
Syntactic composition
of top-down tree transducers

is short cut fusion

Claus Jürgensen
Heiko Vogler

Institut für Theoretische Informatik

TUD-FI01-10 — November 2001

TECHNISCHE UNIVERSITÄT
DRESDEN

Fakultät Informatik

Technische Berichte

Technical Reports
ISSN 1430-211X

Technische Universität Dresden
Fakultät Informatik
D-01062 Dresden
Germany

URL: http://www.inf.tu-dresden.de/





Syntactic composition
of top-down tree transducers

is short cut fusion

Claus Jürgensen∗ † and Heiko Vogler‡

Faculty of Computer Science
Dresden University of Technology

D-01062 Dresden, Germany

Abstract

We compare two deforestation techniques: short cut fusion formalized in category theory and the
syntactic composition of tree transducers. The former strongly depends on types and uses the para-
metricity property or free theorem whereas the latter makes no use of types at all and allows more
general compositions. We introduce the notion of a categorical transducer which is a generalization of
a catamorphism and show a respective fusion result which is a generalization of the ‘acid rain theorem’.
We prove the following main theorems: (i) The class of all categorical transducers builds a category
where composition is fusion. (ii) The semantics of categorical transducers is a functor. (iii) The sub-
class of top-down categorical transducers is a subcategory. (iv) Syntactic composition of top-down tree
transducers is equivalent to the fusion of top-down categorical transducers.

Contents

1 Introduction 2

2 Preliminaries 8
2.1 General notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Basic universal algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Basic category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Concrete categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Calculating with initial and final objects 11
3.1 Deriving functors by initiality or finality . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Generalized ‘acid rain theorems’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Characterization of concrete functors between categories of algebras . . . . . . . . . . . 15

4 Syntax and semantics of top-down tree transducers 16
4.1 Syntax of top-down tree transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Semantics of top-down tree transducers . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Syntactic composition of top-down tree transducers . . . . . . . . . . . . . . . . . . . . 18

∗Email: Claus.Juergensen@Inf.TU-Dresden.DE
†Supported by the postgraduate program ‘Specification of discrete processes and systems of processes by operational models

and logics’ (GRK 334/2) of the German Research Community (DFG)
‡Email: Vogler@TCS.Inf.TU-Dresden.DE



2 1 INTRODUCTION

5 Syntax and semantics of categorical transducers 19
5.1 Syntax of categorical transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Semantics of categorical transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Categorical transducer homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Top-down categorical transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Relating transducers 26
6.1 Category of forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Relating semantics of top-down tree transducers and top-down categorical transducers . 28
6.3 Relating syntactic composition and fusion . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Future work 36

Acknowledgment 38

A Laws 39

B Basic universal algebra 40
B.1 Algebras and homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B.2 Free algebras and substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

C Basic category theory 42
C.1 Categories and Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
C.2 Natural transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
C.3 Initial and final objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
C.4 Products and coproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
C.5 The functors for (co-)products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
C.6 Initial algebras and catamorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

References 57

1 Introduction

A transformation of functional programs to eliminate intermediate data structures is called deforestation.
The name ‘deforestation’ has been introduced by [Wad90] inspired by the fact that the values of algebraic
data structures are trees.

A particular kind of deforestation is the following: for three given data structures A,B,C and pro-

gramsA
f
←−− B andB

g
←−− C consider the programA

f · g
←−−−− C, where f ·g denotes the program which

computes the value of g from the input and computes the value of f from the value of g. The deforesta-

tion transformation is the construction of a new program A
h
←−− C such that the semantics of h is the

composition of the semantics of f and the semantics of g, and the construction of h is independent from
the explicit data structure B. Thus, the intermediate transfer from g to f of values of the data structure
B is eliminated. This deforestation technique is called fusion. It is of practical significance, because it
can be used to deforest modularly constructed functional programs. Since memory space and time for the
allocation of the eliminated data structures is saved, this can improve the runtime performance [PTH01].

In this paper we will compare two specific fusion techniques in a theoretical way: short cut fusion
and the syntactic composition of top-down tree transducers. In fact, we will compare these two fusion
techniques not only w.r.t. their behavior, but rather we will show that the techniques themselves are
structurally equivalent.

Let us first briefly recall these two techniques and then indicate how we compare them.

Short cut fusion is a fusion technique which uses a single, local transformation rule called the
cata/build-rule [GLP93, Gil96]. Consider the Haskell program:



3

data Tree = Alpha | Sigma(Tree, Tree)
data List = N | A List | B List

zig :: Tree -> List
zag :: Tree -> List
zig Alpha = N
zag Alpha = N
zig (Sigma(x1, x2)) = A(zag x1)
zag (Sigma(x1, x2)) = B(zag x2)

bin :: List -> Tree
bin N = Alpha
bin (A x) = Sigma(bin x, bin x)
bin (B x) = Sigma(bin x, bin x)

bin_zig :: Tree -> Tree
bin_zig = bin . zig

bin_zag :: Tree -> Tree
bin_zag = bin . zag

We will deforest the function bin_zig: In order to use the cata/build-rule to fuse the functions
bin and zig we have to express zig as a build and bin as a cata (which is a shorthand for
catamorphism). The build for the List data structure is defined by

build :: (forall c. c -> (c -> c) -> (c -> c) -> d -> c) -> (d -> List)
build g = g N A B

where the semantics of build is to apply its argument to the List-constructors. Alternatively, we may
view the term g as the result of abstracting in the term build g from the List-constructor-symbols N,
A, and B, i.e. g = \N A B -> build g.1 Then we can write

zig = build zig’
zag = build zag’

zig’ :: c -> (c -> c) -> (c -> c) -> Tree -> c
zag’ :: c -> (c -> c) -> (c -> c) -> Tree -> c
zig’ n a b Alpha = n
zag’ n a b Alpha = n
zig’ n a b (Sigma(x1, x2)) = a(zag’ n a b x1)
zag’ n a b (Sigma(x1, x2)) = b(zig’ n a b x2)

where zig’ and zag’ are zig and zag, respectively, in which we have abstracted from the List-
constructors. The second ingredient — the catamorphism for the List data structure — is given by

cata n a b N = n
cata n a b (A x) = a(cata n a b x)
cata n a b (B x) = b(cata n a b x)

where the semantics of cata is to substitute the List-constructors N, A, and B by the functions n, a,
and b, respectively, e.g. cata n a b (B(A(B N))) = b(a(b n)). It is easy to see that we can
express the function bin as a cata in the following way:

bin = cata Alpha (\x -> Sigma x x) (\x -> Sigma x x)

Now we can apply the cata/build-rule

g :: c -> (c -> c) -> (c -> c) -> d -> c

cata n a b . build g = g n a b

which leads to
1‘\x -> t’ is the Haskell-notation for ‘λx.t’, i.e. the λ-abstraction from the variable x in the term t.



4 1 INTRODUCTION

bin_zig = bin . zig

= cata Alpha (\x -> Sigma x x) (\x -> Sigma x x) . build zig’

= zig’ Alpha (\x -> Sigma x x) (\x -> Sigma x x)

and similarly for bin_zag. Finally, by applying bin_zig (and bin_zag) to every possible input
pattern, we obtain the program

bin_zig Alpha = Alpha
bin_zag Alpha = Alpha
bin_zig (Sigma(x1, x2)) = Sigma((bin_zag x1), (bin_zag x1))
bin_zag (Sigma(x1, x2)) = Sigma((bin_zig x2), (bin_zig x2))

Notice that the List data structure has been eliminated.
Originally, short cut fusion and the cata/build-rule were defined only for the list data struc-

ture. This restricted transformation has also been implemented in the GHC (Glasgow Haskell Com-
piler) [PTH01]. For arbitrary algebraic data structures of the polymorphic λ-calculus ‘PolyFix’ (but not
for Haskell) a proof for the correctness of short cut fusion is given in [Joh01]. It is also possible to prove
an abstract version in terms of category theory of the cata/build-rule which is known as the ‘acid
rain theorem’ [TM95]:

H : (AlgCF, | � |
F
)← (AlgCG, | � |

G
)

([ϕ])G · ([HinG])F = ([Hϕ])F
.

where ([ϕ])G is the category theory notation for the catamorphism, which is the unique solution of the
equation ([ϕ])G · inG = ϕ · G([ϕ])G, G is an endofunctor, ϕ is a G-algebra, and inG is an initial G-algebra.
The rôle of the build is taken by a concrete functor H. Other generalizations of short cut fusion can
e.g. be found in [LS95] and [HIT96].

Syntactic composition of top-down tree transducers is the other fusion technique, we are interested
in. The concept of top-down tree transducers has been introduced by [Rou68, Rou70] and [Tha70].
Roughly speaking, such a transducer T = (Q,Σ,∆, q0, R) is a deterministic finite-state top-down tree
automaton (with state set Q) which reads a given input tree (over some ranked alphabet Σ) starting from
the root, stepping towards the leaves, and thereby producing an output tree (over some ranked alphabet
∆). The behavior of the transducer is determined by a finite set R of term rewrite rules, as e.g.

zig α → N
zag α → N
zig(σ(x1, x2)) → A(zag x1)
zag(σ(x1, x2)) → B(zig x2)

where zig and zag are states of rank 1, σ and α are input symbols of rank 2 and 0, respectively, A, B,
and N are output symbols of rank 1, 1, and 0, respectively, and x1 and x2 are term rewrite variables. By
applying the usual term rewrite semantics, for every input tree t, the unique normal form of zig(t) is a
monadic tree A(B(A . . .N . . .)) which shows the zig-zag path through t. Thus, in general, the semantics
of a tree transducer is a tree transformation, i.e. a function mapping trees onto trees.

A top-down tree transducer can be viewed as a functional program by turning states into functions
and rewrite rules into defining equations (cf. the functional program from above). Clearly, only partic-
ular functional programs are related to top-down tree transducers. Roughly speaking, a top-down tree
transducer is a primitive-recursion scheme with mutual recursion (cf. [EV91, FHVV93, NV01] for the
computational power of tree transducers).

Let us denote the fact that a top-down tree transducer T has input alphabet Σ and output alphabet ∆

by ∆
T
←−− Σ. The semantics of T is a tree transformation T∆

τT
←−−− TΣ where TΣ and T∆ are the sets

of trees over Σ and ∆, respectively. For two given top-down tree transducers Γ
T2←−−− ∆

T1←−−− Σ with



5

semantics TΓ
τT2←−−−− T∆

τT1←−−−− TΣ we can construct a new top-down tree transducer Γ
T2 · T1←−−−−−− Σ

such that the following composition result holds:

τT2 · τT1 = τ(T2 · T1) (∗)

and thus the intermediate ∆-trees are eliminated. The basic idea for the construction of T2 · T1 is to run
a slightly modified version of T2 on the right hand sides of the rules of T1 to obtain the right hand sides
of the rules of T2 · T1. Then T2 · T1 is called the syntactic composition of T1 and T2. In order to illustrate
this fusion technique let us consider the top-down tree transducer T1 as shown above and the following
top-down tree transducer T2:

bin N → α
bin(Ax1) → σ(bin x1, bin x1)
bin(B x1) → σ(bin x1, bin x1)

which also corresponds to a part of our example Haskell-program. If we apply the syntactic composition
to these two tree transducers, then we obtain the top-down tree transducer T2 · T1:

(bin, zig)α → α
(bin, zag)α → α
(bin, zig)(σ(x1, x2)) → σ((bin, zag)x1, (bin, zag)x1)
(bin, zag)(σ(x1, x2)) → σ((bin, zig)x2, (bin, zig)x2)

And this corresponds to the equations of the functional program that we have calculated for bin_zig
(and bin_zag) using short cut fusion.

The syntactic composition of top-down tree transducers has been introduced and thoroughly studied
in [Eng75, Eng77, Bak79, Eng82]. Further investigations of composition of semantically larger classes of
transducers can be found in: [Fül81, Gie88, CDPR97b, CDPR97a] for attributed tree transducers, [Eng80,
CF82, EV85b] for macro tree transducers (or: primitive-recursive program schemes with parameters),
and [EV88] for high-level tree transducers (also cf. the survey articles and monographs [GS84, GS97,
FV98]). In [KV01, VK01] the composition of tree transducers has been compared with the deforestation
method for functional programs [Wad90] in a syntactical framework.

This finishes the short review on short cut fusion and syntactic composition. Since both fusion tech-
niques eliminate intermediate data structures and produce equivalent results in our example, the obvious
question is: what is the relationship between these two fusion techniques? In order to compare them we
will introduce the notion of a categorical transducer which is a generalization of a catamorphism, and
we will show a respective fusion result which is a generalization of the ‘acid rain theorem’. Then — de-
scribed in the language of category theory — both fusion techniques are instances of this generalization.
The following diagram gives a rough illustration of this generalization process:

tree transducer ? short cut fusion
syntactic composition ←→ cata/build-rule

universal algebra polymorphic λ-calculi

↓ generalization ↓ generalization

categorical transducer functorial short cut fusion

composition ⊆ generalized ‘acid rain theorem’
category theory ←− category theory

Let us explain now a bit more the notion of a categorical transducer and the consequences of the general-
ized ‘acid rain theorem’. (We assure those readers who are not familiar with notions from category theory
that we will develop later all the needed techniques in quite some detail.) The main idea is to reinvent
tree transducers on an the abstract level of category theory, where we have the following intuition how
the ingredients of a top-down categorical transducer are related to those of a top-down tree transducer:



6 1 INTRODUCTION

top-down tree transducer ←→ top-down categorical transducer over Set

T = (Q,Σ,∆, q0, R) ←→ C = (H,U, π) : G← F

finite set of states Q ←→ U : Set ← Set faithful endofunctor
ranked input-alphabet Σ ←→ F : Set ← Set endofunctor
ranked output-alphabet ∆ ←→ G : Set ← Set endofunctor
initial state q0 ∈ Q ←→ π : Id

.← U natural transformation
finite set of rules R ←→ HinG where H is a concrete functor

H : (AlgSetF, | � |F)← (AlgSetG,U · | � |G)

set of Σ-trees TΣ ←→ µF least fixpoint of F

set of ∆-trees T∆ ←→ µG least fixpoint of G

tree transformation τT : T∆ ← TΣ ←→ SC = π · ([H inG])F : µG← µF

We will also formalize this relationship and call the top-down tree transducer T and the top-down cate-
gorical transducer C related and write T ≈ C. Moreover we will define a function R which maps a given
top-down tree transducer T to a related top-down categorical transducer T ≈ RT .

The concrete functor H plays a particular rôle in our formalization. Intuitively H describes a ‘rule-
pattern’ in which the parameters can be substituted by particular ‘output-functions’, such that we obtain
the ‘rules’ of C if we substitute the parameters by the ‘output-symbols’ of C. The initial G-algebra inG

stands for the ‘output-symbols’ of C and thus H inG describes the ‘rules’ of C. Finally, the catamorphism
([H inG])F yields the fixpoint of the ‘rules’ by induction and the natural transformation π selects the value
of the ‘initial state’. We show that all categorical transducers over some category C are the morphisms of
a category (denoted by catT C), where the composition is defined as follows:

(H2,U2, π2) · (H1,U1, π1) = (H1 · H2,U1 · U2, π1 ∗ π2),

and the category td -catT C of all top-down categorical transducers is its subcategory. The crucial point
is the composition H1 · H2 where the ‘rules’ of the second categorical transducer (H2,U2, π2) are used
as ‘output-symbols’ for the first categorical transducer (H1,U1, π1). The reader should compare this idea
with the cata/build-rule on page 3.

The amazing coincidence is that this composition which comes natural with the definition of a cat-
egorical transducer turns out to be a generalization of short cut fusion in the following sense: With the
functorial ‘acid rain theorem’ (Definition and Corollary 3.2.6) we can prove that the semantics S of cate-
gorical transducers over C is a functor S : C ← catT C , i.e.

S(H2,U2, π2) · S(H1,U1, π1) = S(H1 · H2,U1 · U2, π1 ∗ π2).

On the other hand we prove that top-down tree transducers (modulo isomorphism) with syntactic
composition form a category td -treeT and that R : td -catT Set ← td -treeT is an embedding functor
(Theorem 6.3.5). This functor respects the semantics, i.e. τ = R ·S (Corollary 6.2.11). Then the syntactic
composition of top-down tree transducers (cf. statement (∗): τT2 · τT1 = τ(T2 · T1) on page 5) is short
cut fusion of the corresponding categorical transducers (Theorem 6.3.5):

RT2 · RT1 = R(T2 · T1).

Note that this equation compares the result of the syntactic composition T2 · T1 of top-down tree trans-
ducers T1 and T2 with the short cut fusion RT2 · RT1 of the corresponding categorical transducers RT1

and RT2 on a syntactic level, i.e., the two fusion techniques are structurally the same. Clearly, as a
consequence on the semantical level, we obtain

S(RT2) · S(RT1) = S(R(T2 · T1))

i.e.
τT2 · τT1 = τ(T2 · T1).



7

Let us now compare our approach with other well-known approaches of embedding finite-state ma-
chines into the framework of category theory. The straightforward embedding would assume that, for two

tree transducers ∆
T2, T1
←−−−−− Σ we define a homomorphism h : T2 ⇐ T1 as a rule-preserving function

between the state sets. Then the objects of the desired category are the tree transducers and the morphisms
are the tree transducer homomorphisms. Clearly, then the composition of morphisms is the composition
of tree transducer homomorphisms as shown in the following figure:

T1

T2

T3

h2h2

h1h1

h2 · h1h2 · h1

In fact, this approach of embedding finite-state machines into category theory has been successfully ap-
plied in in [EP72, Ehr74, BH75]. However, in the present paper we are not interested in the composition
of homomorphisms between tree transducers, but rather in the composition of the tree transducers them-
selves. Thus our figure should look as follows:

Γ ∆ Σ
T2 T1

T2 · T1

Consequently, as objects we will use ranked alphabets and as morphisms we will use tree transducers
(modulo isomorphism). Hence, our point of view is orthogonal to the classical approach of the cited liter-
ature. We note that the two approaches can be integrated by considering 2-categories (cf. Definition 7.1.1
of [Bor94]) where the ranked alphabets (like Σ and ∆) are 0-cells, the tree transducers (like T1 and T2)
are 1-cells, and the tree transducer homomorphisms (like h : T2⇐ T1) are 2-cells:

∆ Σ

T1

T2

hh

Finally let us summarize the main results of this paper and outline its structure:

• The class of all categorical transducers builds a category (Definition 5.1.1) where composition is
fusion (Theorem 5.2.3).

• The semantics of categorical transducers is a functor (Theorem 5.2.3).

• The subclass of top-down categorical transducers is a subcategory (Theorem 5.4.2).

• For every top-down tree transducer there exists a top-down categorical transducer which has the
same semantics (Lemma 6.2.9 and Theorem 6.2.7). We use this construction to define a function R

(Definition 6.2.10).

• Syntactic composition of top-down tree transducers is equivalent to the fusion of top-down cate-
gorical transducers (Theorem 6.3.2).

• The class of all top-down tree transducers modulo isomorphism is a category and the function R is
a functor from this category to the category of top-down categorical transducers (Theorem 6.3.5).

The structure of this paper is as follows: In Section 2 we collect the needed notions and notation of
universal algebra and category theory. The reader who is unfamiliar with either topic may have a look



8 2 PRELIMINARIES

at Appendix B or C, respectively. In Subsection 2.4 we define concrete categories and functors, which
we will use in our generalized formulation of the ‘acid rain theorem’ in Section 3 (cf. Definition and
Corollary 3.2.6). Then we give a little introduction into the theory of top-down tree transducers and the
syntactic composition of these in Section 4. In Section 5 we generalize the notion of a tree transducer
in terms of category theory and define the categorical transducer. We also define a top-down categorical
transducer and show a respective composition result. Finally in Section 6 we establish a relation between
top-down tree transducers and categorical transducers such that we are able to compare the two fusion
techniques. We close with a brief outlook over some future work we plan to do.

2 Preliminaries

2.1 General notions

Functions and arrows

We denote the fact that a function f maps to a setA from a setB byB = dom f andA = cod f or by the
relation f : A← B. We will use this notation for a morphism f to an object A from an object B as well,
because a function is nothing else than a morphism in the category Set . In order to avoid parentheses
we will use the conventions fx = f(x) and Ffx = (Ff)x for function applications. The composition
f · g : A ← C of two functions f : A ← B and g : B ← C is defined by ∀x ∈ C : : (f · g)x = f(gx).
This is the reason why the arrows point to the left2:

A B C
f g

f · g

Besides the composition operator · we will later define the binary operators + and × on functions and,
more general, on morphisms. The function application may also be viewed as an invisible binary operator.
We declare the following operator precedences:

lower precedence
←−−−−−−−−−

binds weaker
+ × · ‘function application’

higher precedence
−−−−−−−−−→

binds stronger
,

e.g. Ff · g + h× i =
(

(Ff) · g
)

+ (h× i). Partial functions are denoted by←···. We denote the identity
function on a set A by idA. For every two sets F and G of functions we define

F ·G =
{

f · g
∣

∣ f ∈ F ∧ g ∈ G ∧ dom f = cod g
}

.

We denote the cardinality of a set M by #M .

Inference rules

Sometimes we will write an implication

∀x1 · · · ∀xk : : A1 ∧ · · · ∧ Am =⇒ B1 ∧ · · · ∧ Bn

in the form of an inference rule

A1 · · · Am

B1 · · · Bn

where free variables in the latter should be considered as universally quantified.

2Arrows pointing to the right are consistent with the commuted composition g ; f = f · g.



