,
conventional code update techniques only perform unidirectional verification.
Embedded systems verify the integrity and authenticity of code updates, but
the initiator of the code update is unable to verify whether embedded systems
indeed install the code update appropriately.

Remote Attestation. Remote attestation is a mechanism that allows a third
party to verify the software state of a remote system. Consequently, by per-
forming remote attestation after the execution of a code update, its correct in-
stallation can be verified. Software-based attestation mechanisms do not require
secure hardware and thus can be applied in commodity low-end embedded sys-
tems or legacy systems [10, 25, 30, 38]. However, they rely on various assumptions
like exact time measurements, optimal protocol implementation and execution,
or the adversary being passive during attestation. Those assumptions are hard
to achieve in practice [1]. By contrast, hardware-based attestation mechanisms
provide much stronger security guarantees by relying on secure hardware. As
standardized and commercial secure hardware components like ARM TrustZone,



TPM, Intel TXT, or Intel SGX are too complex and too expensive to be used
in low-end embedded systems, new security architectures, such as SMART [15],
SANCUS [32], TrustLite [23], or TyTan [8], have recently been proposed. Never-
theless, these architectures have only been implemented as prototypes and their
future availability in commodity low-end embedded devices is uncertain. In addi-
tion, their remote attestation mechanisms only target the attestation of a single
device, which is impractical in mesh network scenarios due to a large commu-
nication overhead. We are only aware of two approaches that address efficient
attestation of multiple embedded devices. SMATT [33] verifies multiple devices
at once by comparing their integrity measurements. On the downside, SMATT
requires identical devices, relies on special copy-proof memory, and only enables
a probabilistic attack detection rate. SEDA [2] is an efficient and scalable attes-
tation scheme for large heterogeneous embedded system networks. Yet, as SEDA
relies on secure hardware that is not available in commodity devices, it is not
applicable to currently deployed systems. Regarding secure code updates, SEDA
provides only a brief protocol extension that leaves several design decisions open
(e.g., protection against rollback attacks), and lacks desirable features (e.g., the
exclusion of compromised devices from the network).

Secure Code Updates. Work on secure code updates specifically addresses
the problem of verifying that a code update has been securely distributed and
correctly installed on a remote embedded system. Seshadri et al. [39] applied a
software-based approach to ensure an untampered execution of the software up-
date protocol on a single remote device. However, as mentioned in the last para-
graph, software-based solutions provide questionable security guarantees due to
their strong assumptions [1]. Perito and Tsudik [34] pursued a different approach
and introduced the concept of Proofs of Secure Erasure (PoSE) to secure soft-
ware updates. PoSE allow a device to prove to a remote party that it is free
of malicious code by attesting that it has erased all its memory. In a second
step, cleaned devices download the software update and send a MAC of the
downloaded code to the verifier to prove the storage of the software update.
Recently, Karame et al. [21] enhanced this concept by combining PoSE with All
or Nothing Transforms to reduce the time and energy overhead. Nevertheless,
both software and PoSE-based approaches rely on the strong assumption that a
device proving its correct code update installation is only able to communicate
with the verifier, and no other party. Thus, both approaches are impractical for
updating multiple networked devices, since they can only provide security if the
adversary is not physically present and has not gained control of more than one
device in the network.

3 System Requirements and Adversary Model

System Model. We consider a mobile wireless mesh network that consists
of various interconnected commodity low-end embedded devices. The devices
can be of different type and model, having, for instance, varying computational
power, storage capacity, or security functionalities. Devices in the network can



move, but the network topology is assumed to remain static during a single run
of the secure code update protocol. We assume that all correctly functioning
devices are reachable in the network. Unreachable devices are ignored and they
are temporarily regarded as compromised, since it is uncertain whether they will
ever contribute to the network again. We further assume that each device Di gets
initialized and deployed by a trusted network operator O once (see Section 5.1).

After deployment, the goal of O is to perform a secure and efficient code
update for all devices in the network. Devices conducting a secure code update
should ensure that only authentic, untampered, and fresh code updates are in-
stalled and that the installation establishes software integrity, thereby undoing
potential manipulations made by an attacker. Devices that refuse a correct in-
stallation should be identified as manipulated and excluded from the network.
This prevents compromised devices from eavesdropping, manipulating transmit-
ted data, or communicating with a remote attacker. Finally, O should get a
report listing all devices that are in a trustworthy, i.e., an up-to-date and un-
modified, software state. During code update execution, we assume O to be
connected to at least one device in the network.

