Approximation algorithms for MAX 4-SAT and
rounding procedures for semidefinite programs

Eran Halperin and Urt Zwick

Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.
{heran,zwick}@math.tau.ac.il

Abstract. Karloff and Zwick obtained recently an optimal 7/8-approxi-
mation algorithm for MAX 3-SAT. In an attempt to see whether similar
methods can be used to obtain a 7/8-approximation algorithm for MAX
SAT, we consider the most natural generalization of MAX 3-SAT, namely
MAX 4-SAT. We present a semidefinite programming relaxation of MAX
4-SAT and a new family of rounding procedures that try to cope well
with clauses of various sizes. We study the potential, and the limitations,
of the relaxation and of the proposed family of rounding procedures us-
ing a combination of theoretical and experimental means. We select two
rounding procedures from the proposed family of rounding procedures.
Using the first rounding procedure we seem to obtain an almost opti-
mal 0.8721-approximation algorithm for MAX 4-SAT. Using the second
rounding procedure we seem to obtain an optimal 7/8-approximation al-
gorithm for satisfiable instances of MAX 4-SAT. On the other hand, we
show that no rounding procedure from the family considered can yield an
approximation algorithm for MAX 4-SAT whose performance guarantee
on all instances of the problem is greater than 0.8724.

Although most of this paper deals specifically with the MAX 4-SAT
problem, we believe that the new family of rounding procedures intro-
duced, and the methodology used in the design and in the analysis of the
various rounding procedures considered would have a much wider range
of applicability.

1 Introduction

MAX SAT is one of the most natural optimization problems. An instance of
MAX SAT in the Boolean variables z1,...,z, is composed of a collection of
clauses. Each clause is the disjunction of an arbitrary number of literals. Each
literal is a variable, z;, or a negation, Z;, of a variable. Each clause has a non-
negative weight w associated with it. The goal is to find a 0-1 assignment of
values to the Boolean variables 1, ..., #, so that the sum of the weights of the
satisfied clauses is maximized.

Following a long line of research by many authors, we now know that MAX
SAT is APX-hard (or MAX SNP-hard) [21,10,3,2,7,6,18] . This means that
there is a constant € > 0 such that, assuming P#NP, there is no polynomial
time approximation algorithm for MAX SAT with a performance guarantee of at

least 1 — € on all instances of the problem. Approximation algorithms for MAX
SAT were designed by many authors, including [16,28,11,12,5,4]. The best
performance ratio known for the problem is currently 0.77 [4]. An approximation
algorithm for MAX SAT with a conjectured performance guarantee of 0.797 is
given in [31].

In a major breakthrough, Hastad [14] showed recently that no polynomial
time approximation algorithm for MAX SAT can have a performance guarantee
of more than 7/8, unless P=NP. Hastad’s shows, in fact, that no polynomial time
approximation algorithm for satisfiable instances of MAX {3}-SAT can have a
performance guarantee of more than 7/8. MAX {3}-SAT is the subproblem of
MAX SAT in which each clause is of size exactly three. An instance is satisfiable
if there is an assignment that satisfies all its clauses.

Karloff and Zwick [17] obtained recently an optimal 7/8-approximation algo-
rithm for MAX 3-SAT, the version of MAX SAT in which each clause is of size at
most three. (This claim appears in [17] as a conjecture. It has since been proved.)
Their algorithm uses semidefinite programming. A much simpler approximation
algorithm has a performance guarantee of 7/8 if all clauses are of size at least
three. If all clauses are of size at least three then a random assignment satisfies,
on the average, at least 7/8 of the clauses.

We thus have a performance guarantee of 7/8 for instances in which all
clauses are of size at most three, and for instances in which all clauses are of
size at least three. Can we get a performance guarantee of 7/8 for all instances
of MAX SAT? In an attempt to answer this question, we check the prospects
of obtaining a 7/8-approximation algorithm for MAX 4-SAT, the subproblem of
MAX SAT in which each clause is of size at most four. As it turns out, this is
already a challenging problem.

The 7/8-approximation algorithm for MAX 3-SAT starts by solving a semidef-
inite programming relaxation of the problem. It then rounds the solution of this
program using a random hyperplane passing through the origin. It is natural
to try to obtain a similar approximation algorithm for MAX 4-SAT. It is not
difficult, see Section 2, to obtain a semidefinite programming relaxation of MAX
4-SAT. It is again natural to try to round this solution using a random hyper-
plane. It turns out, however, that the performance guarantee of this algorithm
is only 0.845173. Although this is much better than all previous performance
guarantees for MAX 4-SAT, this guarantee is, unfortunately, below 7/8.

As the semidefinite programming relaxation of MAX 4-SAT is the strongest
relaxation of its kind (see again Section 2), it seems that a different rounding
procedure should be used. We describe, in Section 3, a new family of rounding
procedures. This family extends all the families of rounding procedures previ-
ously suggested for maximum satisfiability problems. The difficulty in developing
good rounding procedures for MAX 4-SAT is that rounding procedures that work
well for the short clauses, do not work so well for the longer clauses, and vice
versa. Rounding procedures from the new family try to work well on all clause
sizes simultaneously. We initially hoped that an appropriate rounding procedure
from this family could be used to obtain 7/8-approximation algorithms for MAX

4-SAT and perhaps even MAX SAT. It turns out, however, that the new family
falls just short of this mission. The experiments that we have made suggest that
a rounding procedure from the family, which we explicitly describe, can be used
to obtain a 0.8721-approximation algorithm for MAX 4-SAT. Unfortunately, no
rounding procedure from the family yields an approximation algorithm for MAX
4-SAT with a performance guarantee larger than 0.8724.