2.2 Basic universal algebra 9

2.2 Basic universal algebra

We will need the notions: ranked alphabet, algebra (homomorphism), free (term) algebra, and (2nd-order)
substitution. For a ranked alphabet Σ and a set A we define ΣA =

{

σ(a1, . . . , arankΣ σ)
∣

∣ a ∈ A
}

. The
free Σ-term algebra over a setX is denoted by TΣX . The elements of TΣX are called terms or trees. The
substitution of the variables x1, . . . , xn by the terms s1, . . . , sn ∈ TΣ, respectively, in the term t ∈ TΣ is
denoted by [s1/x1, . . . , sn/xn]t. The reader can find a more detailed description of the universal algebra
needed for our belongings in Appendix B or in [Ihr88, Wec92].

2.3 Basic category theory

The reader who is unfamiliar with category theory can find a brief introduction in Appendix C. We will
need the notions: (quasi-)(pre-)category, (full) subcategory, object, morphism, (faithful) functor, em-
bedding, (horizontal and vertical composition of a) natural transformation, unique mediating morphism
((co-)mediator), initial/final object, (co-)product (functor), projection, injection, initial F-algebra, least
fixed point of a functor, and catamorphism. In Subsection 2.4 we will introduce the notions of concrete
categories and concrete functors.

For improving the readability we use various fonts: we usually write categories C,D,E , . . . ; objects
A,B,C, . . . ; morphisms f, g, h, . . . ; functors F,G,H, . . . ; and natural transformations %, σ, τ, . . . .

We denote the final object by 1 and the initial object by 0 where we write 1
!A←−−− A andA

¡A←−−− 0 for
the unique mediating morphisms. The product of the I-indexed family (Ai)i∈I with projections (πi)i∈I is

denoted by Aj
πj
←−−−

∏

i∈I Ai. For the unique mediating morphism to (πi)i∈I from Ai
fi
←−− B we write

∏

i∈I Ai
〈fi〉i∈I
←−−−−−− B and call it pairing. Dually we use the notations

∐

, ι, and [ � ] for the coproduct, and

we call the unique mediating morphism copairing. For every endofunctor F we write µF
inF←−−− F(µF)

for the initial F-algebra where µF denotes the least fixed point of F. The unique mediating morphism to

A
ϕ
←−− FA from inF is denoted by A

([ϕ])F
←−−−−− µF and we call it catamorphism.

Our notation follows [AHS90] and [BdM97]. In particular, the arrows point to the left (cf. Subsec-
tion 2.1), i.e.

∀A,B ∈ ObC : : f : A←−
C
B ⇐⇒ A

f
←−−

C
B ⇐⇒ f ∈ C(A,B).

Notice that C(A,B) is the hom-class of morphisms with codomain A and domain B.

2.4 Concrete categories

Many familiar examples for categories are constructs (i.e. categories of structured sets and structure-
preserving functions between them). E.g. the category Σ-Alg of Σ-algebras is a construct. It turns out
that many of the interesting properties of constructs result from the construction upon the base category
Set . If we view a construct as an abstract category we will loose the information of this construction. In
order to keep the information we can describe the construction by a faithful functor U : Set ← Σ-Alg ,
where U forgets the additional structure of a Σ-algebra, i.e. it maps Σ-algebras onto their carrier sets
and Σ-algebra homomorphisms onto their underlying functions. The pair (Σ-Alg ,U) (which we will
call a construct) encodes the information of the construction. The concept of concrete categories is a
generalization thereof, where the base category may differ from Set .

For some category C we will use the concrete category (AlgCF, | � |
F
) built upon C in order to de-

rive a more general notion of a ‘type functor’ (cf. [BdM97] Section 2.7), which we will need in our
generalization of the ‘acid rain theorem’ (Definition and Corollary 3.2.6).

2.4.1 Definition (embedding, faithful functor). Let F : C ← D be a functor.

(i) F is called an embedding provided that F is injective on morphisms and



10 2 PRELIMINARIES

(ii) F is called faithful provided that it is injective on hom-classes, i.e. ∀A,B ∈ D : : ∀ f, g ∈
D(A,B) : : Ff = Fg =⇒ f = g. ∗

2.4.2 Note. A functor is an embedding iff it is injective on objects and faithful. ∗

2.4.3 Definition (concrete category, forgetful functor [AHS90]). Let C and C′ be categories and U :
C ← C′ be a faithful functor. The pair (C′,U) is called a concrete category built upon C with forgetful
functor U. We call C the base category of (C′,U). We also say ‘C′ is built upon C’, if there exists
a functor U such that (C′,U) is a concrete category built upon C. For every C′-object A we call UA
the underlying C-object (or carrier) of A and for every C ′-morphism f we call Uf the underlying
C-morphism of f . A concrete category built upon Set is called a construct. ∗

2.4.4 Example (concrete category, forgetful functor). The category Σ-Alg is built upon Set . The
forgetful functor maps a Σ-algebra onto its carrier set. More generally: Let C be a category and F : C ← C
an endofunctor. The category AlgCF is built upon C. The forgetful functor | � |

F
maps an F-algebra onto

its carrier. ∗

2.4.5 Definition (concrete functor [AHS90]). Let C be a category and (D,U) and (D′,U′) be concrete
categories built upon C. A functor F : D ← D′ is called a concrete functor to (D,U) from (D′,U′)
provided that

U · F = U
′.

In this case we write
F : (D,U)← (D′,U′).

∗

2.4.6 Lemma ([AHS90]). A concrete functor is completely determined by its values on objects.

Proof. Let C be a category and (D,U) and (D′,U′) be concrete categories built upon C. Let F,G :
(D,U) ← (D′,U′) be two concrete functors with ∀A ∈ ObD′ : : FA = GA. We have to show that
F = G. Let f : A←−−

D′

B. Then

Ff,Gf : FA = GA←−
D

FB = GB,

i.e. Ff and Gf are morphisms in the same hom-class. Since F and G are concrete, it holds

U(Ff) = U
′f = U(Gf)

and thus Ff = Gf because U is faithful.

2.4.7 Definition and Lemma (quasi-categories of concrete categories). Let C be a category. It is easy to
see that identity functors and the compositions of concrete functors are concrete. Thus the conglomerate
of all concrete categories built upon C is the object class of a quasi-pre-category with all concrete functors
as morphisms. We denote the according quasi-category (see Note C.1.4) of all concrete categories built
upon C by cCAT C. The quasi-category cCAT C itself is built upon the quasi-category CAT by the
forgetful functor | � | which maps a (cCAT C)-morphism to its underlying CAT -morphism, i.e. functor.

∗

2.4.8 Note. Let C be a category and (cCAT C, | � |) be the concrete quasi-category built upon CAT

from Definition and Lemma 2.4.7. Let (D,U), (D′,U′) ∈ Ob(cCAT C) be two concrete categories and
F : (D,U)← (D′,U′) be a concrete functor. We may view F out of three different perspectives:

(i) as the functor F : D ← D′ (i.e. as a CAT -morphism) with the property U · F = U′,

(ii) as the concrete functor F : (D,U) ← (D′,U′), i.e. as a morphism in the quasi-pre-category from
Definition and Lemma 2.4.7, or

(iii) as the cCAT C-morphism
(

(D,U),F, (D′,U′)
)

: (D,U)← (D′,U′).



11

The connection

• from (i) to (ii) is the Definition 2.4.5 (and Definition and Lemma 2.4.7),

• from (ii) to (iii) is the construction from Note C.1.4, and

• from (iii) to (i) is the forgetful functor: |
(

(D,U),F, (D′,U′)
)

| = F. ∗

2.4.9 Definition and Lemma (’forgetting more’ is a concrete functor). Let C and C ′ be categories and
(D1,U1) and (D2,U2) be concrete categories built upon C′ and let U : C ← C′ be a faithful functor.
Then (D1,U ·U1) and (D2,U ·U2) are concrete categories built upon C and if H : (D1,U1)← (D2,U2)
is a concrete functor, so is H : (D1,U ·U1)← (D2,U ·U2). This motivates the definition of the function
U( � ) by

U

(

(D1,U1),H, (D2,U2)
)

=
(

(D1,U · U1),H, (D2,U · U2)
)

.

This function is a concrete functor

U( � ) : (cCAT C, | � |)← (cCAT C′, | � |).

Proof. With the operation on objects U(D1,U1) = (D1,U · U1) the typing axiom is obvious. The
function U( � ) is also multiplicative and preserves identities, because it operates trivially on mor-
phisms, i.e. it only changes domain and codomain. The concreteness property of U( � ) follows from
|U

(

(D1,U1),H, (D2,U2)
)

| = |
(

(D1,U · U1),H, (D2,U · U2)
)

| = H = |
(

(D1,U1),H, (D2,U2)
)

|.

∗

3 Calculating with initial and final objects

In this section we will develop our tools to calculate with the morphisms of a category. The basic idea is to
use the laws for initial and final objects (cf. Tables 4 and 5). We consider such a concrete category that the
underlying category has an initial/final object and investigate the laws in the base category. This is a gen-
eralization of the well known constructions for (co-)product functors (Definitions and Corollaries C.5.1
and C.5.2).

The following Theorem 3.1.1 enables us to construct functors for arbitrary limits3: We can conve-
niently translate the laws (reflection, fusion and cancelation) for (co-)mediators into laws for the accord-
ing functors. In the case of (co-)products, the functors derived by Theorem 3.1.1 are the well known
(co-)product functors. However the use of a quasi-category of concrete functors enables us to derive
more general functors: n the case of initial algebras this directly leads to our version of the ‘acid rain
theorem’ or to generalizations thereof.

3.1 Deriving functors by initiality or finality

3.1.1 Theorem (deriving natural transformations and functors from initiality (cf. Theorem 4.1.1
of [Jür00])). Let C and D be categories and

CAT
| � |
←−−− cCAT C

E
←−− D

where (cCAT C, | � |) is the concrete quasi-category from Definition and Lemma 2.4.7 and E :
cCAT C ← D is a functor. For every D ∈ ObD let the category |ED| have an initial object
0D ∈ Ob |ED| where for every A ∈ Ob |ED|

¡D
A : A←−−−

|ED|
0D

is the unique mediating morphism. Let UD : C ← |ED| be the forgetful functor of the concrete category
ED, i.e. ED = (|ED|,UD). Now we define two functions:

3A limit is a general notion for universal constructions like (co-)products, initial/final algebras, etc..



12 3 CALCULATING WITH INITIAL AND FINAL OBJECTS

(a) the function τ on D-objects by

∀D ∈ Ob D : : τD = (τDA )A∈Ob |ED| where ∀A ∈ Ob |ED| : : τDA = UD¡D
A

(b) and the function F on D-objects by

∀D ∈ ObD : : FD = UD0D

and on D-morphisms by

∀D,D′ ∈ ObD : : ∀ d ∈ D(D,D′) : : Fd = τD|Ed|0D′
.

Then the following holds:

(i) for every D ∈ ObD, the function τD is a natural transformation τD : UD
.← KFD,

(ii) for every D,D′ ∈ ObD, every d ∈ D(D,D′), and A ∈ Ob |ED′| we have τD
′

A ·Fd = τD|Ed|A, and

(iii) F : C ← Dop is a functor.

Proof. Let D,D′ ∈ Ob D and d ∈ D(D,D′).

(i) Due to Corollary C.3.5 the comediator is a natural transformation ¡D : Id
.← K0D

. Thus with
Definition and Lemma C.2.6 (i) τD = UD¡D is a natural transformation τD : UD

.← UD · K0D
.

From (b) and Corollary C.1.9 we obtain UD · K0D
= KUD0D

= KFD.

(ii) Let A ∈ Ob |ED′|. Starting with (i) we infer

τD : UD
.← KFD

=⇒ { Definition Lemma C.2.6 (ii) and Corollary C.1.9 }

τD|Ed| : UD · |Ed|
.← KFD

=⇒ { |Ed| is concrete, i.e. UD · |Ed| = UD′ }

τD|Ed| : UD′
.← KFD

=⇒ { naturalness condition for τD|Ed| from Definition C.2.1 applied to ¡D′

A }

UD′¡D
′

A · (τ
D|Ed|)0D′

= (τD|Ed|)A · KFD¡D′

A

=⇒ { Definition and Lemma C.2.6 (ii) and definition of K in Definition C.1.8 }

UD′¡D
′

A · τ
D
|Ed|0D′

= τD|Ed|A · idFD

=⇒ { definition of τ in (a) and of F in (b) }

τD
′

A · Fd = τD|Ed|A.

(iii) We have to verify the functor axioms of Definition C.1.8 for F:

• To check the typing axiom, we calculate the domain of Fd using (a) and (b) and the typing
axiom of the functor UD

dom(Fd) = dom(τD|Ed|0D′
) = dom(UD¡D

|Ed|0D′
) = UD(dom ¡D

|Ed|0D′
) = UD0D = FD

and the codomain of Fd using (ii) and the typing axiom of the functor UD′

cod(Fd) = cod τD|Ed|0D′
cod τD

′

0D′
= cod(UD′¡D

′

0D′
) = UD′(cod ¡D′

0D′
) = UD′0D′ = FD′.

• Using the reflection law of Table 4 for ¡D and the identity axioms of the functors | � |, E, and
UD we calculate

FidD = τD|EidD|0D
= τD0D

= UD¡D
0D

= UDid0D
= idUD0D

= idFD.

Thus the identity axiom is satisfied for F.



3.2 Generalized ‘acid rain theorems’ 13

• It remains to show that F satisfies the multiplicativity axiom: Let D′′ ∈ Ob D, e ∈
D(D′, D′′), and A = |Ee|0D′′ . Starting with (ii) we infer

τD
′

A · Fd = τD|Ed|A
=⇒ { definition of A and of F in (b) }

Fe · Fd = τD|Ed|·|Ee|0D′′

=⇒ { multiplicativity of the functors E and | � |; definition of F in (b) }

Fe · Fd = F(d ·D e) = F(e ·Dop d).

The dual proposition (for finality and Cop and Dop) is also true.

3.1.2 Note. The functor F in Theorem 3.1.1 is only determined uniquely up to isomorphism. It depends
on the choice of the initial objects (0D)D∈Ob D , which are only determined uniquely up to isomorphism
themselves. ∗

3.1.3 Corollary. With the preconditions and notations from Theorem 3.1.1 we obtain the laws in Table 1.

Laws for F

reflection FidD = idFD

fusion (i) τD
′

A · Fd = τD|Ed|A
fusion (ii) Fe · Fd = F(e · d)
where D,D′ ∈ Ob D, A ∈ |ED′|, and e, d ∈ MorDop

Table 1: Laws for F

Proof. The fusion (i) law follows from Theorem 3.1.1 (ii). The reflection and fusion (ii) laws are functor
axioms of F and follow from Theorem 3.1.1 (iii).

3.2 Generalized ‘acid rain theorems’

The ‘acid rain theorem’ is a generalization of the cata/build-rule. We can generalize it even more:

3.2.1 Corollary (generalized ‘short cut fusion’ or ‘acid rain theorem’ (cf. Corollary 4.3.1 of [Jür00])).
Let C be a category and A ∈ Ob C. Let (D,UD) and (D′,UD′) be concrete categories built upon
C, such that the categories D and D′ have initial objects. With the preconditions and notations from
Theorem 3.1.1 we get

H : (D,UD)← (D′,UD′)

τD
′

A · τD
H0D′

= τD
HA

Proof. This is an instance of Theorem 3.1.1 (ii) where D ⊆ cCAT C is the full subcategory with
Ob D =

{

(D,UD), (D′,UD′)
}

and embedding functor E : cCAT C ← D. With |d| = H it follows
that Fd = τD

H0D′
.

The well known ‘acid rain theorem’ is just an instance of this:

3.2.2 Corollary (mutual ‘acid rain theorem’). Let C be a category and F,G,U : C ← C be endofunctors
such that the categories AlgCF and AlgCG have initial objects and U is faithful. Let ϕ ∈ Ob(AlgCF).

H : (AlgCF, | � |
F
)← (AlgCG,U · | � |

G
)

U([ϕ])G · ([HinG])F = ([Hϕ])F
.



14 3 CALCULATING WITH INITIAL AND FINAL OBJECTS

Proof. This is an instance of Corollary 3.2.1 with D = AlgCF, UD = | � |
F
, D′ = AlgCG, and U′D =

U · | � |
G

. Note that, from the definition of catamorphisms (Definition and Lemma C.6.1) and the definition
of τ in Theorem 3.1.1 (a), we obtain

U([ϕ])G = U|¡D
′

ϕ |
G

= UD′¡D
′

ϕ = τD
′

ϕ .

3.2.3 Note. In the above Corollary 3.2.2 we use the concrete functor H in order to map G-algebras onto
F-algebras such that the U is applied on the carrier. If U = Id this means that H maps G-algebras onto
F-algebras with the same carrier. A function on algebras (and more general on dialgebras) with this
properties is called an algebra transformer in [Fok92b].

3.2.4 Corollary (‘short cut fusion’ or ‘acid rain theorem’ (cf. Theorem 3.2 of [TM95] and Corol-
lary 4.3.2 of [Jür00])). Let C be a category and F,G : C ← C endofunctors such that the categories
AlgCF and AlgCG have initial objects. Let ϕ ∈ Ob(AlgCF).

H : (AlgCF, | � |
F
)← (AlgCG, | � |

G
)

([ϕ])G · ([HinG])F = ([Hϕ])F
.

Proof. This is just an instance of Corollary 3.2.2 where U = Id.

3.2.5 Note. It is worth stressing that Corollary 3.2.4 is just a corollary of Theorem 3.1.1. In contrast to
this, the classical ‘acid rain theorem’ (cf. Theorem 3.2 of [TM95]) requires a naturalness precondition. In
its turn, this needs the parametricity property or free theorem, i.e. polymorphic functions of the func-
tional programming language will be mapped onto natural transformations by the categorical semantics
(cf. [Wad89, dB89]). Our new approach is entirely different, because neither language nor semantics
concepts occured — it is pure category theory. ∗

Theorem 3.1.1 supplies not only a natural transformation but also a functor. We will use this functor
to give a new version of the ‘acid rain theorem’ which is symmetrical, i.e. the form of either of the two
morphisms we fuse is similar:

3.2.6 Definition and Corollary (functorial ‘short cut fusion’ or ‘acid rain theorem’ (cf. Definition
and Corollary 4.3.4 of [Jür00])). Let C be a category. We define D to be the full subcategory of
cCAT C with

Ob(D) =
{

(AlgCF,UF · | � |F)
∣

∣ F : C ← C, AlgCF has an initial object, UF : C ← C faithful
}

and the function

∀H ∈ D
(

(AlgCF,UF · | � |F), (AlgCG,UG · | � |G)
)

: : MH = UF([|H|inG])F.

The latter is a functor
M : C ← Dop

and in particular

(AlgCF3,UF3
· | � |

F3
)

H2←−−−
D

(AlgCF2,UF2
· | � |

F2
)

H1←−−−
D

(AlgCF1,UF1
· | � |

F1
)

UF2
([|H1|inF1

])F2
· UF3

([|H2|inF2
])F3

= UF3
([|H2 · H1|inF1

])F3

.

Proof. We use Theorem 3.1.1 (ii) with E = Id. With inFi
= 0(AlgCFi,UFi

·| � |
Fi

) and the definition of F in

Theorem 3.1.1 (b) and the fact that UFi
([ϕ])Fi

= τ
(AlgCFi,UFi

·| � |
Fi

)
ϕ (cf. the proof of Corollary 3.2.4) it is

easy to see that M = F, because

FH1 = τ
(AlgCF2,UF2

·| � |
F2

)

|H|inF1
= UF2

([|H1|inF1
])F2

= MH1.



3.3 Characterization of concrete functors between categories of algebras 15

The functor M is a generalization of the ‘type functor’ µ : (µF
([inF · τ ])G
←−−−−−−−− µG) ←[ (F

τ
←−− G)

(cf. [BdM97] Section 2.7), i.e. MH = µ where ∀ϕ : : Hϕ = ϕτ (Later in Corollary 3.3.2 (ii) we will see
that this indeed defines a concrete functor H).

3.2.7 Lemma. Let C be a category and U : C ← C be faithful. Then

M · U( � ) = U ·M

where U( � ) : D ← D is the functor defined in Definition and Definition and Lemma 2.4.9 restricted to
D defined in Definition and Corollary 3.2.6.

Proof. For every

(AlgCF,UF · | � |F)
H
←−−

D
(AlgCG,UG · | � |G)

we calculate
M(UH) = (U · UF)([|H|inG])F = U

(

UF([|H|inG])F
)

= U(MH). (3.2.1)

3.3 Characterization of concrete functors between categories of algebras

3.3.1 Lemma (characterization of concrete functors on categories of algebras (cf. Lemma 4.4.1
of [Jür00])). Let C be a category, F,G,U : C ← C be endofunctors where U is faithful and H :
Ob(AlgCF)← Ob(AlgCG) a function. The following two statements are equivalent:

(i) The function H can be uniquely extended on (AlgCG)-morphisms to a concrete functor

H : (AlgCF, | � |
F
)← (AlgCG,U · | � |

G
).

(ii) The function H satisfies the following condition: for every ϕ,ϕ′ ∈ Ob(AlgCG) and every f :
|ϕ|

G
←−

C
|ϕ′|

G
:

ϕ · Gf = f · ϕ′

Hϕ · F(Uf) = Uf · Hϕ′
. (∗)

Notice the different usage of functors F, G on morphisms and H on objects in the above equations.

