
Approximation algorithms for MAX 4-SAT androunding procedures for semide�nite programsEran Halperin and Uri ZwickDepartment of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.fheran,zwickg@math.tau.ac.ilAbstract. Karlo� and Zwick obtained recently an optimal 7=8-approxi-mation algorithm for MAX 3-SAT. In an attempt to see whether similarmethods can be used to obtain a 7=8-approximation algorithm for MAXSAT, we consider the most natural generalization of MAX 3-SAT, namelyMAX 4-SAT. We present a semide�nite programming relaxation of MAX4-SAT and a new family of rounding procedures that try to cope wellwith clauses of various sizes. We study the potential, and the limitations,of the relaxation and of the proposed family of rounding procedures us-ing a combination of theoretical and experimental means. We select tworounding procedures from the proposed family of rounding procedures.Using the �rst rounding procedure we seem to obtain an almost opti-mal 0:8721-approximation algorithm for MAX 4-SAT. Using the secondrounding procedure we seem to obtain an optimal 7=8-approximation al-gorithm for satis�able instances of MAX 4-SAT. On the other hand, weshow that no rounding procedure from the family considered can yield anapproximation algorithm for MAX 4-SAT whose performance guaranteeon all instances of the problem is greater than 0:8724.Although most of this paper deals speci�cally with the MAX 4-SATproblem, we believe that the new family of rounding procedures intro-duced, and the methodology used in the design and in the analysis of thevarious rounding procedures considered would have a much wider rangeof applicability.1 IntroductionMAX SAT is one of the most natural optimization problems. An instance ofMAX SAT in the Boolean variables x1; : : : ; xn is composed of a collection ofclauses. Each clause is the disjunction of an arbitrary number of literals. Eachliteral is a variable, xi, or a negation, �xi, of a variable. Each clause has a non-negative weight w associated with it. The goal is to �nd a 0-1 assignment ofvalues to the Boolean variables x1; : : : ; xn so that the sum of the weights of thesatis�ed clauses is maximized.Following a long line of research by many authors, we now know that MAXSAT is APX-hard (or MAX SNP-hard) [21, 10, 3, 2, 7, 6, 18] . This means thatthere is a constant � > 0 such that, assuming P6=NP, there is no polynomialtime approximation algorithm for MAX SAT with a performance guarantee of at

least 1� � on all instances of the problem. Approximation algorithms for MAXSAT were designed by many authors, including [16, 28, 11, 12, 5, 4]. The bestperformance ratio known for the problem is currently 0.77 [4]. An approximationalgorithm for MAX SAT with a conjectured performance guarantee of 0.797 isgiven in [31].In a major breakthrough, H�astad [14] showed recently that no polynomialtime approximation algorithm for MAX SAT can have a performance guaranteeof more than 7=8, unless P=NP. H�astad's shows, in fact, that no polynomial timeapproximation algorithm for satis�able instances of MAX f3g-SAT can have aperformance guarantee of more than 7=8. MAX f3g-SAT is the subproblem ofMAX SAT in which each clause is of size exactly three. An instance is satis�ableif there is an assignment that satis�es all its clauses.Karlo� and Zwick [17] obtained recently an optimal 7/8-approximation algo-rithm for MAX 3-SAT, the version of MAX SAT in which each clause is of size atmost three. (This claim appears in [17] as a conjecture. It has since been proved.)Their algorithm uses semide�nite programming. A much simpler approximationalgorithm has a performance guarantee of 7=8 if all clauses are of size at leastthree. If all clauses are of size at least three then a random assignment satis�es,on the average, at least 7=8 of the clauses.We thus have a performance guarantee of 7=8 for instances in which allclauses are of size at most three, and for instances in which all clauses are ofsize at least three. Can we get a performance guarantee of 7=8 for all instancesof MAX SAT? In an attempt to answer this question, we check the prospectsof obtaining a 7=8-approximation algorithm for MAX 4-SAT, the subproblem ofMAX SAT in which each clause is of size at most four. As it turns out, this isalready a challenging problem.The 7=8-approximationalgorithmfor MAX 3-SAT starts by solving a semidef-inite programming relaxation of the problem. It then rounds the solution of thisprogram using a random hyperplane passing through the origin. It is naturalto try to obtain a similar approximation algorithm for MAX 4-SAT. It is notdi�cult, see Section 2, to obtain a semide�nite programming relaxation of MAX4-SAT. It is again natural to try to round this solution using a random hyper-plane. It turns out, however, that the performance guarantee of this algorithmis only 0:845173. Although this is much better than all previous performanceguarantees for MAX 4-SAT, this guarantee is, unfortunately, below 7=8.As the semide�nite programming relaxation of MAX 4-SAT is the strongestrelaxation of its kind (see again Section 2), it seems that a di�erent roundingprocedure should be used. We describe, in Section 3, a new family of roundingprocedures. This family extends all the families of rounding procedures previ-ously suggested for maximumsatis�ability problems. The di�culty in developinggood rounding procedures for MAX 4-SAT is that rounding procedures that workwell for the short clauses, do not work so well for the longer clauses, and viceversa. Rounding procedures from the new family try to work well on all clausesizes simultaneously.We initially hoped that an appropriate rounding procedurefrom this family could be used to obtain 7=8-approximation algorithms for MAX

