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pute px mod N , one may instead choose a ran-dom number r and compute pxr2 mod N . Fromthis information, px mod N is easily recoveredby dividing by r. More general forms of random-self-reducibility may also be de�ned, allowing,e.g., reductions to several random instances ofthe function.Random-self-reducible functions are impor-tant in complexity theory and in many applica-tions. For example:Worst-case hardness implies average-casehardness: Random-self-reducible problems areas hard on average as they are in the worstcase. Angluin and Lichtenstein [2] pointed outthat this is why they yield good candidates forone-way functions. Blum and Micali [5] usedthe random-self-reducibility of the \discrete log"function to construct pseudorandom number-generators. Babai [3] used the random-self-reducibility properties of the \parity" problem toobtain a simple proof that a random oracle sep-arates the polynomial hierarchy from PSPACE(an earlier proof by Cai [14] does not use random-self-reducibility).Program checking, testing, and correcting:If a program computes a random-self-reduciblefunction correctly on most inputs, it can beused to compute the function correctly, withhigh probability, on all inputs. Blum, Luby,and Rubinfeld [10] call a program self-testingif it is guaranteed to be correct on \randominstances"; they use random-self-reducibility tomake self-testing programs \correct themselves."The work in [10] builds on program-checking,as de�ned by Blum and Kannan [9], in which



random-self-reducibility also plays a prominentrole. Lipton [23] shows how programs that pur-port to compute random-self-reducible-functionsmay be e�ciently \tested," where the notion oftestability is similar to the notion of correctabil-ity in [10].Interactiveproof systems, zero-knowledge, and cryp-tographic applications: The earliest exam-ples of zero-knowledge proof systems all involverandom-self-reductions; see, e.g., Goldwasser,Micali, and Racko�'s original paper on zero-knowledge [20], as well as the subsequent papersof Galil, Haber, and Yung [17], Goldreich, Mi-cali, and Wigderson [19], and Brassard, Chaum,and Cr�epeau [13]. The practical authenticationscheme proposed by Feige, Fiat, and Shamir[15] is also based on random-self-reducibility.Tompa and Woll [28] make explicit the connec-tion between random-self-reducibility and per-fect zero-knowledge. Most importantly, the re-cent characterizations of the power of interactiveproof systems (cf. [4, 24, 25, 27]) use random-self-reducibility; in particularly, they use therandom-self-reduction of the permanent functionexhibited in [6, 23].Computing with encrypted data: Abadi,Feigenbaum, and Kilian [1] consider the ques-tion of whether a weak computer can exploitthe resources of a more powerful (but insecure)computer without revealing too much informa-tion about its private data. Beaver and Feigen-baum [6] generalize this concept of instance-hiding schemes to allow several powerful com-puters; they show that all functions can becomputed by multiple powerful computers, noneof which obtains the weak computer's input.Beaver, Feigenbaum, Kilian, and Rogaway [7]strengthen these results and give some appli-cations to distributed computation. In eachof these works, random-self-reducibility providesnatural examples of problems that can be com-puted with encrypted data.In this paper, we study the concept of random-self-reducibility in its own right. Preliminarywork along these lines can be found in [1, 2, 28],where f is said to be random-self-reducible if

computing f(x) can be reduced to computingf on a single random input. We consider themore general notion of reducing the computa-tion of f(x) to the computation of f on severalrandom inputs. The importance of this general-ization has been demonstrated dramatically bysome of the recent works just mentioned (i.e.,[4, 6, 7, 10, 23, 24, 25, 27]). Building on resultsof Beaver and Feigenbaum [6], Lipton [23] showsthat some very computationally-complex func-tions (including the permanent function) haverandom-self-reductions of this general form. Un-less the polynomial hierarchy collapses, suchhighly complex functions do not have the sim-pler form of random-self-reductions in which thereal instance is mapped to a single random in-stance (a weak form of this negative result wasshown in [1], and a stronger form is shown here).One interpretation of the result in [6, 23] is thatevery function can be extended to a random-self-reducible function by extending its domainand range. Thus, the natural question to ask iswhether every function (with its original domainand range) has a random-self-reduction of thisgeneral, multiple-random-instance variety. Simi-larly, one interpretation of the results of [6, 7] isthat every function f has a \random reduction"to some function g. Thus, it is natural to askwhether it is possible to take g = f . These ques-tions are interesting in their own right and arealso motivated by potential applications. Recentworks have provided applications of random-self-reducibility to complexity [4, 24, 25, 27] and toself-testing, self-checking, and self-correction ofprograms [10, 23]; presumably new results onrandom-self-reducibility would �nd more appli-cations in complexity theory and in practice.In this paper, we provide negative answers tothese questions. We postpone formal de�nitionsuntil Section 3, and now state our main resultsinformally.� Random boolean functions do not haverandom-self-reductions in which the originalinstance is mapped to a polynomial num-ber of random instances. Our proof alsoshows that there is such a non-random-self-reducible boolean function in DSPACE(2n).