Proof. ‘(ii) =⇒ (i)’: We extend H on morphisms by

∀ϕ,ϕ′ ∈ Ob(AlgCG) : : ∀ (ϕ, f, ϕ′) ∈ AlgCG(ϕ,ϕ′) : : H(ϕ, f, ϕ′) = (Hϕ,Uf,Hϕ′).

If this is a functor H : AlgCF ← AlgCG, then it is obviously concrete, i.e.: H : (AlgCF, | � |
F
) ←

(AlgCG,U · | � |
G
) and thus uniquely determined due to Lemma 2.4.6. The function H satisfies the

functor axioms by construction, because U is a functor. The only property that we have to verify is H :
Mor(AlgCF) ← Mor(AlgCG), i.e. H maps G-algebra-morphisms onto F-algebra-morphisms. This is
equivalent to the condition (∗) which is easy to see using the definition of H on morphisms and Definition
and Lemma C.6.1.

‘(i) =⇒ (ii)’: If H can be extended uniquely to a concrete functor H : (AlgCF, | � |
F
) ←

(AlgCG,U · | � |
G
), then in particular H : Mor(AlgCF) ← Mor(AlgCG). Let ϕ,ϕ′ ∈ Ob(AlgCF)

and f : ϕ ← ϕ′, which is equivalent to the precondition of (∗) for |f |. We have Hf : Hϕ ← Hϕ′ and
thus Hϕ ·F|Hf |

F
= |Hf |

F
·Hϕ′. Using the concreteness of H, i.e. |Hf |

F
= U|f |

F
, the latter is equivalent

to the proposition of (∗).

The following corollary shows how to construct concrete functors on categories of algebras using the
condition from Lemma 3.3.1.



16 4 SYNTAX AND SEMANTICS OF TOP-DOWN TREE TRANSDUCERS

3.3.2 Corollary (Construction of concrete functors (cf. Corollary 4.4.3 of [Jür00])). With the pre-
conditions from Lemma 3.3.1, each of the following definitions yields an H : (AlgCG, | � |

G
) ←

(AlgCF, | � |
F
). For every ϕ ∈ Ob(AlgCF):

(i) Hϕ = ϕ · Fϕ where G = F · F,

(ii) Hϕ = ϕ · τ where τ : F
.← G,

(iii) Hϕ = τ where τ : Id
.← G,

(iv) If C has coproducts: Hϕ = [H1ϕ,H2ϕ] , where H1 : (AlgCG1, | � |G1
)← (AlgCF, | � |

F
)

and H2 : (AlgCG2, | � |G2
)← (AlgCF, | � |

F
) and G = G1 + G2,

Proof. All cases are instances of Lemma 3.3.1 with UG = Id.

4 Syntax and semantics of top-down tree transducers

The concept of top-down tree transducers was introduced by [Rou68, Rou70] and [Tha70]. A top-down
tree transducer can be regarded as a restricted functional program that computes a tree transformation,
i.e. a function which maps trees onto trees.

4.1 Syntax of top-down tree transducers

4.1.1 Definition (variables). Let X = {x1, x2 . . . } be a countable infinite set of variables. We will use
this set X and for every k ∈ N0 the set Xk = {x1, . . . , xk} (X0 = ∅) throughout the paper. ∗

4.1.2 Definition (top-down tree transducer). A top-down tree transducer T = (Q,Σ,∆, q0, R)
consists of a unary ranked alphabet Q of so called states, ranked alphabets Σ and ∆ called the in-
put and output alphabet, respectively, an element q0 ∈ Q called the initial state, and a relation
R ⊆

⋃

k∈N0
Q(ΣXk)× T∆(QXk) such that

∀ q ∈ Q : : ∀ k ∈ N0 : : ∀σ ∈ Σ(k) : : ∃! rhsR,σ q ∈ T∆(QXk) : :
(

q(σ(x1, . . . , xk)), rhsR,σ q
)

∈ R

and no other elements are in R. The elements of R are called rules and we will write them as
q(σ(x1, . . . , xk)) → rhsR,σ q rather than

(

q(σ(x1, . . . , xk)), rhsR,σ q
)

. Notice that for every σ ∈ Σ
we have rhsR,σ : T∆(QXrankΣ σ) ← Q is a function. We denote the class of all top-down tree trans-
ducers by td -treeT and the subclass of all top-down tree transducers with output alphabet ∆ and input
alphabet Σ by td -treeT(∆,Σ). ∗

4.1.3 Example (top-down tree transducer). We define the top-down tree transducer Tzigzag =
(Q,Σ,∆, zig , R) where Q = {zig , zag}; Σ = {α(0), σ(2)}; ∆ = {N (0), A(1), B(1)} and

R = { zig α → N,
zag α → N,
zig(σ(x1, x2)) → A(zag x1),
zag(σ(x1, x2)) → B(zig x2) }.

∗

4.2 Semantics of top-down tree transducers

4.2.1 Definition (computed tree transformation). Let T = (Q,Σ,∆, q0, R) be a top-down tree trans-
ducer. The tree transformation

τT : T∆ ← TΣ

computed by T is defined by τT = τq0T where

∀ q ∈ Q : : ∀ k ∈ N0 : : ∀σ ∈ Σ(k) : : ∀ t1, . . . , tk ∈ TΣ : :

τqT (σ(t1, . . . , tk)) = [τpT tj/pxj ] p∈Q
xj∈Xk

(rhsR,σ q).



4.2 Semantics of top-down tree transducers 17

Since the number of symbols in the term σ(t1, . . . , tk) is finite and for every p ∈ Q the function τpT on
the right hand side is applied on the proper subexpressions t1, . . . , tk of σ(t1, . . . , tk), for every q ∈ Q
the function τqT is well defined. We call the function τ : T TΣ

∆ ← td -treeT(∆,Σ) the semantics of a
top-down tree transducer. ∗

4.2.2 Definition (top-down tree transformation). We denote the image class of the semantics function
τ by TOP tree , i.e. TOP tree =

{

τT
∣

∣ T ∈ td -treeT
}

. The elements of TOP tree are called top-down
tree transformations. ∗

4.2.3 Example (computed tree transformation). The tree transformation computed by the top-down
tree transducer Tzigzag from Example 4.1.3 is a function, which reads an input tree by traversing the σ’s
in a zig-zag-shape until an α is reached. It outputs a monadic tree of alternating A’s and B’s where
the number of A’s and B’s together is the same as the number of traversed σ’s, e.g. for arbitrary terms
t1, t2 ∈ TΣ:

τTzigzag(σ(σ(t1, α), t2))

= τzigTzigzag(σ(σ(t1, α), t2))

= A(τzagTzigzag(σ(t1, α)))

= A(B(τzigTzigzagα))

= A(BN).

∗

4.2.4 Definition (top-down tree transducer homomorphism). Let T = (Q,Σ,∆, q0, R) and T ′ =
(Q′,Σ,∆, q′0, R

′) be top-down tree transducers. A function

(i) h : Q← Q′ with

(ii) q0 = hq′0 and

(iii) ∀σ ∈ Σ:: [hq′ x/q′x] q′∈Q′

x∈XrankΣ σ

· rhsR′,σ = rhsR,σ · h,

is called a top-down tree transducer homomorphism and we write

h : T ← T ′.

If h is bijective then we call it a top-down tree transducer isomorphism. If a top-down tree transducer
isomorphism to T from T ′ exists then we call T and T ′ isomorphic and write T ∼= T ′. ∗

4.2.5 Lemma (homomorphisms preserve semantics of top-down tree transducers). Let T, T ′ ∈
td -treeT(∆,Σ) be top-down tree transducers.

∃h : T ← T ′

τT = τT ′

Proof. Let T = (Q,Σ,∆, q0, R) and T ′ = (Q′,Σ,∆, q′0, R
′) and h : T ← T ′. We will show:

∀ t ∈ TΣ : : ∀ q′ ∈ Q′ : : τhq′T t = τq′T
′ t

by induction on t. Let k ∈ N0, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ and assume that

∀ j ∈ {1, . . . , k} : : ∀ p ∈ Q′ : : τhpTtj = τpT
′tj .



18 4 SYNTAX AND SEMANTICS OF TOP-DOWN TREE TRANSDUCERS

Then we calculate:

τhq′T (σ(t1, . . . , tk))

= [τpTtj/pxj ] p∈Q
xj∈Xk

(rhsR,σ(hq
′))

= [τpTtj/pxj ] p∈Q
xj∈Xk

(

[hpx/px]p∈Q′

x∈Xk

(rhsR′,σ q
′)

)

= [τhpTtj/pxj ] p∈Q′

xj∈Xk

(rhsR′,σ q
′)

= [τpT
′tj/pxj ] p∈Q′

xj∈Xk

(rhsR′,σ q
′)

= τq′T (σ(t1, . . . , tk)).

And thus: τT = τq0T = τhq′0T = τq′0T
′ = τT ′.

4.3 Syntactic composition of top-down tree transducers

4.3.1 Definition (syntactic composition of top-down tree transducers). (cf. Theorem 2 of [Rou70] and
p. 195 of [Bak79]) Let T1 = (P,Σ,∆, p0, R1) and T2 = (Q,∆,Γ, q0, R2) be top-down tree transducers.
We modify the top-down tree transducer T2 so that it can operate on the right hand sides of rules of T1:

T ′2 =
(

Q,∆ ] {(px)(0)} p∈P
x∈Xr

,Γ ] {((q, p)x)(0)} q∈Q
p∈P
x∈Xr

, q0, R
′

2

)

where

r = max
σ∈Σ

(rankΣ σ) and

R′2 = R2 ]
{

q(px)→ (q, p)x
}

q∈Q
p∈P
x∈Xr

.

The syntactic composition T2 · T1 of T2 and T1 is the top-down tree transducer defined by

T2 · T1 =
(

Q× P,Σ,Γ, (q0, p0), R
)

where

R =
{

(q, p)(σ(x1, . . . , xrankΣ σ))→ τqT
′

2(rhsR1,σ p)
}

q∈Q
p∈P
σ∈Σ

.

Notice that the expressions px and (q, p)x are viewed from two different perspectives: for T ′2 they are
symbols of rank 0. For T1 and T2 · T1 they are composite terms built out of unary symbols (p or (p, q))
and a variable x. ∗

4.3.2 Theorem (syntactic composition preserves semantics). Let Σ, ∆, and Γ be ranked alphabets.
Then

T2 ∈ td -treeT(Γ,∆) T1 ∈ td -treeT(∆,Σ)

τT2 · τT1 = τ(T2 · T1)

Proof. See Theorem 2 of [Rou70] and Theorem 3.39 of [FV98].

4.3.3 Example (syntactic composition). Consider the top-down tree transducer Tzigzag from Exam-
ple 4.1.3 and the top-down tree transducer Tbin = (Q′,∆,Σ, bin, R′) where Q′ = {bin}, Σ and ∆
are defined as in Example 4.1.3, and

R′ = { bin N → α,
bin(Ax1) → σ(bin x1, bin x1),
bin(B x1) → σ(bin x1, bin x1) }.

The tree transformation computed by Tbin constructs the full binary tree the height of which is equal to
the height of the input tree, e.g. τTbin

(

A(BN)
)

= σ(σ(α, α), σ(α, α)). We may construct the following
syntactic composition

Tbin · Tzigzag =
(

Q′ ×Q,Σ,Σ, (bin, zig), R1

)



19

where
R1 = { (bin, zig)α → α,

(bin, zag)α → α,
(bin, zig)(σ(x1, x2)) → σ((bin, zag)x1, (bin, zag)x1),
(bin, zag)(σ(x1, x2)) → σ((bin, zig)x2, (bin, zig)x2) }.

Let t1, t2 ∈ TΣ be arbitrary terms and t = σ(σ(t1, α), t2). The tree transformation computed by the
top-down tree transducer Tbin · Tzigzag constructs a full binary tree, where the height is determined by the
length of the ‘zig-zag-path’ of its argument tree (cf. Example 4.2.3), thus we have

τ(Tbin · Tzigzag)t = σ(σ(α, α), σ(α, α)).

In Example 4.2.3 we saw that τTzigzagt = A(B(N)). Together with the example for Tbin from above we
get

(τTbin · τTzigzag)t = τTbin(τTzigzagt) = σ(σ(α, α), σ(α, α)).

We can also compose the transducers Tzigzag and Tbin in the other order:

Tzigzag · Tbin =
(

Q×Q′,∆,∆, (zig , bin), R2

)

where
R2 = { (zig , bin)(N) → N,

(zag , bin)(N) → N,
(zig , bin)(Ax1) → A((zag , bin)x1),
(zag , bin)(Ax1) → A((zig , bin)x1),
(zig , bin)(B x1) → B((zag , bin)x1),
(zag , bin)(B x1) → B((zig , bin)x1) }.

∗

4.3.4 Lemma. For every ranked alphabet Σ:

idTΣ
∈ TOP tree .

Proof. It is easy to see that the tree transformation computed by the top-down tree transducer

Tid = ({q(1)},Σ,Σ, q, R) where

R = {q(σ(x1, . . . , xrankΣ σ))→ σ(qx1, . . . , qxrankΣ σ)}σ∈Σ

is the identity function, i.e. τTid = idTΣ
.

4.3.5 Corollary. From Theorem 4.3.2 and Lemma 4.3.4 we obtain

TOP tree · TOP tree = TOP tree

∗

5 Syntax and semantics of categorical transducers

In the previous section we have seen top-down tree transducers and the syntactic composition of these.
We want to compare this syntactic composition with short cut fusion formalized in category theory from
Definition and Corollary 3.2.6. In order to do so we will need a category theory model of a top-down tree
transducer. This will be the top-down categorical transducer.



20 5 SYNTAX AND SEMANTICS OF CATEGORICAL TRANSDUCERS

5.1 Syntax of categorical transducers

5.1.1 Definition (categorical transducer). Let C be a category. We define the category catT C by

Ob(catT C) =
{

F
∣

∣ F : C ← C such that AlgCF has an initial object
}

,

catT C(G,F) =
{

(H,U, π)
∣

∣ H : (AlgCF, | � |
F
)← (AlgCG,U · | � |

G
)

∧ U : C ← C faithful

∧ π : Id
.← U

}

where

idF = (Id(AlgCF,| � |
F
)(AlgCF,| � |F) , IdC, id),

(H2,U2, π2) · (H1,U1, π1) = (H1 · H2,U1 · U2, π1 ∗ π2)

and π1 ∗ π2 = π1 ·U1π2 = π2 · π1U2 is the vertical composition of the natural transformations π1 and π2

from Definition and Lemma C.2.7. This is a category, because the composition is obviously associative
in the first and second component and also in the third component, because the vertical composition of
natural transformations is associative (Lemma C.2.9). A morphism of the category catT C is called a
categorical transducer over C. Notice that H1 · H2 : (AlgCF1, | � |F1

)← (AlgCF3,U1 · U2 · | � |F3
) as

follows from the diagram:

AlgC F1 AlgC F2 AlgC F3

C

C

H1 H2

| � |
F1

U1 · | � |F2

| � |
F2

U2 · | � |F3

U1

H1 · H2

(U1 · U2) · | � |F3

∗

5.2 Semantics of categorical transducers

5.2.1 Definition (semantics of categorical transducers). Let C be a category. For every (H,U, π) ∈
catT C(G,F) we define

S(H,U, π) = π · ([HinG])F : µG← µF

where in the right hand side expression the functor U is hidden in the codomain of the concrete functor H :
(AlgCF, | � |

F
) ← (AlgCG,U · | � |

G
). We call S : MorC ← Mor catT C the semantics of categorical

transducers. Notice that S depends on the choice of the initial algebras of the functors in Ob catT C . In
Definition 5.1.1 we demanded only the existence of initial algebras. From Lemma C.3.3 we know that
initial algebras are uniquely determined up to algebra isomorphism, thus we may choose an initial algebra
out of every isomorphism class. ∗

5.2.2 Example (categorical transducer). Let C be a category which has finite products and coproducts.
Let F = K1 + Id × Id : C ← C and G = K1 + Id + Id : C ← C be functors which have initial algebras,
where inG = [N,A,B] : µG ← G(µG). For every C ∈ ObC and every [ϕ1, ϕ2, ϕ3] : C ← GC we
define

H[ϕ1, ϕ2, ϕ3] = [〈ϕ1, ϕ1〉, 〈ϕ2 · π2 · π1, ϕ3 · π1 · π2〉].



5.2 Semantics of categorical transducers 21

which obviously satisfies H[ϕ1, ϕ2, ϕ3] : C ×C ← F(C ×C). We use Lemma 3.3.1 to prove that H can
be uniquely extended to a concrete functor

H : (AlgCF, | � |
F
)← (AlgCG,

∏2 · | � |
G
)

More precisely we show that for every ϕ = [ϕ1, ϕ2, ϕ3], ϕ
′ = [ϕ′1, ϕ

′

2, ϕ
′

3] ∈ Ob(AlgCG) and every
f : |ϕ|

G
←−

C
|ϕ′|

G
the condition

ϕ · Gf = f · ϕ′

Hϕ · F(f × f) = (f × f) · Hϕ′
(∗)

is satisfied: With the definition of G the precondition of (∗) can be restated as ϕ · (id1 + f + f) = f · ϕ′,
i.e.

ϕ1 = fϕ′1 ϕ2 · f = f · ϕ′2 ϕ3 · f = f · ϕ′3.

Using this we calculate

〈ϕ1, ϕ1〉 = 〈f · ϕ
′

1, f · ϕ
′

1〉 = (f × f) · 〈ϕ′1, ϕ
′

1〉

where we used the fusion (i) law (Table 8). Moreover we calculate:

〈ϕ2 · π2 · π1, ϕ3 · π1 · π2〉 · ((f × f)× (f × f))

= { fusion (Table 6) and four times cancelation (Table 8) }

〈ϕ2 · f · π2 · π1, ϕ3 · f · π1 · π2〉

= { precondition of (∗) }

〈f · ϕ′2 · π2 · π1, f · ϕ
′

3 · π1 · π2〉

= { fusion (i) (Table 8) }

(f × f) · 〈ϕ′2 · π2 · π1, ϕ
′

3 · π1 · π2〉.

Using the fusion (i) law (Table 9) we get

[〈ϕ1, ϕ1〉, 〈ϕ2 ·π2 ·π1, ϕ3 ·π1 ·π2〉]·(id1+((f×f)×(f×f))) = (f×f)·[〈ϕ′1, ϕ
′

1〉, 〈ϕ
′

2 ·π2 ·π1, ϕ
′

3 ·π1 ·π2〉]

which is nothing else than the conclusion of (∗). Thus we have

H : (AlgCF, | � |
F
)← (AlgCG,

∏2 · | � |
G
)

by means of Lemma 3.3.1. Obviously we have a natural transformation π1 : Id
.← Id × Id. Finally we

obtain that
(H, Id× Id, π1) : G← F

is a categorical transducer over C. ∗

5.2.3 Theorem (semantics functor). Let C be a category. The semantics of categorical transducers
over C is a functor

S : C ← catT C

and thus in particular (cf. Definition and Corollary 3.2.6 and Theorem 4.3.2):

F3

(H2,U2, π2)
←−−−−−−−−−− F2

(H1,U1, π1)
←−−−−−−−−−− F1

S(H2,U2, π2) · S(H1,U1, π1) = S(H1 · H2,U1 · U2, π1 ∗ π2)
.



22 5 SYNTAX AND SEMANTICS OF CATEGORICAL TRANSDUCERS

Proof. S satisfies the typing axiom by construction where ∀F ∈ Ob catT C : : SF = µF. In order to
prove the other functor axioms, we use the functor M from Definition and Corollary 3.2.6 to express the
function S: For every H ∈ cCAT C

(

(AlgCF, | � |
F
), (AlgCG,U · | � |

G
)
)

, every faithful U : C ← C and
every π : Id

.← U we know that (|H|,U, π) ∈ catT C(G,F), and we obtain

S(|H|,U, π) = π · ([|H|inG])F = π ·MH.

Thus S(Id, Id, id) = id · MId = id and hence S satisfies the identity axiom. Finally we show the
multiplicativity axiom: For

F3

(|H2|,U2, π2)
←−−−−−−−−−−− F2

(|H1|,U1, π1)
←−−−−−−−−−−− F1

we have (Definition 5.1.1 and Note 2.4.8)

H1 =
(

(AlgCF1, | � |F1
), |H1|, (AlgCF2,U1 · | � |F2

)
)

,

H2 =
(

(AlgCF2, | � |F2
), |H2|, (AlgCF3,U2 · | � |F3

)
)

and calculate

S
(

(|H2|,U2, π2) · (|H1|,U1, π1)
)

= { Definition 5.1.1 }

S(|H1| · |H2|,U1 · U2, π1 ∗ π2)

= { Definition and Lemma 2.4.9: |U1
H2| = |H2| and | � | is a functor }

S(|H1 · U1
H2|,U1 · U2, π1 ∗ π2)

= { see above }

(π1 ∗ π2) ·M(H1 · U1
H2)

= {M is a contravariant functor (short cut fusion) }

(π1 ∗ π2) ·M(U1
H2) ·MH1

= { Definition and Lemma C.2.7 of ∗ and Lemma 3.2.7 }

π1 · U1π2 · U1(MH2) ·MH1

= { U1 is a functor }

π1 · U1(π2 ·MH2) ·MH1

= { π1 : Id
.← U1 }

π2 ·MH2 · π1 ·MH1

= { see above }

S(|H2|,U2, π2) · S(|H1|,U1, π1).

5.3 Categorical transducer homomorphisms

In this subsection we lift the notion of homomorphisms between tree automata (cf. Definition 6.1
of [GS84]) to the abstract level of categorical transducers. Then we can prove that homomorphic cat-
egorical transducers have equal semantics and that isomorphism is a congruence w.r.t. to fusion, i.e. the
composition of categorical transducers.

