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Abstract. Any integer program may be relaxed to a group problem. We define the master cyclic group problem
and several master knapsack problems, show the relationship between the problems, and give several classes
of facet-defining inequalities for each problem, as well as a set of mappings that take facets from one type of
master polyhedra to another.

1. Introduction

1.1. Motivation

Consider the integer programming problem

min{cx|Ax = b, x ≥ 0 and integer} (1.1)

and its linear programming relaxation

min{cx|Ax = b, x ≥ 0}. (1.2)

Let (B,N) represent the sets of basic and non-basic variables for an optimal basic
solution to (1.2). We may rewrite (1.1) as

min{cBxB + cNxN |BxB +NxN = b, xB, xN ≥ 0 and integer}. (1.3)

A group relaxation of (1.3) may be found by removing the non-negativity restrictions
on the basic variables xB :

min{cBxB + cNxN |BxB +NxN = b, xN ≥ 0, xB, xN integer}. (1.4)

From this formulation, we can see that given a non-negative and integer vector xN , xB
is integer if and only if

NxN ≡ b (mod B). (1.5)

In other words, if NxN − b gives some integer combination of the columns of B. This
is the traditional group problem.
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We can derive an equivalent formulation of the group problem by first multiplying
the constraints of (1.4) by the inverse of the basis matrix B:

min{cBxB + cNxN |xB + (B−1N)xN = B−1b, xN ≥ 0, xB, xN integer}. (1.6)

From this formulation, we can see that given any non-negative and integer vector xN ,
xB is integer if and only if

(B−1N)xN ≡ B−1b (mod 1). (1.7)

A single row i of (1.7) has the form

∑

j∈N
āij xj ≡ b̄i (mod 1). (1.8)

Because we are taking both sides of (1.8) (mod 1), we only need to include the fractional
part of each coefficient āij and b̄i :

∑

j∈N
âij xj ≡ b̂i (mod 1), (1.9)

where âij ≡ āij (mod 1) for all j , and b̂i ≡ b̄i (mod 1).
When generating cutting planes for the original integer programming problem, the

practical way to find group characters [9] uses the updated rows of the optimal linear
programming relaxation tableau as derived above. Subadditive functions on the unit in-
terval can then be used to derive cutting planes for the integer programming problem.
However, when the entries of A and b are integral, D = det(B) is a common denomi-
nator for all entries âij and b̂i . Therefore, we can multiply the relation in (1.9) by D to
find

∑

j∈N
(Dâij )xj ≡ (Db̂i) (mod D), (1.10)

where (Dâij ) and (Db̂i) are all integers. (1.10) with the added conditions xN ≥ 0 and
integer, is a cyclic group problem. Let Cn = {0, 1, ..., n− 1} represent the cyclic group
of order n. The generic version of a cyclic group problem is

∑

j∈S
aj xj ≡ r (mod n), (1.11)

xS ≥ 0, and integer

where S is a set of variables indices, aj ∈ Cn for all j ∈ S and r ∈ Cn. (1.10) is therefore
the group problem over the cyclic group CD . Typically, only a subset of the elements of
Cn are represented in the cyclic group problem derived for an IP. In other words, there
are some elements a ∈ Cn that do not appear as coefficients in (1.10). The master cyclic
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group problem corresponding to a given cyclic group problem has each group element
represented exactly once:

n−1∑

j=1

jxj ≡ r (mod n), (1.12)

xj ≥ 0, and integer for j = 1, ..., n− 1.

Gomory [6] showed that the facets of the convex hull of solutions to the cyclic group
problem (1.11) may be obtained from a subset of the facets for the convex hull of
solutions to the master problem (1.12) by simply deleting the facet coefficients corre-
sponding to elements that are not present in (1.11). The remaining facets for the master
problem give valid inequalities for the cyclic group problem. Therefore, master cyclic
group problems can provide cutting planes for any integer program [6–8, 10].

The procedure given by Gomory and Johnson [9] mentioned above for generating
cutting planes uses the updated rows of the tableau directly and does not require knowl-
edge of which cyclic group is actually present for a given basis, therefore avoiding the
need for exact arithmetic with large integers and the computation of D. This method is
based on theory about the infinite group problem over the unit interval modulo 1 [7, 8].

The cut-generation method using master cyclic group facets that we just described is
essentially a finite and discrete version of this theory. If the relation of the master cyclic
group problem is divided by the size of the group, then the congruence is (mod 1)
instead of (mod n) and the group elements may be represented by grid points on the
unit interval.

There are several intersections of these continuous and discrete theories. For exam-
ple, classes of seed facets we will develop in later sections for finite master cyclic group
problems give extreme subadditive functions [9]. Conversely, extreme subadditive (and
piecewise-linear) functions in the continuous interval problem also give facets for the
discrete master problem when the break points of the function fall on grid points.

By studying the facets of the discrete master cyclic group problem, we gain intuition
and knowledge about extreme subadditive functions for the continuous problem, which
leads to new ways to generate cutting planes for general integer programs.

1.2. Structure of paper

We conducted a detailed study of the facets of the master cyclic group polyhedra, as
well as the master knapsack partitioning and covering polyhedra. We can now explain
many of the facets of these problems using several classes of seeds and mappings. Seeds
are methods that generate facets directly for any given master polyhedra. Mappings take
facets from one type of master polyhedra to another, and often give a sequence of facets
for infinitely larger master problems.

Gomory and Johnson [7] showed that the number of facets of master cyclic group
polyhedra grows exponentially. It is therefore impractical to assume we can explain all
facets of master cyclic group polyhedra. However, we may hope to explain the “impor-
tant” facets of these polyhedra. Gomory [10] developed a shooting experiment to try to
estimate which facets are largest on the surface of the polyhedra. Using the shooting



380 J. Aráoz et al.

experiment results, we may now try to explain the facets that we think are most important
to the structure of the master polyhedra. In fact, these facets tend to have nicer structure
than the facets that appear to be small on the surface of the polyhedra, and we are able
to explain many of them. As we introduce classes of facets throughout this paper, we
will note those that performed strongly in the shooting experiment.

In the next section, we define the master cyclic group problem and review a subad-
ditive characterization that gives the facets of its polyhedra. The remainder of the paper
develops theory and machinery to understand and explain facets and give methods to
generate facets for master polyhedra. Section 3 shows that for small problems, all facets
may be explained using only a few facets as the foundation for lifting-type methods.
For larger problems, the facets explained include those that the shooting experiment
shows are relatively important. In sections 4, 6, and 7, two master knapsack problems
are introduced and many of their facets are classified. The relationship between these
problems and the master cyclic group problem is discussed in section 5, and a method
for obtaining cyclic group facets from knapsack facets is introduced.

Appendix B summarizes the classes of facets we developed for the master polyhedra
we consider. Essentially, we give a core of ten classes of facets and five different ways
to get facets from these classes for other master polyhedra. Tables of all facets for small
problems are also given in appendix B. Complete tables of facet-defining inequalities
for some larger problems are available at http://www.tli.gatech.edu/AEGJ. An explana-
tion of the double-description method [12] and a parallel implementation that we used to
generate the facets may also be found there, and some supplemental proofs are available.

2. The master cyclic group problem

Recall the master cyclic group problem of order n with right-hand-side r:

min{
n−1∑

i=1

cixi |
n−1∑

i=1

ixi ≡ r mod n, x ≥ 0 and integer}. (Cn,r )

Since we are interested in the convex hull of feasible solutions, we will typically ignore
the objective function.

Without loss of generality, we may assume 0 ≤ r ≤ n−1. In the case of the zero-rhs
problem where r = 0, we must add the constraint

∑n−1
i=1 xi ≥ 1 to eliminate the trivial

solution xi = 0 for i = 1, ..., n− 1.
The cyclic group polyhedron P(Cn,r ) is the convex hull of feasible solutions to

the cyclic group problem Cn,r . For any n and r , the recession cone of P(Cn,r ) is the
non-negative orthant of Rn−1 [6].

Let (π, γ ), where π is an (n− 1)-row vector and γ a scalar, represent the inequality∑n−1
i=1 πixi ≥ γ . Gomory [6] gave a subadditive characterization of all facet-defining

inequalities for P(Cn,r ):

Theorem 2.1 (Non-zero rhs). For integers r and n, where 1 ≤ r < n, an inequality
(π, γ ) is facet defining for the cyclic group polyhedron P(Cn,r ) if and only if it is a non-
negativity constraint or its coefficients are given by the vectors π ∈ Rn−1 and γ ∈ R
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that represent the extreme rays of the cone

Sn,r = conv






πi ≥ 0, i = 1, ..., n− 1 (Nonnegativity)
πi + πj ≥ πk, 1 ≤ i, j, k < n and (Subadditivity)

(i + j) ≡ k (mod n)
πi + πj = γ, 1 ≤ i, j < n and (Complementarity)

(i + j) ≡ r (mod n)
πr = γ






.