We have more success with MAX {2, 3,4}-SAT, the version of MAX SAT in
which the clauses are of size two, three or four. We present a second rounding
procedure from the family that seems to yield an optimal 7/8-approximation
algorithm for MAX {2,3,4}-SAT. A 7/8-approximation algorithm for MAX
{2, 3,4}-SAT yields immediately an optimal 7/8-approximation algorithm for
satisfiable instances of MAX 4-SAT, as clauses of size one can be easily elimi-
nated from satisfiable instances.

To determine the performance guarantee obtained using a given rounding
procedure R, or at least a lower bound on this ratio, we have to find the global
minimum of a function ratiog(vo,v1,v2, Vs, v4), given a set of constraints on
the unit vectors vo, v1,...,vs € IR®. The function ratiog is a fairly complicated
function determined by the rounding procedure R. As five unit vectors are de-
termined, up to rotations, by the (g) = 10 angles between them, the function
ratiog is actually a function of 10 real variables. Finding the global minimum
of ratior analytically is a formidable task. In the course of our investigation we
experimented with hundreds of rounding procedures. Finding these minima ‘by
hand’ was not really an option. We have implemented a set of Matlab functions
that use numerical techniques to find these minima.

The discussion so far centered on the quality of the rounding procedures con-
sidered. We also consider the quality of the suggested semidefinite programming
relaxation itself. The integrality ratio of the MAX 4-SAT relaxation cannot be
more than 7/8, as it is also a relaxation of MAX 3-SAT. We also show that the
integrality ratio of the relaxation, considered as a relaxation of the problem MAX
{1,4}-SAT, is at most 0.8753. The fact that this ratio is, at best, just above 7/8
is another indication of the difficulty of obtaining optimal 7/8-approximation
algorithm for MAX 4-SAT and MAX SAT. It may also indicate that a stronger
semidefinite programming relaxation would be needed to accomplish this goal.

The fact that numerical optimization techniques were used to compute the
performance guarantees of the algorithms means that we cannot claim the ex-
istence of a 0.8721-approximation algorithm for MAX 4-SAT, and of a 7/8-ap-
proximation algorithm for MAX {2, 3,4}-SAT as theorems. We believe, however,
that it is possible to prove these claims analytically and promote them to the
status of theorems, as was eventually done with the optimal 7/8-approximation
algorithm for MAX 3-SAT. This would require, however, considerable effort. It
may make more sense, therefore, to look for an approximation algorithm that
seems to be a 7/8-approximation algorithm for MAX 4-SAT before proceeding
to this stage.

In addition to implementing a set of Matlab functions that try to find the per-
formance guarantee of a given rounding procedure from the family considered,

we have also implemented a set of functions that search for good rounding pro-
cedures. The whole project required about 3000 lines of code. The two rounding
procedures mentioned above, and several other interesting rounding procedures
mentioned in Section b, were found automatically using this system, with some
manual help from the authors. The total running time used in the search for
good rounding procedures is measured by months.

We end this section with a short survey of related results. The 7/8-approxi-
mation algorithm for MAX 3-SAT is based on the MAX CUT approximation
algorithm of Goemans and Williamson [12]. A 0.931-approximation algorithm
for MAX 2-SAT was obtained by Feige and Goemans [9]. Asano [4] obtained
a 0.770- approximation algorithm for MAX SAT. Trevisan [25] obtained a 0.8-
approximation algorithm for satisfiable MAX SAT instances. The last two results
are also the best published results for MAX 4-SAT.

2 Semidefinite programming relaxation of MAX 4-SAT

Karloff and Zwick [17] describe a canonical way of obtaining semidefinite pro-
gramming relaxations for any constraint satisfaction problem. We now describe
the canonical relaxation of MAX 4-SAT obtained using this approach.

Assume that 1, ..., z, are the variables of the MAX 4-SAT instance. We let
zo = 0 and zp4; = Z;, for 1 < 7 < n. The semidefinite program corresponding
to the instance has a variable unit vector v;, corresponding to each literal z;,
and scalar variables z;, 2, 2ijx Or z;j%1 corresponding to the clauses z;, z; V z;,
z; Vz; Ve and 2; V 25 V 3 V 2 of the instance, where 1 < 4,7,k < 2n. Note
that all clauses, including those that contain negated literals, can be expressed
in this form. Clearly, we require vp4i = —v;, OT ¥ * Un4s = —1, for 1 <7 < n.

The objective of the semidefinite program is to maximize the function

E w;izi + E Wijzi + E WijkZijk + E WijklZijkl
i i k

VB ,5,k,1

where the w;’s, w;;’s, wijx’s and wg;r’s are the non-negative weights of the
different clauses, subject to the following collection of constraints. For ease of
notation, we write down the constraints that correspond to the clauses z1, z1Vz,,
z1VeaVes and z1VeyVezVes. The constraints corresponding to the other clauses
are easily obtained by plugging in the corresponding indices. The constraints
corresponding to #; and #; V @y are quite simple:

21 = 1—'020-'01 , 219 S 3—1)0-1)1—1)40-1)2—1)1-1)2 , 219 S 1.