5.3.1 Definition (categorical transducer homomorphism). (cf. Definition 4.2.4) Let C be a category
and C = (H,U, π) : G ← F and C ′ = (H′,U′, π′) : G ← F categorical transducers over C. A natural
transformation

(i) η : U
.← U′ such that



5.3 Categorical transducer homomorphisms 23

(ii) ∃ η̃ : H
.← H′ with |η̃|

F
= η| � |

G
and

(iii) π · η = π′

is called a categorical transducer homomorphism to C from C ′ and we write

η : C ← C ′.

If η is a natural isomorphism, then we call it a categorical transducer isomorphism. If a categorical
transducer isomorphism to C from C ′ exists, then we call C and C ′ isomorphic and write C ∼= C ′. ∗

The condition (ii) from Definition 5.3.1 seems to be peculiar. The following Lemma 5.3.2 shows an
equivalent statement which is closer to Definition 4.2.4 (ii):

5.3.2 Lemma. Let C be a category, F,G,U : C ← C endofunctors where U is faithful, and let H,H′ :
(AlgCF, | � |

F
)← (AlgCG,U · | � |

G
) be concrete functors.

(i) If there exists a natural transformation η̃ : H
.← H′ with |η̃|

F
= η| � |

G
then it is uniquely determined

by ∀ϕ ∈ Ob(AlgCG) : : η̃ϕ = (Hϕ, η|ϕ|
G
,H′ϕ) and

(ii) for η̃ given by ∀ϕ ∈ Ob(AlgCG) : : η̃ϕ = (Hϕ, η|ϕ|
G
,H′ϕ), we have that

η̃ : H
.← H
′ ⇐⇒ ∀ϕ ∈ Ob(AlgCG) : : η · H′ϕ = Hϕ · Fη.

Proof. Let ϕ,ψ ∈ Ob(AlgCG).

(i) From the definition of | � |
F

on morphisms and the preconditions we obtain |(Hϕ, η|ϕ|
G
,H′ϕ)|

F
=

η|ϕ|
G

= |η̃ϕ|
F
. Since | � |

F
is faithful, its restriction to AlgCF(Hϕ,H′ϕ) is injective and we have

(Hϕ, η|ϕ|
G
,H′ϕ) = η̃ϕ.

(ii) ‘⇒’:

η̃ : H
.← H
′

=⇒ { Definition C.2.1 }

η̃ϕ : Hϕ←−−−−
AlgCF

H
′ϕ

⇐⇒ { Definition and Lemma C.6.1 }

|η̃ϕ|
F
· H′ϕ = Hϕ · F|η̃ϕ|

F

⇐⇒ { Definition C.2.4 and definition of η̃ }

η · H′ϕ = Hϕ · Fη

‘⇐’: The last two steps in the above derivation are in fact equivalences, thus we have a transfor-
mation η̃ : H← H′ and have to show that it is natural:

η : U
.← U
′

=⇒ { naturalness of η }

U|f |
G
· η|ψ|

G
= η|ϕ|

G
· U′|f |

G

=⇒ { concreteness of H and H
′ and definition of η̃ }

|Hf |
F
· |η̃ψ|

F
= |η̃ϕ|

F
· |H′f |

F

=⇒ { | � |
F

is faithful }

Hf · η̃ψ = η̃ϕ · H
′f

=⇒ { the latter is true for every ϕ and ψ }

η̃ : H
.← H
′



24 5 SYNTAX AND SEMANTICS OF CATEGORICAL TRANSDUCERS

5.3.3 Lemma. Let C be a category and (H,U, π), (H,U, π) : G← F be categorical transducers over C.

(H,U, π)
η
←−− (H′,U′, π′)

∀ϕ ∈ Ob(AlgCG) : : ([Hϕ])F = η · ([H′ϕ])F
.

Proof.

([Hϕ])F

= { fusion Table 10 with |η̃ϕ|
F
· H′ϕ = Hϕ · F|η̃ϕ|

F
}

|η̃ϕ|
F
· ([H′ϕ])F

= { Definition 5.3.1 (ii) }

η|ϕ|
G
· ([H′ϕ])F

= { Definition C.2.4 }

η · ([H′ϕ])F.

5.3.4 Theorem (homomorphisms preserve semantics of categorical transducers). (cf. Lemma 4.2.5)
Let C be a category and C,C ′ : G← F categorical transducers over C.

∃ η : C ← C ′

SC = SC ′

Proof. Let C = (H,U, π) and C ′ = (H′,U′, π′) and η : C ← C ′ be a categorical transducer homomor-
phism. We calculate:

SC

= { Definition 5.2.1 }

π · ([HinG])F

= { Theorem 5.3.3 }

π · η · ([H′inG])F

= { Definition 5.3.1 }

π′ · ([H′inG])F

= { Definition 5.2.1 }

SC ′.

5.3.5 Theorem (vertical composition of categorical transducer homomorphisms). Let C be a category
and

F3

C2 = (H2,U2, π2), C
′

2 = (H′2,U
′

2, π
′

2)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− F2

C1 = (H1,U1, π1), C
′

1 = (H′1,U
′

1, π
′

1)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− F1

be categorical transducers over C. Then

C2
η2
←−− C ′2 C1

η1
←−− C ′1

C2 · C1
η1 ∗ η2
←−−−−−− C ′2 · C

′

1

.

Proof. We have to show that the vertical composition η1 ∗ η2 of η1 and η2 is a categorical transducer
homomorphism to C2 · C1 = (H1 · H2,U1 · U2, π1 ∗ π2) from C ′2 · C

′

1 = (H′1 · H
′

2,U
′

1 · U
′

2, π
′

1 ∗ π
′

2).
according to Definition 5.3.1:



5.4 Top-down categorical transducers 25

(i) Obviously, we have η1 ∗ η2 : U1 · U2
.← U′1 · U

′

2.

(ii) We set η̃1 ∗ η2 = η̃1 ∗ η̃2 then we have η̃1 ∗ η2 : H1 · H2
.← H′1 · H

′

2. It remains to show that
|η̃1 ∗ η2|F1

= (η1 ∗ η2)| � |F3
holds: For every C-endofunctor F we use the abbreviation F̂ for the

identical natural transformation from the forgetful functor | � |
F

to itself, i.e. F̂ = id| � |
F

: | � |
F

.←
| � |

F
. Notice that from Definition and LemmaC.2.7 for every categorical transducer homomorphism

between categorical transducers in catT C(G,F) we have F̂ ∗ η̃ = |η̃|
F

and η| � |
G

= η ∗ Ĝ. Thus we

have got F̂1 ∗ η̃1 = η1 ∗ F̂2 and F̂2 ∗ η̃2 = η2 ∗ F̂3 and we have to show F̂1 ∗ η̃1 ∗ η2 = η1 ∗ η2 ∗ F̂3

which now is a straightforward calculation (using the associativity of ∗ according to Lemma C.2.9):
F̂1 ∗ η̃1 ∗ η2 = F̂1 ∗ η̃1 ∗ η̃2 = η1 ∗ F̂2 ∗ η̃2 = η1 ∗ η2 ∗ F̂3.

(iii) With Lemma C.2.8 we have (π1 ∗ π2) · (η1 ∗ η2) = (π1 · η1) ∗ (π2 · η2) = π′1 ∗ π
′

2.

5.3.6 Corollary (isomorphism is a congruence w.r.t. fusion). With the preconditions from Theo-
rem 5.3.5 we have

C2
∼= C ′2 C1

∼= C ′1
C2 · C1

∼= C ′2 · C
′

1

.

Proof. We just have to show that the vertical composition of natural transformations ∗ preserves isomor-
phisms, which is easy to see with Lemma C.2.8 and the obvious fact that id ∗ id = id.

5.4 Top-down categorical transducers

The concept of ‘categorical transducer’ is very general. Now we will define a subclass of so called top-
down categorical transducers, which will be our model for top-down tree transducers in category theory.
We derive a respective composition result for top-down categorical transducers.

5.4.1 Definition (top-down categorical transducer). Let C be a category which has finite products and
finite coproducts. A categorical transducer (H,U, π) ∈ catT C(G,F) is called a top-down categorical
transducer over C provided that

(i) F and G are finite coproducts of finite products of identity functors,

(ii) U is a finite product of identity functors, and

(iii) π is one of the projections of the product U.

Notice that it is part of the definition of the (top-down) categorical transducer that F and G have initial
algebras. ∗

5.4.2 Theorem (composition of top-down categorical transducers). Let C be a category which has
finite products and finite coproducts. The class of all top-down categorical transducers over C is a
subcategory of catT C which we will denote by td -catT C

Proof. According to Definition C.1.11 it suffices to show that td -catT C contains the identities and is
closed under composition. Obviously, the identical categorical transducer (Id, Id, id) is a top-down cat-
egorical transducer. Let (H,U, π1) : F3 ← F2 and (H′,U′, π′1) : F2 ← F1 be top-down categorical
transducers. By Definition 5.4.1 there exist finite products

(πi : Id
.← U)i∈I and (π′j : Id

.← U
′)j∈J .

where I and J are some finite sets with 1 ∈ I ∩ J . In order to show that

(H,U, π1) · (H
′,U′, π′1) = (H′ · H,U′ · U, π′1 ∗ π1) : F3 ← F1



26 6 RELATING TRANSDUCERS

is a top-down categorical transducer it is sufficient to show that

(π′j ∗ πi : Id
.← U
′ · U)(i,j)∈I×J

is a finite product. We define for every U′′ : C ← C and every τij : Id
.← U′′ the pairing 〈τij〉(i,j)∈I×J =

〈〈τij〉i∈I〉j∈J and verify the UP (Table 6): Let σ : Id
.← U′′ such that ∀ (i, j) ∈ I×J : : (π′j ∗πi)·σ = τij .

We have to show σ = 〈τij〉(i,j)∈I×J . First we calculate for every (i, j) ∈ I × J :

π′j ∗ πi

= { Definition and Lemma C.2.7 }

π′j · U
′πi

= { U
′ =

∏

k∈J

Id }

π′j ·
∏

j∈J

πi

= { fusion (i) for product functors (Table 8) }

πi · π
′

j .

With this we continue:

∀ (i, j) ∈ I × J : : (π′j ∗ πi) · σ = τij

⇐⇒ { see above }

∀ (i, j) ∈ I × J : : πi · π
′

j · σ = τij

⇐⇒ { UP (Table 6) for the product U }

∀ j ∈ J : : π′j · σ = 〈τij〉i∈I

⇐⇒ { UP (Table 6) for the product U
′ }

σ = 〈〈τij〉i∈I〉j∈J = 〈τij〉(i,j)∈I×J .

5.4.3 Lemma. Let C be a category. The class Ob td -catT C is a ∼=-block in Ob catT C , i.e. a disjoint
union of categorical transducer isomorphism classes.

Proof. Let C = (H,U, π) and C ′ = (H′,U′, π′) be categorical transducers over C with C ∼= C ′. We have
to show: ifC is a top-down categorical transducer thenC ′ is also a top down categorical transducer. Using
Definition 5.3.1 and Definition 5.4.1 this is obvious, because we have a natural isomorphism η : U

.← U′

with π · η = π′.

5.4.4 Definition. We define the following class:

TOPcat =
{

SC
∣

∣ C ∈ Mor td -catT Set

}

,

which the reader should compare with TOP tree from Definition 4.2.2. ∗

6 Relating top-down tree transducers and categorical transducers

In this section we describe a translation (Lemma 6.2.9) of a top-down tree transducer into a top-down
categorical transducer.



6.1 Category of forests 27

6.1 Category of forests

6.1.1 Definition (forest). Let Σ be a ranked alphabet. A Σ-forest is a tuple of Σ-trees, i.e. an element of
T ∗Σ.

Now we will give the set of Σ-forests the structure of a category, by defining an appropriate com-
position. The following construction can also be found in [GTWW77] on page 74 (footnote 10) where
functions are used instead of tuples. It is also possible to generalize this construction, which is then
known as a Kleisli category [Kle65]. In this paper we will not focus on monads or Kleisli categories.

6.1.2 Definition (category of forests). Let Σ be a ranked alphabet. We define the category T Σ by

Ob T Σ = N0,

T Σ(m,n) = (TΣXn)
m

where ∀ l,m, n ∈ ObT Σ : : ∀ f = (fi)
l
i=1 ∈ T Σ(l,m) : : ∀ g = (gj)

m
j=1 ∈ T Σ(m,n) : :

f · g = ([gj/xj ]
m
j=1fi)

l
i=1

and ∀n ∈ Ob T Σ : :
idn = (xi)

n
i=1.

Notice that T Σ is actually a pre-category, which we view as a category according to Note C.1.4. ∗

6.1.3 Lemma (finite products in the category of forests). Let Σ be a ranked alphabet. The category
T Σ has finite products.

Proof. To simplify the notation we will only give the proof for a binary product. This may be generalized
straightforwardly for arbitrary finite products. It is obvious that 0 ∈ Ob T Σ is a final object. Let m,n ∈
Ob T Σ. We define

m× n = m+ n where + is the usual sum of natural numbers,

π1 = (x1, . . . , xm),

π2 = (xm+1, . . . , xm+n)

and ∀ l ∈ ObT Σ : : ∀ f = (fi)
m
i=1 ∈ T Σ(m, l) : : ∀ g = (gj)

n
j=1 ∈ T Σ(n, l) : :

〈f, g〉 = (f1, . . . , fm, g1, . . . , gn)

and can easily verify the UP of the product (Table 6).

6.1.4 Note. The pairing of the product in T Σ from Lemma 6.1.3 is associative, because it is defined by
the concatenation of tuples. Thus for the product functor in T Σ the following holds for every m,n ∈ N0:
∏m
i=1 ·

∏n
j=1 =

∏m+n
i=1 . This is not true in general: The pairing of the product in Set from Lemma C.4.2

is not associative, because it is defined by tupling and successive tupling is not associative. However it is
associative up to isomorphism. ∗

6.1.5 Lemma (embedding of the category of forests). Let Σ be a ranked alphabet. The function E :
MorSet ← MorT Σ defined by

∀m,n ∈ ObT Σ : : ∀ f = (fi)
m
i=1 ∈ T Σ(m,n) : : ∀ t = (t1, . . . , tn) ∈ T

n
Σ : :

Eft = ([tj/xj ]
n
j=1fi)

m
i=1

is an embedding functor
E : Set ← T Σ

which preserves finite products.

Proof. Note that, for every l ∈ ObT Σ we have El = T l
Σ. We have to prove three statements:



28 6 RELATING TRANSDUCERS

(i) E is a functor. The composition in T Σ (cf. Definition 6.1.2) and the function E are both defined by
means of a substitution operator. Using these definitions it is a straightforward calculation to show
that E is a functor.

(ii) The functor E is an embedding. Let f, g ∈ T Σ(m,n). Then Ef = Eg =⇒ f = Ef(xi)
n
i=1 =

Eg(xi)
n
i=1 = g

(iii) The functor E preserves products, i.e. it maps products onto products. From the definition of E

we get that ∀n ∈ Ob T Σ = N0 : : En = TnΣ and thus ∀ (mi)
n
i=1 ∈ ObT n

Σ : : E(
∏n
i=1mi) =

E(
∑n
i=1mi) = T

∑n
i=1mi

Σ
∼=

∏n
i=1 T

mi

Σ .

6.1.6 Note. Let Σ be a ranked alphabet.

(i) In order to avoid unnecessary notation, we will assume that the above embedding

E : Set ← T Σ

is an inclusion, or in other words, we identify a morphism f ∈ MorT Σ (i.e. a Σ-forest) with the
set function Ef . Notice that this means that we have to identify an object n ∈ ObT Σ with the set
TnΣ , which is not a problem, since in category theory objects are only indexes for the identities.

(ii) To make our notation even simpler, we will identify a symbol σ ∈ Σ with the set function
E
(

σ(x1, . . . , xrankΣ σ)
)

(see Definition B.2.2). Consider e.g. Σ = {σ(2), α(0)}. We identify
the forest

(

σ(α, x1), α, σ(σ(x1, x2), α)
)

∈ (TΣX2)
3 with a set function that we may write

〈

〈σ · 〈α · !, π1〉, α · !, σ · 〈σ, α · !〉
〉

: T 3
Σ ← T 2

Σ ∗

6.1.7 Note. Let Σ, and Σ′ be ranked alphabets with Σ ⊆ Σ′ such that for every σ ∈ Σ the equality
rankΣ′ σ = rankΣ σ holds. Since for every n ∈ N0: TΣXn ⊆ TΣ′Xn we obviously have an embedding

T Σ′ ← T Σ.

We will identify this embedding with the inclusion. ∗

6.2 Relating semantics of top-down tree transducers and top-down categorical
transducers

6.2.1 Example (motivating example for relation). To motivate the description of the semantics of top-
down tree transducers as categorical transducers over Set , consider the top-down tree transducer Tzigzag

from Example 4.1.3. We view the rules of R as equations in the category T Q∪Σ∪∆ which is embedded
into Set by E:

E(zig x1) · E(α) = E(N),

E(zag x1) · E(α) = E(N),

E(zig x1) · E(σ(x1, x2)) = E(Ax1) · E(zag x1),

E(zag x1) · E(σ(x1, x2)) = E(B x1) · E(zig x2).

If we identify forests with set functions according to Note 6.1.6 (i), we may describe the rules of R as a
system of equations in the category Set just by omitting the E. Our aim is to find solutions for zig and
zag that suffice the above equations. First, let us simplify the notation according to Note 6.1.6 (ii):

zig · α = N,

zag · α = N,

zig · σ = A · zag · π1,

zag · σ = B · zig · π2.

We use pairing to collect all the states:

〈zig · α, zag · α〉 = 〈N,N〉,

〈zig · σ, zag · σ〉 = 〈A · zag · π1, B · zig · π2〉.



6.2 Relating semantics of top-down tree transducers and top-down categorical transducers 29

On the left hand side we use the fusion law for the product (Table 6) and on the right hand side the fusion
(i) law for product functors (Table 9) and cancelation law for products (Table 6) and obtain

〈zig , zag〉 · α = 〈N,N〉 · id1,

〈zig , zag〉 · σ = 〈A · π2 · π1, B · π1 · π2〉 · (〈zig , zag〉 × 〈zig , zag〉).

We use copairing to collect all input symbols:

[〈zig , zag〉 · α, 〈zig , zag〉 · σ] = [〈N,N〉 · id1, 〈A · π2 · π1, B · π1 · π2〉 · (〈zig , zag〉 × 〈zig , zag〉)].

To the left hand side we apply the fusion law for coproducts (Table 7) and to the right hand side we apply
the fusion (i) law for coproduct functors (Table 9) and obtain

〈zig , zag〉 · [α, σ] = [〈N,N〉, 〈A · π2 · π1, B · π1 · π2〉] · (id1 + 〈zig , zag〉 × 〈zig , zag〉).

Since the functor F = K1 + Id × Id : Set ← Set has the least fixed point µF = TΣ where the initial
F-algebra is [α, σ] = inF : µF← F(µF), we can write

〈zig , zag〉 · inF = [〈N,N〉, 〈A · π2 · π1, B · π1 · π2〉] · F〈zig , zag〉

Due to the UP of the catamorphism (Table 10), the above is equivalent to

〈zig , zag〉 = ([[〈N,N〉, 〈A · π2 · π1, B · π1 · π2〉]])F.

Notice that we found a unique solution for zig and for zag, respectively. Using the functor G = K1 +
Id + Id with inG = [N,A,B], we may write

zig = π1 · ([[〈N,N〉, 〈A · π2 · π1, B · π1 · π2〉]])F

= π1 · ([HinG])F where H[ϕ1, ϕ2, ϕ3] = [〈ϕ1, ϕ1〉, 〈ϕ2 · π2 · π1, ϕ3 · π1 · π2〉]

With Example 5.2.2 we get that

Czigzag = (H, Id× Id, π1) : G← F

is a categorical transducer over Set with

zig = π1 · ([HinG])F = S(H, Id× Id, π1).

It is worth mentioning that the fact that H is a certain concrete functor is important in Theorem 5.2.3,
because it is a precondition for the functorial ‘acid rain theorem’ 3.2.6. ∗

6.2.2 Example (top-down categorical transducer). The categorical transducerCzigzag = (H, Id×Id, π1)
from the Example 6.2.1 is a top-down categorical transducer over Set . With the notations from the
Example 6.2.1 we can show how a top-down categorical transducer ‘works’: for every f : T 2

Σ ← T 0
Σ:

SCzigzag · σ · f

= π1 · ([HinG])F · inF · ι2 · f

= { UP (Table 10) }

π1 · HinG · F([HinG])F · ι2 · f

= { definition of H and F and cancelation for coproduct functors (Table 9) }

π1 · [〈N,N〉, 〈A · π2 · π1, B · π1 · π2〉] · ι2 · (([HinG])F × ([HinG])F) · f

= { cancelation (Table 7 and Table 6) }

A · π2 · π1 · (([HinG])F × ([HinG])F) · f

= { cancelation (Table 8) }

A · π2 · ([HinG])F · π1 · f

= A · S(H, Id× Id, π2) · π1 · f.