Since γ always equals πr , we will often write the facet-defining inequalities as (π, πr).
However, the zero-rhs problem does not have γ = πr , so we give its characterization
separately:

Theorem 2.2 (Zero rhs). For integer n ≥ 2, an inequality (π, γ ) is facet defining for
the cyclic group polyhedron P(Cn,0) if and only if it is a non-negativity constraint or its
coefficients are given by the vectors π ∈ Rn−1 and γ ∈ R that represent the extreme
rays of the cone

Sn,0 = conv






πi ≥ 0 i = 1, ..., n− 1 (Nonnegativity)
πi + πj ≥ πk 1 ≤ i, j, k < n and (Subadditivity)

(i + j) ≡ k mod n
πi + πj = γ 1 ≤ i, j < n and (Complementarity)

(i + j) ≡ 0 mod n






.

The subadditive cones introduced here are contained in the non-negative orthant and
are, therefore, pointed. They can be seen to be full dimensional. The facet-defining in-
equalities given this way are unique subject to multiplication by a constant. Throughout
the paper, we will scale inequalities to have all integer coefficients with no common
divisors, unless otherwise noted. Also, we will often refer to a facet-defining inequality
for a polyhedron as simply a facet of that polyhedron.

3. Master cyclic group facets

Sections 3.2–3.3, except theorem 3.4, review previous results about master cyclic group
polyhedra. Section 3.4 gives a new class of facet-defining inequalities for this problem.

3.1. Classifying cyclic group facets

The following definition will be useful throughout the remainder of the paper:

Definition 3.1. For an inequality (π, γ ) and 1 ≤ i, j, k ≤ n−1 with k ≡ (i+j) mod n,
we will call πi + πj ≥ πk an additive relation if it is satisfied at equality.

Note that all complementarity constraints are additive relations. We will use theorems
2.1 and 2.2 to prove an inequality (π, γ ) is facet-defining for P(Cn,r ) in two steps:

1. Show (π, γ ) satisfies non-negativity, subadditivity, and complementarity
2. Construct n− 2 linearly independent additive relations satisfied by (π, γ ).
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3.2. Mappings

Using the group structure of the master cyclic group polyhedra, Gomory [6] gave the
following two theorems that use automorphisms and homomorphic liftings to explain
facets.

Theorem 3.2 (auto). For the cyclic group Cn of order n and 0 ≤ r, s ≤ n − 1, let
φ : Cn → Cn be an automorphism where r = φ(s). Then there is a one-to-one mapping
of facets from P(Cn,r ) to P(Cn,s). If

n−1∑

i=1

πixi ≥ πr

is a facet for P(Cn,r ), then

n−1∑

i=1

π ′
i xi ≥ π ′

s

is the corresponding facet for P(Cn,s), where π ′
i = πφ(i).

When the facets are known for P(Cn,r ), the facets for P(Cn,φ(r)) for an automor-
phism φ are essentially the same. Thus, table B.2 only lists facets for one of the right
hand side elements r in the set of group elements that map onto each other under auto-
morphisms.

Theorem 3.3 (homo). For integers r, d , and n, 1 ≤ r, d < n, where d divides n but
does not divide r , and s ≡ r mod d , any facet of P(Cd,s) can be lifted to a facet for
P(Cn,r ) using the homomorphism ψ : Cn → Cd given by ψ(i) ≡ i mod d. Explicity, if

d−1∑

i=1

πixi ≥ πs

is a facet for P(Cd,s), then the facet for P(Cn,r ) from homomorphic lifting is:

n−1∑

i=1

π ′
i xi ≥ π ′

s ,

where π ′
i = πψ(i). Here π0 is considered to be 0.

Essentially the new facet is obtained by cyclically repeating the original facet n/d times.
That is, the new facet is:

π ′ = (π1, π2, ..., πd−1, 0, π1, π2, ..., πd−1, 0, ..., 0, π1, π2, ..., πd−1).

In table B.2, we omit these facets because they are derived from listed facets of smaller
groups.

Every lifting of this type will have at least one coefficient among π ′
1, ..., π

′
n−1 equal

to 0. Gomory [6] also showed the converse theorem: any facet of a master cyclic group
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polyhedron with some coefficient π ′
i = 0 comes from such a homomorphic lifting.

Facets from homomorphic liftings were consistently among the most hit facets in the
shooting experiment.

The previous theorem requires that r > 0, which means the right hand side is not in
the kernel of the homomorphism. The next theorem discusses a different type of homo-
morphic lifting when the right-hand side is in the kernel of the homomorphism. Instead
of setting π ′

i = 0 when ψ(i) = 0, we will set π ′
i = σ i

d
, where (σ, σ0) is a facet for

the zero-rhs problem P(Cn
d
,0). Gomory’s original paper [6] on the group problem had a

lifting result of this type using a "special" facet for the kernel. Gastou [4] had a different
version of that result that recognized the role of self-inverse elements. Our result is a
strengthening of both results and, empirically, seems to be the strongest possible for
cyclic groups.

Theorem 3.4 (0lifting). For integers r, d, and n, 1 < d < n, where d divides both n
and r , let

d−1∑

i=1

σixi ≥ γ

be a facet of P(Cd,0) such that either

1. d is odd, or
2. d is even and there is some i �= d

2 such that the subadditive relation

σd
2

+ σi ≥ σ
( d2 +i)mod d

holds at equality.

Let
k−1∑

i=1

πixi ≥ πs

be any facet of P(Ck,s) where k = n
d

and s = r
d

. Letting φ : Cn → Cd denote the
homomorphism given by φ(i) ≡ i (mod d), a lifted facet for P(Cn,r ) is:

n−1∑

i=1

π ′
i xi ≥ π ′

s ,

where

π ′
i =

{
ασφ(i) if φ(i) �= 0

βπi/d otherwise

where α = πs
gcd(d,πs)

and β = d
gcd(d,πs)

.

The case r = 0 is allowed. Essentially the new facet is obtained as in theorem 3.3, and
then the 0’s are replaced by the appropriate elements of π , giving

π ′ = (ασ1, ασ2, ..., ασd−1, βπ1, ασ1, ..., ασd−1, βπ2, ..., βπk−1, ασ1, ..., ασd−1).

The lengthy proof of this theorem is in appendix A.
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3.3. Mixed integer cut

The first cyclic group facet we use as a facet-generating seed is the mixed integer cut
(mic). For the polyhedron P(Cn,r ), r �= 0, the mixed integer cut (π, γ ) is:

π = (
1

r
, ...,

i

r
, ...,

r − 1

r
, 1,

n− r − 1

n− r
, ...,

n− i

n− r
, ...,

1

n− r
).

and γ = 1. This cut is a facet for every cyclic group problem ([8], theorem 3.3). When
r = 0, the cut is

π = (
1

n
, ...,

i

n
, ...,

n− 1

n
),

and again γ = 1. Mappings given by automorphisms and homomorphisms are powerful
tools when used with the mixed integer cut. For example, for n ≤ 7, every cyclic group
facet, except one, is either a mixed integer cut itself or comes from one or more mappings
of a mixed integer cut. In every shooting experiment conducted to this point, the most hit
facet is either a mixed integer cut itself, or a homomorphic lifting of a mixed integer cut
for a smaller group problem, or an automorphism of a mixed integer cut for a problem
with a different right hand side. Additionally, all facets in these three sets consistently
were among the most hit facets.

3.4. Patterns for cyclic groups

We will often refer to the slopes and lines of a facet (π, γ ). Recall that in the defining re-
lation of the non-zero right hand side master cyclic group problem Cn,r , the coefficients
of both x0 and xn are zero. Therefore, we can think of the coefficients of π0 and πn as
equal to zero in a facet (π, γ ) of P(Cn,r ). We consider the slope s(i) = πi+1 − πi to
be the difference between two consecutive coefficients πi and πi+1 for i = 0, ..., n− 1.
If we let S = {s(i) : 1 ≤ i ≤ n − 2} denote the set of all unique slopes of a facet
(π, γ ), then we may say (π, γ ) has |S| slopes. Let a line L(i, i′) refer to a set of con-
secutive elements from i to i′ with constant slope; for example, if s(i) = s(i + 1) then
L(i, i + 2) = {i, i + 1, i + 2} is a line. If L(i, k) = {i, i + 1, ..., k} is a line that satisfies
both conditions:

1. either i = 0 or s(i − 1) �= s(i), and
2. either k = n or s(k) �= s(k − 1)

then we call L(i, k) a maximal line.
The mixed integer cut for r > 0 described in section 3.3 has two slopes: S =

{ 1
r
,− 1

n−r }, and two maximal lines: L(0, r) = {0, ..., r − 1, r}, and L(r, n) = {r, ..., n}.
We introduce two classes of cyclic group facets with four maximal lines. The first

has two slopes (α, β), and the second has three slopes (α, β, δ). In the theorems, we
describe the facets scaled to have πr = 1. In our examples and tables, we will give the
facets scaled to have all integer coefficients.

Theorem 3.5 below is a discrete version of the two-slope theorem described in theo-
rem 3.3 of [8]. That theorem described a class of piecewise linear functions on the unit
interval that have two slopes.
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Theorem 3.5 (2slope). For positive integers n, r , and d, with

max{r + 1, �n+ 1

2
	} ≤ d ≤ 
n+ r − 1

2
�},

(π, πr) defined as follows gives a facet of P(Cn,r ):

πi =






αi i ∈ J1 = {1, ..., r − 1}
1 + β(i − r) i ∈ J2 = {r, ..., d}
2d−n

2r + (i − d)α i ∈ J3 = {d + 1, ..., n+ r − d}
(i − n)β i ∈ J4 = {n+ r − d + 1, ..., n− 1},

where α = 1
r

and β = 2(r−d)−n
2r(r−d) .