� Every boolean function that has a random-self-reduction in which the original instanceis mapped to two random instances is innonuniform NP \ coNP. (This question isstill open for the case of three random in-stances or, in general, for constants k > 2.)� Following [1], we consider random-self-reductions of language-membership prob-lems that are one-sided (i.e., they randomizeonly \yes-instances" of the language). Weshow that SAT does not have such a re-duction unless the polynomial hierarchy col-lapses; this settles an open question of [1], inwhich a similar result was proven for SAT.� Following [1], we also consider reductionsthat randomize only some of the bits of theinput instance and leave the rest of the bits�xed. We show that SAT and SAT do nothave such reductions unless the polynomialhierarchy collapses. Our result for SAT isbest possible and gives a great improvementon the result in [1]: even a self-reductionthat randomizes a constant number of thebits of each yes-instance is precluded unlessthe polynomial hierarchy collapses.Sections 2 and 3 below contain precise nota-tion, terminology, and de�nitions for the con-cepts discussed above. Our main results aregiven in Section 4. Section 5 contains a brief dis-cussion of very recent related results, and Section6 contains open problems.The results given here �rst appeared in ourTechnical Memorandum [16]. In what follows,some details of proofs have been omitted becauseof space limitations; they will appear in the fullpaper.2 PreliminariesWe �rst �x notation for the following concepts,with which we assume familiarity on the part ofthe reader.The class of total functions computable indeterministic polynomial time is denoted fP;when restricted to boolean functions, this is just

the language class P. The class of total func-tions computable in nondeterministic polynomialtime is denoted fNP; the boolean subclass isNP \ coNP. Relevant nonuniform versions ofthese classes are, respectively, fP=poly, P=poly,fNP=poly, and NP=poly \ coNP=poly. PH de-notes the polynomial hierarchy.We denote by IP(k) the languages recog-nizable by k-round interactive-proof systems(cf. Goldwasser, Micali, and Racko� [20]) andby AM(k) those recognizable by k-round Arthur-Merlin games (cf. Babai and Moran [5]). Rel-evant nonuniform versions are IP(k)=poly andAM(k)=poly.If f is a function on ��, then fn denotes therestriction of f to inputs of length n; the set ofall such inputs is denoted �n. A random booleanfunction on �n is one chosen uniformly from thesample space of size 22n . A random boolean func-tion f (on ��) is sampled by choosing fn uni-formly, independently for each n.Throughout this paper, n is the length of theinput x, and r is a uniformly chosen random ele-ment of f0; 1gm, where m is bounded by a poly-nomial in n.3 De�nitionsHere we give formal de�nitions for the conceptsintroduced in Section 1.De�nition 3.1 A k-random-self-reduction (ab-breviated k-rsr) for a function f is a collection offunctions �, �1, : : :, �k in fP with the followingproperties.� For all x and r,f(x) = �(x; r; f(�1(x; r)); : : : ; f(�k(x; r))).� For all n and all x 2 �n, if r is chosenuniformly from f0; 1gm, then �i(x; r) is uni-form over �n, for all i such that 1 � i � k.Remark: For i 6= j, the random variables�i(x; r) and �j(x; r) are, in general, dependent.Remark: The parameter k is, in general, a func-tion of n = jxj. The function � is polynomial-time computable, but the total length of its input