4-SAT and perhaps even MAX SAT. It turns out, however, that the new familyfalls just short of this mission. The experiments that we have made suggest thata rounding procedure from the family, which we explicitly describe, can be usedto obtain a 0:8721-approximation algorithm for MAX 4-SAT. Unfortunately, norounding procedure from the family yields an approximation algorithm for MAX4-SAT with a performance guarantee larger than 0:8724.We have more success with MAX f2; 3; 4g-SAT, the version of MAX SAT inwhich the clauses are of size two, three or four. We present a second roundingprocedure from the family that seems to yield an optimal 7=8-approximationalgorithm for MAX f2; 3; 4g-SAT. A 7=8-approximation algorithm for MAXf2; 3; 4g-SAT yields immediately an optimal 7=8-approximation algorithm forsatis�able instances of MAX 4-SAT, as clauses of size one can be easily elimi-nated from satis�able instances.To determine the performance guarantee obtained using a given roundingprocedure R, or at least a lower bound on this ratio, we have to �nd the globalminimum of a function ratioR(v0; v1; v2; v3; v4), given a set of constraints onthe unit vectors v0; v1; : : : ; v4 2 IR5. The function ratioR is a fairly complicatedfunction determined by the rounding procedure R. As �ve unit vectors are de-termined, up to rotations, by the �52� = 10 angles between them, the functionratioR is actually a function of 10 real variables. Finding the global minimumof ratioR analytically is a formidable task. In the course of our investigation weexperimented with hundreds of rounding procedures. Finding these minima `byhand' was not really an option. We have implemented a set of Matlab functionsthat use numerical techniques to �nd these minima.The discussion so far centered on the quality of the rounding procedures con-sidered. We also consider the quality of the suggested semide�nite programmingrelaxation itself. The integrality ratio of the MAX 4-SAT relaxation cannot bemore than 7=8, as it is also a relaxation of MAX 3-SAT. We also show that theintegrality ratio of the relaxation, considered as a relaxation of the problemMAXf1; 4g-SAT, is at most 0:8753. The fact that this ratio is, at best, just above 7=8is another indication of the di�culty of obtaining optimal 7=8-approximationalgorithm for MAX 4-SAT and MAX SAT. It may also indicate that a strongersemide�nite programming relaxation would be needed to accomplish this goal.The fact that numerical optimization techniques were used to compute theperformance guarantees of the algorithms means that we cannot claim the ex-istence of a 0:8721-approximation algorithm for MAX 4-SAT, and of a 7=8-ap-proximation algorithm for MAX f2; 3; 4g-SAT as theorems. We believe, however,that it is possible to prove these claims analytically and promote them to thestatus of theorems, as was eventually done with the optimal 7=8-approximationalgorithm for MAX 3-SAT. This would require, however, considerable e�ort. Itmay make more sense, therefore, to look for an approximation algorithm thatseems to be a 7=8-approximation algorithm for MAX 4-SAT before proceedingto this stage.In addition to implementinga set of Matlab functions that try to �nd the per-formance guarantee of a given rounding procedure from the family considered,

we have also implemented a set of functions that search for good rounding pro-cedures. The whole project required about 3000 lines of code. The two roundingprocedures mentioned above, and several other interesting rounding proceduresmentioned in Section 5, were found automatically using this system, with somemanual help from the authors. The total running time used in the search forgood rounding procedures is measured by months.We end this section with a short survey of related results. The 7=8-approxi-mation algorithm for MAX 3-SAT is based on the MAX CUT approximationalgorithm of Goemans and Williamson [12]. A 0.931-approximation algorithmfor MAX 2-SAT was obtained by Feige and Goemans [9]. Asano [4] obtaineda 0.770- approximation algorithm for MAX SAT. Trevisan [25] obtained a 0.8-approximation algorithm for satis�able MAX SAT instances. The last two resultsare also the best published results for MAX 4-SAT.2 Semide�nite programming relaxation of MAX 4-SATKarlo� and Zwick [17] describe a canonical way of obtaining semide�nite pro-gramming relaxations for any constraint satisfaction problem. We now describethe canonical relaxation of MAX 4-SAT obtained using this approach.Assume that x1; : : : ; xn are the variables of the MAX 4-SAT instance. We letx0 = 0 and xn+i = �xi, for 1 � i � n. The semide�nite program correspondingto the instance has a variable unit vector vi, corresponding to each literal xi,and scalar variables zi, zij, zijk or zijkl corresponding to the clauses xi, xi _ xj,xi _ xj _ xk and xi _ xj _ xk _ xl of the instance, where 1 � i; j; k � 2n. Notethat all clauses, including those that contain negated literals, can be expressedin this form. Clearly, we require vn+i = �vi, or vi � vn+i = �1, for 1 � i � n.The objective of the semide�nite program is to maximize the functionXi wizi +Xi;j wijzij +Xi;j;kwijkzijk + Xi;j;k;lwijklzijkl ;where the wi's, wij's, wijk's and wijkl's are the non-negative weights of thedi�erent clauses, subject to the following collection of constraints. For ease ofnotation, we write down the constraints that correspond to the clauses x1, x1_x2,x1_x2_x3 and x1_x2_x3_x4. The constraints corresponding to the other clausesare easily obtained by plugging in the corresponding indices. The constraintscorresponding to x1 and x1 _ x2 are quite simple:z1 = 1�v0�v12 ; z12 � 3�v0�v1�v0�v2�v1�v24 ; z12 � 1 :The constraints corresponding to x1 _ x2 _ x3 are slightly more complicated:z123 � 4�(v0+v1)�(v2+v3)4 ; z123 � 4�(v0+v2)�(v1+v3)4z123 � 4�(v0+v3)�(v1+v2)4 ; z123 � 1