Hardware Security Requirements. Our secure code update solution requires
the following properties from each device Di:

(1) Immutable Code: A static non-volatile write-protected memory region R
which contains code and data;

(2) Secure Storage: A device-dependent unique secret SK that can only be ac-
cessed during the execution of code in R;

(3) Uninterruptible Execution: Once code in R gets executed, execution cannot
be interrupted until the control flow intentionally leaves R.

In Section 4, we discuss how these properties can be implemented on commod-
ity low-end embedded devices. We will see that many existent devices provide
hardware features that allow for the implementation of these requirements.

Adversary Model. We assume that an adversary has full control over the
execution state of a compromised device, and can read all readable storage and
write to all writable storage. Furthermore, the adversary has complete control
over the communication medium, i.e., all messages sent between devices can be
eavesdropped and manipulated. In addition, we assume that the adversary can
be physically present and introduce additional hardware to the network.

In contrast, we assume that the adversary does not perform physical at-
tacks on the hardware of the embedded devices. In particular, we presume that
the adversary cannot bypass any of the hardware protections described above.
Moreover, we do not consider Denial of Service (DoS) attacks in the immediate
vicinity of the attacker, since there is no defense against a physically present at-
tacker who cuts the wire or jams the wireless communication medium. We would
like to point out that the described limitations on the adversary’s capabilities are
common for hardware-based attestation or code update schemes [2, 8, 15, 23, 32].



4 Requirements on COTS Low-End Embedded Systems

In the following, we demonstrate how each of the stated hardware security re-
quirements (see Section 3) can be implemented on existing commercial off-the-
shelf (COTS) low-end embedded devices.

1st Requirement: Immutable Code. Nowadays, it is common for commod-
ity low-end embedded devices to provide protection of Flash memory. On some
devices, the Flash memory can be separated into multiple sections which have
dedicated lock bits for read protection, write protection, and also interrupt pre-
vention [3]. Most commonly, the Flash memory is divided into one boot loader
section (BLS) and one application section. If the device at hand offers this fea-
ture, we propose so store the code regionR in the boot loader section and the rest
of the program in the application section. Afterwards, we advise to set the lock
bits in a way that write access to the boot loader section is denied. This makes
R immutable. Other devices provide a more fine-grained Flash protection, where
various memory regions of different sizes can be marked as read-only memory
(ROM) or potentially also as execute-only memory (XOM) [40]. ROM can only
be read or executed but not modified. XOM provides even stronger protection,
since it can exclusively be executed. If the device at hand offers XOM or ROM,
we propose to protect R using the strongest supported memory protection avail-
able on the device, i.e., XOM if available and ROM otherwise. Note that once
Flash protection is set, it can only be unset by physically accessing the system.
This process typically involves the erasure of the entire Flash memory [3, 40].

2nd Requirement: Secure Storage. If the particular device offers separable
memory (e.g., a BLS) with lock bits, we suggest that R and the protected secret
SK are stored in an extra section, isolated from the application code. Next, we
propose to configure the lock bits in a way that read access to the separated
section is denied if it is performed by code stored outside the separated memory
region. Thus, SK can only be read during the execution of R. If the particular
device offers XOM, we propose that SK is stored in XOM using constants that
are loaded into the CPU by MOV instructions during execution. Since the con-
tent of XOM cannot be read out, SK only gets revealed during the execution
of R. If the particular device only supports ROM, we suggest to store the code
region R in the boot loader and enforce that R immediately gets executed when
the device starts. Consequently, in order to execute R, the device must restart.
In addition, we propose to store SK in a secure key storage whose access can
intentionally be denied until the next device restart. In this way, code in R can
read out SK once during device start and afterwards deny access to SK. As R is
immutable and immediately gets executed when the device starts, an attacker is
unable to access SK. A secure key storage which provides this functionality is, for
instance, an SRAM PUF. Previous works have shown that the SRAM modules
present in several low-end embedded devices can be used as PUF instances, so
that cryptographic keys can be derived from the SRAM start-up values. [22, 37].
Note that the start-up values can be deleted after they have been read out, so
keys are only accessible at boot time. A further possible key storage is memory



which provides the functionality to hide blocks, e.g., EEPROM block hide [40].
Once an EEPROM block is hidden, it is not accessible until the next reboot of
the device.