may be superpolynomial in n if k(n) is super-polynomial.Remark: A function f that is k-random-self-reducible, in our language, is \randomly-testableof order k over fP" in the language of [23].Clearly, the notion of nonuniform random-self-reducibility also makes sense. That is, the func-tions � and �i, 1 � i � k can be computed bycircuit families instead of TM's.De�nition 3.2A nonuniform (k; s)-random-self-reduction for afunction f is a collection of functions �, com-puted by circuit family fCng1n=0, and �i, 1 �i � k, computed by circuit families fDi;ng1n=0,1 � i � k, satisfying the two conditions of De�-nition 3.1 and the condition that all circuit-sizesjCnj, jD1;nj, : : :, jDk;nj are at most s(n). (Thecircuits Di;n take as input x and the random bit-string r. The circuit Cn takes x, r, and the val-ues computed by the Di;n's.)Both k-rsr's and nonuniform (k; s)-rsr's canalso be generalized in the following way: foreach x, require only that the probability thatf(x) = �(x; r; f(�1(x; r)); : : : ; f(�k(x; r))) be atleast 2=3. In this case we say that f has a k-rsr(resp. a nonuniform (k,s)-rsr) that makes errors.Random-self-reductions are a special case oflocally random reductions and, even more gen-erally, instance-hiding schemes. These notionswere de�ned for k = 1 by Abadi, Feigenbaum,and Kilian [1] and for k > 1 by Beaver andFeigenbaum [6] and by Beaver, Feigenbaum, Kil-ian, and Rogaway [7]. For convenience, we in-clude the following, which is a special case of ade�nition given in [7].De�nition 3.3A (1; k)-locally random reduction of f to g is acollection of functions �, �1, : : :, �k in fP withthe following properties.� For all x and r,f(x) = �(x; r; g(�1(x; r)); : : : ; g(�k(x; r))).� There is a polynomially bounded functionw(n) such that, for all n and all x 2 �n,if r is chosen uniformly from f0; 1gm, then

the random variable �i(x; r) is uniform overDom(g)\�w(n), for all i such that 1 � i � k.Clearly a (1; k)-locally random reduction isa k-rsr if g = f and w(n) = n. Beaverand Feigenbaum [6] show that every functionf has a (1; n � logn)-locally random reductionwith w(n) = O(n logn). This general upperbound was improved to k(n) = n= logn, w(n) =O(n logn) by Beaver, Feigenbaum, Kilian, andRogaway [7].Remark: Random-self-reductions, locally ran-dom reductions, and instance-hiding schemes canbe restricted to fn in a straightforward man-ner. Hence, we often use the phrases \fn isk-random-self-reducible" or \fn is nonuniformly(k; s)-random-self-reducible" to mean the obvi-ous thing.Remark: As in random-self-reducibility, the pa-rameter k in locally random reducibility andrandom-testability is, in general, a function ofn = jxj.Notation: Denote by k-RSR the set of booleanfunctions that have k-rsr's, and denote by poly-RSR the union, over all polynomials k(n), of thesets k-RSR.We now restrict attention to set-membershipproblems. We consider two types of self-reductions that are weaker than rsr's. Both typeswere introduced by Abadi, Feigenbaum, and Kil-ian [1], but the notation used in [1] is di�erentfrom that used here.De�nition 3.4 A function � 2 fP is aone-sided 1-rsr for a set S if is it length-preserving, membership-preserving, and has theproperty that, for all n and all x 2 �n, if r ischosen uniformly from f0; 1gm, then �(x; r) isuniformly distributed on S \ �n.Thus, a one-sided 1-rsr achieves perfect ran-domization on yes-instances, but may not ran-domize no-instances at all.The requirements of De�nitions 3.1 and 3.4can be weakened as follows. For each n, theelements of �n are partitioned into equal-sizedorbits. Let O(x) denote the orbit of x. Then�i(x; r) is distributed uniformly on O(x). If there