Proof. Complementarity follows from the construction of π , and subadditivity follows
from the condition on d , which guarantees that 2πd = π2d−n. There are r− 1 triangular
relations π1 + πi = πi+1 for i ∈ J1. Similarly, there are d − r − 1 triangular relations
πn−1 +πi = πi−1 for i ∈ J4. Finally, there are n−d triangular relations πi+πd = πi+d
for i = 1, ..., n+ r − 2d and for i = r, ..., d − 1. With the exception of πd , all of these
relations either contain one element from J1 and one from J3, or one from J2 and one
from J4, so they are independent from the previous relations. �
Example 3.6. P(C12,5) has the following 2slope facets:

d = 7 : (π, γ ) = ((1, 2, 3, 4, 5, 3, 1, 2, 3, 4, 2), 5)

d = 8 : (π, γ ) = ((1, 2, 3, 4, 5, 4, 3, 2, 3, 2, 1), 5)

The facets described in the following theorem have three slopes and four maximal lines.
In the proof, we use lemma 6.2, which we will state and prove in section 6. Again, this
theorem gives a special case of a general theorem about functions on the unit interval
from Gomory and Johnson [9].

Theorem 3.7 (3slope). For positive integers n, r , and d, with r + 1 ≤ d ≤ 
n+r4 �,
(π, πr) defined as follows gives a facet of P(Cn,r ):

πi =






iα i ∈ J1 = {1, ..., r}
1 + (i − r)β i ∈ J2 = {r + 1, ..., d − 1}
iδ i ∈ J3 = {d, ..., n+ r − d}
(i − n)β i ∈ J4 = {n+ r − d + 1, ..., n− 1},

where α = 1
r
, δ = 1

n+r , and β = n+r−d
(n+r)(r−d) .

Proof. Complementarity follows from the construction of π , and subadditivity follows
from the condition on d , which guarantees d, 2d ∈ J3, so 2πd = π2d . As in the previous
proof, there are r− 1 triangular relations π1 +πi = πi+1 for i ∈ J1. Similarly, there are
d − r − 1 triangular relations πn−1 + πi = πi−1 for i ∈ J4. There are d − r triangular
relations πi + πd = πi+d for i = r, ..., d − 1. With the exception of πd , all of these
relations either contain one element from J2 and one from J4, so they are independent
from our previous relations. Finally, the condition on d guarantees that 3d ≤ n+ r − d,
so by lemma 6.2, the maximal lineL(d, n+r−d) , gives n+r−2d linearly independent
relations with all coefficients in J3. �
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Example 3.8. P(C12,1) has the following 3slope facets, scaled to have integer coeffi-
cients:

d = 2 : (π, γ ) = ((13, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), 13)

d = 3 : (π, γ ) = ((13, 8, 3, 4, 5, 6, 7, 8, 9, 10, 5), 13)

4. The master knapsack problem

4.1. The master equality knapsack problem

The master equality knapsack problem of size n is:

min{
n∑

i=1

cixi |
n∑

i=1

ixi = n, x ≥ 0 and integer}. (Kn)

Again, we refer to this as the master problem because for each i = 1, ..., n, there is a
variable xi with coefficient i in the constraint. The equality knapsack polyhedron P(Kn)
is bounded because for each i = 1, ..., n, 0 ≤ xi ≤ n

i
must be satisfied. Furthermore, the

polyhedron has dimension at most n − 1 because the defining knapsack equality must
be satisfied for every solution. Define a polytope to be a bounded polyhedron. For the
remainder of this paper, we will refer to the master equality knapsack polytope as sim-
ply the knapsack polytope. Most previous knapsack polyhedral studies, such as [11],[3],
looked only at 0-1 problems, unlike the knapsack over general integers we are concerned
with. It is clear to see that the knapsack polytope P(Kn) has dimension n − 1: for i =
2,...,n, {x1 = n− i, xi = 1, xj = 0 for j �= 1, i} is a solution, as is {x1 = n, xj = 0 for
j = 2, ..., n}; and these n solutions are affinely independent.

In section 5 we will show that the master equality knapsack polytopes are actually
facets of certain cyclic group polyhedra. Therefore, studying the facets of these poly-
topes gives us information about these cyclic group polyhedra. In section 6 we will give
several classes of facets for this problem.

4.2. The master knapsack packing problem

The master knapsack packing problem is:

min{
n∑

i=1

cixi |
n∑

i=1

ixi ≤ n, x ≥ 0 and integer}.

However, we do not need to study this problem independently: if we introduce a slack
variable s to this inequality, then, x1 and s are identical in the constraint. Therefore,
the master packing knapsack polyhedron is the same as the master equality knapsack
polyhedron.
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4.3. Subadditive characterization of facets

Let (ρ, ρn) refer to the inequality
∑n
i=1 ρixi ≥ ρn. The following subadditive charac-

terization of facets (ρ, ρn) of the master equality knapsack polytope P(Kn) is given in
[1]:

Theorem 4.1. The facets (ρ, ρn) of the knapsack polytope P(Kn) are the extreme rays
of the cone

Tn,r =
{
ρi + ρj ≥ ρ(i+j), 1 ≤ i, j, i + j ≤ n (Subadditivity)
ρi + ρn−i = ρn, 1 ≤ i ≤ 
n2 � (Complementarity)

}
.

The defining knapsack equation, given by ρi = i, is a basis for the lineality of this cone.
As with cyclic group facets, we will typically prove an inequality (ρ, ρn) gives a

facet for P(Kn) by first showing complementarity and subadditivity are satisfied, and
then giving n− 2 linearly independent additive relations.

5. Cyclic group facets from knapsack facets

In section 5.1, we describe the relationship between the master equality knapsack poly-
tope and the master cyclic group polyhedron. Sections 5.2 and 5.3 describe and prove a
method for obtaining facets for cyclic group polyhedra from facets of master knapsack
polytopes.

5.1. The knapsack polytope is a facet for cyclic group polyhedra P(Cn+1,n)

and P(Cn,0)

The convex hull P(Kn) of master knapsack solutions is a subset of the solutions for the
two cyclic group polyhedra P(Cn+1,n) and P(Cn,0) because any solution that satisfies
the defining knapsack equation must satisfy the corresponding defining congruence for
these cyclic group problems.

As discussed in section 3.3, the mixed integer cut

x1 + 2x2 + ...+ nxn ≥ n

is a facet for the cyclic group polyhedronP(Cn+1,n). Every integer solution of the cyclic
group problem Cn+1,n for which the mixed integer cut holds with equality is a solution
to the knapsack problemKn and visa versa. Thus, the knapsack polytope P(Kn) is pre-
cisely the facet of the cyclic group polyhedron P(Cn+1,n) given by the intersection of
the mixed integer cut with the polyhedron P(Cn+1,n).

Also discussed in section 3.3,

x1 + 2x2 + ...+ (n− 1)xn−1 ≥ n

is a facet for the zero-rhs cyclic group problem Cn,0. It may seem that the knapsack
polytope P(Kn) cannot be a face of the polyhedron P(Cn,0) because the dimensions
of the problems are different. However, xn is involved in the master knapsack problem



388 J. Aráoz et al.

trivially: it is only positive in the solution x′ = (0, 0, ..., 0, 1). Thus, the intersection of
P(Kn) with the hyperplane xn = 0 contains all solutions toK(n) except x′, and adjoin-
ing that vertex may be done by taking the convex combination of it with the vertices in
the xn = 0 hyperplane. Thus, the polytope P(Kn) ∩ {xn = 0} is a facet of P(Cn,0).

5.2. Tilting knapsack facets

Because the knapsack polytope is not full dimensional, adding a non-zero multiple of
the defining knapsack equation

∑n
i=1 ixi = n to any facet-defining inequality of P(Kn)

gives an equivalent facet. We refer to this operation as tilting the facet. Precisely, if
(ρ, ρn) is a knapsack facet and α is any non-zero constant, then

n∑

i=1

(ρi + iα)xi ≥ ρn + nα

is an equivalent facet given by tilting. We will refer to multiplying an inequality by
a constant as scaling the inequality. Note that the tilted facets we will refer to do not
necessarily have integer coefficients.

The subadditivity constraints of theorem 4.1 that define the knapsack polytope are a
subset of the subadditivity constraints for the description of the cyclic group polyhedra
in theorems 2.1 and 2.2. Given a facet for P(Kn), a facet of P(Cn+1,n) or P(Cn,0)may
be derived by tilting the knapsack facet just enough to satisfy the additional subadditivity
constraints. The details and proof are given in the next section.