It is not di�cult to check that the �rst three constraints above are equivalent tothe requirement thatz123 � 4�(vi0 �vi1+vi1 �vi2+vi2 �vi3+vi3 �vi0)4 ;for any permutation i0; i1; i2; i3 on 0; 1; 2; 3.We will encounter similar constraintsfor the 4-clauses. The constraints corresponding to x1 _ x2 _ x3 _ x4 are evenmore complicated. For any permutation i0; i1; i2; i3; i4 on 0; 1; 2; 3; 4 we require:z1234 � 5�(vi0 �vi1+vi1 �vi2+vi2 �vi3+vi3 �vi4+vi4 �vi0)4 ;z1234 � 5�(vi0+vi4)�(vi1+vi2+vi3)+vi0 �vi44 ; z1234 � 1 :The �rst line above contributes 12 di�erent constraints, the second line con-tributes 10 di�erent constraints. Together with the constraint z1234 � 1 weget a total of 23 constraints per 4-clause. In addition, for every distinct 0 �i1; i2; i3; i4; i5 � 2n, we requireX1�j<k�3vij � vik � �1 and X1�j<k�5vij � vik � �2 :Although we do not consider here clauses of size larger than 4, we remarkthat for any k, and for any permutation i0; i1; : : : ; ik on 0; 1; : : : ; k, z12:::k �((k+1)�Pkj=0 vij � vij+1)=4, where the index j +1 is interpreted modulo k+1,is a valid constraint in the semide�nite programming relaxation of MAX k-SAT.It is not di�cult to verify that all these constraints are satis�ed by any valid`integral' assignment to the vectors vi and the scalars zi, zij , zijk and zijkl, i.e.,an assignment in which vi = (1; 0; : : : ; 0) if xi = 1, and vi = (�1; 0; : : : ; 0) ifxi = 0, and in which every z variable is set to 1 if its corresponding clause is sat-is�ed by the assignment x1; x2; : : : ; xn, and to 0 otherwise. Thus, the presentedsemide�nite program is indeed a relaxation of the MAX 4-SAT instance.The constraints of the above semide�nite program correspond to the facets ofa polyhedron corresponding to the Boolean function x1_x2_x3_x4. As explainedin [17], it is therefore the strongest semide�nite relaxation that considers theclauses of the instance one by one. Stronger relaxations may be obtained byconsidering several clauses at once.The semide�nite programming relaxation of a MAX 4-SAT instance has n+1unknown unit vectors v0; v1; : : : ; vn (the vectors vn+i are just used as shorthandsfor �vi), O(n4) scalar variables and O(n5) constraints. An almost optimal solu-tion in which all unit vectors v0; v1; : : : ; vn lie in IRn+1 can be found in polynomialtime ([1],[13],[19]).3 Rounding proceduresIn this section we consider various procedures that can be used to round so-lutions of semide�nite programming relaxations and examine the performanceguarantees that we get for MAX 4-SAT using them. We start with simple round-ing procedures and then move on to more complicated ones. The new family ofrounding procedures is then presented in Section 3.5.

3.1 Rounding using a random hyperplaneFollowing Goemans and Williamson [12], many semide�nite programming basedapproximation algorithms round the solution to the semide�nite program usinga random hyperplane passing through the origin. A random hyperplane thatpasses through the origin is chosen by choosing its normal vector r as a uniformlydistributed vector on the unit sphere (in IRn+1). A vector vi is then rounded to 0if vi and v0 fall on the same side of the random hyperplane, i.e., if sgn(r � vi) =sgn(r �v0), and to 1, otherwise. Note that the rounded values of the variables areusually not independent. More speci�cally, if vi and vj are not perpendicular,i.e., if vi � vj 6= 0, then the rounded values of xi and xj are dependent.Given a set of unit vector V , we let probH(V) denote the probability thatnot all the vectors of V fall on the same side of a random hyperplane that passesthrough the origin. It is not di�cult to see thatprobH (v0; v1) = �01� ; probH (v0; v1; v2) = �01 + �02 + �122� ;where �ij = arccos(vi�vj) is the angle between vi and vj . Evaluating probH (v0; v1;v2; v3) is more di�cult. As noted in [17],probH(v0; v1; v2; v3) = 1� V ol(�01; �02; �12; �03; �13; �23)�2 ;where (�01; �02; �12; �03; �13; �23) = � � (�23; �13; �03; �12; �02; �01) and V ol(�01;�02; �12; �03; �13; �23) is the volume of a spherical tetrahedron with dihedralangles �01; �02; �12; �03; �13; �23. Unfortunately, the volume function of sphericaltetrahedra seems to be a non-elementary function and numerical integrationshould be used to evaluate it ([24],[8],[15],[27]).It is not di�cult to verify, using inclusion-exclusion, thatprobH(v0; v1; v2; v3; v4) = 12 Xi<j<k<lprobH (vi; vj; vk; vl)� 14Xi<j probH(vi; vj) :Thus, the probability that certain �ve unit vectors are separated by a randomhyperplane can be expressed as a combination of probabilities of events thatinvolve at most four vectors and no further numerical integration is needed. Moregenerally, probH (v0; : : : ; vk), for any even k, can be expressed as combinations ofprobabilities involving at most k vectors. The same does not hold, unfortunately,when k is odd.We let relax(v0; v1; : : : ; vi), where 1 � i � 4, denote the `relaxed' value ofthe clause x1 _ : : : _ xi, i.e., the maximal value to which the scalar z12:::i canbe set, while still satisfying all the relevant constraints, given the unit vectorsv0; v1; : : : ; vi. We letratioH (v0; v1; : : : ; vi) = probH (v0; v1; : : : ; vi)=relax(v0; v1; : : : ; vi) :Finally, for every 1 � i � 4, we let �i = min ratioH(v0; v1; : : : ; vi), where theminimum is over all con�gurations of unit vectors that satisfy the constraints