The constraints corresponding to z; V z2 V 3 are slightly more complicated:

4—(vo+v1)-(vatvs) 4—(vo+vz)-(v14vs)
z123 < 4 y 2123 < 5

2123 <

4— .
('UD+'US4) (v14v2) , 2123 S 1

It is not difficult to check that the first three constraints above are equivalent to
the requirement that

4= (Vig iy FViy Vip FVay Vg TV Vig)
4 1

2123 <

for any permutation 2o, 21, %2, 23 on 0, 1, 2, 3. We will encounter similar constraints
for the 4-clauses. The constraints corresponding to z1 V z3 V z3 V x4 are even
more complicated. For any permutation 4o, 21, 22, 23, 24 on 0, 1, 2, 3,4 we require:

B— (Vi Vg FViy Vig FVin Vig F0ig Vi +0i, Vi)
Z1234 < 2)

5—(viy+vi,) (viy +vi, +v35) Fvig-vs,
4

21234 < , 21232 < 1.

The first line above contributes 12 different constraints, the second line con-
tributes 10 different constraints. Together with the constraint z1334 < 1 we
get a total of 23 constraints per 4-clause. In addition, for every distinct 0 <
11, 12, 43, 44, 95 < 2n, wWe require

Z vi; v, > —1 and Z Vi; v, > 2.

1<5<k<3 1<j<k<5

Although we do not consider here clauses of size larger than 4, we remark
that for any k, and for any permutation %9,%1,...,% on 0,1,...,k, z12. <
((k+1)— Z;?:() vi; " i,)/4, where the index j + 1 is interpreted modulo k +1,
is a valid constraint in the semidefinite programming relaxation of MAX k-SAT.

It is not difficult to verify that all these constraints are satisfied by any valid
‘integral’” assignment to the vectors v; and the scalars 2;, 25, 2z and 2k, ie.,
an assignment in which »; = (1,0,...,0) if ; = 1, and v; = (-1,0,...,0) if
z; = 0, and in which every z variable is set to 1 if its corresponding clause is sat-
isfied by the assignment 1, za,...,z,, and to 0 otherwise. Thus, the presented
semidefinite program is indeed a relaxation of the MAX 4-SAT instance.

The constraints of the above semidefinite program correspond to the facets of
a polyhedron corresponding to the Boolean function #;VzaVasVies. As explained
in [17], it is therefore the strongest semidefinite relaxation that considers the
clauses of the instance one by one. Stronger relaxations may be obtained by
considering several clauses at once.

The semidefinite programming relaxation of a MAX 4-SAT instance has n+1
unknown unit vectors v, v1, . . ., Un, (the vectors v, 4, are just used as shorthands
for —v;), O(n*) scalar variables and O(n®) constraints. An almost optimal solu-
tion in which all unit vectors v, v1, . . ., v, lie in R® ™! can be found in polynomial

time ([1],[13],[19])-

3 Rounding procedures

In this section we consider various procedures that can be used to round so-
lutions of semidefinite programming relaxations and examine the performance
guarantees that we get for MAX 4-SAT using them. We start with simple round-
ing procedures and then move on to more complicated ones. The new family of
rounding procedures is then presented in Section 3.5.

3.1 Rounding using a random hyperplane

Following Goemans and Williamson [12], many semidefinite programming based
approximation algorithms round the solution to the semidefinite program using
a random hyperplane passing through the origin. A random hyperplane that
passes through the origin is chosen by choosing its normal vector r as a uniformly
distributed vector on the unit sphere (in R™*!). A vector v; is then rounded to 0
if v; and vg fall on the same side of the random hyperplane, i.e., if sgn(r - v;) =
sgn(r-vg), and to 1, otherwise. Note that the rounded values of the variables are
usually not independent. More specifically, if ¥; and v; are not perpendicular,
i.e., if v; - v; # 0, then the rounded values of #; and ©; are dependent.

Given a set of unit vector V, we let probg (V) denote the probability that
not all the vectors of V fall on the same side of a random hyperplane that passes
through the origin. It is not difficult to see that

Bo1 + 6oz + 012
2 !

6
probg (vo,v1) = % , proby(vo,v1,v2) =

where 6;; = arccos(v;-v;) is the angle between v; and v;. Evaluating probg (vo, v1,
vg2,v3) is more difficult. As noted in [17],

Vol(Ao1, Aoz, A1z, Aoz, A1z, A2s)

T2

probg (vo, v1,v2,v3) = 1 —)
where (>\01, A02, A12, A03, A3, >\23) =T = (923,913,903,912,902,901) and VOl(>\01,
o2, A12, Ao3; A13, A23) is the volume of a spherical tetrahedron with dihedral
angles A1, Aoz, A1z, Ao3, A13, A23. Unfortunately, the volume function of spherical
tetrahedra seems to be a non-elementary function and numerical integration
should be used to evaluate it ([24],[8],[15],[27]).

It is not difficult to verify, using inclusion-exclusion, that

probg(vo, v1, V2, Vs, Va) = % Z probg (vi, vj, vk, vi) — %ZprobH(vi,vj) .
1<j<k< i<j

Thus, the probability that certain five unit vectors are separated by a random
hyperplane can be expressed as a combination of probabilities of events that
involve at most four vectors and no further numerical integration is needed. More
generally, proby (vo, ..., vk), for any even k, can be expressed as combinations of
probabilities involving at most & vectors. The same does not hold, unfortunately,
when k& is odd.

We let relax(vg,v1,...,v;), where 1 < ¢ < 4, denote the ‘relaxed’ value of
the clause z; V...V z;, i.e., the maximal value to which the scalar z15._; can
be set, while still satisfying all the relevant constraints, given the unit vectors
U, V1, - - -, Vi We let

ratiog (vo, v1, . . ., ¥i) = probg(vo,v1, ..., v;)/relax(vo, v1,...,v;) .