3rd Requirement: Uninterruptible Execution. If the device at hand pro-
vides separable memory with lock bits, we suggest to set the lock bits of a sep-
arated memory section containing R such that interrupts are denied during the
execution of code in that section. On other devices, we propose to store both the
interrupt vector table (IVT) and a default interrupt handler in write-protected
memory (i.e., XOM or ROM). All interrupts in the IVT are configured to re-
fer to the default interrupt handler. When an interrupt occurs and the default
interrupt handler gets executed, it checks whether the interrupt was triggered
during the execution of code in R. If this is the case, the default interrupt han-
dler denies interrupt processing. If this is not the case, the interrupt handler
redirects execution to a user-defined interrupt handler which processes the par-
ticular interrupt [17]. A further approach is to always let the default interrupt
handler clean up sensitive data before control is handed over to the particular
user-defined interrupt handler [41]. Both approaches impose no restrictions, since
custom interrupts can still be deployed by modifying the user-defined interrupt
handlers.

Summary. This section has shown various measures to implement the three
required device properties on low-end embedded systems. Because the described
measures are frequently available, our scheme is applicable to a wide range of
commodity low-end embedded devices. In Appendix A, we provide an overview of
popular low-end embedded development devices and show which of the described
security mechanisms are available on each device.

5 Secure Code Update Scheme

Our secure code update scheme comprises two phases: an offline phase (see Sec-
tion 5.1) and an online phase (see Section 5.2). The offline phase is executed
once, before the initial deployment of all devices. In the offline phase, each low-
end embedded device Di is initialized by the trusted network operator O. After
the devices have been deployed, the online phase is executed repeatedly, once
for every code update. In the online phase, O issues a secure code update for all
devices in the network.

5.1 Offline Phase

For the purpose of authenticating devices and for implementing a challenge-based
protocol to attest and verify appropriate update installations, we use public-key
cryptography. In the offline phase, O thus generates a unique identifier i and
a unique signature key pair, consisting of a public key PKi and a private key
SKi, for each device Di. SKi is stored in a protected storage, which can only be
accessed during the execution of code in the static protected memory region R
(see device requirements in Section 3). Furthermore, each device is equipped with



O Trusted network operator SKi Secret signing key of entity i

R Static protected code region PKi Public signing key of entity i

Di Device with identity i DCi Device certificate of entity i

SHi Secret ECDH key of entity i SCi Software certificate of entity i

PHi Public ECDH key of entity i CUc Code update for device class c

Table 1. Notation

a device certificate DCi and a software certificate SCi, both signed by O with
SKO (DCi.sig,SCi.sig). DCi stores the device class c of Di, the public key PKi of
Di, and the identifier i. SCi lists all memory regions on Di where the code update
routine and the firmware is stored. In addition, SCi provides hash values over
the data of these memory regions (SCi.hash). Thus, SCi can be used to verify
the integrity of the installed software on Di. In order to indicate the freshness
of the software, SCi also stores a software version number (SCi.ver). Moreover,
each device initially stores the public key of the trusted network operator PKO

in the write-protected memory region R. SCi and DCi are stored in a mutable
and unprotected memory region.

Additionally, O equips each device with the functionality to perform a secure
code update. Our scheme relies on the untampered execution of code that attests
the integrity of the local software state. For this reason, code that implements
the attestation routine is stored in R, while the rest of the code (including
the actual code update functionality) is stored in a mutable and unprotected
memory region (see Figure 1). Table 5.1 summarizes relevant definitions used in
the offline and the online phase.

5.2 Online Phase

The online phase consists of four different stages. In the first stage, O prepares
a code update package, which is distributed in the network and installed on the
devices. In the second stage, devices invoke the execution of the attestation rou-
tine in R. The attestation routine verifies the integrity of the installed software
and ensures that the device passes execution to an unmodified and up-to-date
software. Additionally, the attestation routine generates an attest which proves
that the device is in a trustworthy software state by certifying an untampered
and complete execution of the attestation routine. In the third stage, neigh-
boring devices exchange and verify each others’ software integrity attest. If the
verification is successful, devices establish a secure channel. As untrustworthy
devices are unable to attest their valid software integrity, they cannot establish
communication channels and thus are excluded from the network. In the fourth
stage, O obtains an installation report, which exhibits the software state of all
devices in the network. Figure 1 shows the memory layout of the code update
scheme and illustrates the control flow throughout all stages. In the following,
we will explain each stage in detail.
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Fig. 1. Illustration of memory layout and control flow of the online phase.