described in the previous section, and � = minf�1; �2; �3; �4g. As follows fromstraightforward arguments (see [12] or [17]), � is a lower bound on the perfor-mance guarantee of the approximation algorithm for MAX 4-SAT that uses thesemide�nite relaxation and then rounds the solution using a random hyperplane.It is shown in [12] that �1 = �2 ' 0:87856. It is shown in [17] that �3 = 7=8.Unfortunately, it turns out that �4 ' 0:845173. The minimum is attainedwhen the angle between each pair of vectors among v0; v1; : : : ; v4 is exactlyarccos(1=5) ' 1:369438. It is not di�cult to check that when vi � vj = 1=5,for every 0 � i < j � 4, all the inequalities on z1234 simplify to z1234 � 1 andtherefore relax(v0; v1; v2; v3; v4) = 1.3.2 Pre-rounding rotationsFeige and Goemans [9] introduced the following variation of random hyperplanerounding. Let f : [0; �]! [0; �] be a continuous function satisfying f(0) = 0 andf(�� �) = �� f(�), for 0 � � � �. Before rounding the vectors using a randomhyperplane, the vector vi is rotated into a new vector v0i, in the plane spannedby v0 and vi, so that the angle �00i between v0 and v0i would be �00i = f(�0i). Therotations of the vectors v1; : : : ; vn a�ects, of course, the angles between thesevectors. Let �0ij be the angle between v0i and v0j. It is not di�cult to see (see [9]),that for i; j > 0, i 6= j, we havecos �0ij = cos �00i � cos �00j + cos �ij � cos �0i � cos �0jsin �0i � sin �0j � sin �00i � sin �00j :The vectors v0; v01; : : : ; v0n are then rounded using a random hyperplane. Thecondition f(0) = 0 is required to ensure the continuity of the transformationvi ! v0i. The condition f(�� �) = �� f(�) ensures that unnegated and negatedliterals are treated in the same manner.Feige and Goemans [9] use rotations to obtain a 0:931-approximation algo-rithm for MAX 2-SAT. Rotations are also used in [29] and [30]. Can we userotations to get a better approximation algorithm for MAX 4-SAT? The answeris that rotations on their own help, but very little. Consider the con�gurationv0; v1; v2; v3; v4 in which �0i = �=2, for 1 � i � 4, and �ij = arccos(1=3), for1 � i < j � 4. For this con�guration we get relax = 1 and ratioH ' 0:8503. Asevery rotation function f must satisfy f(�=2) = �=2, rotations have no e�ect onthis con�guration.A di�erent type of rotations was recently used by Nesterov [20] and Zwick [31].These outer-rotations are used in [31] to obtain some improved approximationalgorithms for MAX SAT and MAX NAE-SAT. We were not able to use them,however, to improve the results that we get in this paper for MAX 4-SAT.3.3 Rounding the vectors independentlyThe semide�nite programming relaxation of MAX 4-SAT that we are using hereis stronger than the linear programming relaxation suggested by Goemans and

Williamson [11]. It is nonetheless interesting to consider an adaptation of therounding procedures used in [11] to the present context. The rounding proce-dures of [11] are based on the randomized rounding technique of Raghavan andThompson [23],[22].Let g : [0; �] ! [0; �] be a continuous function such that g(� � �) = � �g(�), for 0 � � � �. Note again that we must have g(�=2) = �=2. We do notrequire g(0) = 0 this time. The rounding procedure described here rounds eachvector independently. The variable xi is assigned the value 1 with probabilityg(�0i)=�, and the value 0 with the complementary probability. The probabilityprobI(v0; v1; : : : ; vi) that a clause x1 _ : : :_ xi is satis�ed is nowprobI(v0; v1; : : : ; vi) = 1� iYj=1�1� g(�0j)� � :Note that as each vector is rounded independently, the angles �ij , where i; j > 0,between the vectors, have no e�ect this time. It may be worthwhile to notethat the choice g(�) = �=2, for every 0 � � � �, corresponds to choosingthe assignment to the variables x1; x2; : : : ; xn uniformly at random, a `roundingprocedure' that yields a ratio of 7=8 for clauses of size 3 and 15=16 for clausesof size 4. Goemans and Williamson [11] describe several functions g using whicha 3=4-approximation algorithm for MAX SAT may be obtained.Independent rounding performs well for long clauses. It cannot yield a ratiolarger than 3=4, however, for clauses of size 2. To see this, consider the con�gura-tion v0; v1; v2 in which �01 = �02 = �=2 and �12 = �. We have relax(v0; v1; v2) = 1and probI(v0; v1; v2) = 3=4, for any function g.3.4 Simple combinationsWe have seen that hyperplane rounding works well for short clauses and that in-dependent rounding works well for long clauses. It is therefore natural to considera combination of the two.Perhaps the most natural combination of hyperplane rounding and indepen-dent rounding is the following. Let 0 � � � 1. With probability 1 � � roundthe vectors using a random hyperplane. With probability � choose a randomassignment. It turns out that the best choice of � here is � ' 0:086553. With thisvalue of �, we get �1 = �2 = �4 ' 0:853150 while �3 = 7=8. Thus, we again geta small improvement but we are still far from 7=8.Instead of rounding all vectors using a random hyperplane, or choosing ran-dom values to all variables, we can round some of the vectors using a randomhyperplane, and assign some of the variables random values. More precisely, wechoose one random hyperplane. Each vector is now rounded using this randomhyperplane with probability 1 � �, or is assigned a random value with proba-bility �. The decisions for the di�erent variables made independently. Letting� ' 0:073609, we get �1 = �2 = �4 ' 0:856994, while �3 ' 0:874496. This isagain slightly better but still far from 7=8.