Finally, for every 1 < 4 < 4, we let @; = min ratiog(vo,v1, ..., v;), where the
minimum is over all configurations of unit vectors that satisfy the constraints

described in the previous section, and o = min{a1, as, as, as}. As follows from
straightforward arguments (see [12] or [17]), @ is a lower bound on the perfor-
mance guarantee of the approximation algorithm for MAX 4-SAT that uses the
semidefinite relaxation and then rounds the solution using a random hyperplane.

It is shown in [12] that a3 = cp ~ 0.87856. It is shown in [17] that ag = 7/8.
Unfortunately, it turns out that a4 ~ 0.845173. The minimum is attained
when the angle between each pair of vectors among vg,v1,...,vs 1s exactly
arccos(1/5) ~ 1.369438. It is not difficult to check that when v; - v; = 1/5,
for every 0 < 7 < j < 4, all the inequalities on 21234 simplify to 21234 < 1 and
therefore relax(vo, v1, va, v3,v4) = 1.

3.2 Pre-rounding rotations

Feige and Goemans [9] introduced the following variation of random hyperplane
rounding. Let f : [0, 7] — [0, 7] be a continuous function satisfying f(0) = 0 and
f(r—8) =7 — f(0), for 0 < 8 < 7. Before rounding the vectors using a random
hyperplane, the vector v; is rotated into a new vector v/, in the plane spanned
by vo and v;, so that the angle 6f,; between vo and v would be 85; = f(6oi). The
rotations of the vectors wy,...,v, affects, of course, the angles between these
vectors. Let 6;; be the angle between v; and v7. It is not difficult to see (see [9]),
that for 4,5 > 0, ¢ # 7, we have

cos 8;; — cos Bo; - cos fp;

' ! ! sl sl
cosb;; = cos by, - cosby; + -sin by, - sin by, .

sin Bg; - sin fo;

The vectors vo,v],...,v), are then rounded using a random hyperplane. The
condition f(0) = 0 is required to ensure the continuity of the transformation
v; — v}. The condition f(mr —8) = 7 — f(8) ensures that unnegated and negated
literals are treated in the same manner.

Feige and Goemans [9] use rotations to obtain a 0.931-approximation algo-
rithm for MAX 2-SAT. Rotations are also used in [29] and [30]. Can we use
rotations to get a better approximation algorithm for MAX 4-SAT? The answer
is that rotations on their own help, but very little. Consider the configuration
Vo, 1, V2, U3, V4 in which 8o; = 7/2, for 1 < i < 4, and 6;; = arccos(1/3), for
1 <7< j < 4. For this configuration we get relax = 1 and ratiog ~ 0.8503. As
every rotation function f must satisfy f(7w/2) = 7/2, rotations have no effect on
this configuration.

A different type of rotations was recently used by Nesterov [20] and Zwick [31].
These outer-rotations are used in [31] to obtain some improved approximation
algorithms for MAX SAT and MAX NAE-SAT. We were not able to use them,
however, to improve the results that we get in this paper for MAX 4-SAT.

3.3 Rounding the vectors independently

The semidefinite programming relaxation of MAX 4-SAT that we are using here
is stronger than the linear programming relaxation suggested by Goemans and

Williamson [11]. It is nonetheless interesting to consider an adaptation of the
rounding procedures used in [11] to the present context. The rounding proce-
dures of [11] are based on the randomized rounding technique of Raghavan and
Thompson [23],[22].

Let g : [0,7] — [0,7] be a continuous function such that g(w — 8) = = —
g(0), for 0 < 6 < 7. Note again that we must have g(7w/2) = 7/2. We do not
require g(0) = 0 this time. The rounding procedure described here rounds each
vector independently. The variable z; is assigned the value 1 with probability
g(00;)/m, and the value 0 with the complementary probability. The probability
prob;(vo, v1, . .., v;) that a clause 2z, V...V z; is satisfied is now

i o
prob;(vo,v1,...,v) =1 — H (1_ g(ﬂ_o;)) ‘

j=1

Note that as each vector is rounded independently, the angles 8;;, where 4, 5 > 0,
between the vectors, have no effect this time. It may be worthwhile to note
that the choice g(8) = m/2, for every 0 < 8 < , corresponds to choosing
the assignment to the variables z1, #a, ..., #, uniformly at random, a ‘rounding
procedure’ that yields a ratio of 7/8 for clauses of size 3 and 15/16 for clauses
of size 4. Goemans and Williamson [11] describe several functions g using which
a 3/4-approximation algorithm for MAX SAT may be obtained.

Independent rounding performs well for long clauses. It cannot yield a ratio
larger than 3/4, however, for clauses of size 2. To see this, consider the configura-
tion vg, v1, v2 in which g1 = 8o = 7/2 and 612 = 7. We have relax(vg, v1,v2) = 1
and prob;(vg, v1,v2) = 3/4, for any function g.

3.4 Simple combinations

We have seen that hyperplane rounding works well for short clauses and that in-
dependent rounding works well for long clauses. It is therefore natural to consider
a combination of the two.

Perhaps the most natural combination of hyperplane rounding and indepen-
dent rounding is the following. Let 0 < ¢ < 1. With probability 1 — € round
the vectors using a random hyperplane. With probability € choose a random
assignment. It turns out that the best choice of € here is € ~ 0.086553. With this
value of €, we get a3 = as = ey ~ 0.853150 while a3 = 7/8. Thus, we again get
a small improvement but we are still far from 7/8.