Stage 1: Code Update Distribution and Installation. The online phase
starts with the network operator O preparing a code update package cupkg.
Cupkg includes an ascending version number cupkg.no and a signature by O,
in order to prevent replay attacks and tampering with the code update pack-
age. Since devices in the network may be heterogeneous, cupkg must be able to
address multiple device classes. For each device class c in the network, cupkg
contains a software certificate SCc. SCc specifies the correct software configura-
tion for a device of type c, after the installation of the code update. In addition,
all contained SCs store the current cupkg version number (SC.ver = cupkg.no).
Furthermore, for each device class c that should be updated, cupkg contains code
update data CUc. CUc comprises the binary code of the update and installation
instructions (e.g., addresses where to store the binary code during installation).

After preparing cupkg, O sends a code update request followed by cupkg to
an arbitrary device in the network. This causes the recipient device to execute
stage one in the code update routine (see Figure 1). Next, the code update
routine receives cupkg and stores it in a free memory region. Devices that received
cupkg check whether it contains a valid signature by O and whether its version
number is higher than the last received cupkg version number. If both checks
pass, devices send a code update request to their immediate neighboring devices
and subsequently forward cupkg to them. In this way, a flooding propagation
of cupkg is initiated where devices forward the package to neighboring devices
that have not yet received cupkg (see Figure 2). Since efficient and secure code
disseminations in wireless mesh networks are well-understood [13, 18, 20, 26, 27,
29, 36, 42], we will not dwell on the distribution of cupkg, but instead assume
that eventually each device in the network receives cupkg. This also includes
scenarios in which cupkg is too large to fit into the free memory of devices and
must be transmitted in multiple smaller chunks.

Devices that received, verified, and forwarded cupkg to their neighbors check
whether cupkg comprises a new code update for their device class. Thereto, each
device Di examines whether cupkg contains a CUk for the local target device class
specified in DCi. If this is the case, a device uses the installation instructions in
CUk to install the update binary code. Note that, since the code update routine
is stored in mutable memory, the update routine itself may also be updated
during update installation. Furthermore, all devices in the network update their
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local software certificate to the new software certificate for their device class and
issue an attestation of the local software configuration (see next stage).

We propose that devices also invoke the execution of the code update routine
on fatal errors that render devices non-functional. This allows O to recover
devices whose software accidentally became misconfigured or defective remotely.

Stage 2: Local Software Integrity Attestation. In order to attest an un-
tampered and up-to-date software state, devices invoke the execution of the at-
testation routine. Since the attestation routine is stored in the protected memory
region R (see Figure 1), this process requires a reboot on certain commodity de-
vices (see Section 4). As illustrated in Algorithm 1, the attestation routine starts
with the retrieval of the protected secret signing key SK. Next, the authenticity
of the software certificate SC is ensured by verifying whether SC was signed by
O. If this is the case, SC is used to check the local software integrity (denoted
by the execution of CheckCodeIntegrity()). Consequently, hash values over all
memory regions that are listed in SC are taken and compared to the expected
reference values specified in SC.hash. If all measurements match their reference
value, the verification of the software integrity is successful. Upon a successful
verification, the device generates a new Elliptic curve Diffie-Hellman (ECDH)
key pair (SH,PH) [28] and computes attest by signing PH and SC.ver with
SK. Afterwards, it is ensured that no information about the secret signing key
SK gets leaked (denoted by the execution of HideSecret()). As shown in Sec-
tion 4, this may involve the erasure of certain memory regions or the execution
of specific instructions on some commodity devices. Finally, the firmware is ex-
ecuted and SH, PH, and attest are passed to the firmware (see Figure 1). The
entry point of the firmware is hardcoded in R. This ensures that the control
flow is indeed passed to the firmware, whose integrity was just verified, and not
to malicious code that hides somewhere in memory. However, if the verification
of the software integrity is unsuccessful, stage one in the code update routine is
executed all over again. In this way, devices are able to recover from situations
where O accidentally distributed a buggy cupkg.

We would like to point out, that a valid attest proves that D runs a firmware
as well as a code update routine whose integrity was successfully verified using
a software certificate with the version SC.ver. One reason for this are the three



Algorithm 1. Execution of AttestationRoutine() (located in R).