3.5 More complicated combinationsSimple combinations of hyperplane rounding and independent rounding yieldmodest improvements. Can we get more substantial improvements by usingmore sophisticated combinations? To answer this question we introduce thefollowing family of rounding procedures. The new family seems to include allthe natural combinations of the rounding procedures mentioned above.Each rounding procedure in the new family is characterized by three con-tinuous functions f; g : [0; �] ! [0; �] and � : [0; �] ! [0; 1]. The function f isused for rotating the vectors before rounding them using a random hyperplane,as described in Section 3.2. The function g is used to round the vectors inde-pendently, as described in Section 3.3. The function � is used to decide which ofthe two roundings should be used. The decision is made independently for eachvector, depending on the angle between it and v0. The function � : [0; �]! [0; 1]is a continuous function satisfying �(�� �) = �(�), a condition that ensures thatnegated and unnegated literals are treated in the same manner. The vector vi isrounded using a random hyperplane, shared by all the vectors rounded using arandom hyperplane, with probability 1 � �(�0i), and is rounded independently,with probability �(�0i). Vectors rounded using the shared hyperplane are rotatedbefore the rounding. Let v01; v02; : : : ; v0n be the vectors obtained by rotating thevectors v1; v2; : : : ; vn, as speci�ed by the rotation function f . The probabilitythat a clause x1 _ x2 _ : : : _ xi is satis�ed by the assignment produced by thiscombined rounding procedure is given by the following expression:probC(v0; v1; : : : ; vi) = 1�XS pr(S) � (1� probH (v0(S))) � (1� probI(v(�S)))where pr(S) =Yi2S(1� �(�0i)) �Yi62S �(�0i) ;v0(S) = fv0g [fv0i j i 2 Sg ; v(�S) = fv0g [fvi j i 62 Sg ;and where S ranges over all subsets of f1; 2; : : :; ig. Recall that probH (u1; u2; : : : ;uk) is the probability that the set of vectors u1; u2; : : : ; uk is separated by arandom hyperplane, and that probI(v0; u1; : : : ; uk) is the probability that atleast one of the vectors u1; u2; : : : ; uk is assigned the value 1 when all thesevectors are rounded independently using the function g.We have made some experiments with an even wider family of rounding pro-cedures but we were not able to improve on the results obtained using roundingprocedures selected from the family described here. More details will be givenin the full version of the paper.Can we select a rounding procedure from the proposed family of roundingprocedures using which we can get an optimal, or an almost optimal, approxi-mation algorithm for MAX 4-SAT?

4 The search for good rounding proceduresThe new family of rounding procedures de�ned in the previous section is huge.How can we expect to select the best, or almost the best, rounding procedurefrom this family? As it turns out, although each rounding procedure is de�nedby three continuous functions f; g and �, most of the values of these functionsdo not matter much. What really matter are the values of these functions atseveral `important' angles. We therefore restrict ourselves to rounding proceduresde�ned by piecewise linear functions f; g and � with a relatively small number ofbends. By placing these bends at the `important' angles, we can �nd, as we shallsee, a rounding procedure which is close to being the best rounding procedurefrom this family.More speci�cally, we consider functions obtained by connecting k given points(x1; y1); (x2; y2); : : : ; (xk; yk) by straight line segments, where x1 = 0 and xk =�=2. For f we also require y1 = 0 and yk = �=2. For g we also require yk = �=2.The values of the functions f; g and � for �=2 < � � � are determined by theconditions f(� � �) = � � f(�), g(� � �) = � � g(�) and �(� � �) = �(�). Weusually worked with k � 5.For a given value of k we are now faced with a very di�cult optimizationproblem in 6k�9 real variables, the variables being the x and y coordinates of thepoints through which the functions f; g and � are required to pass. The objectiveis to maximize �(C(f; g; �)), the performance guarantee obtained by using therounding procedure de�ned by the functions f; g and � that pass through thepoints. Recall that evaluating �(C(f; g; �)) for a given set of functions f; g and �is already a di�cult task that requires �nding the global minimum of a rathercomplicated function of 10 real variables.We have written a Matlab program, called opt fun, that tries to �nd a closeto optimal rounding procedure that uses functions speci�ed using at most kpoints. This is quite a non-trivial task and, as mentioned in the introduction,it required about 3000 lines of code, in addition to the sophisticated numericaloptimization routines of Matlab's optimization toolbox.Although numerical methods were used to evaluate the performance guaran-tees of the di�erent rounding procedures, we believe that the 0:8721 and 7/8 per-formances ratio claimed for the two rounding procedures that will be describedshortly are the correct performance ratios. There is, in fact, a completely me-chanical way of generating a (long and tedious) rigorous proof of these claims.As mentioned in the introduction, we believe that it would be more fruitful tolook for an algorithm that seems to achieve a performance ratio of 7=8 beforetaking on the task of producing rigorous proofs. We believe that the use of nu-merical methods would be inevitable in the search for optimal algorithms forMAX 4-SAT and MAX SAT, at least using the current techniques.5 Almost optimal or optimal approximation algorithmsWe now present some optimal or close to optimal approximation algorithmsobtained using rounding procedures from the new family of rounding procedures.