In this way, every facet of a knapsack polytope is identified with a corresponding
tilted facet for P(Cn+1,n), and the same facet of P(Kn) is identified with a facet for
P(Cn,0). Thus, there is a one-to-one correspondence between a subset of facets for
P(Cn+1,n) and P(Cn,0) through the polytope P(Kn). When combined with Gomory’s
automorphic and homomorphic lifting theorems in section 3.2, this construction identi-
fies facets for many cyclic group polyhedra, not just these two cases, as liftings of tilted
knapsack facets.

5.3. Tilting using the mixed integer cut

We may generalize the idea of tilting so that facets for a knapsack problem K(r) give
facets for larger cyclic group problems C(n, r) where n > r . For convenience, we will
represent the mixed integer cut for C(n, r) as a vector µ defined as follows:

µi =
{
i
r

for 1 ≤ i ≤ r
n−i
n−r for r ≤ i ≤ n− 1

Lemma 5.1. For n, r such that 1 ≤ r < n, choose an (n− 1)-vector

ρ = (ρ1, ρ2, ..., ρr = 1,
n− r − 1

n− r
, ...,

n− i

n− r
, ...,

1

n− r
)
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such that the subadditivity and complementarity conditions are satisfied for all pairs
(i, j) ∈ {1, ..., r}2 with i + j ≤ r . Set

α = max






r
n

[ρk − ρi − ρj ] for 1 ≤ i, j, k ≤ r (1)
r

n(k−r) [−(ρi + ρj )(n− r)+ (n− k)] for 1 ≤ i, j ≤ r (2)

and r ≤ k < n
r
n

[(ρk − ρi)
n−r
n−j − 1] for 1 ≤ i, k ≤ r (3)

and r ≤ j < n

where k ≡ (i + j) mod n. Then the inequality (π, πr) defined by

π = ρ + αµ,

satisfies all complementarity and subadditivity conditions of P(Cn,r ).

The complete proof may be found at www.tli.gatech.edu/AEGJ. Essentially, choos-
ing α to satisfy these conditions ensures that enough of µ is added to ρ so that all
additional cyclic group subadditivity relations are satisfied by π , and at least one new
subadditivity relation holds with equality.

Theorem 5.2 (Tilt). Assume (ρ, ρr) is a facet of the knapsack polytope P(Kr) which
is tilted so that ρi ≥ 0 for all i and at least one ρi = 0, and scaled so that ρr = 1 (this
may be done without loss of generality). For a given n > r , if the condition in lemma 5.1
gives α > 0, then (π, πr) constructed as follows is a facet of P(Cn,r ), where 1 ≤ r < n.

1. Extend the vector ρ to the appropriate dimension:

ρ = (ρ1, ρ2, ..., ρr = 1,
n− r − 1

n− r
,
n− r − 2

n− r
, ...,

1

n− r
).

Choose α as in lemma 5.1. Add α times the mixed integer cut for C(n, r) to (ρ, ρr).

πi =
{
ρi + α i

r
if 1 ≤ i ≤ r

ρi + α n−i
n−r if r + 1 ≤ i ≤ n− 1

Proof. By lemma 5.1 and the fact that (ρ, ρr) is a knapsack facet, we know that (π, πr)
satisfies complementarity and subadditivity. By assumption, it also satisfies non-nega-
tivity. (ρ, ρr) has r − 2 linearly independent additive relations

ρi + ρj = ρi+j

for i, j, i + j ∈ {1, ..., r} given by the knapsack additive relations, and n− r − 1 of the
form

ρi + ρn−1 = ρi−1

for i ∈ {r + 1, ..., n− 1} by construction, and these relations are still satisfied by π . The
additional additive relation is πi +πj = π(i+j)mod n for any pair (i, j) that defines α. If
this relation was dependent on the others, then it would also be satisfied by ρ and α = 0
would be true; therefore, it must be linearly independent. �
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The tilting procedure for finding facets of the zero-rhs cyclic group problem is similar,
but α is chosen differently because the subadditive constraints for the zero-rhs problem
are different.

Lemma 5.3. For n ≥ 2, choose an n-vector

ρ = (ρ1, ρ2, ..., ρn)

such that subadditivity and complementarity is satisfied for all pairs (i, j) ∈ {1, ..., n}2

with i + j ≤ n. Then the inequality (π, πn) defined by

π = ρ + αµ,

where µ refers to the mixed integer cut for C(n, 0): µi = i
n

for i = 1, ..., n and

α = max{ρi+j−n − ρi − ρj |1 ≤ i, j ≤ n− 1 and i + j > n}

satisfies all complementarity and subadditivity constraints of P(Cn,0).

Proof. Complementarity for P(Cn,0) requires πi + πn−i = πn for 1 ≤ i ≤ n− 1.

πi + πn−i = πn

ρi + α
i

n
+ ρn−i + α

n− i

n
= ρn + α

ρi + ρn−i = ρn,

which is satisfied by assumption on ρ. Similarly, for i+ j < n, subadditivity of (π, πn)
follows from subadditivity of ρ. When i + j > n, subadditivity is equivalent to:

πi + πj ≥ π(i+j)mod n

ρi + α
i

n
+ ρj + α

j

n
≥ ρi+j−n + α

i + j − n

n
α ≥ ρi+j−n − ρi − ρj ,

which is satisfied by α given in the lemma. �

Theorem 5.4. Assume (ρ, ρn) is a facet of the knapsack polytope P(Kn), which is tilted
so that ρi ≥ 0 for all i and at least one ρi = 0, and scaled so that ρn = 1 (this may be
done without loss of generality). Then (π, πn) constructed as in lemma 5.3 is a facet of
P(Cn,0) if α > 0.

Proof. By lemma 5.3, (π, πn) satisfies complementarity and subadditivity, and non-neg-
ativity is satisfied by assumption. Because (ρ, ρn) is a knapsack facet, there are n − 2
linearly independent additive relations with i + j ≤ n. The final necessary relation is
πi + πj = π(i+j)mod n for any pair (i, j) that satisfies the definition of α at equality;
again, this relation is linearly independent from the others because α > 0. �
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6. Knapsack facets

Section 6.2 introduces two lemmas that are useful in proving many classes of facets for
the master knapsack equality polytope P(Kn). In each of sections 6.2–6.4, a set of relat-
ed classes of facets for the master knapsack equality problem is given. Unless otherwise
noted, all inequalities

∑n
i=1 ρixi ≥ ρn in this section are tilted so that ρn = 0.

6.1. Linear segments

We first give two lemmas that will be useful in proving later theorems.

Lemma 6.1. If ρ is a vector of length n, the inequality (ρ, γ ) is subadditive, and there
is a set J ⊆ {1, ..., n} for which there are |J |−1 linearly independent additive relations

ρi + ρj = ρi+j ,

with i, j, i + j ∈ J , then ρ must be linear on J ; i.e. for some constant σ ,

ρj = jσ

for all j ∈ J .

Proof. A homogeneous system of n − 1 linearly independent equations in n variables
has solution space that is one-dimensional, i.e. every solution is a multiple of some non-
zero solution. Since ρj = j ∀j ∈ J is a solution to the set of equations {ρi + ρj =
ρi+j |i, j, i + j ∈ J }, every other solution to this system must be a multiple of it. �
The next lemma is a special case of the converse. It gives conditions sufficient to ensure
that (ρ, γ ) must be linear on some subset J of the coefficients.

Lemma 6.2. For a subadditive valid inequality
∑n
i=1 ρixi ≥ γ , if there is a set J

satisfying either of the following conditions:

1. J = {jκ|j = 1, ..., j ′} for some constants j ′ and κ with j ′κ ≤ n, or
2. J = {j |d ≤ j ≤ D} where 3d ≤ D,

where ρj = jσ for all j ∈ J and some constant σ , then there are |J | − 1 linearly
independent relations

ρi + ρj = ρi+j ,

with i, j, i + j ∈ J .

Proof. Case 1: The additive relations ρκ +ρjκ = ρ(1+j)κ for j = 1, ..., j ′ −1 are lower
triangular in columns 2 through j ′ and are therefore linearly independent.
Case 2: We construct d lower triangular relations for columns d + 1, ..., 2d as follows:

(d + 1)ρd = dρd+1
dρd = (d − 2)ρd+1 +ρd+2
...

(2d + 2 − i)ρd = (2d − i)ρd+1 +ρi
...

3ρd = ρd+1 +ρ2d−1
2ρd = ρ2d
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Except for the last, these relations are the triangularized form of the simpler additive
relations ρd+1 + ρi = ρd+1+i . The next to last equation is the sum of the
relations:

2ρd = ρ2d
ρd +ρ2d = +ρ3d

ρ3d = ρd+1 +ρ2d−1

3ρd = ρd+1 +ρ2d−1

Now for i = d + 1, ..., 2d − 2, we may derive the equation for i from that for i + 1 as
follows:

(2d − i + 1)ρd = (2d − i − 1)ρd+1 +ρi+1
ρd +ρi+1 = +ρd+i+1

ρd+i+1 = ρd+1 +ρi
(2d + 2 − i)ρd = (2d − i)ρd+1 +ρi

The remaining relations are simply

ρd + ρi−d = ρi

for i = 2d + 1, ..., D. �

6.2. (1,0,-1) Facets

Theorem 6.3 (1,0,–1). Choose n and d such that either

1. n and d are even and d ≤ n
2 , or

2. n is odd and d is even, and d ≤ n−2
3 .