∗



30 6 RELATING TRANSDUCERS

6.2.3 Note (motivation for relation). We want to generalize the construction from Example 6.2.1. Let
T ∈ td -treeT(∆,Σ) be a top-down tree transducer andC = (H,U, π) : G← F be a top-down categorical
transducer over Set . In Table 2 we list the parts of T and C which correspond to each other. The
following Definition 6.2.5 will define this correspondence formally. ∗

top-down tree transducer ←→ top-down categorical transducer
T = (Q,Σ,∆, q0, R) ←→ C = (H,U, π) : G← F

Q ←→ U

Σ ←→ F

∆ ←→ G

q0 ←→ π
R ←→ HinG

TΣ ←→ µF

T∆ ←→ µG

τT ←→ SC

Table 2: Relation between the components of top-down tree and top-down categorical transducers

6.2.4 Lemma. Let T = (Q,Σ,∆, q1, R) be a top-down tree transducer with Q = {q1, . . . , ql}, r ∈ N0,
σ ∈ Σ(r) and q ∈ Q. We can write the right hand side of the rule

q(σ(x1, . . . , xr))→ rhsR,σ q

of R in the form (see Definition and Corollary C.5.1 for the definition of
∏r)

rhsR,σ q = rhs′R,σ q ·
r

∏

(

〈qi〉
l
i=1

)

with rhs′R,σ q ∈ T∆Xr·l

where the composition is that of the category of forests and

rhs′R,σ q = [x(t−1)·l+s/qsxt]
l
s=1

r
t=1(rhsR,σ q).

Proof.

rhs′R,σ q ·
r

∏

(

〈qi〉
l
i=1

)

= { Lemma 6.1.3 }

rhs′R,σ q ·
r

∏

t=1

(

q1xt, . . . , qlxt)

= { Lemma 6.1.3 and Definition and Corollary C.5.1 }

rhs′R,σ q · (q1x1, . . . , qlx1, q1x2, . . . , qlx2, . . . q1xr, . . . , qlxr)

= { Definition 6.1.2 }

[qsxt/x(t−1)·l+s]
l
s=1

r
t=1(rhs′R,σ q)

= { definition of rhs′ }

rhsR,σ q.

6.2.5 Definition (relation). Let T = (Q,Σ,∆, q0, R) be a top-down tree transducer andC = (H,U, π) ∈
catT Set (G,F) be a categorical transducer. We call T and C related and write

T ≈ C

provided that



6.2 Relating semantics of top-down tree transducers and top-down categorical transducers 31

(i) F =
∐

σ∈Σ(
∏rankΣ σ

Id) and G =
∐

δ∈∆(
∏rank∆ δ

Id) such that inF = [σ]σ∈Σ and inG = [δ]δ∈∆,

(ii) U is a product (Id
πq
←−−− U)q∈Q such that πq0 = π, and

(iii) HinG = [〈rhs′R,σ q〉q∈Q]σ∈Σ. ∗

6.2.6 Example (relation). The top-down tree transducer Tzigzag from Example 4.1.3 and the categorical
transducer Czigzag from Example 6.2.1 are related: Tzigzag ≈ Czigzag. It is obvious by construction that (i)
and (ii) from Definition 6.2.5 are satisfied. Let us have a look at (iii): From the definition of Tzigzag in
Example 4.1.3 and with Lemma 6.2.4 we obtain

rhs′R,α zig = N

rhs′R,α zag = N

rhs′R,σ zig = Ax2

rhs′R,σ zag = B x3.

With Definition 6.1.2 and Lemma 6.1.3 we calculate:

A · π2 · π1 = (Ax1) · (x2) · (x1, x2) = Ax2,

B · π1 · π2 = (B x1) · (x1) · (x3, x4) = B x3

and thus

HinG = [〈N,N〉, 〈A · π2 · π1, B · π1 · π2〉] =
[

〈rhs′R,α zig , rhs′R,α zag〉, 〈rhs′R,σ zig , rhs′R,σ zag〉
]

.

Notice that we have used the same symbols for different projections: π1, π2 : T∆ ← T 2
∆ and π1, π2 :

T 2
∆ ← T 4

∆. We do this according to Definition C.2.4, because projections are natural transformations due
to Definition and Corollary C.5.1. ∗

6.2.7 Theorem. Let C be a top-down categorical transducer over Set and T be a top-down tree trans-
ducer.

T ≈ C =⇒ τT = SC.

Proof. We use the notations from Definition 6.2.5 and let Q = {q1, . . . , ql} with l ∈ N.

([HinG])F = 〈τqT 〉q∈Q

⇐⇒ { UP (Table 10) }

〈τqT 〉q∈Q · [σ]σ∈Σ = HinG · F〈τqT 〉q∈Q

⇐⇒ { UP (Tables 6 and 7) }

∀σ ∈ Σ:: ∀ q ∈ Q : : τqT · σ = πq · HinG · F〈τqT 〉q∈Q · ισ

⇐⇒ { definition of F in Definition 6.2.5; cancelation (Table 9) }

∀σ ∈ Σ:: ∀ q ∈ Q : : τqT · σ = πq · HinG · ισ ·
rankΣ σ

∏

(

〈τqT 〉q∈Q
)

⇐⇒ { Definition 6.2.5 (iii) }

∀σ ∈ Σ:: ∀ q ∈ Q : : τqT · σ = rhs′R,σ q ·
rankΣ σ

∏

(

〈τqT 〉q∈Q
)

⇐⇒ { pointwise on terms with Lemma 6.2.4 and Definition 6.1.2 }

∀σ ∈ Σ:: ∀ q ∈ Q : : ∀ (tr)
rankΣ σ
r=1 ∈ T rankΣ σ

Σ : :

τqT
(

σ(t1, . . . , trankΣ σ)
)

=
[

τq1Tt1/x1, . . . , τql
Tt1/xl, τq1Tt2/xl+1, . . . , τql

Tt2/x2·l, . . .
]

(rhs′R,σ q)

=
[

τpTtj/pxj
]

p∈Q
xj∈XrankΣ σ

(rhsR,σ q).



32 6 RELATING TRANSDUCERS

The latter is the definition of τ in Definition 4.2.1 and thus with Definition 6.2.5 (ii):

SC = π · ([HinG])F = τq0T = τT.

6.2.8 Lemma. Let ∆ = {δ1, . . . , δn} be a ranked alphabet and A = (|A|;ϕ1, . . . , ϕn) and B =
(|B|;ϕ′1, . . . , ϕ

′

n) be ∆-algebras. For every ∆-algebra homomorphism f : A ← B, every k ∈ N0,
and every ∆-term t ∈ T∆Xk the following holds:

[ϕi/δi]
n
i=1t ·

k
∏

|f | = |f | · [ϕ′i/δi]
n
i=1t.

Proof. Let (bj)
k
j=1 ∈ B

k. The ∆-algebra T∆Xk is free over Xk. The 2nd-order substitution operators
from Definition B.2.4 (ii) are defined as follows

(α)
(

[ϕi/δi]
n
i=1t ·

∏k
|f |

)

(bj)
k
j=1 = [ϕi/δi]

n
i=1t(|f |bj)

k
j=1 = |g|t where g : A← T∆Xk is the unique

∆-algebra homomorphism with ∀xj ∈ Xk : : |g|xj = |f |bj and

(β) [ϕ′i/δi]
n
i=1t(bj)

k
j=1 = |h|t where h : B ← T∆Xk is the unique ∆-algebra homomorphism with

∀xj ∈ Xk : : |h|xj = bj .

Thus ∀xi ∈ Xk : : |f · h|xi = |f |
(

|h|xi
)

= |f |bi = |g|xi and hence with (β): g = f · h.

6.2.9 Lemma. For every top-down tree transducer T ∈ td -treeT there exists a related top-down cate-
gorical transducer C ∈ Mor td -catT Set , i.e. T ≈ C.

Proof. Let T = (Q,Σ,∆, q0, R) be a top-down tree transducer. We use the product and coproduct
functor according to Lemma 6.1.3 and Lemma C.4.4 to define the functors F,G,U : Set ← Set by

F =
∐

σ∈Σ

(

rankΣ σ
∏

Id), G =
∐

δ∈∆

(

rank∆ δ
∏

Id), U =

#Q
∏

Id.

According to Lemma C.6.3 we have the initial algebras

inF = [σ]σ∈Σ and inG = [δ]δ∈∆.

This choice of initial algebras leads to

µF = TΣ and µG = T∆.

Lemma C.5.5 ensures that U is faithful. We claim that the function H : Ob(AlgSetF)← Ob(AlgSetG)
defined by

∀ϕ ∈ Ob(AlgSetG) : : Hϕ =
[

〈

[ϕ · ιδ/δ]δ∈∆(rhs′R,σ q)
〉

q∈Q

]

σ∈Σ

can be uniquely extended to a concrete functor

H : (AlgSetF, | � |F)← (AlgSetG,U · | � |G).

To prove this we use Lemma 3.3.1, thus we have to verify that for every ϕ,ϕ′ ∈ Ob(AlgSetG) and every
f : |ϕ|

G
← |ϕ|

′

G
the condition

ϕ · Gf = f · ϕ′

Hϕ · F(Uf) = Uf · Hϕ′
(∗)



6.2 Relating semantics of top-down tree transducers and top-down categorical transducers 33

holds. First we restate the precondition of (∗):

ϕ · Gf = f · ϕ′

⇐⇒ { fusion and reflection in Table 7 and definition of G }

[ϕ · ιδ]δ∈∆ ·
∐

δ∈∆

(

rank∆ δ
∏

f) = f · [ϕ′ · ιδ]δ∈∆

⇐⇒ { fusion (i) in Table 9 }

[ϕ · ιδ ·
rank∆ δ

∏

f ]δ∈∆ = f · [ϕ′ · ιδ]δ∈∆

⇐⇒ { UP and cancelation in Table 7 }

∀ δ ∈ ∆:: ϕ · ιδ ·
rank∆ δ

∏

f = f · ϕ′ · ιδ

⇐⇒ { Definition B.1.3 }

f : (|ϕ|
G
; (ϕ · ιδ)δ∈∆)← (|ϕ′|

G
; (ϕ′ · ιδ)δ∈∆) is a ∆-algebra homomorphism.

Now we show the conclusion of (∗):

Hϕ · F(Uf)

=
[

〈

[ϕ · ιδ/δ]δ∈∆(rhs′R,σ q)
〉

q∈Q

]

σ∈Σ
·
∐

σ∈Σ

(

rankΣ σ
∏

(Uf))

=





〈

[ϕ · ιδ/δ]δ∈∆(rhs′R,σ q) ·
rankΣ σ

∏

(Uf)

〉

q∈Q





σ∈Σ

= { Lemma 6.2.8 with
rankΣ σ·#Q

∏

=

rankΣ σ
∏

·U and precondition of (∗) }
[

〈

f · [ϕ′ · ιδ/δ]δ∈∆(rhs′R,σ q)
〉

q∈Q

]

σ∈Σ

= { fusion (i) for product functors (Table 8), definition of U, and fusion for coproducts (Table 7) }

Uf ·
[

〈

[ϕ′ · ιδ/δ]δ∈∆(rhs′R,σ q)
〉

q∈Q

]

σ∈Σ

= Uf · Hϕ′.

It is easy to see that HinG =
[

〈

(rhs′R,σ q)
〉

q∈Q

]

σ∈Σ
and thus C = (H,U, πq0) is a categorical transducer

over Set with T ≈ C.

6.2.10 Definition. We use the construction from the preceding Lemma 6.2.9 to define a function

R : Mor td -catT Set ← td -treeT

Notice that the functors F, G, and U from Lemma 6.2.9 are only determined up to isomorphism. We make
R a function just by choosing one of the representatives of the isomorphism class. Notice that we can
view the category td -catT Set modulo categorical transducer isomorphisms, because of Corollary 5.3.6,
Lemma 5.4.3, and Theorem 5.3.4.

6.2.11 Corollary. From Lemma 6.2.9 and Theorem 6.2.7 it follows that:

(i) For every top-down tree transducer T we have: T ≈ RT .

(ii) τ = S · R.

∗



34 6 RELATING TRANSDUCERS

6.2.12 Corollary. With Lemma 6.2.9 and Theorem 6.2.7 we get

TOP tree ⊆ TOPcat

6.2.13 Note. We have not yet proven the other direction, and thus equality, in Corollary 6.2.12, because
there may be top-down categorical transducers, which are not in the image of R. Perhaps we would
need additional preconditions on the concrete functors of the categorical transducers, to force R to be
surjective.

6.3 Relating syntactic composition and fusion

6.3.1 Example (composition of top-down categorical transducers). Consider the two top-down tree
transducers Tzigzag and Tbin from the Examples 4.1.3 and 4.3.3. For both we may construct a related
categorical transducer over Set according to Lemma 6.2.9, i.e. Tzigzag ≈ Czigzag and Tbin ≈ Cbin. In
Example 6.2.1 we have already seen Czigzag = (H, Id × Id, π1) where H[ϕ1, ϕ2, ϕ3] = [〈ϕ1, ϕ1〉, 〈ϕ2 ·
π2 · π1, ϕ3 · π1 · π2〉]. Likewise we can construct the Cbin = (H′, Id, id) where H′[ϕ1, ϕ2] = [ϕ1, ϕ2 ·
〈id, id〉, ϕ2 · 〈id, id〉]. We construct the composition (cf. Example 4.3.3):

Cbin · Czigzag

= (H′, Id, id) · (H, Id× Id, π1)

= (H · H′, Id× Id, π1) where (H · H′)[ϕ1, ϕ2] = [〈ϕ1, ϕ1〉, ϕ2 · 〈id, id〉 · π2 · π1, ϕ2 · 〈id, id〉 · π2 · π1]

In the same way we could construct the composition:

Czigzag · Cbin = (H′ · H, Id× Id, π1) where (H′ · H)[ϕ1, ϕ2, ϕ3] = [ϕ2 · π2 · π1, ϕ3 · π1, ϕ3 · π1].

∗

The following theorem justifies the title of the paper: syntactic composition of top-down tree trans-
ducers is short cut fusion.

6.3.2 Theorem. Let T1 and T2 be top-down tree transducers such that the input alphabet of T2 is the
output alphabet of T1. Then

RT2 · RT1 = R(T2 · T1)

Proof. Let T1 = (P,Σ,∆, p0, R1), T2 = (Q,∆,Γ, q0, R2), and T2 ·T1 = (Q×P,Σ,Γ, (q0, p0), R) with

R =
{

(q, p)(σ(x1, . . . ))→ τqT
′

2(rhsR1,σ p)
∣

∣ q ∈ Q ∧ p ∈ P ∧ σ ∈ Σ
}

where T ′2 is constructed from T2 as in the proof of Theorem 4.3.2. Let r = max(rankΣ σ). Without
loss of generality we can assume that ∆ and Γ are disjoint. We define the top-down categorical tree
transducers

F3

C2 = (H2,U2, πq0)
←−−−−−−−−−−−−−−− F2

C1 = (H1,U1, πp0)
←−−−−−−−−−−−−−−− F1 and F3

C = (H,U, π(q0,p0))
←−−−−−−−−−−−−−−−− F1

by C1 = RT1, C2 = RT2, and C = R(T2 · T1) where we use the construction of Lemma 6.2.9 and thus
in particular:

∀ϕ ∈ Ob(AlgSetF2) : : H1ϕ =
[〈

[ϕ · ιδ/δ]δ∈∆(rhs′R1,σ
p)

〉

p∈P

]

σ∈Σ
,

∀ϕ ∈ Ob(AlgSetF3) : : H2ϕ =
[〈

[ϕ · ιγ/γ]γ∈Γ(rhs′R2,δ
q)

〉

q∈Q

]

δ∈∆
, and

∀ϕ ∈ Ob(AlgSetF3) : : Hϕ =
[〈

[ϕ · ιγ/γ]γ∈Γ(rhs′R,σ p)
〉

(q,p)∈Q×P

]

σ∈Σ
.

We have to show that C2 · C1 = C holds. From Definition 5.1.1 we obtain C2 · C1 = (H1 · H2,U1 ·
U2, π1 ∗ π2). Since the functors F1, F2, F3, U1, U2, and U are determined only up to isomorphism, we
may assume that U1 · U2 = U and π(q0,p0) = πp0 ∗ πq0 (cf. Theorem 5.4.2).



6.3 Relating syntactic composition and fusion 35

The essential statement we have to show is H1 · H2 = H: From the definition of τ in Definition 4.2.1
and with Lemma 6.2.4 we obtain

∀ δ ∈ ∆:: 〈τqT
′

2〉q∈Q · δ = 〈rhs′R2,σ
q〉q∈Q ·

rankΣ σ
∏

〈τqT
′

2〉q∈Q

and ∀ px ∈ PXr : : 〈τqT
′

2〉q∈Q(px) =
(

(q, p)x
)

q∈Q
, i.e. 〈τqT ′2〉q∈Q is a unique ∆-algebra homomor-

phism on the ∆-algebra T∆(PXr) which is free on PXr. With Definition B.2.4 (ii) we get

∀ p ∈ P : : ∀σ ∈ Σ:: [〈rhsR′

2,σ
q〉q∈Q/δ]δ∈∆(rhsR1,σ p) = 〈τqT

′

2〉(rhsR1,σ p)

=⇒ { definition of R }

∀ p ∈ P : : ∀σ ∈ Σ:: [〈rhsR′

2,σ
q〉q∈Q/δ]δ∈∆(rhsR1,σ p) = 〈rhsR,σ(q, p)〉q∈Q

=⇒ { Lemma 6.2.4 }

∀ p ∈ P : : ∀σ ∈ Σ:: [〈rhs′R2,σ
q〉q∈Q/δ]δ∈∆(rhs′R1,σ

p) = 〈rhs′R,σ(q, p)〉q∈Q

=⇒ { apply the substitution operator [ϕ · ιγ/γ]γ∈Γ on both sides }

∀ϕ ∈ Ob(AlgSetF3) : : ∀ p ∈ P : : ∀σ ∈ Σ::

[ϕ · ιγ/γ]γ∈Γ

(

[〈rhs′R2,σ
q〉q∈Q/δ]δ∈∆(rhs′R1,σ

p)
)

= 〈[ϕ · ιγ/γ]γ∈Γ rhs′R,σ(q, p)〉q∈Q

=⇒ { there are no symbols from Γ in the term rhs′R1,σp
∈ T∆X }

∀ϕ ∈ Ob(AlgSetF3) : : ∀ p ∈ P : : ∀σ ∈ Σ::
[

〈[ϕ · ιγ/γ]γ∈Γ rhs′R2,σ
q〉q∈Q/δ

]

δ∈∆
(rhs′R1,σ

p) = 〈[ϕ · ιγ/γ]γ∈Γ rhs′R,σ(q, p)〉q∈Q

=⇒ { definition of H2 and cancelation (Table 7) }

∀ϕ ∈ Ob(AlgSetF3) : : ∀σ ∈ Σ::
[

H2ϕ · ιδ/δ
]

δ∈∆
(rhs′R1,σ

p) = 〈[ϕ · ιγ/γ]γ∈Γ rhs′R,σ(q, p)〉(q,p)∈Q×P

=⇒ { definition of H1 and H and cancelation (Table 7) }

∀ϕ ∈ Ob(AlgSetF3) : : H1(H2ϕ) = Hϕ

=⇒ { Lemma 2.4.6 }

H1 · H2 = H.

6.3.3 Lemma. Let Tid be the top-down tree transducer from Lemma 4.3.4. Then RTid = Id.

Proof. Let RTid = (H,U, π). Since Tid has only one state, it is obvious that U = Id and π = id.
The construction for R in Lemma 6.2.9 yields for every ϕ: Hϕ =

[

[ϕ · ισ/σ]σ∈Σ(rhs′R,σ q)
]

σ∈Σ
=

[

[ϕ · ισ/σ]σ∈Σ

]

σ∈Σ
= [ϕ · ισ]σ∈Σ = ϕ. And thus we obtain with Lemma 2.4.6 that H = Id.

6.3.4 Lemma. Let T1 = (P,Σ,∆, p0, R1) and T2 = (Q,Σ,∆, q0, R2) be top-down tree transducers.
The following holds:

RT1 = RT2 ⇐⇒ T1
∼= T2

where ∼= is the isomorphism of top-down tree transducers from Definition 4.2.4.

Proof. The direction ‘⇐’ is obvious, because the construction from Lemma 6.2.9 which is the definition
of R (Definition 6.2.10) depends only on the number of states rather than on the set of states. Let C1 =
(H1,U1, πp0) = RT1 and C2 = (H2,U2, πq0) = RT2 where C1, C2 : G ← F. Thus we have H1 = H2,
U1 = U2, and πp0 = πq0 . With the construction of R from Lemma 6.2.9 we obtain

∏#P
Id = U1 =



36 7 FUTURE WORK

U2 =
∏#Q

Id and thus #P = #Q, i.e. there exists a bijection between P and Q. We calculate

RT1 = RT2

=⇒ { see above }

H1 = H2

=⇒ H1 inG = H2 inG

=⇒ { Corollary 6.2.11: T1 ≈ C1 and T2 ≈ C2 and Definition 6.2.5 }

∀σ ∈ Σ:: 〈rhs′R1,σ
p〉p∈P = 〈rhs′R2,σ

q〉q∈Q

=⇒ { choose the appropriate bijection h : P ← Q }

∀ q ∈ Q : : ∀σ ∈ Σ:: rhs′R1,σ
(hq) = rhs′R2,σ

q

=⇒ ∀ q ∈ Q : : ∀σ ∈ Σ:: rhs′R1,σ
(hq) ·

rankΣ σ
∏

(〈px〉p∈P ) = rhs′R2,σ
q ·

rankΣ σ
∏

(〈px〉p∈P )

=⇒ ∀ q ∈ Q : : ∀σ ∈ Σ:: rhs′R1,σ
(hq) ·

rankΣ σ
∏

(〈px〉p∈P ) = rhs′R2,σ
q ·

rankΣ σ
∏

(〈hq x〉q∈Q)

=⇒ { Lemma 6.2.4 }

∀ q ∈ Q : : ∀σ ∈ Σ:: rhsR1,σ(hq) = [hq x/qx]q∈Q
x∈X

(rhsR2,σ q)

The latter is the property (iii) from Definition 4.2.4.