1: procedure AttestationRoutine(SC)
2: SK ← RetrieveSecret()
3: if Verify(PKO; SC.sig; SC.content) and CheckCodeIntegrity(SC.hash) then
4: (SH,PH)← GenKey()
5: attest← Sign(SK; PH||SC.ver)
6: HideSecret(SK)
7: StartFirmware(SH,PH, attest)
8: else
9: HideSecret(SK)

10: StartCodeUpdateRoutine()
11: end procedure

device properties (see Section 4). They prevent an adversary from tampering
with the attestation routine, accessing SK outside of the attestation routine,
and interrupting the execution of the attestation routine. Another reason is the
design of the attestation routine, which prevents an adversary from generating
a valid attest while not executing the attestation routine from the beginning.
This is due to the first instructions of the attestation routine which retrieve SK
and thus must initially be executed to sign attest correctly. However, executing
the attestation routine from the beginning leads to its execution in entirety (see
third device property). This inevitably executes code which ensures that no in-
formation about SK gets leaked, that the software integrity of D conforms to SC,
and that the firmware, and no unverified code, gets executed next. Tampering
with the input of the attestation routine is also not promising for the adversary.
The only mutable data that the attestation routine relies on is SC. However,
SC’s integrity is verified before it is used to check the local software integrity.
Using old SCs as input for the attestation routine, devices can pass the local
software integrity verification with an outdated software state. Nevertheless, as
we will see in the next stage, this will be detected during the verification of attest
by neighboring nodes.

Stage 3: Mutual Integrity Verification and Setup of Shared Secrets. In
the third stage, each device looks for immediate neighbor devices in the network.
If a device Di finds a neighbor Dn whose software state has not yet been verified,
it invokes a mutual verification. Thereto, Di generates a swstatei message com-
prising attesti, PHi, and DCi, and sends this message to Dn. Upon receiving
swstatei, Dn generates a swstaten message and sends it to Di (see Figure 2).
Next, both devices invoke the execution of stage three in their code update rou-
tines (see Figure 1) to verify each others’ integrity of the software state and to
establish a shared secret. Algorithm 2 illustrates this process in pseudocode.

In order to verify the software state of Dn, Di initially checks DCn using
PKO. Next, Di verifies whether attestn corresponds to the received PHn and the
latest software version, which Di stores in its local software certificate (SCi.ver).
A successful verification ensures that Dn is in a software state that corresponds



Algorithm 2. Software integrity verification of a neighbor device Dn on Di.

1: procedure VerifyNeighborSoftwareIntegrity(swstaten)
2: attestn,DCn,PHn := swstaten
3: key ← ⊥
4: if Verify(PKO; DCn.sig; DCn.content)
5: and Verify(DCn.PKn; attestn; PHn||SCi.ver)
6: then key ←KeyExchange(SHi,PHn)
7: return key
8: end procedure

to an SC from O’s latest cupkg. Thus, it ensures the integrity as well as the
up-to-dateness of Dn’s software state. In addition, verifying attestn confirms the
integrity and the authenticity of PHn. If the verification of DCn and attestn is
successful, Di uses its own secret ECDH key SHi and Dn’s public ECDH key
PHn to perform a key exchange and establish a shared secret key. Note that if
Dn’s verification of Di’s software state is likewise successful, both parties agree
on the same key. However, if any of the verifications fail, Di regards the software
state of Dn as untrustworthy and does not reconstruct a shared secret. Next, the
attestation routine returns and passes key to the firmware (see Figure 1). If the
verification failed, the firmware causes Di to send Dn a message that indicates a
failure. Nevertheless, Dn can re-request a mutual integrity verification with Di

to recover from connection breaks or other avoidable errors. If the verification
was successful on both sides, Di and Dn use key to establish a confidential
and authenticated channel. This channel is used for any further communication
between both parties. In this way, devices whose software is in an untrustworthy
state are effectively excluded from communication. An adversary may try to pass
the mutual software state verification by replaying a swstate messages recorded
from a trustworthy device. However, in doing so, the adversary is not in the
possession of the SH that correspond to the replayed swstate message. For this
reason, the adversary is not able to reconstruct the correct key and the attack will
be detected during the establishment of the secure channel. Figure 3 illustrates a
scenario in which a compromised device DA is unable to attest its software state
towards its neighboring devices and thus is unable to establish a communication
channel with them.

Stage 4: Installation Reporting. The fourth stage starts with O requesting
an installation report from the network. For this purpose, O initially uses the
approach explained in stage three to establish a secure channel with an arbitrary
trustworthy device Di in the network. In order to pass the integrity verification
by Di, O generates a signature key pair, issues a DC that authenticates the
generated key, and uses the key to compute attest. Next, O sends Di a request
for an installation report over the established channel. Devices that receive a
report request invoke the execution of stage four in their code update routines
(see Figure 1). The report request is used to construct a spanning tree whose
root is O. Thereto, Di broadcasts the request over secure channels to all trust-



worthy neighboring devices, which in turn broadcast the request. Broadcasting
is repeated until the report request reaches leaf nodes in the spanning tree, i.e.,
nodes whose neighbors all have received the request. Leaf nodes then generate
an installation report, which initially contains the identifier of the particular leaf
node. Afterwards, the installation report incrementally gets propagated back to
the root of the spanning tree. At each hop, a node aggregates the report from its
child nodes, includes its own identifier, and then forwards the aggregated report
to its parent node. Above a certain number of aggregated identifiers, it is useful
to encode the report as an n-bit array, where a flipped bit at position k indicates
that Dk is in a trustworthy state. Eventually, the installation report gets trans-
mitted from Di to O. Since O knows the identifiers of all deployed devices, O can
also assess the precise identifiers of all untrustworthy devices. This may serve as
a first step towards physically locating and recovering compromised devices.