Then (ρ, ρn) defined as follows is a facet for P(Kn):

ρi =






1 for i < d, and i odd

−1 for n− i < d, and n− i odd

0 otherwise

Proof. In both cases, complementarity and subadditivity follow from the definition of
ρ. The following constructions give n − 2 linearly independent additive relations: For
case 1, lemma 6.2 with Jeven = {2, 4, ..., n} and σ = 0 gives n

2 − 1 relations. To find
n
2 − 1 relations that are independent in columns Jodd = {3, 5, ..., n − 1}, we use the
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following:

0 = ρ2 +ρ1 −ρ3
0 = ρ4 +ρ1 −ρ5
...

. . .

0 = ρd−2 +ρ1 −ρd−1
0 = ρ2(d+1) −2ρd+1
0 = ρ2 +ρd+1 −ρd+3
...

. . .

0 = ρ2 +ρn
2 −3 −ρn

2 −1

0 = ρn −ρn
2 −1 −ρn

2 +1
...

. . .

0 = ρn −ρ1 −ρn−1

For case 2, we partition indices 3, ..., n into six sets:

J1 = {3, ..., d}
J2 = {d + 1}
J3 = {d + 2, ..., 2d − 1}
J4 = {2d, ..., n− d}
J5 = {n− d + 1, ..., n− 1}
J6 = {n}.

We now construct a set of relations for i in each set that is almost lower-triangular, and
give a simple argument for linear independence. By a set of lower-triangular relations,
we mean for a relation i, all coefficients ρj for j > i are zero in the relation.

J1: If i odd: 0 = ρ1 + ρi−1 − ρi .
If i even: 0 = ρ2 + ρi−2 − ρi .

J2: 0 = 2ρd+1 − ρ2(d+1) (this relation violates the lower-triangular property, and we
will return to it later).

J3: 0 = ρ2 + ρi−2 − ρi
J4: 0 = ρd + ρi−d − ρi
J5: 0 = ρn−i + ρi + ρn
J6: 0 = ρn−1

2
+ ρ n+1

2 − ρn

To make the relations for J2 lower triangular, we subtract the relations for i = 2d + 2
and d + 2 to find the new relation 0 = −ρ2 − 2ρd + 2ρd+1. Although the relations for
J5 are not lower triangular, clearly they are linearly independent from the relation for
J6 because they only have the variable ρn in common. �
Corollary 6.4. Given a facet (ρ, ρn) of P(Kn) tilted so that ρn = 0, if ρ2 = 0, then
(ρ, ρn) must be a (1, 0,−1) facet, up to multiplication by a constant.

Proof. Assume ρ is scaled so that ρ1 = 1. By subadditivity and ρ2 = 0, 0 ≥ ρ2k ≥
ρ2(k+1) for k = 1, ..., 
n2 �−1. Also by subadditivity and ρ1 = 1, 1 ≥ ρ2k−1 ≥ ρ2k+1 for



394 J. Aráoz et al.

k = 1, ..., 
n2 � − 1. Using these facts, ρn = 0, and complementarity, for 1 ≤ i ≤ 
n2 �,
ρi = 0 when i is odd and ρi ∈ {0, 1} when i is even. Furthermore, using these observa-
tions and subadditivity again, if ρi = 0 for i ≤ 
n2 � − 2 and odd, then ρi + 2 = 0 also.
The remaining coefficients follow from complementarity. �

6.3. Knapsack inequalities with linear pieces

In this section, we will use the notion of slopes and maximal lines of inequalities from
section 3.4. Theorems 6.5 and 6.7 give facets with 3 maximal lines with positive slope.
Theorem 6.8 gives a facet with several maximal lines with positive slope.

Theorem 6.5 (2lin). For any integers n and k such that n ≥ 4(k + 1), (ρ, ρn) defined
by

ρi =






i for i = 1, ..., k

0 for i = k + 1, ..., n− k − 1

i − n for i = n− k, ..., n

is a facet for P(Kn).

Proof. Complementarity and subadditivity are clear from construction. Three maximal
lines of ρ are

L(0, k) = {0, 1, 2, ..., k}
L(k + 1, n− k − 1) = {k + 1, ..., n− k − 1}

L(n− k, n) = {n− k, ..., n}
Lemma 6.2 withJ1 = {1, ..., k} gives k−1 additive relations. By the condition onn and k,
we may again apply lemma 6.2 with J2 = L(k+1) for an additional n−2k−2 relations.
Complementarity gives us k independent relationsρn = ρi+ρn−i for i = n−k, ..., n−1.
Finally, the complementarity relation ρn = ρ
 n2 � + ρ� n2 	 is independent from the pre-
vious relations because all previous relations with 
n2 �, �n2 	 have all coefficients in
L(k + 1, n− k − 1), and n /∈ L(k + 1, n− k − 1). �
We will use the next lemma in proving theorems 6.7 and 6.8. It essentially says that if
certain conditions are satisfied by the linear pieces of an inequality, then that inequality
is a facet.

Lemma 6.6. Assume (ρ, ρn) is subadditive and complementary and has the set of max-
imal lines L(i0 = 0, i1 − 1), L(i1, i2 − 1), ..., L(im, n) such that the slopes of these
lines are equal to ρ1: s(ij ) = ρ(ij + 1) − ρ(ij ) = ρ1 for j = 0, ..., m. Let K =
{κλ|ρ(κλ) = κτ, κ = 1, ..., n} be a set of knapsack points for some constants τ and
λ. Define j∗ such that L(ij∗ , ij∗+1 − 1) is the line containing the middle element of ρ:
�n2 	 ∈ L(ij∗ , ij∗+1 − 1).

If L(ij , ij+1 − 1) ∩K �= ∅ for j = 1, ..., j∗ − 1 and either

1. L(ij∗ , ij∗+1 − 1) ∩K �= ∅, or
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2. L(ij∗+1, ij∗+2 − 1) ∩K �= ∅,
then (ρ, ρn) is a facet of P(Kn).

Proof. By lemma 6.2 with J = 1, ..., i1 − 1 there are |L(0, i1 − 1)| − 2 relations
with coefficients within L(1). For the lines L(ij , ij+1 − 1) for j = 1, .., j∗ − 1, there
are |L(ij , ij+1 − 1)| − 1 lower triangular relations ρ(1) + ρ(i) = ρ(i + 1) for i =
ij , ..., ij+1 − 1. These relations hold because of the condition on the slopes of the lines.

When condition 1 holds, define K ′ to be subset of K which contains exactly one
knapsack element for linesL(i1, i2 −1), ..., L(ij∗ , ij∗+1 −1), and no knapsack elements
from the remaining lines. By lemma 6.2, there are |K ′| − 1 = j∗ − 1 relations within
these elements. Because K ′ contains only one element from each line, these relations
are linearly independent from those above that each contain 2 from a line, so we now
have

j∗∑

j=0

(|L(ij , ij+1 − 1)| − 1)− 1 + (j∗ − 1) =
j∗∑

j=0

|L(ij , ij+1 − 1)| − 3

linearly independent relations with coefficients in L(i0, i1 − 1) ∪ L(i1, i2 − 1) ∪ ... ∪
L(ij∗ , ij∗+1 − 1). There are

m∑

j=j∗+1

|L(ij , ij+1 − 1)| − 1

lower triangular complementarity relations

ρi + ρn−i = ρn

for i ∈ {ij∗+1, ij∗+1 + 1, ..., n− 1}. Finally, the complementarity relation

ρ
 n2 � + ρ� n2 	 = ρn

is linearly independent from the previous relations because 
n2 �, �n2 	 ∈ L(ij∗ , ij∗+1 −1)
and n /∈ L(i0, i1 − 1) ∪ L(i1, i2 − 1) ∪ ... ∪ L(ij∗ , ij∗+1 − 1).

In the case when condition 1 fails, we define K ′ to contain exactly one knapsack
element for lines L(i0, i1 − 1), ..., L(ij∗−1, ij∗ − 1) and L(ij∗+1, ij∗+2 − 1) and use
similar construction of relations. �

Theorems 6.7 and 6.8 give cases where the lemma applies when ρn = 0.

Theorem 6.7 (3lin1slp). Let n and k be positive integers such that n−2
3 ≤ k ≤ n−1

2 .
Then (ρ, ρn) defined as follows is a facet of P(Kn):

ρi =






i for i = 1, ..., k

i − n
2 for i = k + 1, ..., n− k − 1

i − n for i = n− k, ..., n
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Proof. Complementarity follows from construction. Three maximal lines in ρ are

L(0, k) = {0, ..., k}
L(k + 1, n− k − 1) = {k + 1, ..., n− k − 1}

L(n− k, n) = {n− k, ..., n}.

Subadditivity is clear for pairs (i, j) such that i, j ∈ L(0, k). The condition on k from
the theorem guarantees that 2(k + 1) ≥ n − k, so if i + j ∈ L(k + 1, n − k − 1)
then either i ∈ L(0, k) or j ∈ L(1), and subadditivity is satisfied for these pairs. If
i+j ∈ L(n−k, n) then without loss of generality i ∈ L(0, k)\{0}∪L(k+1, n−k−1)
and ρi + ρj = i+ j − n/2 ≥ i+ j − n or ρi + ρj = i+ j − n = i+ j − n. Therefore,
subadditivity is satisfied.