Instead of rounding all vectors using a random hyperplane, or choosing ran-
dom values to all variables, we can round some of the vectors using a random
hyperplane, and assign some of the variables random values. More precisely, we
choose one random hyperplane. Each vector is now rounded using this random
hyperplane with probability 1 — €, or is assigned a random value with proba-
bility €. The decisions for the different variables made independently. Letting
€ ~ 0.073609, we get a1 = @y = as ~ 0.856994, while a3 ~ 0.874496. This is
again slightly better but still far from 7/8.

3.5 More complicated combinations

Simple combinations of hyperplane rounding and independent rounding yield
modest improvements. Can we get more substantial improvements by using
more sophisticated combinations? To answer this question we introduce the
following family of rounding procedures. The new family seems to include all
the natural combinations of the rounding procedures mentioned above.

Each rounding procedure in the new family is characterized by three con-
tinuous functions f,g : [0,7] — [0,7] and € : [0,7] — [0,1]. The function f is
used for rotating the vectors before rounding them using a random hyperplane,
as described in Section 3.2. The function g is used to round the vectors inde-
pendently, as described in Section 3.3. The function € is used to decide which of
the two roundings should be used. The decision is made independently for each
vector, depending on the angle between it and vo. The function € : [0, 7] — [0, 1]
is a continuous function satisfying e(m — 8) = €(6), a condition that ensures that
negated and unnegated literals are treated in the same manner. The vector v; is
rounded using a random hyperplane, shared by all the vectors rounded using a
random hyperplane, with probability 1 — €(;), and is rounded independently,
with probability €(6o;). Vectors rounded using the shared hyperplane are rotated
before the rounding. Let v}, v, ..., v], be the vectors obtained by rotating the
vectors vy, vs,...,Un, as specified by the rotation function f. The probability
that a clause #; V 23 V...V z; is satisfied by the assignment produced by this
combined rounding procedure is given by the following expression:

probg(vo,v1,...,v) =1 — Zpr(S) - (1 — probg (v'(8S))) - (1 — prob;(v(S)))

where

pr(S) = JT(1 —e(80:)) - T e(60i) ,

i€s igs

V(8) = foo} U{vl [€S}, o(8)={wo} U{u|i ¢S},

and where S ranges over all subsets of {1, 2, ...,4}. Recall that probg (u1, ua, . . .,
ug) is the probability that the set of vectors wuy,us,...,ur is separated by a
random hyperplane, and that prob;(vo,u1,...,us) is the probability that at
least one of the vectors wi,us,...,ux is assigned the value 1 when all these
vectors are rounded independently using the function g.

We have made some experiments with an even wider family of rounding pro-
cedures but we were not able to improve on the results obtained using rounding
procedures selected from the family described here. More details will be given
in the full version of the paper.

Can we select a rounding procedure from the proposed family of rounding
procedures using which we can get an optimal, or an almost optimal, approxi-
mation algorithm for MAX 4-SAT?

4 The search for good rounding procedures

The new family of rounding procedures defined in the previous section is huge.
How can we expect to select the best, or almost the best, rounding procedure
from this family? As it turns out, although each rounding procedure is defined
by three continuous functions f,g and €, most of the values of these functions
do not matter much. What really matter are the values of these functions at
several ‘important’ angles. We therefore restrict ourselves to rounding procedures
defined by piecewise linear functions f, g and € with a relatively small number of
bends. By placing these bends at the ‘important’ angles, we can find, as we shall
see, a rounding procedure which is close to being the best rounding procedure
from this family.

More specifically, we consider functions obtained by connecting k given points
(z1,91), (z2,92), - -, (2K, Yx) by straight line segments, where z; = 0 and z¢ =
/2. For f we also require y; = 0 and yx = 7/2. For g we also require yr = 7/2.
The values of the functions f,g and € for 7/2 < 8 < 7 are determined by the
conditions f(r — 8) = m — (), g(wr —0) = w — g(8) and e(r — 8) = €(F). We
usually worked with k& < 5.

For a given value of k we are now faced with a very difficult optimization
problem in 6k —9 real variables, the variables being the # and y coordinates of the
points through which the functions f, g and € are required to pass. The objective
is to maximize a(C(f,g,¢€)), the performance guarantee obtained by using the
rounding procedure defined by the functions f,g and e that pass through the
points. Recall that evaluating a(C(f, g,¢)) for a given set of functions f,g and €
is already a difficult task that requires finding the global minimum of a rather
complicated function of 10 real variables.

We have written a Matlab program, called opt_fun, that tries to find a close
to optimal rounding procedure that uses functions specified using at most &
points. This is quite a non-trivial task and, as mentioned in the introduction,
it required about 3000 lines of code, in addition to the sophisticated numerical
optimization routines of Matlab’s optimization toolbox.

Although numerical methods were used to evaluate the performance guaran-
tees of the different rounding procedures, we believe that the 0.8721 and 7/8 per-
formances ratio claimed for the two rounding procedures that will be described
shortly are the correct performance ratios. There is, in fact, a completely me-
chanical way of generating a (long and tedious) rigorous proof of these claims.
As mentioned in the introduction, we believe that it would be more fruitful to
look for an algorithm that seems to achieve a performance ratio of 7/8 before
taking on the task of producing rigorous proofs. We believe that the use of nu-
merical methods would be inevitable in the search for optimal algorithms for
MAX 4-SAT and MAX SAT, at least using the current techniques.

