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Abstract: Informally speaking, a function f is
random-self-reducible if, for any x, the computation
of f(x) can be reduced to the computation of f
on other “randomly chosen” inputs. Such functions
are fundamental in many areas of theoretical com-
puter science, including lower bounds, pseudorandom
number-generators, interactive proof systems, zero-
knowledge, instance-hiding, program-checking, and
program-testing. Several examples of random-self-
reductions are quite well-known and have been ap-
plied in all of these areas.

In this paper we study the limitations of random-
self-reducibility and prove several negative results.
For example, we show unconditionally that ran-
dom boolean functions do not have random-self-
reductions, even of a quite general nature. For sev-
eral natural, but less general, classes of random-self-
reductions, we show that, unless the polynomial hi-
erarchy collapses, nondeterminstic polynomial-time

computable functions are not random-self-reducible.

1 Introduction

Informally speaking, a function f is random-self-
reducible if, for any x, the computation of f(z)
can be reduced to the computation of f on other
“randomly chosen” inputs. For concreteness,
consider the well-known example of extracting
square roots modulo some number N. To com-
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pute /z mod N, one may instead choose a ran-
dom number r and compute Vzr? mod N. From
this information, /2 mod N is easily recovered
by dividing by r. More general forms of random-
self-reducibility may also be defined, allowing,
e.g., reductions to several random instances of
the function.

Random-self-reducible functions are impor-
tant in complexity theory and in many applica-
tions. For example:

Worst-case hardness implies average-case
hardness: Random-self-reducible problems are
as hard on average as they are in the worst
case. Angluin and Lichtenstein [2] pointed out
that this is why they yield good candidates for
one-way functions. Blum and Micali [5] used
the random-self-reducibility of the “discrete log”
function to construct pseudorandom number-
generators. Babai [3] used the random-self-
reducibility properties of the “parity” problem to
obtain a simple proof that a random oracle sep-
arates the polynomial hierarchy from PSPACE
(an earlier proof by Cai [14] does not use random-
self-reducibility).

Program checking, testing, and correcting:
If a program computes a random-self-reducible
function correctly on most inputs, it can be
used to compute the function correctly, with
high probability, on «all inputs. Blum, Luby,
and Rubinfeld [10] call a program self-testing
if it is guaranteed to be correct on “random
instances”; they use random-self-reducibility to
make self-testing programs “correct themselves.”
The work in [10] builds on program-checking,
as defined by Blum and Kannan [9], in which



random-self-reducibility also plays a prominent
role. Lipton [23] shows how programs that pur-
port to compute random-self-reducible-functions
may be efficiently “tested,” where the notion of
testability is similar to the notion of correctabil-
ity in [10].

Interactive

proof systems, zero-knowledge, and cryp-
tographic applications: The earliest exam-
ples of zero-knowledge proof systems all involve
random-self-reductions; see, e.g., Goldwasser,
Micali, and Rackoff’s original paper on zero-
knowledge [20], as well as the subsequent papers
of Galil, Haber, and Yung [17], Goldreich, Mi-
cali, and Wigderson [19], and Brassard, Chaum,
and Crépeau [13]. The practical authentication
scheme proposed by Feige, Fiat, and Shamir
[15] is also based on random-self-reducibility.
Tompa and Woll [28] make explicit the connec-
tion between random-self-reducibility and per-
fect zero-knowledge. Most importantly, the re-
cent characterizations of the power of interactive
proof systems (cf. [4, 24, 25, 27]) use random-
self-reducibility; in particularly, they use the
random-self-reduction of the permanent function
exhibited in [6, 23].

Computing with encrypted data: Abadi,
Feigenbaum, and Kilian [1] consider the ques-
tion of whether a weak computer can exploit
the resources of a more powerful (but insecure)
computer without revealing too much informa-
tion about its private data. Beaver and Feigen-
baum [6] generalize this concept of instance-
hiding schemes to allow several powerful com-
puters; they show that all functions can be
computed by multiple powerful computers, none
of which obtains the weak computer’s input.
Beaver, Feigenbaum, Kilian, and Rogaway [7]
strengthen these results and give some appli-
cations to distributed computation. In each
of these works, random-self-reducibility provides
natural examples of problems that can be com-
puted with encrypted data.