We may apply lemma 6.6 with λ = 1 and τ = 0. j∗ = 2 and n ∈ K ∩ L(n− k, n)

satisfy the conditions of the lemma, so (ρ, ρn) is a knapsack facet. �

Theorem 6.8 (mod1slp). Choose n, d, and k such that d divides n, 3 ≤ d < n
2 , and

n−d−1
2 ≤ k ≤ n−1

2 . Then (ρ, ρn) defined as follows is a facet for P(Kn):

ρi =






i mod d for i = 1, ..., k

i − n
2 for i = k + 1, ..., n− k − 1

−1 ∗ [(n− i) mod d] for i = n− k, ..., n

Proof. Let β = max{i|id ≤ k, i = 1, ..., k}. The maximal lines with positive slope are

L(0, d − 1) = {0, ..., d − 1}
L(d, 2d − 1) = {d, ..., 2d − 1}

...

L(βd, k) = {βd, ..., k}
L(k + 1, n− k − 1) = L(ij∗) = {k + 1, ..., n− k − 1}

L(n− k, n− βd) = L(ij∗+1, ij∗+2 − 1) = {n− k, ..., n− βd}
...

L(n− d, n) = {n− d + 1, ..., n}.

(Notice that if n is odd and k = n−1
2 , n− k = k+ 1, then L(k+ 1, n− k− 1) is empty).

Complementarity follows from construction of ρ. Subadditivity is clear for 1 ≤ i, j ≤ k.
If k < j, i + j < n− k, then by the conditions on d and k, i < d. Therefore,

ρi + ρj = i + (j − n

2
)

= (i + j)− n

2= ρi+j
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For k + 1 ≤ i, j ≤ n− k ≤ i + j , by the conditions on n and d, i + j > n− d, so

ρi + ρj = (i − n

2
)+ (j − n

2
)

= i + j − n

= ρi+j

For 1 ≤ i ≤ k < j < n− k and n− k ≤ i+ j ≤ n, the conditions on n, d, and k ensure

min{ρj |k + 1 ≤ j ≤ n− k − 1} ≥ min{ρj |j ≥ n− k}.

Also, ρi ≥ 0 for i ∈ {1, ..., k}. Thus, subadditivity trivially holds for these pairs (i, j).
Therefore, subadditivity holds for all pairs (i, j). We now apply lemma 6.6 with

λ = d and τ = 0. There is a knapsack point in each line L(ij , ij+1 − 1) for ij =
1, d, 2d, ..., βd and L(n− k, n− βd), so (ρ, ρn) is a facet. �

6.4. Facets from cyclic groups

The following theorems show how facets for a knapsack polytope may be obtained from
facets for master cyclic group polyhedra in lower dimension.

Theorem 6.9 (cyc). A facet (ρ, ρn) of the knapsack polytope P(Kn) is given from a
facet (π, πr) of the master cyclic group polyhedron P(Cd,r ) by

ρi = πk,

where k ≡ i mod d and π0 = 0, provided that

1. d does not divide n
2. d ≤ n+1

2 .
3. r ≡ n mod d.

Proof. Complementarity and subadditivity follow from the group complementarity and
subadditivity ofπ . Becauseπ is a cyclic group facet, there are d−2 linearly independent
additive relations πi + πj = π(i+j)modd for 1 ≤ i, j ≤ d − 1. By condition (2), these
relations also hold for the knapsack facet as ρi + ρj = ρi+j = ρ(i+j)modn.

The remaining n− d relations are lower triangular and define each element in terms
of the first d elements. For i = d + 1, ..., n, the relation

ρi = ρi−d + ρd

holds. These relations are linearly independent from the previous relations because no
previous relation included ρd . �

The following theorem is similar to theorem 6.9. It gives a second class of knapsack
facets, tilted so that ρn = 0, that may be derived from cyclic group facets.
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Theorem 6.10 (cyc0).
Choose n and d such that d divides n and d ≤ n

4 . Let (π, πr) be a facet of P(Cd,r )
for any 1 ≤ r ≤ d. Then (ρ, ρn) defined as follows is a facet of P(Kn):

ρi =






πk for i ≤ 
n−1
2 � and k ≡ i mod d

0 for i = n
2 if n is even

−πk for i ≥ �n+1
2 	 and k ≡ (n− i) mod d,

where π0 = 0 for convenience.

Proof. Complementarity follows from construction, and subadditivity follows from the
cyclic group subadditivity of π .

By lemma 6.2 with J1 = {d, 2d, ..., n}, there are n
d

− 1 additive relations within
those columns. For J2 = {d + 1, ..., 
n−1

2 �} \ J1, the relations

ρi = ρd + ρi−d

hold for i =∈ J2 and are lower triangular.Additionally, for i ∈ J3 = {�n2 	, ..., n−1}\J1,
the complementarity relations

ρn = ρn−i + ρi

hold and are independent from all previous relations. We have n−d relations so far. The
remaining d− 2 additive relations come from the d− 2 necessary cyclic group relations

πi + πj = π(i+j)modd

⇒ ρi + ρj = ρ(i+j)modd = ρi+j

by the condition on d that ensures π is repeated at least twice at the beginning of ρ. �

7. Knapsack cover facets

7.1. The master covering knapsack problem

Another related problem is the master covering knapsack problem of size n, which is
defined as:

min{
n∑

i=1

cixi |
n∑

i=1

ixi ≥ n, x ≥ 0 and integer}. (Gn)

Section 7.2 gives two subadditive characterizations for facet-defining inequalities of the
master knapsack covering problem. Section 7.3 describes the relationship between the
covering polyhedra and knapsack equality polytopes. Finally, section 7.4 gives two new
classes of facets for this problem.
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7.2. Subadditive characterization of covering facets

Denote the convex hull of solutions to the master covering knapsack problem by P(Gn).
This polyhedron is unbounded and its recession cone is the non-negative orthant. Aráoz
[1] gave two subadditive characterizations of its facet-defining inequalities.

Theorem 7.1. The facet-defining inequalities (σ, σn) of the knapsack covering polyhe-
dron P(Gn) are exactly the extreme rays of the cone

Un,r =






σi ≥ 0, i = 1, ..., n (Nonnegativity)
σi + σj ≥ σi+j , 1 ≤ i, j, i + j ≤ n (Subadditivity 1)
σi + σj ≥ σn, 1 ≤ i, j ≤ n < i + j (Subadditivity 2)

σi + σn−i = σ0, 1 ≤ i ≤ 
n2 � (Complementarity)





.

Theorem 7.2. The facet-defining inequalities (σ, σn) of the knapsack covering polyhe-
dron P(Gn) are exactly the extreme rays of the cone

Vn,r =






σi ≥ 0, i = 1, ..., n (Nonnegativity)
σi + σj ≥ σi+j , 1 ≤ i, j, i + j ≤ n (Subadditivity 1)

σi ≤ σi+1, 1 ≤ i ≤ n− 1 (Monotonicity)
σi + σn−i = σ0, 1 ≤ i ≤ 
n2 � (Complementarity)





.

The cones described by the two theorems are actually identical, so either theorem may
be used when proving inequalities are facet-defining for the master knapsack covering
polyhedron. As with the previous problems, we will show (σ, σn) is a facet for P(Gn)
by showing it satisfies the necessary complementarity, subadditivity, monotonicity, and
non-negativity conditions, and then constructing n − 1 linearly independent additive
relations.

7.3. Relationship with equality knapsack and cyclic group polyhedra

The equality knapsack problem shares a relationship with the covering problem simi-
lar to the relationship we showed in section 5 for cyclic group problems. The equality
knapsack polytope is a facet of the knapsack cover polyhedron. The facet in question
is formed by intersecting the polyhedron with the defining knapsack cover inequality,
which also gives a facet for the knapsack cover polyhedron. Every knapsack cover so-
lution that satisfies the defining inequality with equality is a solution to the equality
knapsack problem, and visa versa.

The implication is that every equality knapsack facet may be tilted to give a fac-
et for three different polyhedra: two cyclic group polyhedra and the knapsack cover
polyhedron. Furthermore, it gives all the facets of the knapsack packing polytope.

There is another relationship between the knapsack cover polyhedron P(Gn) and
the two cyclic group polyhedra P(Cn+1,n) and P(Cn,0): both polyhedra are contained
in P(Gn). Any non-negative solution x to the problem Cn,0 satisfies

n−1∑

i=1

ixi ≡ 0 mod n and
n−1∑

i=1

xi > 0,
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so
∑n−1
i=1 ixi > n, and x is also a solution to the knapsack covering problem. A similar

proof holds for Cn+1,n.
Given an equality knapsack facet (ρ, ρn), note that it satisfies the non-negativity, sub-

additivity (1), and complementarity conditions of theorem 7.2. Therefore, to find a cov-
ering facet by tilting ρ, we must ensure monotonicity is satisfied.α = max{ρi−ρi+1|i =
1, ..., n− 1} guarantees that ρ + αµ gives a facet for P(Gn).