5 Almost optimal or optimal approximation algorithms

We now present some optimal or close to optimal approximation algorithms
obtained using rounding procedures from the new family of rounding procedures.

f

g

€

0o , 0

0o , 0

0 ,0.250000

0.777843,1.210627

0.750000 , 0

0.744611,0.357201

1.248362 ,1.394099

1.248697,0.872552

1.072689,0.222928

()
()
(1.038994 ,1.445975)
()
()

/2 , w2

(
(
(
(
(

)
)
1072646, 0)
)
)

/2 , w2

()
()
(1.039987,0.255183)
()
()

w/2 ,0.131681

Fig. 1. The rounding procedure that seems to yield a 0.8721-approximation algorithm

for MAX 4-SAT

f

g

€

(o , 0o)

0 ,0.550000

(0 ,0.650000)

(1.394245,1.544705)

1.155432,1.154866

(0.413021,0.163085)

(=/2 , =/2)

(=/2

,0.160924)

(
(
(
(

)
)
1.394111,0.931661)

/2 , w2)

Fig.2. The rounding procedure that seems to yield an optimal 7/8-approximation

algorithm for MAX {2,3,4}-SAT.

5.1 MAX 4-SAT

Using the semidefinite programming relaxation of Section 2 and the rounding
procedure defined by the three piecewise linear functions passing through the
points given in Figure 1 we seem to obtain a 0.8721-approximation algorithm
for MAX 4-SAT, or more specifically, an algorithm with a1 ~ as ~ az ~ as ~
0.8721. As we shall see in Section 6, this is essentially the best approximation
ratio that we can obtain using a rounding procedure from the family considered.

It is interesting to note that g(8) = 0 for 0 < 6 < 1.072646 and that 0.13 <
€(6) < 0.36 for 0 < 8 < . This means that if the angle 8y; between v; and vg
is less than about 7/3, then with a probability of about 1/4, the variable z; is
assigned the value 0, without any further consideration of the angle 8o;. It is also
interesting to note that the function f(6) is not monotone.

5.2 MAX {2,3,4}-SAT

Using the semidefinite programming relaxation of Section 2 and the rounding
procedure defined by the three piecewise linear functions passing through the
points given in Figure 2 we believe we obtain a 7/8-approximation algorithm for

MAX {2,3,4}-SAT. We get in fact, an approximation algorithm for MAX 4-SAT
with ap ~ 0.8751, a3 = 7/8, aq ~ 0.8755 but with o ~ 0.8352. It is interesting
to note the non-monotonicity of the function g(8) and the fact that only one
intermediate point is needed for f(6) and €(f) and only two intermediate points
are needed for g(6).

A 7/8-approximation algorithm for MAX {2, 3,4}-SAT is of course optimal
as a ratio better than 7/8 cannot be obtained even for MAX {3}-SAT, which is
a subproblem of MAX {2, 3,4}-SAT.

5.3 MAX 3-SAT

The optimal 7/8-approximation algorithm for MAX 3-SAT presented in [17] has
a1 = a ~ 0.87856 and a3 = 7/8. Using pre-rounding rotations we can obtain an
approximation algorithm for MAX 3-SAT with o = a2 ~ 0.9197 and a3 = 7/8.
This algorithm would perform better than the algorithm of [17] on instances
in which some of the contribution to the optimal value of their semidefinite
programming relaxation comes from clauses of size one or two. The details of
this algorithm will be given in the full version of the paper.

5.4 MAX 2-SAT

Feige and Goemans [9] obtained an approximation algorithm for MAX 2-SAT
with a3 ~ 0.976 and az ~ 0.931. Although we cannot improve a3, the perfor-
mance ratio on clauses of size two, we can obtain, using pre-rounding rotations,
an approximation algorithm for MAX 2-SAT with a; ~ 0.983 and a; ~ 0.931.
The details of this algorithm will be given in the full version of the paper.

6 Limitations of current rounding procedures

We presented above a rounding procedure using which we seem to get a 0.8721-
approximation algorithm for MAX 4-SAT. This is extremely close to 7/8. Could
it be that by searching a little bit harder, or perhaps allowing more bends, we
could find a rounding procedure from the family defined in Section 3.5 using
which we could obtain an optimal 7/8-approximation algorithm for MAX 4-
SAT? Unfortunately, the answer is no. We show in this section that the rounding
procedure described in Section 5.1 is close to being the best rounding procedure
of the family considered.

Let 8;;, for 0 < 4 < j < 4, be the angles between the five unit vectors
Vo, V1, V2, V3, V4. Let c;; = cos B;;. It is not difficult to check that if

c1s = 1+Cu1+0023—2003—2004 , C13= 14co1—2co2+cos—2c04
Ca3 = 1—2001+00:23+Cus—2004 , Cia= 1+Cu1—200§—2003+004
Cos = 1—2001+00:23—2003+004 , C3a= 1—2001—2C§2+Cus+004

then relax(vo, v1, v2,vs3, v4) = 1.

Let 0 < 61 < 83 < /2 be two angles. Consider the configuration (vg,v1) in
which 6o; = 7 — 61, and the two configurations (vo, v], v3, v3,vi) and (vo, vZ, v,
v3,v2) in which

(651,0021053,064) = (61,601,601, m—82) , (631,655,633,604) = (62,62,62,6,)

and in which the angles H;k, for 1 < j < k < 4 are determined according to
the relations above so that relax(vo, v}, v}, v%,v4) = 1, for ¢ = 1,2. It is not
difficult to check that 61, = 61; = 63; = arccos(1t2g2282) 91, = 61, = 63, =
arccos(1=3c0sda=cosba) apq that 0z = arccos(1=2g2%82) for 1 < j < k < 4.
Assume that the configurations (vo, v}, v%, v}, v}), for ¢ = 1,2, are feasible. For
every rounding procedure C' we have

a(C) < min{ ratiog (vo, v1), ratioc (vo, v1, v3, v3, v3), ratioc (vo, v2,v2,v3,v3) }.