In this paper, we study the concept of random-
self-reducibility in its own right. Preliminary
work along these lines can be found in [1, 2, 28],
where f is said to be random-self-reducible if

computing f(z) can be reduced to computing
f on a single random input. We consider the
more general notion of reducing the computa-
tion of f(z) to the computation of f on several
random inputs. The importance of this general-
ization has been demonstrated dramatically by
some of the recent works just mentioned (i.e.,
[4, 6, 7, 10, 23, 24, 25, 27]). Building on results
of Beaver and Feigenbaum [6], Lipton [23] shows
that some very computationally-complex func-
tions (including the permanent function) have
random-self-reductions of this general form. Un-
less the polynomial hierarchy collapses, such
highly complex functions do not have the sim-
pler form of random-self-reductions in which the
real instance is mapped to a single random in-
stance (a weak form of this negative result was
shown in [1], and a stronger form is shown here).
One interpretation of the result in [6, 23] is that
every function can be extended to a random-
self-reducible function by extending its domain
and range. Thus, the natural question to ask is
whether every function (with its original domain
and range) has a random-self-reduction of this
general, multiple-random-instance variety. Simi-
larly, one interpretation of the results of [6, 7] is
that every function f has a “random reduction”
to some function ¢g. Thus, it is natural to ask
whether it is possible to take ¢ = f. These ques-
tions are interesting in their own right and are
also motivated by potential applications. Recent
works have provided applications of random-self-
reducibility to complexity [4, 24, 25, 27] and to
self-testing, self-checking, and self-correction of
programs [10, 23]; presumably new results on
random-self-reducibility would find more appli-
cations in complexity theory and in practice.

In this paper, we provide negative answers to
these questions. We postpone formal definitions
until Section 3, and now state our main results
informally.

e Random boolean functions do not have
random-self-reductions in which the original
instance is mapped to a polynomial num-
ber of random instances. Our proof also
shows that there is such a non-random-self-

reducible boolean function in DSPACE(2").



e Every boolean function that has a random-
self-reduction in which the original instance
is mapped to two random instances is in
nonuniform NP N coNP. (This question is
still open for the case of three random in-
stances or, in general, for constants k > 2.)

e Following [1], we consider random-self-
reductions of language-membership prob-
lems that are one-sided (i.e., they randomize
only “yes-instances” of the language). We
show that SAT does not have such a re-
duction unless the polynomial hierarchy col-
lapses; this settles an open question of [1], in
which a similar result was proven for SAT.

e Following [1], we also consider reductions
that randomize only some of the bits of the
input instance and leave the rest of the bits
fixed. We show that SAT and SAT do not
have such reductions unless the polynomial
hierarchy collapses. Qur result for SAT is
best possible and gives a great improvement
on the result in [1]: even a self-reduction
that randomizes a constant number of the
bits of each yes-instance is precluded unless
the polynomial hierarchy collapses.

Sections 2 and 3 below contain precise nota-
tion, terminology, and definitions for the con-
cepts discussed above.
given in Section 4. Section 5 contains a brief dis-

Our main results are

cussion of very recent related results, and Section
6 contains open problems.

The results given here first appeared in our
Technical Memorandum [16]. In what follows,
some details of proofs have been omitted because
of space limitations; they will appear in the full

paper.

2 Preliminaries

We first fix notation for the following concepts,
with which we assume familiarity on the part of
the reader.

The class of total functions computable in
deterministic polynomial time is denoted fP;
when restricted to boolean functions, this is just

the language class P. The class of total func-
tions computable in nondeterministic polynomial
time is denoted fNP; the boolean subclass is
NP N coNP. Relevant nonuniform versions of
these classes are, respectively, fP/poly, P/poly,
fNP /poly, and NP /poly N coNP/poly. PH de-
notes the polynomial hierarchy.

We denote by IP(k) the languages recog-
nizable by k-round interactive-proof systems
(cf. Goldwasser, Micali, and Rackoff [20]) and
by AM(k) those recognizable by k-round Arthur-
Merlin games (cf. Babai and Moran [5]). Rel-
evant nonuniform versions are IP(k)/poly and
AM(k) /poly.