7.4. Inequalities with coefficients 1,...,G

Lemma 7.3. If a vector (σ1, ..., σn = G) satisfies complementarity, subadditivity, and
monotonicity, and has some i satisfying σi = j for each j = 1, ...,G then (σ, σn) is
facet-defining for P(Gn).

Proof. For k = 1, ...,G, let κk = max{i|σi = k}. By the conditions of the lemma,
κk < κk+1 for k = 1, ...,G − 1. By theorem 7.2, we must find n − 1 linearly in-
dependent additive relations and monotonicity relations at equality. There are n − G

monotonicity conditions at holds at equality for i �= κk:

σi = σi+1.

For i ∈ {κ1, ..., κG−1}, the additive relation:

σ1 + σi−1 = σi (7.1)

holds. These n− 1 relations are lower triangular and clearly linearly independent. �
Theorem 7.4 (allG). If a vector (σ1, ..., σn = G) satisfies monotonicity and has some
i satisfying σi = j for each j = 1, ...,G then (σ, σn) is facet-defining for P(Gn) if and
only if

1. κi+j ≥ κi + κj for 1 ≤ i, j, i + j ≤ G and
2. κG−i = n− (κi−1 + 1) for i = 1, ..., 
G2 �.

Proof. We will apply lemma 7.3 by showing condition 1 is sufficient for subadditivity
and condition 2 is sufficient for complementarity.
Subadditivity: For 1 ≤ i, j, i + j ≤ n and

σ(i)+ σ(j) = σ(κσ(i))+ σ(κσ(j))

≥ σ(κσ(i)+σ(j)) (because κσ(i) + κσ(j) ≤ κσ(i)+σ(j))
≥ σ(i + j) (because monotonicity and σ(i)+ σ(j) ≤ κσ(i)+σ(j))

Complementarity: The condition κG−i = n − (κi−1 + 1) ensures that the first vector
element with value i, σ(κi−1 + 1), is the complementarity pair with the last element
with value G− i, σ(κG−i ), which implies complementarity. �
Notice that no facets for even nmay have oddG if all coefficients are integer. To consider
oddG, we look at a class of facets for even n scaled so that σ1 = 1 and σn

2
is half-integer.

When these inequalities are scaled to have all integer coefficients, then all coefficients
except σn

2
are even, as in V23 of table B.5.
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Theorem 7.5 (allGhalf). For odd G and even n, if (σ1, ..., σn = G) satisfies monot-
onicity, has some i satisfying σi = j for each j = 1, ...,G, and (σ n

2 −1, σ n2
, σ n

2 +1) =
(G−1

2 , G2 ,
G+1

2 ), then (σ, σn) is facet-defining for P(Gn) if and only if

1. κi+j ≥ κi + κj for 1 ≤ i, j, i + j ≤ G,
2. κG−i = n− (κi−1 + 1) for i = 1, ..., 
G2 �, and
3. κ1 ≥ 2.

Proof. The proof is the same as the previous theorem, with a minor alteration to lemma
7.3: (7.1) no longer holds for i = κG

2
and κG+1

2
. Instead, use the two relations 2σn

2
= σn

and σ2 + σn
2 −1 = σn

2 −1, which is guaranteed by the third condition of the theorem. �

A. Proof of 0lifting theorem

A.1. Notation

Let C+
n denote the set of elements {1, 2, ..., n− 1}.

Given an inequality (π, γ ) scaled so that γ = 1 for a master cyclic group polyhedron
P(Cn,r ), define the matrix

M = M(Cn,r , π, γ )

corresponding to the set of additive relations of (π, γ ). M has a row for each non-zero
element i ∈ Cn. If r = 0, M also has an n-th row to represent the right hand side
element.M has a column δi + δj − δh for each additive relation πi + πj ≥ πh satisfied
at equality for i, j ∈ C+

n and h ≡ (i + j) mod n not equal to zero. If r = 0, then M
also has a column δi + δn−i = δ0 for i ∈ C+

n . Finally, M has a column δi for each zero
coefficient πi = 0 for i ∈ C+

n . It is well known that (π, γ ) is an extreme ray of P(Cn,r )
if and only if the set L = {λ|λM(Cn,r , π, γ ) = �0} has dimension 1, since that implies
that (π, γ ) satisfies a set of n− 1 linearly independent additive relations.

For some d that divides n, let φ : Cn → Cd represent the homomorphism defined
by φ(i) ≡ i (mod d). Let

K = {i ∈ Cn|φ(i) = 0} = {0, d, 2d, ..., n− d}
and, for each i ∈ Cn, let

ī = {j ∈ Cn|φ(j) = φ(i)}.
(K is the kernel of φ and the sets ī are the cosets in Cn \K).

A.2. The theorem

The following is a restatement of theorem 3.4, altered so that all facets (π, γ ) are scaled
to have γ = 1. For simplicity of notation, we will sometimes refer to the coefficient πi
as π(i).
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Theorem A.1 (0lifting). Let

k−1∑

i=1

π1
i xi ≥ 1

be any facet of P(Ck,s), and let

d−1∑

i=1

π2
i xi ≥ γ 2

be any facet of P(Cd,0) such that either

– d is odd, or
– there is some additive relation π2

n
2
+π2

j = π2
h where n

2 +j ≡ h (mod d) and neither

j nor h is equal to d
2 .

Let n = kd , r = sd , andK = {0, d, 2d, ..., (k− 1)d}. Define the (n− 1)-length vector
π as follows:

πi =
{
π1( i

d
) if i ∈ K \ {0}

π2(i mod d) if i /∈ K
Then (π, πr) is a facet of P(Cn,r ).

Proof. Define the homomorphism φ : Cn → Cd , the sets ī for i ∈ Cn, and the matrix
M = M(Cn,r , π, γ ) as in the previous section.

We will prove the theorem in three steps:

1. Show (π, πr) satisfies complementarity, subadditivity, and non-negativity.
2. Show that λM = 0 implies that for any i0 /∈ K , λ(i0) = λ(i) for any i ∈ ī0.
3. Show that (1) and (2) imply that (π, πr) is a facet of P(Cn,r ).

1. π1 and π2 must satisfy non-negativity because they are both facets of master cyclic
group polyhedra. Therefore, by construction, π satisfies non-negativity.

To show complementarity, choose any two elements i, j ∈ C+
n so that (i + j) ≡ r

(mod n). Because r ∈ K , either both i and j are in K or neither is. If both are, then

π(r) = π(sd)

= π1(s)

= π1(
i

d
)+ π1(

j

d
)

= π(i)+ π(j)

because i + j ≡ r (mod n) implies i
d

+ j
d

≡ s (mod k), and π1 satisfies complemen-
tarity for P(Ck,s). If neither i nor j is in K , then

π(r) = 1

= γ 1

= π2(i mod d)+ π2(j mod d)

= π(i)+ π(j)
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The third equality follows from the fact that i+j ≡ sd (mod kd) implies that i+j ≡ 0
(mod d).

To show subadditivity, choose any triple (i, j, h) ∈ (C+
n )

3 so that i+j ≡ h (mod n).
If i, j ∈ K , then h must also be in K , and subadditivity follows from the subaddi-

tivity of π1 using an argument similar to the complementarity argument. Similarly, if
i, j, h /∈ K , then subadditivity follows from the subadditivity of π2.

If i ∈ K and j, h /∈ K , then ((i+ j) mod kd) mod d ≡ (i+ j) mod d ≡ j mod d.
Therefore

π(h) = π((i + j) mod kd)

= π2(((i + j) mod kd) mod d)

= π2(j mod d)

≤ π1(
i

d
)+ π2(j mod d) (by non-negativity of π1)

= π(i)+ π(j).

If i, j /∈ K and h ∈ K , then there is some j ′ ≡ j (mod d) such that (i + j ′) ≡ r

(mod n). Therefore

π(i)+ π(j) = π(i)+ π(j ′)
= π(r)

≥ π(h).

Any other triples (i, j, h) are either impossible or equivalent to those listed above.
Therefore, (π, πr) satisfies subadditivity, and (1) is proven.

2. Let λ ∈Rn−1
+ satisfy λM = 0. Choose any i0 ∈ Cn\K . By the condition of the theorem

and complementarity of π2, there exists some j0, h0 such that π(i0) + π(j0) = π(h0)

where (i0 + j0) ≡ h0 (mod d) and i0 is not equal to either j0 or h0.
For any i ∈ ī0, j ∈ j̄0, h ≡ (i + j) mod d ∈ h̄0

π(i)+ π(j)− π(h) = π(i0)+ π(j0)− π(h0) = 0,

so

λ(i)+ λ(j)− λ(h) = 0.

Furthermore, for any element κ ∈ K and positive integer α,

λ((i + ακ) mod n)+ λ(j) = λ((h+ ακ) mod n)

and

λ((i + ακ) mod n)+ λ((j + κ) mod n) = λ((h+ ακ + κ) mod n).