Nevertheless, listing the precise identifiers of all devices in the network causes
a considerable transmission overhead in large mesh networks with many devices.
If O does not require detailed information about the identity of trustworthy
and untrustworthy devices, it is reasonable to implement a more coarse-grained
report type. For instance, O could initially only request for the total number of
trustworthy devices or the number of trustworthy devices per device class.

6 Evaluation

Setup. We implemented the proposed secure code update scheme on Stellaris
EK-LM4F120XL microcontrollers. The Stellaris is a low-cost embedded system
from Texas Instrument which features an 80 MHz ARM Cortex-M4F micropro-
cessor and provides 256 kB of protectable Flash memory. To enable wireless mesh
connectivity based on the ZigBee standard, we equipped the Stellaris microcon-
trollers with CC2530 BoosterPacks from Anaren. In the following, we consider a
homogeneous network of Stellaris microcontrollers in a static network topology.
We measured network and computational delays of our implementation in small
real word mesh networks. In order to evaluate the scalability of the secure code
update scheme, we simulated large-scale networks based on our measurements.
We found out that the network topology plays an important role for the code up-
date runtime. This is due to the high communication costs for the transmission
of the binary code updates.

We implemented the key exchange using Elliptic Curve Diffie-Hellman (EC-
DH) with Curve25519 [5]. For the signature scheme, we used an Edwards-
curve Digital Signature Algorithm (EdDSA) called Ed25519, which is based on
Curve25519 [7]. We implemented the hash function using SHA-512, while the
secure and authentic channel uses AES in Galois/Counter Mode (AES-GCM).
In Appendix B, we outline measurements of the network performance and the
cryptographic implementations.

Storage Consumption. Compared to a näıve code update approach that only
distributes the binary code of the update but provides no security, our scheme
requires additional storage for data. In fact, each device must store SC (ca. 212
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byte), DC (100 byte), PKO (32 byte), SK (64 byte), ECDH keys (96 byte),
and shared secrets (32 byte per neighbor). Hence, with k being the number of
neighboring devices, the storage overhead for data adds up to 504 + 32 · k bytes.

Another storage consumption arises due to the size of the code. Our reference
implementation, which we use throughout this performance evaluation, requires
66 kB of protected storage in R. However, almost all the storage is spent for the
implementation of the Ed25519 signature scheme. By using an Ed25519 imple-
mentation that is particularly suited for low-memory systems [4], we were able to
reduce the size of R to 7.7 kB, albeit increasing the runtime for cryptographic
operations.1 This smaller implementation makes our scheme applicable to all
commodity low-end embedded devices listed in Appendix A, since all of them
offer at least 8 kB of protectable Flash memory. Reusing the signature scheme
in R, further 15.1 kB of code in mutable memory are consumed to implement,
among others, the network communication, the key exchange, and the encryp-
tion and decryption for the secure channel. In total, our reference implementation
consumes 81.1 kB and our code size optimized implementation consumes 22.9
kB of storage. This is an acceptable overhead of respectively 31.6 % and 8.9 %
of the totally available storage on the Stellaris platform.

Single Device Secure Code Update Runtime. We simulated the run-
time of our code update scheme under various conditions and compared it to
a conventional code update approach. The conventional code update approach
distributes and installs code updates and ensures the authenticity, integrity, and
freshness of updates on the devices. However, it does not exclude devices that
are in an untrustworthy software state from the network and also provides no
report listing all trustworthy devices for the network operator.