f g �(0 ; 0) (0 ; 0) (0 ; 0:250000)(0:777843 ; 1:210627) (0:750000 ; 0) (0:744611 ; 0:357201)(1:038994 ; 1:445975) (1:072646 ; 0) (1:039987 ; 0:255183)(1:248362 ; 1:394099) (1:248697 ; 0:872552) (1:072689 ; 0:222928)(�=2 ; �=2) (�=2 ; �=2) (�=2 ; 0:131681)Fig. 1. The rounding procedure that seems to yield a 0:8721-approximation algorithmfor MAX 4-SATf g �(0 ; 0) (0 ; 0:550000) (0 ; 0:650000)(1:394245 ; 1:544705) (1:155432 ; 1:154866) (0:413021 ; 0:163085)(�=2 ; �=2) (1:394111 ; 0:931661) (�=2 ; 0:160924)(�=2 ; �=2)Fig. 2. The rounding procedure that seems to yield an optimal 7=8-approximationalgorithm for MAX f2; 3; 4g-SAT.5.1 MAX 4-SATUsing the semide�nite programming relaxation of Section 2 and the roundingprocedure de�ned by the three piecewise linear functions passing through thepoints given in Figure 1 we seem to obtain a 0:8721-approximation algorithmfor MAX 4-SAT, or more speci�cally, an algorithm with �1 ' �2 ' �3 ' �4 '0:8721. As we shall see in Section 6, this is essentially the best approximationratio that we can obtain using a rounding procedure from the family considered.It is interesting to note that g(�) = 0 for 0 � � � 1:072646 and that 0:13 ��(�) � 0:36 for 0 � � � �. This means that if the angle �0i between vi and v0is less than about �=3, then with a probability of about 1=4, the variable xi isassigned the value 0, without any further consideration of the angle �0i. It is alsointeresting to note that the function f(�) is not monotone.5.2 MAX f2,3,4g-SATUsing the semide�nite programming relaxation of Section 2 and the roundingprocedure de�ned by the three piecewise linear functions passing through thepoints given in Figure 2 we believe we obtain a 7=8-approximation algorithm for

MAX f2; 3; 4g-SAT.We get in fact, an approximation algorithm for MAX 4-SATwith �2 ' 0:8751, �3 = 7=8, �4 ' 0:8755 but with �1 ' 0:8352. It is interestingto note the non-monotonicity of the function g(�) and the fact that only oneintermediate point is needed for f(�) and �(�) and only two intermediate pointsare needed for g(�).A 7=8-approximation algorithm for MAX f2; 3; 4g-SAT is of course optimalas a ratio better than 7=8 cannot be obtained even for MAX f3g-SAT, which isa subproblem of MAX f2; 3; 4g-SAT.5.3 MAX 3-SATThe optimal 7=8-approximation algorithm for MAX 3-SAT presented in [17] has�1 = �2 ' 0:87856 and �3 = 7=8. Using pre-rounding rotations we can obtain anapproximation algorithm for MAX 3-SAT with �1 = �2 ' 0:9197 and �3 = 7=8.This algorithm would perform better than the algorithm of [17] on instancesin which some of the contribution to the optimal value of their semide�niteprogramming relaxation comes from clauses of size one or two. The details ofthis algorithm will be given in the full version of the paper.5.4 MAX 2-SATFeige and Goemans [9] obtained an approximation algorithm for MAX 2-SATwith �1 ' 0:976 and �2 ' 0:931. Although we cannot improve �2, the perfor-mance ratio on clauses of size two, we can obtain, using pre-rounding rotations,an approximation algorithm for MAX 2-SAT with �1 ' 0:983 and �2 ' 0:931.The details of this algorithm will be given in the full version of the paper.6 Limitations of current rounding proceduresWe presented above a rounding procedure using which we seem to get a 0:8721-approximation algorithm for MAX 4-SAT. This is extremely close to 7=8. Couldit be that by searching a little bit harder, or perhaps allowing more bends, wecould �nd a rounding procedure from the family de�ned in Section 3.5 usingwhich we could obtain an optimal 7=8-approximation algorithm for MAX 4-SAT? Unfortunately, the answer is no. We show in this section that the roundingprocedure described in Section 5.1 is close to being the best rounding procedureof the family considered.Let �ij , for 0 � i < j � 4, be the angles between the �ve unit vectorsv0; v1; v2; v3; v4. Let cij = cos �ij . It is not di�cult to check that ifc12 = 1+c01+c02�2c03�2c043 ; c13 = 1+c01�2c02+c03�2c043c23 = 1�2c01+c02+c03�2c043 ; c14 = 1+c01�2c02�2c03+c043c24 = 1�2c01+c02�2c03+c043 ; c34 = 1�2c01�2c02+c03+c043then relax(v0; v1; v2; v3; v4) = 1.