6.3.5 Theorem. (i) The class of all top-down tree transducers modulo ∼= is a category (denoted by
td -treeT ) where the composition is the syntactic composition of top-down tree transducers.

(ii) The function R is an embedding functor R : td -catT Set ← td -treeT .

Proof. (i) We have to show that ∼= is a congruence relation w.r.t. syntactic composition of top-down
tree transducers, and we have to show that syntactic composition is associative modulo ∼=. Let T1,
T2, and T3 be top-down tree transducers (with input and output alphabets, such that the following
compositions are defined): Since R maps to a category and is multiplicative (Theorem 6.3.2) we
have R((T3 ·T2) ·T1) = RT3 ·RT2 ·RT1 = R(T3 · (T2 ·T1)) and thus with Lemma 6.3.4 we obtain
(T3 ·T2) ·T1

∼= T3 · (T2 ·T1). Similarly we show that ∼= is a congruence: Let T1, T ′1, T2, and T ′2 be
top-down tree transducers (with input and output alphabets, such that the following compositions
are defined) such that T1

∼= T ′1 and T2
∼= T ′2. From Lemma 6.3.4 we get that RT1 = RT ′1 and

RT2 = RT ′2 and thus with Theorem 6.3.2: R(T2 · T1) = RT2 · RT1 = RT ′2 · RT
′

1 = R(T ′2 · T
′

1).
We use Lemma 6.3.4 again and have T2 · T1

∼= T ′2 · T
′

1. The latter means that ∼= is a congruence.
Thus we obtain a category td -treeT where Mor td -treeT = td -treeT/ ∼= and Ob td -treeT is the
class of all finite ranked alphabets.

(ii) We already know from Theorem 6.3.2 that R is multiplicative, from Lemma 6.3.3 that R preserves
identities, and from Lemma 6.3.4 that R does not depend on the representative of the isomorphism
class. Thus together with (i), we obtain that R is a functor R : td -catT Set ← td -treeT . It is
obvious from Lemma 6.3.4 that R is also an embedding.

6.3.6 Note. We try to visualize the relation between top-down tree transducers and top-down categorical
transducers over Set in a diagram in Figure 1.

∗

7 Future work

The composition of top-down tree transducers leads to a multiplication of the number states, thus it would
be a good idea to minimize the number of states of the composition result. We want to investigate this



37

top-down

categorical

transducers

top-down

tree transducers

tree transformations

τT2 = SC2 τT1 = SC1

TΓ = µF2 TΣ = µF0

T∆ = µF1

ΣΓ

T1T2 C1C2

∆ F1

td -treeT td -catT Set

Set

τ S

R

T2 · T1 C2 · C1

R

τ(T2 · T1) = S(C2 · C1)

F2

R

F0

Figure 1: Relation between td -treeT and td -catT Set

for categorical transducers, where we can use Lemma 5.3.4, i.e. categorical transducer homomorphisms
preserve semantics:

∃ η : C ← C ′

SC = SC ′

and the fact that the number of states of a top-down categorical transducer can be expressed by the functor

Size : (N, ·, 1)← td -catT C : n←[ (H,
∏n
i=1Id, π).

We want to describe the number of states of more complicated categorical transducers by analogous Size-
functors. Then we want to investigate minimal categorical transducers like this is done for automata
(cf. [Ehr74]).

We have shown that syntactic composition of top-down tree transducers and top-down categorical
transducers over Set is essentially the same. We want to extend our notion of a categorical transducer
to describe tree transducers which are more complex than top-down tree transducers, e.g. macro tree
transducers [Eng80, CF82, EV85b] where the class of all macro tree transformations is denoted by MAC .



38 7 FUTURE WORK

A macro tree transducer is a generalization of a top-down tree transducer, where the states may have
additional context parameters for values of the output tree. In [Eng81, EV85b] it is demonstrated that
MAC is not closed under composition, i.e. the subclass of respective macro categorical transducers can
not be a subcategory. However, there exist composition results for restricted macro tree transducers: using
a translation into so called attributed tree transducers [KV01] or even a direct approach [VK01]. We want
to know what all this means for a macro categorical transducer. Short cut fusion has some problems
dealing with functions that have context parameters: either one has to introduce extra list consumption
functions (which can not be guaranteed to be removed by subsequent fusions) or one can use the so called
cata/augment-rule (cf. [Gil96, Joh01]), but that is only possible in certain cases. We believe that
our concept of a categorical transducer leads us to a generalized fusion-rule for functions with context
parameters.

Moreover, functions with context parameters may also be described using monads [Wad92] and the
category of forests from Definition 6.1.1 can be generalized to a Kleisli category using some monad.
We should investigate whether we can bring together these monads with our fusion results in the sense
of [Fok94] and [Par00].

The attempt to close the class of macro tree transducers under composition leads to the class of high-
level tree transducers [EV85a, EV88] where the context parameters may be functions. The types of the
functions are restricted to a specific level hierarchy (also cf. [Dam82]). A high-level tree transducer is
called n-level tree transducer if n ∈ N is the highest level occuring in this tree transducer. A 0-level or
1-level tree transducer is a top-down or macro tree transducer, respectively. The syntactic composition
of an n-level and a k-level tree transducer is an (n + k)-level tree transducer, i.e. the class of high-
level tree transducers is closed under composition. We want to define the class of high-level categorical
transducers, such that it will be a category hl -catT where composition is fusion and the level is a functor
Level : (N0,+, 0)← hl -catT C . We hope that this leads to new insights into short cut fusion of functions
with context parameters.

Acknowledgments

We would like to thank Janis Voigtländer and Dragan Masulovic for proofreading and Janis for his pa-
tience during our discussions.



39

A Laws

comediators mediators

UP f = ¡A ⇐⇒ f : A← 0 f = !A ⇐⇒ f : 1← A

reflection ¡0 = id0 !1 = id1

fusion f : A← B =⇒ f · ¡B = ¡A f : A← B =⇒ !A · f = !B

Table 4 Table 5

coproducts products

UP h = [fi]i∈I ⇐⇒ ∀ i ∈ I : : h · ιi = fi h = 〈fi〉i∈I ⇐⇒ ∀ i ∈ I : : πi · h = fi

reflection [ιi]i∈I = id∐

i∈I
Ai

〈πi〉i∈I = id∏

i∈I
Ai

fusion h · [fi]i∈I = [h · fi]i∈I 〈fi〉i∈I · h = 〈fi · h〉i∈I

cancelation ∀ j ∈ I : : [fi]i∈I · ιj = fj ∀ j ∈ I : : πj · 〈fi〉i∈I = fj

Table 7 Table 6

catamorphisms

UP f = ([ϕ])F ⇐⇒ f · inF = ϕ · Ff

reflection ([inF])F = idµF

fusion f · ϕ′ = ϕ · Ff =⇒ f · ([ϕ′])F = ([ϕ])F

Table 10

coproduct functors product functors

reflection
∐n
i=1 idAi

= id∐

n
i=1Ai

∏n
i=1 idAi

= id∏

n
i=1Ai

fusion (i) [fi]
n
i=1 ·

∐n
i=1 gi = [fi · gi]

n
i=1

∏n
i=1 fi · 〈gi〉

n
i=1 = 〈fi · gi〉

n
i=1

fusion (ii)
∐n
i=1 gi ·

∐n
i=1 hi =

∐n
i=1(gi · hi)

∏n
i=1 fi ·

∏n
i=1 hi =

∏n
i=1(fi · hi)

cancelation ∀ j : :
∐n
i=1 gi · ιj = ιj · gj ∀ j : : πj ·

∏n
i∈I fi = fj · πj

Table 9 Table 8



40 B BASIC UNIVERSAL ALGEBRA

B Basic universal algebra

B.1 Algebras and homomorphisms

B.1.1 Definition (ranked alphabet). A finite set Σ together with a function rankΣ : N0 ← Σ is called a
ranked alphabet. The function rankΣ is called the rank-function of the alphabet Σ. The elements of
Σ are called function-symbols or just symbols. Sometimes we will use the (formally incorrect, but easy
to understand) notation

Σ = {σ
(r1)
1 , . . . , σ(rm)

m }

to indicate that Σ = {σ1, . . . , σm} is a ranked alphabet with rank-function

rankΣ : N0 ← Σ : ri ←[ σi ∀ i.

For every k ∈ N0 we define the following subset of the ranked alphabet Σ:

Σ(k) =
{

σ ∈ Σ
∣

∣ rankΣ σ = k
}

.

A ranked alphabet Σ is called unary if Σ = Σ(1). If #Σ(0) = 1 and Σ(k) = ∅ for every natural number
k > 2, then Σ is called monadic. ∗

B.1.2 Definition (algebra). Let Σ = {σ
(r1)
1 , . . . , σ

(rm)
m } be a ranked alphabet. A tuple A =

(|A|; f1, . . . , fm), where |A| is a set and the fi are functions, is called a Σ-algebra provided that
∀ i : : fi : |A| ← |A|

ri . We call |A| the carrier-set of A, fi the function belonging to the function-
symbol σi, and ri the arity of fi. Functions with arity 1 are called unary and those with arity 2 are called
binary functions. In general, a function with arity k ∈ N0 is called a k-ary function. ∗

B.1.3 Definition (algebra homomorphism). Let Σ = {σ
(r1)
1 , . . . , σ

(rm)
m } be a ranked alphabet and

A = (|A|; f1, . . . , fm) and B = (|B|; g1, . . . , gm) be Σ-algebras. A function h : |A|← |B| such that

∀ i : : ∀ ξ1, . . . , ξri
∈ |B| : : h

(

gi(ξ1, . . . , ξri
)
)

= fi(hξ1, . . . , hξri
)

is called a Σ-algebra homomorphism. We denote this fact by

h : A← B.

To emphasize the difference between the Σ-algebra homomorphism h and its underlying function, we
sometimes denote this function by |h| : |A|← |B|. ∗

B.1.4 Lemma (composition of algebra homomorphisms). The identity-functions and the composition
of algebra homomorphisms are algebra homomorphisms. ∗

B.1.5 Definition (algebra isomorphism, isomorphic). Let Σ be a ranked alphabet and A and B be two
Σ-algebras. A Σ-algebra homomorphism f : A← B is called a Σ-algebra isomorphism, provided that
there exists a Σ-algebra homomorphism g : B ← A such that

f · g = idA and g · f = idB .

We say that A and B are isomorphic if a Σ-algebra isomorphism to A from B exist, and we denote this
fact byA ∼= B. It is easy to see that the relation∼= is an equivalence relation on the class of all Σ-algebras.

∗

B.2 Free algebras and substitutions

B.2.1 Definition (free algebra). Let Σ be a ranked alphabet, A be a Σ-algebra and X ⊆ |A| a set. The
Σ-algebra A is called free over the set X provided that for every Σ-algebra B and every function f :
|B|← X there exists a unique Σ-algebra homomorphism f ′ : B ← A such that ∀x ∈ X : : |f ′|x = fx.

∗



B.2 Free algebras and substitutions 41

B.2.2 Definition (term algebra, term, tree). Let { ( , , , ) } be a set of three symbols which do not
occur in any alphabet that we will use. Let Σ be a ranked alphabet and A a set disjoint with Σ. We define
the sets

ΣA =
{

σ ( a1 , . . . , arankΣ σ )
∣

∣ σ ∈ Σ ∧ ∀ i : : ai ∈ A
}

and
TΣA =

⋂

{

T ⊆ (Σ ∪ { ( , , , ) } ∪A)∗
∣

∣ A ∪ ΣT ⊆ T
}

.

Since A ∪ Σ(TΣA) ⊆ TΣA, we obtain that TΣA is the smallest subset T ⊆ (Σ ∪ { ( , , , ) } ∪ A)∗

such that

a ∈ A

a ∈ T
and

σ ∈ Σ t1, . . . , trankΣ σ ∈ T

σ ( t1 , . . . , trankΣ σ ) ∈ T
.

An element of TΣA is called a (finite, labeled and ordered) Σ-term or Σ-tree indexed by A. (More
precisely a Σ-tree indexed by A is a (Σ ∪ A)-labeled graph, representing a term.) We will write just

σ(t1, . . . , trankΣ σ) for σ ( t1 , . . . , trankΣ σ ) . Furthermore, for every σ ∈ Σ(1) we will write σt1

for σ(t1) and for every σ ∈ Σ(0) we will write σ for σ(). If we identify an element σ ∈ Σ with the
following function

σ : TΣA← (TΣA)rankΣ σ : σ(t1, . . . , trankΣ σ)←[ (t1, . . . , trankΣ σ) ∀ t1, . . . , trankΣ σ ∈ TΣA,

then it is easy to see that (TΣA;σ1, . . . , σm), where Σ = {σ1, . . . , σm}, is a Σ-algebra, which we call
the Σ-term algebra over A. Usually we denote it just by TΣA. Finally we set TΣ = TΣ∅ and call it the
initial Σ-term algebra. Notice that we have identified function-symbols of rank k with k-ary functions,
in order to avoid extra notation. ∗

B.2.3 Theorem (essential uniqueness of free algebras). Let Σ be a ranked alphabet andX a set disjoint
with Σ.

(i) A free Σ-algebra over X is uniquely determined up to isomorphism.

(ii) The Σ-term algebra TΣX is free over X . ∗

B.2.4 Definition (substitution). Let Σ be a ranked alphabet and A be a free Σ-algebra over X ⊆ |A|.

(i) For every k ∈ N0 and a1, . . . , ak ∈ |A| and pairwise distinct x1, . . . , xk ∈ X we define the
substitution operator

[aj/xj ]
k
j=1 = [a1/x1, . . . , ak/xk] : |A|← |A|

by [aj/xj ]
k
j=1 = |f | where f : A ← A is the unique Σ-algebra homomorphism with ∀ j ∈

{1, . . . , k} : : |f |xj = aj and ∀x ∈ X \ {x1, . . . , xk} : : |f |x = x. Notice that in the case
A = TΣX this is the common term substitution.

(ii) Let Σ = {σ1, . . . , σn} and X = {x1, . . . , xk}. For every ϕ1, . . . , ϕn such that B =
(|B|;ϕ1, . . . , ϕn) is a Σ-algebra we define the 2nd order substitution operator

[ϕi/σi]
n
i=1 = [ϕ1/σ1, . . . , ϕn/σn] : |B|

|B|k ← |A|

for every a ∈ A and every (bj)
k
j=1 ∈ |B|

k by [ϕi/σi]
n
i=1a (bj)

k
j=1 = |g|a where g : B ← A is the

unique Σ-algebra homomorphism with ∀ j ∈ {1, . . . , k} : : |g|xj = bj . ∗



42 C BASIC CATEGORY THEORY

C Basic category theory

We state the basic notions and notations of category theory, which will be used in this paper. Our notation
follows [AHS90] and [BdM97]. The collection of calculation laws in tables (Tables 4, 5, 6, 7, and 10) is
inspired by [Fok92a].

C.0.5 Note (set, class, conglomerate). The set of all sets does not exist due to Russel’s Paradox. In order
to handle ‘large collections of things’ like ‘the collection of all sets’ we use class-theory (cf. [Fel78]). A
class is a generalization of a set. Intuitively classes are in a way bigger than sets. Now we define a set to
be a class, which is an element of some other class, i.e.: A is a set, iff A is a class and there exists a class
C such that A ∈ C. Thus every set is a class. However the collection of all sets is a class and it is not a
set.

Again, due to Russel’s Paradox, the collection of all classes is not a class. But we can iterate the above
concept to define conglomerates and build the conglomerate of all classes.

In fact one could construct classes of order n for n ∈ N0 where the collection of all classes of order n
is a class of order n+1 which is not a class of order n itself. In that context sets, classes and conglomerates
would be classes of order 0, 1, and 2, respectively. We will not need classes of order greater than 2 in this
paper. ∗

C.0.6 Example (notation of classes). We denote classes (of any order) using braces {. . . } just like we
denote sets. The class of all singleton sets S = {s

∣

∣ s is a set with one element} is not a set. ∗

C.1 Categories and Functors

C.1.1 Definition (category). A category C = (Ob C,Mor C,dom, cod, ·, id) consists of a class ObC of
so called objects, a class MorC of so called morphisms, two functions dom, cod : Ob C ← Mor C called
domain- (or source-)function and codomain- (or target-)function, a partial function · : MorC ←···
MorC ×MorC called composition, and a function id

�
: MorC ← ObC called identity. Before we

introduce the axioms which a category has to satisfy, we define the hom-classes as the classes

∀A,B ∈ Ob C : : C(A,B) =
{

f ∈ MorC
∣

∣ A = cod f ∧ dom f = B
}

and the ternary relation ( � : � ←−
C

� ) ⊆ MorC ×ObC ×ObC by

∀A,B ∈ ObC : : f : A←−
C
B ⇐⇒ A

f
←−−

C
B ⇐⇒ f ∈ C(A,B)

which we will write just as

f : A← B or A
f
←−− B

if the connection to the category C is obvious. The axioms are:

f, g, h ∈ MorC f · g = h

dom f = cod g
(typing)

f : A← B g : B ← C

f · g : A← C
(composition)

f : A← B g : B ← C h : C ← D

(f · g) · h = f · (g · h)
(associativity)

A ∈ Ob C

idA : A← A

f : A← B

f · idB = f = idA · f
(identity)

∗



C.1 Categories and Functors 43

C.1.2 Lemma. For every category C the class
{

C(A,B)
∣

∣ A,B ∈ Ob C
}

is a partition of MorC,
i.e. MorC =

⊎

A,B∈Ob C C(A,B). ∗

C.1.3 Definition (pre-category). A pre-category is defined by the same axioms as a category except that
domain and codomain are not unique, i.e. dom, cod : Pot(Ob C) ← MorC. We use the same notations
for pre-categories as defined for categories in Definition C.1.1. For a pre-category C we like to mention
the definition of hom-classes

∀A,B ∈ ObC(A,B) =
{

f ∈ MorC
∣

∣ A ∈ cod f ∧ B ∈ dom f
}

and the typing axiom

f, g, h ∈ MorC f · g = h

dom f ∩ cod g 6= ∅
.

∗

C.1.4 Note. For every pre-category C we can construct a category C ′ by

ObC′ = Ob C ∀A,B ∈ Ob C : : C′(A,B) =
{

(A, f,B)
∣

∣ f : A←−
C
B

}

with the obvious composition and identities inherited from C. Notice that the definition of the C ′-hom-
classes also uniquely determines domains and codomains. ∗

C.1.5 Example (category). We show some categories in Table 3.

category objects morphisms
Set all sets all set functions
Σ-Alg all Σ-algebras all Σ-algebra homomorphisms
Top all topological spaces all continuous functions

Table 3: Some categories

∗

C.1.6 Definition and Theorem (duality principle). For every category C we define the dual (or oppo-
site) category Cop by

ObCop = Ob C

Cop(A,B) = C(B,A) ∀A,B ∈ ObC

f ·Cop g = g ·C f ∀ f, g ∈ MorC with domC g = codC f

idCop = idC,

i.e. Cop has the same objects and morphisms as C, but dom and cod are exchanged and the composition
is commuted. The transformation from C to Cop may be viewed as the reversion of all morphism arrows.
If this is done twice, then we receive the original category:

(Cop)op = C.

We will use this symmetry as follows: For every predicate A(C) about a category C we derive the dual
predicate Aop(C) ⇐⇒ A(Cop) by reversing all morphism arrows. Then the following equivalence
holds:

(

for every category C : : A(C)
)

⇐⇒
(

for every category C : : Aop(C)
)



44 C BASIC CATEGORY THEORY

Proof.

∀C : : A(C)

⇐⇒ { since ∀C : : C = (Cop)op }

∀C : : A(Cop)

⇐⇒ { definition of the dual predicate }

∀C : : Aop(C)

Thus a proof for a predicate about categories is also a proof for the dual predicate. Furthermore, for
every notion defined in category theory there is a dual notion. We only need to investigate one of them
and get the properties of the dual notion by the duality principle. ∗

C.1.7 Definition (isomorphism (cf. Definition B.1.5)). Let C be a category and A,B ∈ ObC. A mor-
phism f : A← B for which

∃ g : B ← A : : f · g = idA ∧ g · f = idB

holds is called an isomorphism. It is easy to see that in this case g is unique. We call g the inverse of f
and denote it by f−1. Two objects A,B ∈ Ob C such that

∃ isomorphism f ∈ Mor C : : f : A← B

are called isomorphic, and we write
A ∼= B

Obviously, the relation ∼= is an equivalence relation on ObC. ∗

C.1.8 Definition (functor). Let C and D be categories. A (covariant) functor F to C from D consists
of two functions

F : Ob C ← Ob D and F : MorC ← MorD,

which satisfy the following axioms:

f : A←−
D
B

Ff : FA←−
C

FB
(typing)

A ∈ ObD

FidA = idFA

(identity)

f : A←−
D
B g : B ←−

D
C

F(f · g) = Ff · Fg
(multiplicativity)

In this case we write:
F : C ← D

It is common to denote the functor as well as the two underlying functions by the same symbol F. In
fact, a functor is already determined on objects, if it is defined on morphisms, because it follows from the
typing-axiom that ∀A ∈ Ob C : : FA = dom(FidA).

For every functor F : C ← D we define the dual functor Fop : Cop ← Dop, which is determined
by the same underlying functions on objects and morphisms as F. It is easy to see that Fop is indeed a
functor.