If fis a function on X*, then f, denotes the
restriction of f to inputs of length n; the set of
all such inputs is denoted X". A random boolean
function on X™ is one chosen uniformly from the
sample space of size 22", A random boolean func-
tion f (on ¥*) is sampled by choosing f,, uni-
formly, independently for each n.

Throughout this paper, n is the length of the
input z, and r is a uniformly chosen random ele-
ment of {0, 1}, where m is bounded by a poly-
nomial in n.

3 Definitions

Here we give formal definitions for the concepts
introduced in Section 1.

Definition 3.1 A k-random-self-reduction (ab-
breviated k-rsr) for a function f is a collection of
functions ¢, o1, ..., o in fP with the following
properties.

o for all x and r,

f(x) = qb(ac,r,f(al(ac,r)), "'7f(gk($7r)))'

e For all n and all x € X", if r is chosen
uniformly from {0,1}™, then o;(z,r) is uni-
form over X7, for all v such that 1 <1 <k.

Remark: For ¢ # j, the random variables
oi(z,r) and o;(z,r) are, in general, dependent.
Remark: The parameter k is, in general, a func-
tion of n = |z|. The function ¢ is polynomial-
time computable, but the total length of its input



may be superpolynomial in n if k(n) is super-
polynomial.

Remark: A function f that is k-random-self-
reducible, in our language, is “randomly-testable
of order k over fP” in the language of [23].

Clearly, the notion of nonuniform random-self-
reducibility also makes sense. That is, the func-
tions ¢ and o;, 1 < ¢ < k can be computed by
circuit families instead of TM’s.

Definition 3.2

A nonuniform (k, s)-random-self-reduction for a
function f is a collection of functions ¢, com-
puted by circuit family {C,}52,, and o;, 1 <
i < k, computed by circuit families {D;,}>2,,
1 < v <k, satisfying the two conditions of Defi-
nition 3.1 and the condition that all circuit-sizes
|Col, |D1gls - | Dyl are at most s(n). (The
circuits D; ,, take as input x and the random bit-
string r. The circuit C), takes z, r, and the val-
ues computed by the D;,’s.)

Both k-rsr’s and nonuniform (k,s)-rsr’s can
also be generalized in the following way: for
each z, require only that the probability that
f(@) = o, r, flow(z, ), ..., flor(z,r))) be at
least 2/3. In this case we say that f has a k-rsr
(resp. a nonuniform (k,s)-rsr) that makes errors.

Random-self-reductions are a special case of
locally random reductions and, even more gen-
erally, instance-hiding schemes. These notions
were defined for £ = 1 by Abadi, Feigenbaum,
and Kilian [1] and for & > 1 by Beaver and
Feigenbaum [6] and by Beaver, Feigenbaum, Kil-
ian, and Rogaway [7]. For convenience, we in-
clude the following, which is a special case of a
definition given in [7].

Definition 3.3

A (1, k)-locally random reduction of f to g is a
collection of functions ¢, oy, ..., o in fP with
the following properties.

o for all x and r,

(@) = d(x,r,g(o1(2, 7)), ... g(ok(w,7))).

o There is a polynomially bounded function
w(n) such that, for all n and all x € X7,
if v is chosen uniformly from {0,1}™, then

the random variable o;(x,r) is uniform over
Dom(g)ﬂEw(”), for all v such that 1 <1 < k.

Clearly a (1, k)-locally random reduction is
a k-rsr if ¢ = f and w(n) = n. Beaver
and Feigenbaum [6] show that every function
f has a (1,n — logn)-locally random reduction
with w(n) = O(nlogn). This general upper
bound was improved to k(n) = n/logn, w(n) =
O(nlogn) by Beaver, Feigenbaum, Kilian, and
Rogaway [7].

Remark: Random-self-reductions, locally ran-
dom reductions, and instance-hiding schemes can
be restricted to f, in a straightforward man-
ner. Hence, we often use the phrases “f, is
k-random-self-reducible” or “f, is nonuniformly
(k, s)-random-self-reducible” to mean the obvi-
ous thing.

Remark: Asin random-self-reducibility, the pa-
rameter k£ in locally random reducibility and
random-testability is, in general, a function of
n=|z|.