Let 0 < �1 < �2 � �=2 be two angles. Consider the con�guration (v0; v1) inwhich �01 = �� �1, and the two con�gurations (v0; v11; v12; v13; v14) and (v0; v21; v22;v23; v24) in which(�101; �102; �103; �104) = (�1; �1; �1; �� �2) ; (�201; �202; �203; �204) = (�2; �2; �2; �2)and in which the angles �ijk, for 1 � j < k � 4 are determined according tothe relations above so that relax(v0; vi1; vi2; vi3; vi4) = 1, for i = 1; 2. It is notdi�cult to check that �112 = �113 = �123 = arccos(1+2cos �23), �114 = �124 = �134 =arccos(1�3cos �1�cos �23) and that �2ij = arccos(1�2 cos �23), for 1 � j � k � 4.Assume that the con�gurations (v0; vi1; vi2; vi3; vi4), for i = 1; 2, are feasible. Forevery rounding procedure C we have�(C) � minf ratioC(v0; v1); ratioC(v0; v11; v12; v13; v14); ratioC(v0; v21; v22; v23; v24) g:As the only angles between v0 and and other vectors in these three con�gurationsare �1; �2; �� �1 and �� �2, and as f(�� �) = ��f(�), g(�� �) = ��g(�) and�(� � �) = �(�), we get that for every rounding procedure from our family, thethree ratios ratioC(v0; v1), ratioC(v0; v11; v12; v13; v14) and ratioC(v0; v21; v22; v23; v24)depend only on the six parameters f(�1); f(�2); g(�1); g(�2); �(�1) and �(�2).Take �1 = 0:95 and �2 = arccos(1=5) ' 1:369438. It is possible to checkthat the resulting two con�gurations (v0; v11; v12; v13; v14) and (v0; v21; v22; v23; v24) arefeasible. The choice of the six parameters that maximizes the minimum ratio ofthe three con�gurations, found again using numerical optimization, is:f(�1) ' 1:410756 ; g(�1) ' 0 ; �(�1) ' 0:309376f(�2) ' 1:448494 ; g(�2) ' 1:233821 ; �(�2) ' 0:122906With this choice of parameters, the three ratios evaluate to about 0:8724. Norounding procedure from the family can therefore attain a ratio of more than0:8724 simultaneously on these three speci�c con�gurations. No rounding proce-dure from the family can therefore yield a performance ratio greater than 0:8724for MAX 4-SAT, even if the functions f; g and � are not piecewise linear.7 The quality of the semide�nite programming relaxationLet I be an instance of MAX 4-SAT. Let opt(I) be the value of the optimalassignment for this instance. Let opt�(I) be the value of the optimal solutionof the canonical semide�nite programming relaxation of the instance given inSection 2. Clearly opt(I) � opt�(I) for every instance I. The integrality ratioof the relaxation is de�ned to be = infI opt(I)=opt�(I), where the in�mum istaken over all the instances.In Section 3, when we analyzed the performance of di�erent rounding proce-dures, we compared the value, or rather the expected value, of the assignmentproduced by a rounding procedure to opt�(I), the optimal value of the semidef-inite programming relaxation. It is not di�cult to see that any lower bound �

on the performance ratio of a rounding procedure obtained in this way wouldsatisfy � � . Thus, the rounding procedure of Section 5.1 seems to imply that � 0:8721. In this section we describe upper bounds on the integrality ratio ,thereby obtaining upper bounds on the performance ratios that can be obtainedby any approximation algorithm that uses the relaxation of Section 2, at leastusing the type of analysis used in Section 3.It is shown in [17] that the integrality ratio of the canonical semide�niteprogramming relaxation of MAX 3-SAT is exactly 3 = 7=8. As the canonicalrelaxations of MAX 3-SAT and MAX 4-SAT coincide on instances of MAX 3-SAT, we get that = 4 � 7=8.We can show, that the integrality ratio of the canonical relaxation of MAX4-SAT, given in Section 2, is at most 0:8753, even when restricted to instancesof MAX f1; 4g-SAT, i.e., to instances of MAX 4-SAT in which all clauses areof size 1 or 4. Though this upper bound does not preclude the possibility ofobtaining an optimal 7=8-approximation algorithm for MAX 4-SAT using thecanonical semide�nite programming relaxation of the problem, the closeness ofthis upper bound to 7=8 does indicate that it will not be easy, even if clausesof length 3 are not present. It may be necessary to consider stronger relaxationsof MAX 4-SAT, e.g., relaxations obtained by considering several clauses of theinstance at once.8 Concluding remarksWe have come frustratingly close to obtaining an optimal 7=8-approximation al-gorithm for MAX 4-SAT. We have seen that devising a 7=8-approximation algo-rithm for MAX f1; 4g-SAT is already a challenging problem. Note that H�astad's7=8 upper bound for MAX 3-SAT and MAX 4-SAT does not apply to MAXf1; 4g-SAT, as clauses of length three are not allowed in this problem. A gadget(see [26]) supplied by Greg Sorkin shows that no polynomial time approximationalgorithm for MAX f1; 4g-SAT can have a performance ratio greater that 9=10,unless P=NP.We believe that optimal 7=8-approximation algorithms for MAX 4-SAT andMAX SAT do exist. The fact that we have come so close to obtaining suchalgorithms may in fact be seen as cause for optimism. There is still a possibilitythat simple extensions of ideas laid out here could be used to achieve this goal. Ifthis fails, it may be necessary to attack the problems from a more global point ofview. Note that the analysis carried out here was very local in nature. We onlyconsidered one clause of the instance at a time. As a result we only obtainedlower bounds on the performance ratios of the algorithms considered. It mayeven be the case that the algorithms from the family of algorithms consideredhere do give a performance ratio of 7=8 for MAX 4-SAT although a more globalanalysis is required to show it.We also hope that MAX 4-SAT would turn out to be the last barrier on theroad to an optimal approximation algorithm for MAX SAT. The almost optimalalgorithms for MAX 4-SAT presented here may be used to obtain an almostoptimal algorithm for MAX SAT. We have not worked out yet the exact bounds