A functor E : C ← C, which maps a category on itself, is called an endofunctor.



C.1 Categories and Functors 45

A functor G : C ← Dop, i.e. a covariant functor from Dop, is called a contravariant functor4 from
D (not Dop). We define the identity functor

Id :







C ← C
A ←[ A ∀A ∈ Ob C
f ←[ f ∀ f ∈ MorC

and for every A ∈ ObC the constant functor

KA :







C ← D
A ←[ B ∀B ∈ ObD
idA ←[ f ∀ f ∈ MorD.

where it is easy to see that these are indeed functors.
For simplicity we avoid notations like IdC or K

C,D
A , if the connection to the categories is obvious. ∗

C.1.9 Corollary. The constant functors absorbs other functors in compositions. More precisely: Let C
be a category and A ∈ ObC. For every functors F from C and every functors G to C holds

(i) F · KA = KFA and

(ii) KA · G = KA.

Proof. Immediately using the definition of the constant functor and for (i) the identity functor axiom.

C.1.10 Lemma (functors preserve isomorphisms). Let C and D be categories, F : C ← D a functor,
and f ∈ Mor D an isomorphism. Then Ff is an isomorphism in C.

Proof. Using the definitions it is easy to show that F(f−1) = (Ff)−1.

C.1.11 Definition ((full) subcategory). Let C and D be categories. The category D is called a subcat-
egory of C provided that

Ob D ⊆ ObC and MorD ⊆ Mor C

holds and the D-composition is the restriction of the C-composition. If in addition

∀A,B ∈ ObD : : D(A,B) = C(A,B)

is true, then D is called a full subcategory of C. The functor

E :







C ← D
A ←[ A ∀A ∈ Ob D
f ←[ f ∀ f ∈ MorD

is called the canonical embedding of the subcategory D in C. ∗

C.1.12 Definition (product-category). Let I be a set and (Ci)i∈I be a family of categories. We define
the product-category

∏

i∈I Ci by

Ob
(

∏

i∈I

Ci
)

=
{

(Ai)i∈I
∣

∣ ∀ i ∈ I : : Ai ∈ Ob Ci

}

and
∏

i∈I

Ci
(

(Ai)i∈I , (Bi)i∈I
)

=
{

(fi)i∈I
∣

∣ ∀ i ∈ I : : fi : Ai ←−−
Ci

Bi

}

4According to our definition any functor is covariant. We use the notion ‘contravariant functor’ to emphasize that the functor
maps from the dual category of some given category. Many authors use a different definition.



46 C BASIC CATEGORY THEORY

with pointwise identities and composition. The functors (Pj)j∈I defined by ∀ j ∈ I:

Pj :







Cj ←
∏

i∈I Ci
Aj ←[ (Ai)i∈I ∀ (Ai)i∈I ∈ Ob(

∏

i∈I Ci)
fj ←[ (fi)i∈I ∀ (fi)i∈I ∈ Mor(

∏

i∈I Ci),

are called the projection-functors. If I is finite, e.g. I = {1, . . . , n}, we write C1 × · · · × Cn =
∏n
i=1 Ci =

∏

i∈I Ci. For a category C we define CI =
∏

i∈I C and if I is finite, e.g. I = {1, . . . , n}, we
write Cn = CI . ∗

C.1.13 Definition (quasi-category). A quasi-category C is defined by the same axioms as a category
except that the order of all involved classes is incremented, i.e. the collection of objects and morphisms
are conglomerates. ∗

C.1.14 Note. We can easily lift every notion or predicate from category-theory to quasi-category-theory
just by incrementing the order of all involved classes. For every true statement on categories the lifted
statement on quasi-categories is also true. For every notionN we will denote the lifted notion by quasi-N
(e.g. ‘quasi-set’ = ‘class’). If the notion N does not depend on the order of any class we can obviously
omit the prefix ‘quasi-’ (e.g. ‘quasi-object’ = ‘object’). The reason for the distinction of quasi-categories
from categories is that the category of all categories (with functors as morphisms) does not exist, since
the class of all classes does not exist. But using quasi-categories we can construct the following: ∗

C.1.15 Definition (quasi-categories of all classes and of all categories). We denote the quasi-category
of all classes with all functions as morphisms by CLASS and the quasi-category of all categories with
all functors as morphisms by CAT . ∗

C.1.16 Note. The opposite notion of ‘quasi-’ is small, e.g. ‘small class = set’, ‘small conglomerate =
class’, and ‘small quasi-category = category’.

C.2 Natural transformations

C.2.1 Definition ((natural) transformation). Let C and D be categories and F,G : C ← D be functors.
A function

τ = (τA)A∈Ob D ∈ (Mor C)Ob D

with
∀A ∈ ObD : : τA : FA←−

C
GA

is called a transformation to F from G. If in addition τ satisfies the so called naturalness condition

h : A←−
D
B

Fh · τB = τA · Gh
,

then it is called a natural transformation to F from G, and we write:

τ : F
.← G.

∗

C.2.2 Example (natural transformation). Let C be a category. The identity id is a natural transforma-
tion:

id = (idA)A∈Ob C : Id
.← Id

∗



C.2 Natural transformations 47

C.2.3 Definition and Lemma (horizontal composition of (natural) transformations). Let C and D be
categories and F,G,H : C ← D be functors and σ : F ← G and τ : G ← H be transformations. The
composition of σ and τ is the transformation which is defined pointwise by

∀A ∈ ObD : : (σ · τ)A = σA · τA

The composition of natural transformations is a natural transformation, i.e.:

σ : F
.← G τ : G

.← H

σ · τ : F
.← H

Proof. Immediately with Definition C.2.1.

This composition of natural transformations is often called horizontal composition. We will see
vertical composition of natural transformations in Definition and Lemma C.2.7.

C.2.4 Definition (composition of morphisms and natural transformations). Let C and D be categories
and F,G : C ← D be functors. For every C-morphism f , we define the composition of Ff with a natural
transformation by

(i) ∀σ : G
.← F : : σ · Ff = σcod f · Ff ,

(ii) ∀ τ : F
.← G : : Ff · τ = Ff · τdom f . ∗

∗

C.2.5 Definition (functor-category). Let C and D be categories. We define the quasi-category CD by

Ob CD =
{

F
∣

∣ F : C ← D
}

and for every F,G ∈ Ob CD:
CD(F,G) =

{

τ
∣

∣ τ : F
.← G

}

with the composition of natural transformations and for every F : C ← D the identity idF =
(idFA)A∈Ob D : F

.← F.
∗

C.2.6 Definition and Lemma (functors preserve naturalness). Let C, D, and E be categories and
F,G : C ← D be functors. For every natural transformation

τ : F
.← G

the following statements hold:

(i) The composition Hτ of a functor H : E ← C and τ defined by

∀A ∈ Ob D : : (Hτ)A = H(τA)

is a natural transformation
Hτ : H · F .← H · G.

(ii) The composition τH of τ and a functor H : D ← E defined by

∀A ∈ ObE : : (τH)A = τHA

is a natural transformation
τH : F · H .← G · H.

Proof. Immediately by the Definitions C.1.8 and C.2.1.



48 C BASIC CATEGORY THEORY

C.2.7 Definition and Lemma (vertical composition of natural transformations). Let C, D, and E be
categories, and

C
F,F′
←−−−− D

G,G′
←−−−− E

be functors, and σ : F
.← F′ and τ : G

.← G′ be natural transformations. It holds σG · F′τ = Fτ · σG′. We
use this to define the vertical composition (or Godement product) σ ∗ τ of σ and τ by

σ ∗ τ = σG · F′τ = Fτ · σG
′

which is a natural transformation σ ∗ τ : F ·G .← F′ ·G′, i.e. the following diagram of natural transforma-
tions commutes:

F′ · G

F · G F′ · G′

F · G′

σG F′τ

σ ∗ τ

Fτ σG′

Notice that σ ∗ idG = σG and idF ∗ τ = Fτ .

Proof. Let A ∈ Ob E .

(σG · F′τ)A

= { Definition and Lemma C.2.3 and Definition and Lemma C.2.6 }

σGA · F
′τA

= { naturalness of σ }

FτA · σG′A

= { Definition and Lemma C.2.3 and Definition and Lemma C.2.6 }

(Fτ · σG
′)A

C.2.8 Lemma (vertical composition versus horizontal composition). Let C, D, and E be categories,
and

C
F,F′,F′
←−−−−−− D

G,G′,G′
←−−−−−−− E

be functors, and

F
σ
←−− F

′ σ′
←−− F

′′ and G
τ
←−− G

′ τ ′
←−− G

′′

be natural transformations. It holds:

(σ ∗ τ) · (σ′ ∗ τ ′) = (σ · σ′) ∗ (τ · τ ′).



C.3 Initial and final objects 49

Proof. Let A ∈ Ob E .
(

(σ ∗ τ) · (σ′ ∗ τ ′)
)

A

= { Definition and Lemma C.2.7 and Definition and Lemma C.2.6 }

σGA · F
′τA · F

′τ ′A · σ
′

G′′A

= { F
′ is a functor }

σGA · F
′(τA · τ

′

A) · σ′G′′A

= { naturalness of σ′ }

σGA · σ
′

GA · F
′′(τA · τ

′

A)

= { Definition and Lemma C.2.7 and Definition and Lemma C.2.6 }
(

(σ · σ′) ∗ (τ · τ ′)
)

A

C.2.9 Lemma (vertical composition is associative). Let C, D, E,and F be categories, and

C
F,F′
←−−−− D

G,G′
←−−−− E

H,H′
←−−−−− F

be functors, and

F
σ
←−− F

′
G

τ
←−− G

′
H

%
←−− H

′

be natural transformations. It holds:

(σ ∗ τ) ∗ % = σ ∗ (τ ∗ %).

Proof. Let A ∈ Ob F .
(

(σ ∗ τ) ∗ %
)

A

= { Definition and Lemma C.2.7 and Definition and Lemma C.2.6 }

(σ ∗ τ)HA · (F
′ · G′)%A

= { Definition and Lemma C.2.7 and Definition and Lemma C.2.6 }

σ(G·H)A · F
′τHA · (F

′ · G′)%A

= { F
′ is a functor }

σ(G·H)A · F
′(τHA · G

′%A)

= { Definition and Lemma C.2.7 and Definition and Lemma C.2.6 }

σ(G·H)A · F
′(τ ∗ %)A

= { Definition and Lemma C.2.7 and Definition and Lemma C.2.6 }
(

σ ∗ (τ ∗ %)
)

A

C.3 Initial and final objects

C.3.1 Definition (initial/final object). Let C be a category. An object 0 ∈ Ob C is called an initial
object of C, if for every C-object A there exists a unique C-morphism to A from 0, i.e.:

∀A ∈ ObC : : #
(

C(A, 0)
)

= 1.

or equivalently
∀A ∈ ObC : : ∃! f ∈ MorC : : f : A← 0



50 C BASIC CATEGORY THEORY

This formula has the form ‘∀ · · · ∃! · · · ’ and can thus be used to define the function

¡( � )←0 : MorC ← ObC

by
∀ f ∈ MorC : : f = ¡A←0 ⇐⇒ f : A← 0. (UP)

The defining property (UP) is called the universal property. The function ¡ is called the comediator of
0. The morphism ¡A←0 is called the unique mediating morphism to A from the initial object 0. If the
connection to the initial object 0 ∈ ObC is obvious, we simply write ¡A for ¡A←0.

Dually an object 1 ∈ Ob C with

∀A ∈ ObC : : #
(

C(1, A)
)

= 1

is called final object (and sometimes terminal object) of C and the function

!( � )→1 : MorC ← ObC

with
∀ f ∈ MorC : : f = !A→1 ⇐⇒ f : 1← A (UPop)

is called the mediator of 1. The morphism !A→1 is called the unique mediating morphism from A to
the final object 1. If the connection to the final object 1 ∈ ObC is obvious, we simply write !A for !A→1.

∗

C.3.2 Example (initial and final object). In the category Set the empty set ∅ is an initial object and
every singleton set is a final object. ∗

C.3.3 Lemma (essential uniqueness of initial objects). Let C be a category. Every two initial objects
of C are isomorphic.

Proof. Let 0 and 0′ be initial objects with comediators ¡( � )←0 and ¡( � )←0′ , respectively.

=⇒ { (composition) }
¡0←0′ · ¡0′←0 : 0← 0

=⇒ { (UP), (typing) & (identity) }
¡0←0′ · ¡0′←0 = ¡0←0 = id0.

Dually follows: ¡0′←0 · ¡0←0′ = id0′ . Hence ¡0←0′ : 0← 0′ is an isomorphism and thus 0 ∼= 0′.
Since #

(

C(0, 0′)
)

= 1 the morphism ¡0←0′ is even the only isomorphism to 0 from 0′.

C.3.4 Lemma (laws for initial/final objects). Let C be a category with initial object 0 ∈ ObC. Then
the laws in Table 4 hold.

Laws for comediators
UP f = ¡A ⇐⇒ f : A← 0
reflection ¡0 = id0

fusion f : A← B =⇒ f · ¡B = ¡A
where f ∈ MorC and A,B ∈ ObC

Table 4: Laws for comediators

And thus the dual laws in Table 5 hold for a category C with a final object 1 ∈ ObC.

Proof. The reflection law follows from the first part of the proof of Lemma C.3.3. The fusion law can be
proven similarly: Because of f · ¡B : A← 0 it is obvious from the (UP) that f · ¡B = ¡A.



C.4 Products and coproducts 51

Laws for mediators
UP f = !A ⇐⇒ f : 1← A
reflection !1 = id1

fusion f : A← B =⇒ !A · f = !B
where f ∈ Mor C and A,B ∈ ObC

Table 5: Laws for mediators

C.3.5 Corollary (naturalness of (co-)mediators). Let C be a category with initial object 0 ∈ ObC and
K0 : C ← C be the constant functor to 0. The comediator ¡ is a natural transformation, i.e.:

¡ : Id
.← K0.

Proof. Since for every A ∈ ObC holds ¡A : A ← 0, the comediator is a transformation to Id from K0.
It is also natural, because its naturalness condition (cf. Definition C.2.1) is equivalent to the fusion law
(Table 4).

C.4 Products and coproducts

C.4.1 Definition and Lemma (product). Let C be a category, I a set, (Ai)i∈I ∈ Ob CI , and P ∈ ObC.

An I-family (Ai
πi←−− P )i∈I of C-morphisms is called a product of (Ai)i∈I provided that for every

object B ∈ Ob C and every I-family (Ai
fi
←−− B)i∈I of C-morphisms there exists a unique morphism

〈fi〉i∈I : P ← B,

which is called pairing such that the diagram in Figure 2 commutes.

P Aj

B

-

6

�
�

�
�

�
�

�
��>

πj

〈fi〉i∈I

fj

∀ j ∈ I : :

Figure 2: Product UP

For every i ∈ I the morphism πi : Ai ← P is called the projection onto Ai from P . It is also

common to say that the object P itself is a product of (Ai)i∈I with projections (Ai
πi←−− P )i∈I . If

there exists a product of (Ai)i∈I ∈ Ob CI and the connection to the respective projections is obvious or
unimportant, then we denote the product-object P by

∏

i∈I Ai. Notice that the object
∏

i∈I Ai depends
on the projections (πi)i∈I , which is not obvious from the notation. If I is finite, then

∏

i∈I Ai is called
a finite product. For finite products with e.g. I = {1, . . . , n}, we write A1 × · · · × An =

∏

i∈I Ai and
〈f1, . . . , fn〉 = 〈fi〉i∈I . Notice that an empty product (i.e. I = ∅) is a final object.

We say that C has (finite) products, if for every (finite) set I and every (Ai)i∈I ∈ Ob CI there exists
a product

∏

i∈I Ai in C. It is easy to see that we find the laws in Table 6 in analogy to the laws in Table 5
from Lemma C.3.4.



52 C BASIC CATEGORY THEORY

Laws for products
UP h = 〈fi〉i∈I ⇐⇒ ∀ i ∈ I : : πi · h = fi
reflection 〈πi〉i∈I = id∏

i∈I Ai

fusion 〈fi〉i∈I · h = 〈fi · h〉i∈I
cancelation ∀ j ∈ I : : πj · 〈fi〉i∈I = fj

where h ∈ Mor C and ∀ j ∈ I : : fj : Aj ← B

Table 6: Laws for products

Proof. The UP is equivalent to the definition of the product. The remaining laws follow in analogy to
Lemma C.3.3 and Lemma C.3.4.

C.4.2 Lemma (products in Set). The category Set has products.

Proof. Let I be a set and for every i ∈ I let Ai be a set. We will show that

∏

i∈I

Ai =
{

(ai)i∈I
∣

∣ ∀ i ∈ I : : ai ∈ Ai
}

,

is a product of (Ai)i∈I with projections

∀ j ∈ I : : πj : Aj ←
∏

i∈I

Ai : aj ←[ (ai)i∈I .

Therefore it is sufficient to show that for every set B and every (Ai
fi
←−− B)i∈I

〈fi〉i∈I :
∏

i∈I

Ai ← B : (fib)i∈I ←[ b

is the respective pairing by verifying the UP of the product (Table 6).

C.4.3 Definition and Lemma (coproduct). The dual notion to ‘product’ is the notion of ’coproduct’: Let

C be a category, I a set, (Ai)i∈I ∈ Ob CI , and C ∈ ObC. An I-family (C
ιi←−− Ai)i∈I of C-morphisms

is called a coproduct (or sum) of (Ai)i∈I provided that for every object B ∈ Ob C and every I-family

(B
fi
←−− Ai)i∈I of C-morphisms there exists a unique morphism

[fi]i∈I : B ← C,

which is called copairing (or case) such that the diagram in Figure 3 commutes:
For every i ∈ I the morphism ιi : C ← Ai is called the injection of Ai into C. It is also common to

say that the object C itself is a coproduct of (Ai)i∈I with injections (C
ιi←−− Ai)i∈I . If there exists a

coproduct of (Ai)i∈I ∈ Ob CI and the connection to the respective injections is obvious or unimportant,
then we denote the coproduct-object by

∐

i∈I Ai = C. Notice that the object
∐

i∈I Ai depends on the
injections (ιi)i∈I , which is not obvious from the notation. If I is finite, then

∐

i∈I Ai is called a finite
coproduct. For finite coproducts with e.g. I = {1, . . . , n}, we write A1 + · · · + An =

∐

i∈I Ai and
[f1, . . . , fn] = [fi]i∈I . Notice that an empty coproduct (i.e. I = ∅) is an initial object.

We say that C has (finite) coproducts, if for every (finite) set I and every (Ai)i∈I ∈ ObCI there
exists a coproduct

∐

i∈I Ai in C. We obtain the laws in Table 7 which are dual to the laws in Table 6.

Proof. Dually to Definition and Lemma C.4.1.

C.4.4 Lemma (coproducts in Set). The category Set has coproducts.



C.5 The functors for (co-)products 53

C Aj

B

�

?

�
�

�
�

�
�

�
��=

ιj

[fi]i∈I

fj

∀ j ∈ I : :

Figure 3: Coproduct UP

Laws for coproducts
UP h = [fi]i∈I ⇐⇒ ∀ i ∈ I : : h · ιi = fi
reflection [ιi]i∈I = id∐

i∈I
Ai

fusion h · [fi]i∈I = [h · fi]i∈I
cancelation ∀ j ∈ I : : [fi]i∈I · ιj = fj

where h ∈ Mor C and ∀ j ∈ I : : fj : B ← Aj

Table 7: Laws for coproducts

Proof. Let I be a set and for every i ∈ I let Ai be a set. We will show that
∐

i∈I

Ai =
⋃

i∈I

{

(i, a)
∣

∣ a ∈ Ai
}

,

is a coproduct of (Ai)i∈I with inclusions

∀ j ∈ I : : ιj :
∐

i∈I

Ai ← Aj : (j, a)←[ a.

Therefore it is sufficient to show that for every set B and every (B
fi
←−− Ai)i∈I

[fi]i∈I : B ←
∐

i∈I

Ai : fja←[ (j, a)

is the respective copairing by verifying the UP of the coproduct (Table 7).

C.5 The functors for (co-)products

C.5.1 Definition and Corollary (product functor). Let C be a category which has finite products. The
product functor is defined by

∏

:







C ← Cn
∏n
i=1Ai ←[ (Ai)

n
i=1 ∀ (Ai)

n
i=1 ∈ ObCn

〈fi · πi〉
n
i=1 ←[ (fi)

n
i=1 ∀ (fi)

n
i=1 ∈ MorCn,

We also write f1 × · · · × fn =
∏n
i=1 fi =

∏

(fi)
n
i=1. We declare that the operation symbol × binds

weaker (i.e. has lower precedence) than the composition operator · . For every f ∈ MorC and n ∈ N0

we define
∏n

: C ← C by
∏n

f =
∏n
i=1 f . For every C-object A we also write An =

∏n
A. We will

never use the latter notation for morphisms. The product functor
∏

satisfies the laws in Table 8.



54 C BASIC CATEGORY THEORY

Laws for product functors
reflection

∏n
i=1 idAi

= id∏

n
i=1Ai

fusion (i)
∏n
i=1 fi · 〈gi〉

n
i=1 = 〈fi · gi〉

n
i=1

fusion (ii)
∏n
i=1 fi ·

∏n
i=1 hi =

∏n
i=1(fi · hi)

cancelation ∀ j : : πj ·
∏n
i∈I fi = fj · πj

where ∀ j : : fj , gj , hj ∈ MorC such that ∀ i, j : : dom gi = dom gj

Table 8: Laws for product functors

The projections are natural transformations:

πj : Pj
.←

∏

.