Notation: Denote by k-RSR the set of boolean
functions that have k-rsr’s, and denote by poly-
RSR the union, over all polynomials k(n), of the
sets k-RSR.

We now restrict attention to set-membership
problems.  We consider two types of self-
reductions that are weaker than rsr’s. Both types
were introduced by Abadi, Feigenbaum, and Kil-
ian [1], but the notation used in [1] is different
from that used here.

Definition 3.4 A function ¢ € P is «a
one-sided 1-rsr for a set S if is it length-
preserving, membership-preserving, and has the
property that, for all n and all x € X", if r is
chosen uniformly from {0,1}™, then o(x,r) is
uniformly distributed on S N X",

Thus, a one-sided 1-rsr achieves perfect ran-
domization on yes-instances, but may not ran-
domize no-instances at all.

The requirements of Definitions 3.1 and 3.4
can be weakened as follows. For each n, the
elements of X" are partitioned into equal-sized
orbits. Let O(z) denote the orbit of . Then
oi(z,r) is distributed uniformly on O(z). If there



is more than one orbit for each X", we speak of
a partial k-rsr or a one-sided partial 1-rsr.

Often a partial rsr ¢ has the property that all
elements of an orbit share a suffix.! Under these
conditions, the action of ¢ has the following in-
terpretation: let O be a g-orbit all of whose ele-
ments share the suffix v. For any z € O, ¢ fizes
v and it randomizes the rest of z. The shorter v
is in comparison to z, the larger the orbits, the
fewer orbits there are, and the closer o comes to
being an rsr. If ¢ has exactly one orbit, then
|v| =0, and o is an rsr.

Definition 3.5 A function is a p-partial rsr of
S if it satisfies all of the above conditions and

p=(n—|o))/n.

Definition 3.5 makes sense for both two-sided
and one-sided rsr’s. Like k, the parameter p is,
in general, a function of n. By definition, 0 <
p(n) < 1. Also, partial random-self-reductions
may be computed by circuits as well as TM’s
(and the notation carries over).

Perhaps the best-known example of a random-
self-reducible set S is the set of quadratic
residues with Jacobi symbol 1 modulo compos-
ites that are the product of two primes (refer
to, e.g., [2, 11, 13, 17, 20] for applications).
The standard reduction is a (1/2)-partial 1-rsr
in which the common suffix is the modulus; that
is, the modulus is fixed by the reduction and the
residue is randomized. It is also two-sided, i.e., it
is a (1/2)-partial 1-rst of S. See [1] for an exam-
ple (based on the graph-isomorphism problem)
of a set S with a one-sided (1/2)-partial 1-rsr
in which S does not seem to have a one-sided
p-partial 1-rsr with p > 1/2.

Finally, note that there are random-self-
reducible functions at arbitrarily high levels of
the time hierarchy. For example, the character-
istic function of {z : |z| encodes a Turing Ma-
chine that halts on all inputs} is 1-rsr, but it is
not recursive. See [1, §4] for a longer discussion
of this issue.

! Clearly this statement is only meaningful with respect
to an agreed-upon encoding of S. Refer to Garey and
Johnson [18, Chapter 2] for a discussion of encodings. We
assume that all of the sets we consider are encoded “in a
standard way,” i.e., as in [18, Chapter 2].

4 Results

4.1 Random functions are not in poly-

RSR

Theorem 4.1 There is a constant ¢ > 1 such
that, for all polynomials k(n) and s(n), for all
sufficiently large n, the probability that a ran-
dom boolean function f, is nonuniformly (k,s)-
random-self-reducible is less than 2=°" .

Proof (sketch): We use a counting argument to
compute the probability that a random f, satis-
fies a weaker condition, which we call nonuniform
(k, s)-self-reducibility.

Say that the functions ¢, and o;,, 1 < <k,
constitute a nonuniform (k,s)-self-reduction (ab-
breviated (k, s)-sr) for f, if they are computable
by circuits of size at most s(n) and together sat-
isfy the following two conditions. For all z € ¥,
forall 1 <i¢ <k, o;,(x) # 2. Forall 2 € X7,
fn(x) = (bn(fn(gl,n(w))v ) fn(gk,n(w))) It is not
difficult to show that, if f, has a nonuniform
(k, s)-rsr, then it also has a nonuniform (k, s)-sr.
Claim: There exist constants ¢; > 1 and ¢ > 1,
such that, for all sufficiently large n, if k(n) <
¢t and s(n) < ¢}, then the probability that a
random f, on ¥ has a nonuniform (k, s)-sr is at
most 27 .