that we can get for MAX SAT as we still hope to get an optimal algorithm forMAX 4-SAT before proceeding with MAX SAT.Finally, a word on our methodology. Our work is a bit unusual as we useexperimental and numerical means to obtain theoretical results. We think thatthe nature of the problems that we are trying to solve calls for this approach.No one can rule out, of course, the possibility that some clever new ideas woulddispense with most of the technical di�culties that we are facing here. Untilthat happens, however, we see no alternative to the current techniques. The useof experimental and numerical means does not mean that we have to give upthe rigorousity of the results. Once we obtain the `right' result, we can devotee�orts to proving it rigorously, possibly using automated means.References1. F. Alizadeh. Interior point methods in semide�nite programming with applicationsto combinatorial optimization. SIAM Journal on Optimization, 5:13{51, 1995.2. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation andthe hardness of approximation problems. Journal of the ACM, 45:501{555, 1998.3. S. Arora and S. Safra. Probabilistic checking of proofs: A new characterizationof NP. Journal of the ACM, 45:70{122, 1998.4. T. Asano. Approximation algorithms for MAX SAT: Yannakakis vs. Goemans-Williamson. In Proceedings of the 3nd Israel Symposium on Theory and ComputingSystems, Ramat Gan, Israel, pages 24{37, 1997.5. T. Asano, T. Ono, and T. Hirata. Approximation algorithms for the maximumsatis�ability problem. Nordic Journal of Computing, 3:388{404, 1996.6. M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, andnonapproximability|towards tight results. SIAM Journal on Computing, 27:804{915, 1998.7. M. Bellare, S. Goldwasser, C. Lund, and A. Russell. E�cient probabilisticallycheckable proofs and applications to approximation. In Proceedings of the 25rdAnnual ACM Symposium on Theory of Computing, San Diego, California, pages294{304, 1993. See Errata in STOC'94.8. H.S.M. Coxeter. The functions of Schl�ai and Lobatschefsky. Quarterly Journalof of Mathematics (Oxford), 6:13{29, 1935.9. U. Feige and M.X. Goemans. Approximating the value of two prover proof systems,with applications to MAX-2SAT and MAX-DICUT. In Proceedings of the 3ndIsrael Symposium on Theory and Computing Systems, Tel Aviv, Israel, pages 182{189, 1995.10. U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Interactive proofsand the hardness of approximating cliques. Journal of the ACM, 43:268{292, 1996.11. M.X. Goemans and D.P. Williamson. New 3/4-approximation algorithms for themaximum satis�ability problem. SIAM Journal on Discrete Mathematics, 7:656{666, 1994.12. M.X. Goemans and D.P. Williamson. Improved approximation algorithms for max-imum cut and satis�ability problems using semide�nite programming. Journal ofthe ACM, 42:1115{1145, 1995.13. M. Gr�otschel, L. Lov�asz, and A. Schrijver. Geometric Algorithms and Combinato-rial Optimization. Springer Verlag, 1993. Second corrected edition.

14. J. H�astad. Some optimal inapproximability results. In Proceedings of the 29thAnnual ACM Symposium on Theory of Computing, El Paso, Texas, pages 1{10,1997. Full version available as E-CCC Report number TR97-037.15. W.Y. Hsiang. On in�nitesimal symmetrization and volume formula for spherical orhyperbolic tetrahedrons. Quarterly Journal of Mathematics (Oxford), 39:463{468,1988.16. D.S. Johnson. Approximation algorithms for combinatorical problems. Journal ofComputer and System Sciences, 9:256{278, 1974.17. H. Karlo� and U. Zwick. A 7=8-approximation algorithm for MAX 3SAT? InProceedings of the 38rd Annual IEEE Symposium on Foundations of ComputerScience, Miami Beach, Florida, pages 406{415, 1997.18. S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus com-putational views of approximability. In Proceedings of the 35rd Annual IEEESymposium on Foundations of Computer Science, Santa Fe, New Mexico, pages819{830, 1994.19. Y. Nesterov and A. Nemirovskii. Interior Point Polynomial Methods in ConvexProgramming. SIAM, 1994.20. Y. E. Nesterov. Semide�nite relaxation and nonconvex quadratic optimization.Optimization Methods and Software, 9:141{160, 1998.21. C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-plexity classes. Journal of Computer and System Sciences, 43:425{440, 1991.22. P. Raghavan. Probabilistic construction of deterministic algorithms: Approximat-ing packing integer programs. Journal of Computer and System Sciences, 37:130{143, 1988.23. P. Raghavan and C. Thompson. Randomized rounding: A technique for provablygood algorithms and algorithmic proofs. Combinatorica, 7:365{374, 1987.24. L. Schl�ai. On the multiple integral R n dxdy : : : dz, whose limits are p1 = a1x +b1y + : : : + h1z > 0; p2 > 0; : : : ; pn > 0, and x2 + y2 + : : : + z2 < 1. QuarterlyJournal of Mathematics (Oxford), 2:269{300, 1858. Continued in Vol. 3 (1860),pp. 54{68 and pp. 97-108.25. L. Trevisan. Approximating satis�able satis�ability problems. In Proceedings ofthe 5th European Symposium on Algorithms, Graz, Austria, 1997. 472{485.26. L. Trevisan, G.B. Sorkin, M. Sudan, and D.P. Williamson. Gadgets, approxi-mation, and linear programming (extended abstract). In Proceedings of the 37rdAnnual IEEE Symposium on Foundations of Computer Science, Burlington, Ver-mont, pages 617{626, 1996.27. E.B. Vinberg. Volumes of non-Euclidean polyhedra. Russian Math. Surveys, 48:15{45, 1993.28. M. Yannakakis. On the approximation of maximum satis�ability. Journal of Al-gorithms, 17:475{502, 1994.29. U. Zwick. Approximation algorithms for constraint satisfaction problems involvingat most three variables per constraint. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, pages 201{210, 1998.30. U. Zwick. Finding almost-satisfying assignments. In Proceedings of the 30th AnnualACM Symposium on Theory of Computing, Dallas, Texas, pages 551{560, 1998.31. U. Zwick. Outward rotations: a tool for rounding solutions of semide�nite program-ming relaxations, with applications to max cut and other problems. In Proceedingsof the 31th Annual ACM Symposium on Theory of Computing, Atlanta, Georgia,1999. To appear.