is more than one orbit for each �n, we speak ofa partial k-rsr or a one-sided partial 1-rsr.Often a partial rsr � has the property that allelements of an orbit share a su�x.1 Under theseconditions, the action of � has the following in-terpretation: let O be a �-orbit all of whose ele-ments share the su�x v. For any x 2 O, � �xesv and it randomizes the rest of x. The shorter vis in comparison to x, the larger the orbits, thefewer orbits there are, and the closer � comes tobeing an rsr. If � has exactly one orbit, thenjvj = 0, and � is an rsr.De�nition 3.5 A function is a p-partial rsr ofS if it satis�es all of the above conditions andp = (n� jvj)=n.De�nition 3.5 makes sense for both two-sidedand one-sided rsr's. Like k, the parameter p is,in general, a function of n. By de�nition, 0 �p(n) � 1. Also, partial random-self-reductionsmay be computed by circuits as well as TM's(and the notation carries over).Perhaps the best-known example of a random-self-reducible set S is the set of quadraticresidues with Jacobi symbol 1 modulo compos-ites that are the product of two primes (referto, e.g., [2, 11, 13, 17, 20] for applications).The standard reduction is a (1=2)-partial 1-rsrin which the common su�x is the modulus; thatis, the modulus is �xed by the reduction and theresidue is randomized. It is also two-sided, i.e., itis a (1=2)-partial 1-rsr of S. See [1] for an exam-ple (based on the graph-isomorphism problem)of a set S with a one-sided (1=2)-partial 1-rsrin which S does not seem to have a one-sidedp-partial 1-rsr with p � 1=2.Finally, note that there are random-self-reducible functions at arbitrarily high levels ofthe time hierarchy. For example, the character-istic function of fx : jxj encodes a Turing Ma-chine that halts on all inputsg is 1-rsr, but it isnot recursive. See [1, x4] for a longer discussionof this issue.1Clearly this statement is only meaningful with respectto an agreed-upon encoding of S. Refer to Garey andJohnson [18, Chapter 2] for a discussion of encodings. Weassume that all of the sets we consider are encoded \in astandard way," i.e., as in [18, Chapter 2].

4 Results4.1 Random functions are not in poly-RSRTheorem 4.1 There is a constant c > 1 suchthat, for all polynomials k(n) and s(n), for allsu�ciently large n, the probability that a ran-dom boolean function fn is nonuniformly (k; s)-random-self-reducible is less than 2�cn .Proof (sketch): We use a counting argument tocompute the probability that a random fn satis-�es a weaker condition, which we call nonuniform(k; s)-self-reducibility.Say that the functions �n and �i;n, 1 � i � k,constitute a nonuniform (k,s)-self-reduction (ab-breviated (k; s)-sr) for fn if they are computableby circuits of size at most s(n) and together sat-isfy the following two conditions. For all x 2 �n,for all 1 � i � k, �i;n(x) 6= x. For all x 2 �n,fn(x) = �n(fn(�1;n(x)); :::; fn(�k;n(x))). It is notdi�cult to show that, if fn has a nonuniform(k; s)-rsr, then it also has a nonuniform (k; s)-sr.Claim: There exist constants c1 > 1 and c2 > 1,such that, for all su�ciently large n, if k(n) <cn1 and s(n) < cn1 , then the probability that arandom fn on �n has a nonuniform (k; s)-sr is atmost 2�cn2 .To see why this claim holds, �x a set of circuitsfor f�n; �1;n; : : : ; �k;ng. Note that the number ofchoices for such a set of circuits is approximately2c2n1 . We prove the claim by showing that theprobability that f�n; �1;n; : : : ; �k;ng is a k-sr forfn is su�ciently small.Choose at random 2n=k inputs in �n, and �xthe value of fn on all other inputs in an arbi-trary manner. By a simple argument, a constantfraction of the chosen 2n=k inputs x have theproperty that fn(�i;n(x)) is already determined,for all 1 � i � k. Say that this constant fractionis bounded below by cn3 (c3 depends on c1). Ifwe 
ip a coin to determine the value of fn(x),we will be correct with probability only 1=2 forany chosen x; thus f�n; �1;n; : : : ; �k;ng is a k-srwith probability at most 2�cn3 . The claim fol-lows, because we can choose c1 and c2 so that2c2n1 �cn3 < 2�cn2 .



Corollary 4.1 The class poly-RSR has measure0 in the class of all boolean functions.Corollary 4.2 There is a constant c > 1 suchthat, for all polynomials k(n), the probability thata random boolean function f on �� has a k-random-self-reduction that makes errors is lessthan 2�cn .Proof (sketch): If f has a k-rsr that makeserrors, then there is a polynomial s such that,for all su�ciently large n, fn has an (errorless)nonuniform (k; s)-rsr.Corollary 4.3 There is a boolean function f inDSPACE(2n) that is not nonuniformly (k; s)-sr,for any polynomials k and s. A fortiori, there isone that is not nonuniformly (k; s)-rsr. Further-more, there is a deterministic exponential-spaceprocedure to �nd such an f .Proof (sketch): Essentially, the proof of Theo-rem 4.1 can be made into an exponential-space,exhaustive-search procedure P that maps n tofn. The search is over all possibilities for theset of 2n=k inputs, the initial values of fn on el-ements not in the set, and the circuits for theself-reduction �n, �i;n, 1 � i � k. The resultingf is in DSPACE(2n), because f(x) can be com-puted by running P on n = jxj to get fn andthen outputting fn(x).Remark: Recall that every function on ��has a (1; n= logn)-locally random reduction(cf. Beaver, Feigenbaum, Kilian, and Rogaway[7]). These reductions map length-n instances off to random elements of Dom(g)\�n logn, whereg 6= f . Theorem 4.1 and Corollary 4.3 show thatthe upper bound k(n) = n= logn could not beachieved by a length-preserving locally randomreduction that required g to be equal to f (norcould any polynomial upper bound).Remark: Theorem 4.1 and Corollary 4.3 alsoshow that random functions are not randomlytestable of order k over fP (in the sense of Lip-ton [23]), for any polynomial function k(n), andthat such a non-randomly-testable function canbe found in DSPACE(2n).