Proof. The laws follow straightforward from the definition of the product functor and the laws for prod-
ucts from Table 6. The cancelation law is the naturalness condition for πj : Pj

.←
∏

.

C.5.2 Definition and Corollary (coproduct functor). This is dual to Definition and Corollary C.5.1 so
we will have nothing to prove. Let C be a category which has finite coproducts. The coproduct functor
is defined by

∐

:







C ← Cn
∐n
i=1Ai ←[ (Ai)

n
i=1 ∀ (Ai)

n
i=1 ∈ Ob Cn

[ιi · fi]
n
i=1 ←[ (fi)

n
i=1 ∀ (fi)

n
i=1 ∈ MorCn.

We also write f1+· · ·+fn =
∐n
i=1 fi =

∐

(fi)
n
i=1. We declare that the operation symbol + binds weaker

(i.e. has lower precedence) than the product functor operator ×. The coproduct functor
∐

satisfies the
laws in Table 9.

Laws for coproduct functors
reflection

∐n
i=1 idAi

= id∐

n
i=1Ai

fusion (i) [fi]
n
i=1 ·

∐n
i=1 gi = [fi · gi]

n
i=1

fusion (ii)
∐n
i=1 gi ·

∐n
i=1 hi =

∐n
i=1(gi · hi)

cancelation ∀ j : :
∐n
i=1 gi · ιj = ιj · gj

where ∀ j : : fj , gj , hj ∈ Mor C such that ∀ i, j : : cod fi = cod fj

Table 9: Laws for coproduct functors

The injections are natural transformations:

ιj :
∐ .← Pj .

∗

C.5.3 Lemma ((co-)products in the functor category). Let C and D be categories such that C has
(finite) (co-)products. Then CD has (finite) (co-)products.

Proof. Since products and coproducts are dual to each other, it is sufficient to prove the statement for
products: Let I be a set and (Fi)i∈I ∈ Ob(CD)I be an I-family of CD-objects. The category C has

products (FiD
(πi)D
←−−−−−

∏

j∈I(FjD))i∈I . We claim that (Fi
πi←−−

∏

j∈I Fj)i∈I is a product in CD where
πi =

(

(pii)D
)

D∈Ob D
and ∀ f ∈ MorD : : (

∏

j∈I Fj)f =
∏

j∈I(Fjf). The naturalness of πi follows

from cancelation in Table 8. The UP can easily be verified for the pairing ∀ (τi)i∈I ∈ Mor(CD)I : : ∀D ∈
ObD : : (〈τi〉i∈I)D = 〈(τi)D〉i∈I by pointwise calculations in C for every D-object. The dual statement
is true for coproducts.



C.6 Initial algebras and catamorphisms 55

C.5.4 Note. Let C be a category which has (finite) products. From Lemma C.5.3 we know that the
functor category CC has (finite) products also. Let I be a (finite) set. The functors

∏

: CC ← (CC)I and
∏

: C ← CI are related by the equation

∀ (Fi)i∈I ∈ Ob(CC)I : : (
∏

i∈I

Fi)f =
∏

i∈I

(Fif).

Let n ∈ N0. The functors
∏n

: CC ← CC and
∏n

: C ← C are related by the equation
∏n

IdC =
∏n. ∗

C.5.5 Lemma. Let C be a category with no empty hom-classes, i.e. ∀A,B ∈ Ob C : : C(A,B) 6= ∅. If
C has (co-)products, then the respective (co-)product functors are faithful.

Proof. Let I be a set, (Ai)i∈I , (Bi)i∈I ∈ Ob CI , and (fi)i∈I , (f
′

i)i∈I ∈ CI
(

(Ai)i∈I , (Bi)i∈I
)

, and let
j ∈ I . Since ∀ i ∈ I : : C(Bi, Bj) 6= ∅ there exist for every i ∈ I a C-morphism hi : Bi ← Bj . We
choose hj = idBj

and calculate:
∏

i∈I

fi =
∏

i∈I

f ′i

=⇒ πj ·
∏

i∈I

fi · 〈hi〉i∈I = πj ·
∏

i∈I

f ′i · 〈hi〉i∈I

=⇒ { cancelation for product(functors) Table 8 and Table 6 }

fj = f ′j .

This is true for all j ∈ I and thus (fj)j∈I = (f ′j)j∈I and hence
∏

i∈I is faithful. The dual proposition
holds for coproducts.

C.6 Initial algebras and catamorphisms

C.6.1 Definition and Lemma (initial algebra, catamorphism). Let C be a category and F : C ← C an
endofunctor. The category AlgCF, defined by:

Ob(AlgCF) =
{

ϕ ∈ MorC
∣

∣ ∃A ∈ Ob C : : ϕ : A← FA
}

and for every ϕ,ϕ′ ∈ Ob(AlgCF) where ϕ : A← FA and ϕ′ : B ← FB with A,B ∈ Ob C:

AlgCF (ϕ,ϕ′) =
{

(ϕ, f, ϕ′) ∈ {ϕ} × C(A,B)× {ϕ′}
∣

∣ f · ϕ′ = ϕ · Ff
}

and identity and composition for every ϕ : A ← FA, ϕ′ : A′ ← FA′, ϕ′′ : A′′ ← FA′′, and every
f : A← A′ defined by

idϕ = (ϕ, idA, ϕ)

(ϕ, f, ϕ′) · (ϕ′, g, ϕ′′) = (ϕ, f · g, ϕ′′)

is called the category of F-algebras over C. The morphisms of this category are called F-algebra homo-
morphisms. We define the functor | � |

F
: C ← AlgCF by

∀ϕ ∈ Ob(AlgCF) : : |ϕ|
F

= codC ϕ

and
∀ (ϕ, f, ϕ′) ∈ Mor(AlgCF) : : |(ϕ, f, ϕ′)|

F
= f.

For every F-algebra ϕ : A ← FA we call the object A ∈ ObC the carrier of ϕ, thus the functor | � |
F

maps F-algebras to their carriers. If AlgCF has an initial object, then we denote it by inF and call it the
initial algebra (or constructor) of F. The carrier of the initial algebra is denoted by µF and called the
least fixed point5 of F. The image of the uniquely mediating morphism

∀ϕ ∈ Ob(AlgCF) : : ¡ϕ : ϕ←−−−−
AlgCF

inF

5The reason is that is suffices the fixpoint equation µF ∼
= F, because initial algebras are always isomorphisms as we will see

later in Lemma C.6.4. There exists an equivalent definition for the least fixed point of F as (carrier of) the initial object in the
category of fixpoints of F, i.e. the full subcategory of AlgCF where the objects (F-algebras) are C-isomorphisms.



56 C BASIC CATEGORY THEORY

under the functor | � |
F
, i.e.

|¡ϕ|
F

: codC ϕ←−
C
µF

is called the catamorphism generated by ϕ (w.r.t. F) (from Greek κατα, downwards) and is denoted by
([ϕ])F, i.e. ¡ϕ = (ϕ, ([ϕ])F, inF). Note that initial algebra and catamorphism are determined uniquely up
to F-algebra-isomorphism only, and hence µF is determined uniquely up to C-isomorphism only. The
laws in Table 10 are a consequence of the laws in Table 4.

Laws for catamorphisms
UP f = ([ϕ])F ⇐⇒ f · inF = ϕ · Ff
reflection ([inF])F = idµF

fusion f · ϕ′ = ϕ · Ff =⇒ f · ([ϕ′])F = ([ϕ])F

where f ∈ MorC and ϕ,ϕ′ ∈ Ob(AlgCF)

Table 10: Laws for catamorphisms

The following equivalent definition is more descriptive: the AlgCF-object inF : µF ← F(µF) is an
initial algebra of F, provided that for every A ∈ ObC and every ϕ : A ← FA there exists a unique
C-morphism ([ϕ])F such that the square in the diagram in Figure 4 commutes.

�
??

�µF F(µF)

FAA

inF

ϕ

C

([ϕ])F F([ϕ])F-

?

inF

ϕ

¡ϕ

AlgCF -

| � |
F

| � |
F

Figure 4: Catamorphism UP

C.6.2 Example (F-algebra). For the endofunctor F = Id× Id in the category Set , i.e.

F :







Set ← Set

A×A ←[ A ∀A ∈ ObSet

f × f ←[ f ∀ f ∈ MorSet

we consider the category AlgSetF. An F-Algebra ϕ ∈ Ob(AlgSetF) is a function

ϕ : A←−−
Set

A×A

with an A ∈ ObSet . On the other hand an F-Algebra ϕ can be considered as a set A = |ϕ|
F

together
with a binary operation ?, where

∀ a, b ∈ A : : a ? b = ϕ(a, b).



C.6 Initial algebras and catamorphisms 57

Let ϕ,ϕ′ ∈ Ob(AlgSetF) where ϕ : A ← A × A and ϕ′ : A′ ← A′ × A′. The underlying function
|f |

F
: A←−−

Set
A′ of an AlgSetF-morphism f = (ϕ, |f |

F
, ϕ′) : ϕ←−−−−−

AlgSetF

ϕ′ has to satisfy the equation

|f |
F
· ϕ′ = ϕ · F|f |

F
,

i.e.
∀ a, b ∈ A : : |f |

F

(

ϕ′(a, b)
)

= ϕ(|f |
F
a, |f |

F
b).

If we denote the functions ϕ and ϕ′ by the binary operations ? and ?′, respectively, as above, we may
write this equation as follows:

f(a ?′ b) = fa ? fb.

This is the homomorphism property of f for algebras (with one binary function ? or ?′, respectively). ∗

C.6.3 Lemma (initial algebras in Set). Let Σ = {σ1, . . . , σm} be a ranked alphabet and F =
∐m
j=1(

∏rankΣ σj
Id) : Set ← Set . The category AlgSetF has an initial object.

Proof. We will show that

inF = [σ1, . . . , σm] : µF← F(µF) where µF = TΣ

is an initial F-algebra. For every A ∈ ObSet and every ϕ : A ← FA we claim that the underlying
function of the unique Σ-algebra homomorphism

(A;ϕ · ι1, . . . , ϕ · ιm)← (TΣ;σ1, . . . , σm)

from the initial term algebra TΣ (which is free over ∅) is the respective catamorphism

([ϕ])F : A← µF.

But this is easy to see, because the UP of the catamorphism (Table 10) is nothing else than the Σ-algebra
homomorphism property.

C.6.4 Lemma (Lambek’s Lemma [Lam68]). Constructors are isomorphisms. In more detail: Let C be
a category and F : C ← C be an endofunctor. If the category AlgCF has an initial object inF, then this is
an isomorphism in C.

Proof. On the one hand

inF · ([FinF])F

= { fusion (Table 10) }

([inF])F

= { reflection (Table 10) }

idµF

while on the other hand

([FinF])F · inF

= { UP (Table 10) }

FinF · F([FinF])F

= { F functor }

F
(

inF · ([FinF])F
)

= { see above }

FidµF

= { F functor }

idF(µF).

Thus, the constructor inF is a C-isomorphism.



58 REFERENCES

References

[AHS90] J. Adámek, H. Herrlich, and G. E. Strecker. Abstract and Concrete Categories. Pure and
Applied Mathematics. John Wiley & Sons, 1990.

[Bak79] B. S. Baker. Composition of top-down and bottom-up tree transductions. Inform. and
Control, 41:186–213, 1979.

[BdM97] R. Bird and O. de Moor. Algebra of Programming. International Series in Computer Sci-
ence. Prentice Hall, 1997.

[BH75] L. Budach and H. J. Hoehnke. Automaten und Funktoren, volume 35 of Mathematische
Monographien. Akademie-Verlag, Berlin, 1975.

[Bor94] F. Borceux. Handbook of Categorical Algebra 1, volume 1 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, Great Britain, 1994.

[CDPR97a] L. Correnson, E. Duris, D. Parigot, and G. Roussel. Attribute grammars and functional pro-
gramming deforestation. In 4th International Static Analysis Symposium—Poster Session,
Paris (F), 1997.

[CDPR97b] L. Correnson, E. Duris, D. Parigot, and G. Roussel. Symbolic composition. Technical
Report 3348, INRIA, January 1997.

[CF82] B. Courcelle and P. Franchi–Zannettacci. Attribute grammars and recursive program
schemes. Theoret. Comput. Sci., 17:163–191, 235–257, 1982.

[Dam82] W. Damm. The IO- and OI-hierarchies. Theoret. Comput. Sci., 20:95–208, 1982.

[dB89] P. J. de Bruin. Naturalness of polymorphism. Technical Report CS 8916, Rijksuniversiteit
Groningen, The Netherlands, 1989.

[Ehr74] H. Ehring. Universal Theory of Automata. Teubner Studienbücher: Informatik. Teubner,
Stuttgart, Germany, 1974.

[Eng75] J. Engelfriet. Bottom-up and top-down tree transformations—a comparison. Math. Systems
Theory, 9(3):198–231, 1975.

[Eng77] J. Engelfriet. Top-down tree transducers with regular look-ahead. Math. Systems Theory,
10:289–303, 1977.

[Eng80] J. Engelfriet. Some open questions and recent results on tree transducers and tree languages.
In R.V. Book, editor, Formal language theory: perspectives and open problems, pages 241–
286. New York, Academic Press, 1980.

[Eng81] J. Engelfriet. Tree transducers and syntax-directed semantics. Technical Report Memo-
randum 363, Technische Hogeschool Twente, March 1981. also in: Proceedings of the
Colloquium on Trees in Algebra and Programming (CAAP 1992), Lille, France 1992.

[Eng82] J. Engelfriet. Three Hierarchies of Transducers. Math. Systems Theory, 15:95–125, 1982.

[EP72] H. Ehring and M. Pfender. Kategorien und Automaten. de Gruyter Lehrbuch. Walter de
Gruyter, 1972.

[EV85a] J. Engelfriet and H. Vogler. Characterization of high level tree transducers. In W. Brauer,
editor, Proceedings of the 12th ICALP, volume 195 of Lecture Notes in Computer Science,
pages 474–484, Nafplion, July 1985. Springer-Verlag Berlin.

[EV85b] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. System Sci., 31:71–146,
1985.



REFERENCES 59

[EV88] J. Engelfriet and H. Vogler. High level tree transducers and iterated pushdown tree trans-
ducers. Acta Informatica, 26:131–192, 1988.

[EV91] J. Engelfriet and H. Vogler. Modular tree transducers. Theoret. Comput. Sci., 78:267–304,
1991.

[Fel78] W. Felscher. Naive Mengen und abstrakte Zahlen, volume I. B. I. Wissenschaftsverlag,
1978.

[FHVV93] Z. Fülöp, F. Herrmann, S. Vágvölgyi, and H. Vogler. Tree transducers with external func-
tions. Theoret. Comput. Sci., 108:185–236, 1993.

[Fok92a] M. M. Fokkinga. A gentle introduction to category theory—the calculational approach. In
Lecture Notes of the STOP 1992 Summerschool on Constructive Algorithmics, pages 1–72
of Part 1. University of Utrecht, The Netherlands, September 1992.

[Fok92b] M. M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University of Twente, Dept
INF, Enschede, The Netherlands, 1992.

[Fok94] M. M. Fokkinga. Monadic maps and folds for arbitrary datatypes. Memoranda Informatica
94-28, University of Twente, June 1994.

[Fül81] Z. Fülöp. On attributed tree transducers. Acta Cybernet., 5:261–279, 1981.

[FV98] Z. Fülöp and H. Vogler. Syntax-directed semantics—Formal models based on tree trans-
ducers. Monographs in Theoretical Computer Science, An EATCS Series. Springer-Verlag,
1998.

[Gie88] R. Giegerich. Composition and evaluation of attribute coupled grammars. Acta Inform.,
25:355–423, 1988.

[Gil96] A. Gill. Cheap Deforestation for Non-strict Functional Languages. PhD thesis, Department
of Computing Science, Glasgow University, January 1996.

[GLP93] A. Gill, J. Launchburry, and S. L. Peyton-Jones. A short cut to deforestation. In Proceedings
of Functional Programming Languages an Computer Architecture (FPCA ’93), pages 223–
232, Copenhagen, Denmark, June 1993. ACM Press.

[GS84] F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.

[GS97] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3, chapter 1, pages 1–68. Springer-Verlag, 1997.

[GTWW77] J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Initial algebra semantics and
continuous algebras. J. ACM, 24:68–95, 1977.

[HIT96] Z. Hu, H. Iwasaki, and M. Takeichi. Deriving structural hylomorphisms from recursive
definitions. In Proceedings of the 1st International Conference on Functional Programming,
pages 73–82, Philadelphia, PA, May 1996. ACM Press.

[Ihr88] Th. Ihringer. Allgemeine Algebra. Teubner Studienbücher: Mathematik. Teubner, Stuttgart,
Germany, 1988.

[Joh01] P. Johann. Short cut fusion: Proved and improved. In W. Taha, editor, Proceedings of the
2nd International Workshop on Semantics, Applications, and Implementation of Program
Generation (SAIG 2001), volume 2196 of LNCS, pages 47–71, Florence, Italy, September
2001. Springer.

[Jür00] C. Jürgensen. A formalization of hylomorphism based deforestation with an application
to an extended typed λ-calculus. Technical Report TUD-FI00-13, Technische Universität
Dresden, Fakultät Informatik, D-01062 Dresden, Germany, November 2000.



60 REFERENCES

[Kle65] H. Kleisli. Every standard construction is induced by a pair of adjoint functors,. In Proc.
Amer. Math. Soc., volume 16, pages 544–546, 1965.

[KV01] A. Kühnemann and J. Voigtländer. Tree transducer composition as deforestation method
for functional programs. Technical Report TUD-FI01-07, Technische Universität Dresden,
Fakultät Informatik, D-01062 Dresden, Germany, August 2001.

[Lam68] J. Lambek. A fixpoint theorem for complete categories. Mathematische Zeitschrift,
103:151–161, 1968.

[LS95] J. Launchburry and T. Sheard. Warm fusion: Deriving build-catas from recursive definitions.
In Proceedings of Functional Programming Languages an Computer Architecture (FPCA
’95), pages 314–323, La Jolla, San Diego, CA, USA, June 1995. ACM Press.

[NV01] T. Noll and H. Vogler. The universality of higher-order attributed tree transducers. Theory
of Computing Systems, 45–75, 2001.

[Par00] A. Pardo. Monadic corecursion – definition, fusion laws, and applications –. In B. Ja-
cobs, L. Moss, H. Reichel, and J. Rutten, editors, Electronic Notes in Theoretical Computer
Science, volume 11. Elsevier Science Publishers, 2000.

[PTH01] S. L. Peyton-Jones, A. Tolmach, and T. Hoare. Playing by the rules: Rewriting as a practical
optimisation technique in GHC. In Ralf Hinze, editor, Preliminary Proceedings of the 2001
ACM SIGPLAN Haskell Workshop (HW ’2001), pages 203–233, Firenze, Italy, September
2001.

[Rou68] W. C. Rounds. Trees, transducers and transformations. PhD thesis, Stanford University,
1968.

[Rou70] W. C. Rounds. Mappings and grammars on trees. Math. Systems Theory, 4:257–287, 1970.

[Tha70] J. W. Thatcher. Generalized2 sequential machine maps. J. Comput. System Sci., 4:339–367,
1970.

[TM95] A. Takano and E. Meijer. Shortcut deforestation in calculational form. In Proceedings of
the Conference on Functional Programing Languages and Computer Architecture, pages
306–313, La Jolla, CA, June 1995. ACM Press.

[VK01] J. Voigtländer and A. Kühnemann. Composition of functions with accumulating parameters.
Technical Report TUD-FI01-08, Technische Universität Dresden, Fakultät Informatik, D-
01062 Dresden, Germany, August 2001.

[Wad89] P. Wadler. Theorems for free! In The 4th International Conference on Functional Pro-
gramming Languages and Computer Architecture (FPCA ’89), pages 347–359, London,
September 1989. Imperial College, ACM Press.

[Wad90] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical Computer
Science, 73(2):231–248, 1990.

[Wad92] P. Wadler. The essence of functional programming. In Proceedings of the Symposium on
Principles of Programming Languages (POPL ’92), Albequerque. ACM Press, 1992.

[Wec92] W. Wechsler. Universal Algebra for Computer Scientists, volume 25 of EATCS Monograohs
on Theoretical Computer Science. Springer, 1992.


	1 Introduction
	2 Preliminaries
	2.1 General notions
	2.2 Basic universal algebra
	2.3 Basic category theory
	2.4 Concrete categories

	3 Calculating with initial and final objects
	3.1 Deriving functors by initiality or finality
	3.2 Generalized `acid rain theorems'
	3.3 Characterization of concrete functors between categories of algebras

	4 Syntax and semantics of top-down tree transducers
	4.1 Syntax of top-down tree transducers
	4.2 Semantics of top-down tree transducers
	4.3 Syntactic composition of top-down tree transducers

	5 Syntax and semantics of categorical transducers
	5.1 Syntax of categorical transducers
	5.2 Semantics of categorical transducers
	5.3 Categorical transducer homomorphisms
	5.4 Top-down categorical transducers

	6 Relating transducers
	6.1 Category of forests
	6.2 Relating semantics of top-down tree transducers and top-down categorical transducers
	6.3 Relating syntactic composition and fusion

	7 Future work
	Acknowledgment
	A Laws
	B Basic universal algebra
	B.1 Algebras and homomorphisms
	B.2 Free algebras and substitutions

	C Basic category theory
	C.1 Categories and Functors
	C.2 Natural transformations
	C.3 Initial and final objects
	C.4 Products and coproducts
	C.5 The functors for (co-)products
	C.6 Initial algebras and catamorphisms

	References