To see why this claim holds, fix a set of circuits
for {¢,, 010, ...,0kn}. Note that the number of
choices for such a set of circuits is approximately
24" . We prove the claim by showing that the
probability that {¢,,01,,...,0%,} is a k-sr for
fr is sufficiently small.

Choose at random 2"/k inputs in X", and fix
the value of f, on all other inputs in an arbi-
trary manner. By a simple argument, a constant
fraction of the chosen 2" /k inputs z have the
property that f,(o;,(2)) is already determined,
for all 1 <7 < k. Say that this constant fraction
is bounded below by ¢4 (c3 depends on ¢p). If
we flip a coin to determine the value of f,(z),
we will be correct with probability only 1/2 for
any chosen z; thus {¢,,01,,...,08,} is a k-sr
with probability at most 27%. The claim fol-
lows, because we can choose ¢; and ¢9 so that
2" < 97 ]



Corollary 4.1 The class poly-RSR has measure
0 in the class of all boolean functions.

Corollary 4.2 There is a constant ¢ > 1 such
that, for all polynomials k(n), the probability that
a random boolean function f on X* has a k-
random-self-reduction that makes errors is less
than 2~°".

Proof (sketch): If f has a k-rsr that makes
errors, then there is a polynomial s such that,
for all sufficiently large n, f, has an (errorless)
nonuniform (k,s)-rsr. 1

Corollary 4.3 There is a boolean function f in
DSPACE(2") that is not nonuniformly (k, s)-sr,
for any polynomials k and s. A fortiori, there is
one that is not nonuniformly (k,s)-rsr. Further-
more, there is a deterministic exponential-space
procedure to find such an f.

Proof (sketch): Essentially, the proof of Theo-
rem 4.1 can be made into an exponential-space,
exhaustive-search procedure P that maps n to
fn. The search is over all possibilities for the
set of 2" /k inputs, the initial values of f, on el-
ements not in the set, and the circuits for the
self-reduction ¢,,, 0;,, 1 <14 < k. The resulting
[ is in DSPACE(2"), because f(z) can be com-
puted by running P on n = |z| to get f, and
then outputting f,(z). |

Remark: Recall that every function on 3*
has a (1,n/logn)-locally random reduction
(cf. Beaver, Feigenbaum, Kilian, and Rogaway
[7]). These reductions map length-n instances of
f to random elements of Dom(g)NY"1°8" where
g # f. Theorem 4.1 and Corollary 4.3 show that
the upper bound k(n) = n/logn could not be
achieved by a length-preserving locally random
reduction that required g to be equal to f (nor
could any polynomial upper bound).

Remark: Theorem 4.1 and Corollary 4.3 also
show that random functions are not randomly
testable of order k over fP (in the sense of Lip-
ton [23]), for any polynomial function k(n), and
that such a non-randomly-testable function can

be found in DSPACE(2").

Remark: Beaver and Feigenbaum [6, Lemma
2.2] observe that random boolean functions have
no l-oracle instance-hiding schemes (and hence
no l-rsr’s). This is, to our knowledge, the
only previously published lower bound on the
random-self-reducibility of random functions.

4.2 Functions with 2-random-
self-reductions are in nonuniform

fNP

Theorem 4.2 If [ has a 2-rsr, then it is in
fNP /poly.

Proof (sketch): Let ¢, oy, and o9 constitute
a 2-rsr for f. The goal is to find, for each
n, a polynomial-sized set of subset {zy,...,2,,}
of ¥" such that f(z) can be deduced from
{f(z1),..., f(zs)} using the 2-rsr. The pairs z;,
f(z;) will be given as polynomial advice.

For any subset {zy,...,2z,,} of X", the set
SPAN (z1,...,%) is defined inductively as fol-
lows. It is the union of SPAN (z1,...,%m-1)
and the set of all = such that there exists a
coin-toss sequence r for which oy(z,r) = z and
oz(x,r) = x4, where z € SPAN (21, ..., 2m-1).
If such an r exists, we say that z reduces to
(2, m).