Figure 4 compares the runtime on a single device between our secure code
update approach and the conventional code update approach with varying code
update sizes. It shows the runtime of both approaches in seconds as well as
the percentage overhead of our secure approach. The mesh network consists of

1 Yet, existing works have shown that a signature scheme which achieves about the
same runtime performance than our reference implementation can be implemented
in less than 4 kB of code by using platform dependent assembler directives [12, 31].
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1024 nodes which are arranged in a binary tree topology. Since devices in the
network require different amounts of time to perform the code update, e.g.,
some devices transmit a smaller installation report or they need not forward
the new code update to neighboring devices, we averaged the runtime over all
devices in the network. The figure illustrates that the size of the code update
has a linear impact on the code update runtime. This is almost entirely due to
the transmission time of the code update. In fact, the runtime overhead of our
secure approach is nearly independent of the code update size, as it increases
only slightly from 0.7 seconds with a 1 kB code update to 1.1 seconds with a
160 kB code update. For that reason, the runtime overhead decreases from 22.0%
down to 1.4% with an increasing size of the code update.

Figure 5 shows the runtime for a 30 kB code update on a single device with
a varying number of neighbor devices. We distributed the code update to the
measured device first, which is why all surrounding neighbor devices are supplied
with the code update during protocol execution. This causes a linear increase of
the code update runtime. However, the additional runtime of our secure update
approach also increases linearly with the number of neighbor devices. This is
due to the time neighboring devices require to mutually verify each others’ soft-
ware state during protocol execution. Thus, with a varying number of neighbor
devices, the runtime overhead remains rather constant at circa 4%.

Network Secure Code Update Runtime. We further evaluated the total
runtime required to perform a secure code update with all nodes in the mesh
network. Figure 6 shows the total runtime for a 30 kB code update with varying
numbers of nodes, using the secure or the conventional code update approach.
The network topology is arranged as a binary tree or a 4-ary tree. The figure
demonstrates that due to the tree network topologies, the code update runtime
increases logarithmically with the number of devices in the network. We config-
ured our secure update scheme to report the precise device ids of all trustworthy
devices to the network operator. As this causes the installation report to grow
proportional with the network size, the gap between the runtime of our secure
approach and the conventional approach increases considerably when the net-
work contains more than 100.000 devices. In such large network, our secure code



update scheme performs better if the network is arranged in a broader but flat-
ter network topology, as this decreases the average size of the report (i.a., it
increases the number of leaf nodes that must only transmit their own id to the
parent node). Therefore, in networks with more than 106.000 devices, our code
update scheme performs better in a 4-ary tree network topology than in a binary
tree topology. Nevertheless, for smaller networks, the runtime overhead is quite
low in tree network topologies. To be precise, the runtime overhead remains
below 2% for up to 25.000 devices and is less than 5% for up to 100.000 devices.

However, mesh networks could also embrace unfavorable topologies. Figure 7
depicts the total runtime performance for a 30 kB secure code update in a net-
work with a chain topology and a star topology. The star topology is constituted
of three device chains branching off a central star device. Figure 7 shows that in
such an inconvenient network topology, the runtime for a code update attains
extremely high values. This is caused by the long transmission time for the code
update and the installation report. Nevertheless, even in the worst case, which
is the chain topology, the overhead of our secure approach compared to the con-
ventional approach is below 2% for up to 4.000 devices and less than 11% for up
to 30.000 devices in the network.

We would like to stress that the overhead is largely introduced by transmit-
ting the precise ids of trustworthy devices to the network operator. If we instead
configure our scheme to report only the total number of trustworthy devices to
the operator, the network runtime overhead becomes almost negligible compared
to the conventional approach. In fact, this way, the runtime overhead is less than
1.5% for 10 devices and less than 0.35% for networks with 500.000 devices.

7 Conclusion

In this work, we presented a novel secure code update scheme for large mesh
networks composed of commodity low-end embedded devices. Our scheme offers
desirable security features for the application scenario of patching software vul-
nerabilities in these systems. Properly executed, our scheme enforces that after
code update installation a device runs only unmodified and up-to-date software.
Devices that refuse a proper execution of our scheme, and thus run outdated or
compromised software, are detected by their neighboring devices and excluded
from the network. Issuing a secure code update, the network operator learns
which devices are in a trustworthy and which devices are in an untrustworthy
software state. We demonstrated that our scheme is applicable to a broad range
of popular low-end embedded systems without requiring any hardware modifi-
cations. Therefore, our solution can be retrofitted to many currently deployed
systems. In addition, we showed that the scheme scales well and is practically us-
able in networks with tens of thousands of devices. Compared to a conventional
code update, which offers none of the described security features, our scheme
imposes a runtime overhead of 2.1% in the best case and 11.9% in the worst case
for a network with 30.000 devices and a firmware update size of 30 kB. Thus,
our solution is also well suited for future developments, where we expect low-end
embedded device networks to increase in size.
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panStamp AVR2 3 3 3 R in BLS; BLB0=1; BLB1=4; BOOTRST=0