Remark: Beaver and Feigenbaum [6, Lemma2.2] observe that random boolean functions haveno 1-oracle instance-hiding schemes (and henceno 1-rsr's). This is, to our knowledge, theonly previously published lower bound on therandom-self-reducibility of random functions.4.2 Functions with 2-random-self-reductions are in nonuniformfNPTheorem 4.2 If f has a 2-rsr, then it is infNP=poly.Proof (sketch): Let �, �1, and �2 constitutea 2-rsr for f . The goal is to �nd, for eachn, a polynomial-sized set of subset fx1; : : : ; xmgof �n such that f(x) can be deduced fromff(x1); : : : ; f(xm)g using the 2-rsr. The pairs xi,f(xi) will be given as polynomial advice.For any subset fx1; : : : ; xmg of �n, the setSPAN(x1; : : : ; xm) is de�ned inductively as fol-lows. It is the union of SPAN(x1; : : : ; xm�1)and the set of all x such that there exists acoin-toss sequence r for which �1(x; r) = z and�2(x; r) = xm, where z 2 SPAN(x1; : : : ; xm�1).If such an r exists, we say that x reduces tohz; xmi.It su�ces to prove that there exists a sequence(x1; : : : ; xm) with SPAN(x1; : : : ; xm) = �n andm polynomial in n.Claim: Let S(i) denote jSPAN(x1; : : : ; xi)j.For any (x1; : : : ; xm�1), there exists a choice ofxm for whichS(m)� S(m� 1) � S(m� 1)(2n � S(m� 1))2n :(1)Thus the size of the span approximately dou-bles every time we increase m by 1. Once S(m)is greater than j�nj=2, we are done (this followsfrom the de�nition of 2-rsr).Proof of claim: If S � �n and x 62 S, letNS(x) be the set of w such that x can be re-duced to hz; wi, with z 2 S. Observe thatthe de�nition of 2-rsr implies that, for any suchS and x, jNS(x)j � jSj. To see this, notethat, if �1(x; r) 2 S, then �2(x; r) 2 NS(x).That is, Probr2f0;1gm(�2(x; r) 2 NS(x)) �



Probr2f0;1gm(�1(x) 2 S). Because each �i(x; r)is uniform over �n, this, in turn, implies thatjNS(x)j � jSj.Now set S = SPAN(x1; : : : ; xm�1) and choosexm at random. For any x 62 S, the probabilitythat xm is in NS(x) is at least p = jSj=2n. Thusthe expected growth in the size of the span isp times the maximum possible growth, namelyjSj(2n � jSj)=2n.Corollary 4.4 If SAT has a 2-rsr, then the PHcollapses at the third level.Proof: Recall that the boolean subclass of fNPis NP=poly \ coNP=poly. Then apply Theorem4.2 and a well-known theorem of Yap [31] that, ifNP � coNP=poly, the PH collapses at the thirdlevel.4.3 One-sided random-self-reductionsTheorem 4.3 is a special case of the main resultof [1]; we include it for completeness.Theorem 4.3 If S has a one-sided 1-rsr, thenS 2 NP=poly.Corollary 4.5 If SAT has a one-sided 1-rsr,then the PH collapses at the third level.Proof: This follows directly from Theorem 4.3and Yap's theorem [31].Theorem 4.4 If S has a one-sided 1-rsr, thenS 2 coNP=poly.2Proof (sketch): Suppose that � is a one-sided1-rsr for S. We show that S 2 IP(2)=poly. Thetheorem then follows from results of Goldwasserand Sipser [21] and Babai and Moran [5] thatIP(2) � AM(4) � AM(2) � NP=poly.For each n, the veri�er V is given as adviceone element yn of S\�n (or the fact that S\�nis empty).Let x be a string of length n; prover P wantsto convince V that x 2 S. If V 's advice string2This theorem was �rst proven by one of the authorsin 1987 and has already been referred to in the literature(e.g., [6]); it is published here for the �rst time.