It suffices to prove that there exists a sequence
(z1,...,2y) with SPAN (21,...,2,) = X" and
m polynomial in n.

Claim: Let S(¢) denote |[SPAN (z4,...,2;)|.

For any (21,...,%m-1), there exists a choice of

&, for which

S(m) = S(m—1) > S(m — 1)(2271— S(m — 1))
1)

Thus the size of the span approximately dou-
bles every time we increase m by 1. Once S(m)
is greater than |¥X"|/2, we are done (this follows
from the definition of 2-rsr).

Proof of claim: If S C X" and 2z ¢ S5, let
Ng(z) be the set of w such that # can be re-
duced to (z,w), with z € S. Observe that
the definition of 2-rsr implies that, for any such
S and z, |[Ng(z)| > |S|. To see this, note
that, if oy(z,r) € S, then o9(z,r) € Ng(z).
That is, Prob,cgo1ym(o2(z,7) € Ns(z)) >




Prob,c(o1ym(a1(x) € S). Because each o;(z,r)
is uniform over X", this, in turn, implies that
N ()] > |5].

Now set S = SPAN (21, ..., %mn-1) and choose
z,, at random. For any x ¢ S, the probability
that @, is in Ng(z) is at least p = |5|/2". Thus
the expected growth in the size of the span is
p times the maximum possible growth, namely

RICASIVEAN |

Corollary 4.4 IfSAT has a 2-rsr, then the PH
collapses at the third level.

Proof: Recall that the boolean subclass of NP
is NP/poly N coNP/poly. Then apply Theorem
4.2 and a well-known theorem of Yap [31] that, if
NP C coNP/poly, the PH collapses at the third
level. |

4.3 One-sided random-self-reductions

Theorem 4.3 is a special case of the main result
of [1]; we include it for completeness.

Theorem 4.3 If S has a one-sided 1-rsr, then
S € NP/poly.

Corollary 4.5 If SAT has a one-sided 1-rsr,
then the PH collapses at the third level.

Proof: This follows directly from Theorem 4.3
and Yap’s theorem [31]. |

Theorem 4.4 If S has a one-sided 1-rsr, then
S € coNP/poly.>

Proof (sketch): Suppose that o is a one-sided
L-rsr for S. We show that S € IP(2)/poly. The
theorem then follows from results of Goldwasser
and Sipser [21] and Babai and Moran [5] that
IP(2) C AM(4) € AM(2) C NP /poly.

For each n, the verifier V is given as advice
one element y,, of SNX™ (or the fact that SNX”
is empty).

Let 2 be a string of length n; prover P wants
to convince V that » € S. If Vs advice string

2This theorem was first proven by one of the authors
in 1987 and has already been referred to in the literature
(e.g., [6]); it is published here for the first time.

says that S N X" is empty, then V simply ac-
cepts x. Otherwise, V computes 2’ = o(x,r;)
and y' = o(yn,r2), where ry and ry are cho-
sen uniformly and independently from {0,1}™,
and sends {2’,y'} to P, challenging P to select
the element of S. If € S, then 2/ € S and
y' € 9; so an honest P always succeeds. How-
ever, if # € S, then 2" and 3 are both uniformly-
distributed random elements of S N X", Thus,
even a cheating P* fails to find 2’ with probabil-
ity greater than 1/2. |

Corollary 4.6 If SAT has a one-sided 1-rsr,
then the PH collapses at the third level.

Proof: This follows directly from Theorem 4.4
and Yap’s theorem [31]. |

4.4 Partial random-self-reductions

All of the results of Subsections 4.1, 4.2, and 4.3
carry over, mutatis mutandis, to partial random-
self-reductions with polynomially many orbits.

We now show that, if SAT and SAT are en-
coded in the standard way, then much stronger
negative results can be obtained.

Proposition 4.1 IfSAT has a one-sided (1/2)-
partial 1-rsr, then SAT € 1P(2).

Proof (sketch): Let o be a one-sided (1/2)-
partial 1-rsr for SAT. By Definition 3.5, o fixes
the last n/2 bits of every satisfiable formula. Let
z be a SAT instance of length n and s be the
length-(n/2) suffix of . The verifier constructs
the satisfiable formula y = sV 3 and applies ¢ to
both = and y. If the prover can distinguish the
results, then z € SAT. |

Corollary 4.7 If SAT has a one-sided (1/2)-
partial 1-rsr, then the PH collapses at the second
level.