As the only angles between vg and and other vectors in these three configurations
are 01,02, m—61 and m—6,, and as f(r—8) = 7w — f(0), g(r—6) = w—g(f) and
e(m — 0) = €(), we get that for every rounding procedure from our family, the
three ratios ratiog(vo,v1), ratioc(vo, vi,v3,v3,vi) and ratioc(vo,v?,v3, v, v3)
depend only on the six parameters f(61), f(02),9(61),9(62), €(61) and €(6;).

Take 6; = 0.95 and 6, = arccos(1/5) ~ 1.369438. It is possible to check
that the resulting two configurations (vo, vi, v3, v, vi) and (vo, v2, v2, v, v2) are
feasible. The choice of the six parameters that maximizes the minimum ratio of
the three configurations, found again using numerical optimization, is:

F(61) ~1.410756 , g(61)~0 . €(61) ~0.309376
F(6;) ~1.448494 | g(6;) ~1.233821 , () ~ 0.122906

With this choice of parameters, the three ratios evaluate to about 0.8724. No
rounding procedure from the family can therefore attain a ratio of more than
0.8724 simultaneously on these three specific configurations. No rounding proce-
dure from the family can therefore yield a performance ratio greater than 0.8724
for MAX 4-SAT, even if the functions f, g and € are not piecewise linear.

7 The quality of the semidefinite programming relaxation

Let I be an instance of MAX 4-SAT. Let opt(I) be the value of the optimal
assignment for this instance. Let opt*(I) be the value of the optimal solution
of the canonical semidefinite programming relaxation of the instance given in
Section 2. Clearly opt(I) < opt*(I) for every instance I. The integrality ratio
of the relaxation is defined to be v = inf; opt(I)/opt*(I), where the infimum is
taken over all the instances.

In Section 3, when we analyzed the performance of different rounding proce-
dures, we compared the value, or rather the expected value, of the assignment
produced by a rounding procedure to opt*(I), the optimal value of the semidef-
inite programming relaxation. It is not difficult to see that any lower bound &

on the performance ratio of a rounding procedure obtained in this way would
satisfy a < «. Thus, the rounding procedure of Section 5.1 seems to imply that
~ > 0.8721. In this section we describe upper bounds on the integrality ratio «,
thereby obtaining upper bounds on the performance ratios that can be obtained
by any approximation algorithm that uses the relaxation of Section 2, at least
using the type of analysis used in Section 3.

It is shown in [17] that the integrality ratio of the canonical semidefinite
programming relaxation of MAX 3-SAT is exactly v3 = 7/8. As the canonical
relaxations of MAX 3-SAT and MAX 4-SAT coincide on instances of MAX 3-
SAT, we get that v = v4 < 7/8.

We can show, that the integrality ratio of the canonical relaxation of MAX
4-SAT, given in Section 2, is at most 0.8753, even when restricted to instances
of MAX {1,4}-SAT, i.e., to instances of MAX 4-SAT in which all clauses are
of size 1 or 4. Though this upper bound does not preclude the possibility of
obtaining an optimal 7/8-approximation algorithm for MAX 4-SAT using the
canonical semidefinite programming relaxation of the problem, the closeness of
this upper bound to 7/8 does indicate that it will not be easy, even if clauses
of length 3 are not present. It may be necessary to consider stronger relaxations
of MAX 4-SAT, e.g., relaxations obtained by considering several clauses of the
instance at once.

8 Concluding remarks

We have come frustratingly close to obtaining an optimal 7/8-approximation al-
gorithm for MAX 4-SAT. We have seen that devising a 7/8-approximation algo-
rithm for MAX {1,4}-SAT is already a challenging problem. Note that Hastad’s
7/8 upper bound for MAX 3-SAT and MAX 4-SAT does not apply to MAX
{1,4}-SAT, as clauses of length three are not allowed in this problem. A gadget
(see [26]) supplied by Greg Sorkin shows that no polynomial time approximation
algorithm for MAX {1,4}-SAT can have a performance ratio greater that 9/10,
unless P=NP.

We believe that optimal 7/8-approximation algorithms for MAX 4-SAT and
MAX SAT do exist. The fact that we have come so close to obtaining such
algorithms may in fact be seen as cause for optimism. There is still a possibility
that simple extensions of ideas laid out here could be used to achieve this goal. If
this fails, it may be necessary to attack the problems from a more global point of
view. Note that the analysis carried out here was very local in nature. We only
considered one clause of the instance at a time. As a result we only obtained
lower bounds on the performance ratios of the algorithms considered. It may
even be the case that the algorithms from the family of algorithms considered
here do give a performance ratio of 7/8 for MAX 4-SAT although a more global
analysis is required to show it.

We also hope that MAX 4-SAT would turn out to be the last barrier on the
road to an optimal approximation algorithm for MAX SAT. The almost optimal
algorithms for MAX 4-SAT presented here may be used to obtain an almost
optimal algorithm for MAX SAT. We have not worked out yet the exact bounds

that we can get for MAX SAT as we still hope to get an optimal algorithm for
MAX 4-SAT before proceeding with MAX SAT.