TinyDuino 3 3 3 R in BLS; BLB0=1; BLB1=4; BOOTRST=0

Arduino UNO 3 3 3 R in BLS; BLB0=1; BLB1=4; BOOTRST=0

RFduino 3 3 3 Use MPU: Store R in R0; PALL=0; PR0=0

XinoRF 3 3 3 R in BLS; BLB0=1; BLB1=4; BOOTRST=0

Ciseco 3 3 3 R in BLS; BLB0=1; BLB1=4; BOOTRST=0

Pinoccio 3 3 3 R in BLS; BLB0=1; BLB1=3; BOOTRST=0

Nanode 3 3 3 R in BLS; BLB0=1; BLB1=4; BOOTRST=0

Arduino Yun 3 3 3 R in BLS; BLB0=1; BLB1=4; BOOTRST=0

OpenPicus Flyport 3 – – GCP=0; GWRP=0; but not sufficient!

Libelium Wasmote 3 3 3 R in BLS; BLB0=1; BLB1=4; BOOTRST=0

MICA2 3 3 3 R in BLS; BLB0=1; BLB1=4; BOOTRST=0

Kinetis KW4*Z 3 3 3 R in XOM + Interrupt Handler in XOM [17]

Arduino M. 2560 3 3 3 R in BLS; BLB0=1; BLB1=4; BOOTRST=0

TI Stellaris 3 3 3 (1)R in XOM+Interrupt Handler in XOM[41]

(2)R in ROM (Bootloader) + EEPROMHIDE

(3)R in ROM (Bootloader) + SRAM PUF

Table 2. Overview of popular low-end embedded devices and their security features.

Table 2 provides an overview of popular low-end embedded development
devices and shows, for each device, which hardware security properties can
be achieved and how to achieve them. We based the list on a collection by
Postscapes2. In particular, we regarded all their listed low-end embedded systems
(first 11 devices) and some devices mentioned in their additional resources. BLB,
BOOTRST, PALL, etc. are the names of particular Fuses and Lock bits that
have to be set to achieve the stated security. A checkmark or hyphen indicates

2 http://postscapes.com/internet-of-things-hardware



the availability of a security feature. The overview illustrates that the required
security features are available in many popular low-end embedded devices. This
demonstrates the broad applicability of our secure code update scheme.

B Additional Runtime Measurements

Network Runtime Performance. For unicast messages between two neigh-
boring nodes in the mesh network, we measured an average maximum through-
put of 35.0 kbps on the application layer. Although the measured throughput is
only a fraction of the theoretical maximum throughput of 250 kbps in ZigBee
networks, other performance evaluations revealed similar performance losses in
reality [9]. In addition, we measured an average one-hop round-trip time (RTT)
of 13.5 ms with the smallest message size and 18.5 ms with the biggest mes-
sage size. Carrying out measurements for the broadcast throughput, we found
out that the broadcast frequency on the CC2530 BoosterPack is limited accord-
ing to the specification of the ZigBee Pro stack. In practice, we measured a
maximum broadcast throughput of 0.65 kbps. Thus, for performance reasons,
we implemented all network communication as unicast transmissions. During
protocol execution, additional overhead is generated through the restart of the
devices. We measured that a full device restart, comprising an initialization of
the device and a join in the mesh network, takes on average 2338 ms.

Cryptographic Runtime Performance. Table 3 shows an excerpt of our
cryptographic runtime measurements on the Stellaris microcontroller. We would
like to stress that we based our implementation on platform independent and
unoptimized C code [6, 24]. Recent works have shown that assembler optimized
code for low-end embedded systems can improve the performance of crypto-
graphic operations by orders of magnitudes [12, 14]. We presume that similar
performance improvements are also possible on the Stellaris platform, if the used
cryptographic primitives were optimized for ARM Cortex-M4F microprocessors.

Algorithm Function Runtime Function Runtime

ed25519 genKey() 18 ms keyExchange() 48 ms

sign(16 bytes) 19 ms verify(16 bytes) 51 ms

sign(1024 bytes) 22 ms verify(1024 bytes) 53 ms

AES-GCM encrypt(16 bytes) 0.1 ms decrypt(16 bytes) 0.1 ms

encrypt(1024 bytes) 1.8 ms decrypt(1024 bytes) 1.8 ms

SHA-512 hash(16 bytes) 0.4 ms hash(20480 bytes) 54.7 ms

hash(1024 bytes) 3.1 ms hash(163840 bytes) 435.1 ms

Table 3. Crypto Runtime Performance on the Stellaris.