says that S \ �n is empty, then V simply ac-cepts x. Otherwise, V computes x0 = �(x; r1)and y0 = �(yn; r2), where r1 and r2 are cho-sen uniformly and independently from f0; 1gm,and sends fx0; y0g to P , challenging P to selectthe element of S. If x 2 S, then x0 2 S andy0 2 S; so an honest P always succeeds. How-ever, if x 2 S, then x0 and y0 are both uniformly-distributed random elements of S \ �n. Thus,even a cheating P � fails to �nd x0 with probabil-ity greater than 1=2.Corollary 4.6 If SAT has a one-sided 1-rsr,then the PH collapses at the third level.Proof: This follows directly from Theorem 4.4and Yap's theorem [31].4.4 Partial random-self-reductionsAll of the results of Subsections 4.1, 4.2, and 4.3carry over, mutatis mutandis, to partial random-self-reductions with polynomially many orbits.We now show that, if SAT and SAT are en-coded in the standard way, then much strongernegative results can be obtained.Proposition 4.1 If SAT has a one-sided (1=2)-partial 1-rsr, then SAT 2 IP(2).Proof (sketch): Let � be a one-sided (1=2)-partial 1-rsr for SAT. By De�nition 3.5, � �xesthe last n=2 bits of every satis�able formula. Letx be a SAT instance of length n and s be thelength-(n=2) su�x of x. The veri�er constructsthe satis�able formula y = s_ s and applies � toboth x and y. If the prover can distinguish theresults, then x 2 SAT.Corollary 4.7 If SAT has a one-sided (1=2)-partial 1-rsr, then the PH collapses at the secondlevel.Proof: Use Proposition 4.1 and the result ofBopanna, Hastad and Zachos [12] (see also therelated work of Klapper [22]).Proposition 4.2 There is a constant c0 suchthat, for all c � c0, if SAT has a one-sided (c=n)-partial 1-rsr, then NP = coNP.



Proof (sketch): Let � be a one-sided (c=n)-partial 1-rsr for SAT. By De�nition 3.5, � �xesthe last n� c bits of every unsatis�able formula.We show that this implies that SAT can be rec-ognized in NP. Let x be a formula of length nand s be the length-(n � c) su�x of x. Takethe conjunction of s with u ^ u, where u is anyvariable; pad this conjunction out so that it isa formula y of length n. Then y is unsatis�ableand shares the su�x s with x. Guess a randomcoin-toss sequence r and accept x if �(x; r) = y.The constant c0 just has to be big enough to ac-commodate the encoding of u ^ u.Proposition 4.2 shows that SAT fails inthe strongest possible way to be random-self-reducible in the style of quadratic residues, iso-morphic graphs, etc. Even if SAT had such an rsrwith constant-sized orbits, the PH would collapseto NP. Proposition 4.1 shows that SAT fails (ina less extreme way) to be random-self-reduciblein the usual style.5 Recent Related WorkIndependently of the results presented here, Yao[29] de�ned the notion of an examiner for a func-tion; examiners are generalizations of uniformpoly(n)-sr's, which can be de�ned analogouslyto the nonuniform (poly(n); poly(n))-sr's used inTheorem 4.1. Yao calls functions that have ex-aminers coherent functions. The same argumentthat shows that if a function has a nonuniform(k; s)-rsr, then it has a nonuniform (k; s)-sr canbe used to show that a function in (uniform)poly-RSR is coherent.Yao [29] shows that there is a boolean functionin DSPACE(2nlog log n) that is incoherent. Thisresult should be contrasted with our Corollary4.3, in which a stronger negative result is ob-tained for a weaker class of examiners.Beigel and Feigenbaum [8] continued Yao'swork on coherence by showing uncondition-ally that there is an incoherent set inDSPACE(nlog� n) and that, if NEXPTIME 6�BPEXPTIME, then there is an incoherent set
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