Finally, a word on our methodology. Our work is a bit unusual as we use
experimental and numerical means to obtain theoretical results. We think that
the nature of the problems that we are trying to solve calls for this approach.
No one can rule out, of course, the possibility that some clever new ideas would
dispense with most of the technical difficulties that we are facing here. Until
that happens, however, we see no alternative to the current techniques. The use
of experimental and numerical means does not mean that we have to give up
the rigorousity of the results. Once we obtain the ‘right’ result, we can devote
efforts to proving it rigorously, possibly using automated means.

References

1. F. Alizadeh. Interior point methods in semidefinite programming with applications
to combinatorial optimization. SIAM Journal on Optimization, 5:13-51, 1995.

2. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
the hardness of approximation problems. Journal of the ACM, 45:501-555, 1998.

3. S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization
of NP. Journal of the ACM, 45:70-122, 1998.

4. T. Asano. Approximation algorithms for MAX SAT: Yannakakis vs. Goemans-
Williamson. In Proceedings of the 3nd Israel Symposium on Theory and Computing
Systems, Ramat Gan, Israel, pages 24-37, 1997.

5. T. Asano, T. Ono, and T. Hirata. Approximation algorithms for the maximum
satisfiability problem. Nordic Journal of Computing, 3:388-404, 1996.

6. M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and
nonapproximability—towards tight results. SIAM Journal on Computing, 27:804—
915, 1998.

7. M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically
checkable proofs and applications to approximation. In Proceedings of the 25rd
Annual ACM Symposium on Theory of Computing, San Diego, California, pages
294-304, 1993. See Errata in STOC’94.

8. H.S.M. Coxeter. The functions of Schlafli and Lobatschefsky. Quarterly Journal
of of Mathematics (Ozford), 6:13-29, 1935.

9. U. Feige and M.X. Goemans. Approximating the value of two prover proof systems,
with applications to MAX-2SAT and MAX-DICUT. In Proceedings of the 3nd
Israel Symposium on Theory and Computing Systems, Tel Aviv, Israel, pages 182—
189, 1995.

10. U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Interactive proofs
and the hardness of approximating cliques. Journal of the ACM, 43:268-292, 1996.

11. M.X. Goemans and D.P. Williamson. New 3/4-approximation algorithms for the
maximum satisfiability problem. SIAM Journal on Discrete Mathematics, 7:656—
666, 1994.

12. M.X. Goemans and D.P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of
the ACM, 42:1115-1145, 1995.

13. M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinato-
rial Optimization. Springer Verlag, 1993. Second corrected edition.

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

J. Hastad. Some optimal inapproximability results. In Proceedings of the 29th
Annual ACM Symposium on Theory of Computing, El Paso, Tezas, pages 1-10,
1997. Full version available as E-CCC Report number TR97-037.

W.Y. Hsiang. On infinitesimal symmetrization and volume formula for spherical or
hyperbolic tetrahedrons. Quarterly Journal of Mathematics (Ozford), 39:463-468,
1988.

D.S. Johnson. Approximation algorithms for combinatorical problems. Journal of
Computer and System Sciences, 9:256-278, 1974.

H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX 3SAT? In
Proceedings of the 38rd Annual IEEE Symposium on Foundations of Computer
Science, Miami Beach, Florida, pages 406-415, 1997.

S. Khanna, R. Motwani, M. Sudan, and U. Vagzirani. On syntactic versus com-
putational views of approximability. In Proceedings of the 35rd Annual IEEE
Symposium on Foundations of Computer Science, Santa Fe, New Mezico, pages
819-830, 1994.

Y. Nesterov and A. Nemirovskii. Interior Point Polynomial Methods in Convez
Programming. STAM, 1994.

Y. E. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization.
Optimization Methods and Software, 9:141-160, 1998.

C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences, 43:425-440, 1991.

P. Raghavan. Probabilistic construction of deterministic algorithms: Approximat-
ing packing integer programs. Journal of Computer and System Sciences, 37:130-
143, 1988.

P. Raghavan and C. Thompson. Randomized rounding: A technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7:365-374, 1987.

L. Schlafli. On the multiple integral f" dzdy...dz, whose limits are p1 = a1z +
biy+ ...+ hiz>0,pz >0,...,pn >0,and 22 + > + ... + 2% < 1. Quarterly
Journal of Mathematics (Ozford), 2:269-300, 1858. Continued in Vol. 3 (1860),
pp. 54-68 and pp. 97-108.

L. Trevisan. Approximating satisfiable satisfiability problems. In Proceedings of
the 5th European Symposium on Algorithms, Graz, Austria, 1997. 472-485.

L. Trevisan, G.B. Sorkin, M. Sudan, and D.P. Williamson. Gadgets, approxi-
mation, and linear programming (extended abstract). In Proceedings of the 37rd
Annual IEEE Symposium on Foundations of Computer Science, Burlington, Ver-
mont, pages 617-626, 1996.

E.B. Vinberg. Volumes of non-Euclidean polyhedra. Russian Math. Surveys, 48:15—
45, 1993.

M. Yannakakis. On the approximation of maximum satisfiability. Journal of Al-
gorithms, 17:475-502, 1994.

U. Zwick. Approximation algorithms for constraint satisfaction problems involving
at most three variables per constraint. In Proceedings of the 9th Annual ACM-
SIAM Symposium on Discrete Algorithms, San Francisco, California, pages 201-
210, 1998.

U. Zwick. Finding almost-satisfying assignments. In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing, Dallas, Tezas, pages 551-560, 1998.
U. Zwick. Outward rotations: a tool for rounding solutions of semidefinite program-
ming relaxations, with applications to max cut and other problems. In Proceedings
of the 31th Annual ACM Symposium on Theory of Computing, Atlanta, Georgia,
1999. To appear.