Proof: Use Proposition 4.1 and the result of
Bopanna, Hastad and Zachos [12] (see also the
related work of Klapper [22]). |

Proposition 4.2 There is a constant cq such
that, for all ¢ > co, if SAT has a one-sided (¢/n)-
partial 1-rsr, then NP = coNP.



Proof (sketch): Let ¢ be a one-sided (¢/n)-
partial 1-rsr for SAT. By Definition 3.5, o fixes
the last n — ¢ bits of every unsatisfiable formula.
We show that this implies that SAT can be rec-
ognized in NP. Let z be a formula of length n
and s be the length-(n — ¢) suffix of z. Take
the conjunction of s with u A @, where u is any
variable; pad this conjunction out so that it is
a formula y of length n. Then y is unsatisfiable
and shares the suffix s with z. Guess a random
coin-toss sequence r and accept z if o(z,r) = y.
The constant ¢g just has to be big enough to ac-
commodate the encoding of u A7. |

Proposition 4.2 shows that SAT fails in
the strongest possible way to be random-self-
reducible in the style of quadratic residues, iso-
morphic graphs, etc. Even if SAT had such an rsr
with constant-sized orbits, the PH would collapse
to NP. Proposition 4.1 shows that SAT fails (in
a less extreme way) to be random-self-reducible
in the usual style.

5 Recent Related Work

Independently of the results presented here, Yao
[29] defined the notion of an ezaminer for a func-
tion; examiners are generalizations of uniform
poly(n)-sr’s, which can be defined analogously
to the nonuniform (poly(n), poly(n))-sr’s used in
Theorem 4.1. Yao calls functions that have ex-
aminers coherent functions. The same argument
that shows that if a function has a nonuniform
(k, s)-rsr, then it has a nonuniform (k,s)-sr can
be used to show that a function in (uniform)
poly-RSR is coherent.

Yao [29] shows that there is a boolean function
in DSPACE(2"**"**") that is incoherent. This
result should be contrasted with our Corollary
4.3, in which a stronger negative result is ob-
tained for a weaker class of examiners.

Beigel and Feigenbaum [8] continued Yao’s
work on coherence by showing uncondition-
ally that there is an incoherent set in
DSPACE(n!'°¢"") and that, if NEXPTIME ¢
BPEXPTIME, then there is an incoherent set

in NP.? The first of these theorems represents an
improvement of the theorem of Yao and of the
uniform version of Corollary 4.3.

Yao [30] also provides progress on one of the
open questions we raise here (see Section 6).
He shows that there is a boolean function f in
DSPACE(27**"** ™ that is not (1,2)-locally ran-
dom reducible to any boolean function ¢g. Note
that, in the locally random reductions given in
[6, 7], the target functions ¢ are not boolean —

there, |g(x)| = ©(log |]).

6 Open Problems

Random-self-reducibility is an interesting, fun-
damental concept, and there is a lot of work to
be done before it is fully understood. We state
several questions about k-rsr’s and their gener-
alizations, (1, k)-locally random reductions and
k-oracle instance-hiding schemes.

Question 1: Does Theorem 4.2 hold if the pa-
rameter 2 is replaced by any constant? That is,
are functions with k-rsr’s, where k is constant, in
fNP/poly? (This is true if the random variables
oi(z,r) are (k — 1)-wise independent.)
Question 2: Does Theorem 4.2 hold for locally
random reductions and instance-hiding schemes
as well as rsr’s? That is, if f has a (1,2)-locally
random reduction (or, more generally, a 2-oracle
instance-hiding scheme), is it in fNP/poly?
Question 3: Do arbitrary boolean functions
have 2-oracle instance-hiding schemes (or even k-
oracle schemes, where k is constant)? Note that
a stronger negative result, like Theorem 4.1 on
rst, does not hold for instance-hiding, by the re-
sults of [6, 7]. A partial negative result on (1, 2)-
locally random reductions for arbitrary functions
was given recently by Yao [30]; see Section 5.
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