By subtracting the second equality from the first, we find

λ(j)− λ((j + κ) mod n) = λ(h+ ακ)− λ((h+ ακ + κ) mod n).
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Choose an integer µ > 0 so that µκ = 0. Such a µ must exist because κ ∈ K and K is
a finite group (it is isomorphic to the cyclic group Ck). Then

µ−1∑

α=0

λ((h+ ακ) mod n)− λ((h+ (1 + α)κ) mod n)

= λ(h)− λ((h+ µκ) mod n)

= 0.

Therefore,

µ−1∑

α=0

(λ(j)− λ((j + κ) mod n)) = 0,

which implies λ(j) = λ((j + κ) mod n) for all κ ∈ K , which proves (2).

3. Let L = {λ ∈ Rn−1|λM = 0}, L̄ = {λ̄ ∈ Rk−1|λ̄M(Ck,s, π1, γ 1) = 0}, and
L̂ = {λ̂ ∈ Rd |λ̂M(Cd,0, π2, γ 2) = 0}. Because (π1, γ 1) is a facet of P(Ck,s),
dim(L̄) = 1. Similarly, dim(L̂) = 1.

Choose any λ ∈ L. Define λ̄(i) = λ(di) for i = 1, ..., k − 1. For every column
δi0 + δj0 − δh0 inM(Ck,s, π1, γ 1), there is a column δdi0 + δdj0 − δdh0 inM by defini-
tion of π . Therefore, λ̄(i0)+ λ̄(j0)− λ̄(h0) = 0, so λ̄ ∈ L̄.

Similarly, define λ̂(i) = λ(i) for i = 1, ..., d − 1, and λ̂(d) = λ(r). For every
column δi0 + δj0 − δh0 inM(Cd,0, π2, γ 2), there is a column δi + δj − δh inM for some
i ∈ ī0, j ∈ j̄0, and h ∈ h̄0. Using (2), this implies λ̂(i0)+ λ̂(j0)− λ̂(h0) = 0, so λ̂ ∈ L̂.

Therefore, λ′ ∈ L must have the form

λ′(i) =
{
αλ(i) for i ∈ K \ {0}
βλ(i) for i /∈ K.

But then λ̂′(i) = βλ̂(i) for i = 1, ..., d − 1, and λ̂′(d) = αλ̂(d). Since dim(L̂) = 1,
this implies α = β. Therefore, dim(L) = 1, which proves (π, πr) is a facet of P(Cn,r ).

B. Summary of classes: seeds and mappings

Table B.1 summarizes the seeds and mappings used for explaining facets of cyclic group
and knapsack problems. Tables B.2-B.5 list facets for some small problems. Each facet
is given an identification number, which is listed in the first column. If a facet belongs
to more than one class, the most simple class is listed. Cyclic group facets explained
by homomorphisms are not included in table B.2. If a group or covering facet may be
derived by tilting a knapsack equality facet, the identification number of the knapsack
equality facet is listed.
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Table B.1. Summary of facet classes

SEEDS
Abbrev For Condition Reference
mic P(Cn,r ) None Section 3.3
2slope P(Cn,r ) None Theorem 3.5
3slope P(Cn,r ) r ≤ n−4

3 Theorem 3.7

1,0,-1 P(Kn) n even or n ≥ 7 Theorem 6.3
2lin P(Kn) n ≥ 8 Theorem 6.5
3lin1slp P(Kn) n ≥ 5 Theorem 6.7
mod1slp P(Kn) n ≥ 5 Theorem 6.8

allG P(Gn) None Theorem 7.4
allGhalf P(Gn) n even Theorem 7.5

MAPPINGS
Abbrev From To Condition Reference
auto (a) P(Cn,r ) P (Cn,s ) r, s in same coset of Cn Theorem 3.2
homo P(Cd,r ) P (Cn,s ) d|n and s ≡ r (mod d) Theorem 3.3
0lifting P(Cd,0), P(Cn,r ) d|n, d|r Theorem 3.4

P(Cn/d,r/d )

cyc P(Cd,r ) P (Kn) d ≤ n+1
2 , d � n, r ≡ n (mod d) Theorem 6.9

cyc0 P(Cd,r ) P (Kn) d ≤ n
4 and d|n Theorem 6.10

tilt P(Kr) P (Cn,r ) n ≥ r + 1 Theorem 5.2
tilt P(Kr) P (Cr,0) None Theorem 5.4
tilt P(Kr) P (Gr) None Section 7.3
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Table B.2. Non-zero rhs cyclic group facets
∑n−1
i=1 πixi ≥ πr

Tilt
Id # n r Class From π1 π2 π3 π4 π5 π6 π7 π8 πr

C1 2 1 mic 1 1

C2 3 2 mic 1 2 2

C3 4 2 mic 1 2 1 2
C4 4 3 mic 1 2 3 3

C5 5 4 mic K1 1 2 3 4 4
C6 5 4 a. mic K2 4 3 2 6 6

C7 6 2 mic 2 4 3 2 1 4
C8 6 3 mic 1 2 3 2 1 3
C9 6 3 2slope 1 2 3 1 2 3
C10 6 3 2slope 2 1 3 2 1 3
C11 6 5 mic 1 2 3 4 5 5

C12 7 6 mic K2 1 2 3 4 5 6 6
C13 7 6 a. mic K5 4 8 5 2 6 10 10
C14 7 6 3slope K1 6 5 4 3 2 8 8
C15 7 6 a. mic K6 9 4 6 8 3 12 12

C16 8 2 mic K6 3 6 5 4 3 2 1 6
C17 8 2 a. mic K6 3 6 1 4 3 2 5 6
C18 8 4 mic 1 2 3 4 3 2 1 4
C19 8 4 a. mic 3 2 1 4 1 2 3 4
C20 8 4 2slope K2 1 2 3 4 1 2 3 4
C21 8 4 2slope K2 3 2 1 4 3 2 1 4
C22 8 7 mic 1 2 3 4 5 6 7 7
C23 8 7 a. mic 9 10 3 12 5 6 15 15
C24 8 7 a. 2slope K10 1 2 1 2 1 2 3 3
C25 8 7 a. 2slope K8 3 2 1 4 3 2 5 5
C26 8 7 3slope K3 7 6 5 4 3 2 9 9

C27 9 3 mic 2 4 6 5 4 3 2 1 6
C28 9 3 a. mic 2 4 6 2 1 3 5 4 6
C29 9 3 a. mic 5 1 6 2 4 3 2 4 6
C30 9 3 a. 2slope K1 4 8 12 7 2 6 10 5 12
C31 9 3 2slope K1 7 5 12 10 8 6 4 2 12
C32 9 3 a. 2slope K1 10 2 12 4 5 6 7 8 12
C33 9 3 0lifting K6 2 4 6 2 4 3 2 4 6
C34 9 3 0lifting 4 2 6 4 2 3 4 2 6
C35 9 8 mic K7 1 2 3 4 5 6 7 8 8
C36 9 8 a. 2slope K3 2 1 3 2 1 3 2 4 4
C37 9 8 a. mic K12 4 8 12 7 2 6 10 14 14
C38 9 8 3slope 8 7 6 5 4 3 2 10 10
C39 9 8 tilt 1,0,-1 K4 11 4 6 8 10 12 5 16 16
C40 9 8 a. mic 16 5 12 10 8 15 4 20 20
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Table B.3. Zero rhs cyclic group facets
∑n−1
i=1 πixi ≥ γ

Tilt π1 π2 π3 π4 π5 π6 π7 γ

Id # n Class From
Z1 3 mic 1 2 3
Z2 3 auto mic K1 2 1 3
Z3 4 mic 1 2 3 4
Z4 4 auto mic K2 3 2 1 4
Z5 5 mic 1 2 3 4 5
Z6 5 auto mic K4 2 4 1 3 5
Z7 5 auto mic K3 3 1 4 2 5
Z8 5 auto mic 4 3 2 1 5
Z9 6 mic 1 2 3 4 5 6
Z10 6 auto mic 5 4 3 2 1 6
Z11 6 tilt K5 2 4 3 2 4 6
Z12 6 tilt K6 4 2 3 4 2 6
Z13 7 mic 1 2 3 4 5 6 7
Z14 7 auto mic K9 2 4 6 1 3 5 7
Z15 7 auto mic K10 3 6 2 5 1 4 7
Z16 7 auto mic K7 4 1 5 2 6 3 7
Z17 7 auto mic K8 5 3 1 6 4 2 7
Z18 7 auto mic 6 5 4 3 2 1 7
Z19 8 tilt K12 1 2 3 2 1 2 3 4
Z20 8 auto tilt 3 2 1 2 3 2 1 4
Z21 8 mic 1 2 3 4 5 6 7 8
Z22 8 auto mic K11 3 6 1 4 7 2 5 8
Z23 8 auto mic K13 5 2 7 4 1 6 3 8
Z24 8 auto mic 7 6 5 4 3 2 1 8
Z25 8 auto tilt 3 6 5 4 3 2 5 8
Z26 8 tilt K14 5 2 3 4 5 6 3 8

Table B.4. Knapsack equality facets
∑n
i=1 ρixi ≥ ρn

Id # n Class ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρn
K1 3 cyc 1 0 1 1
K2 4 1,0,-1 2 1 0 2 2
K3 5 cyc 1 0 1 0 1 1
K4 5 cyc 1 2 0 1 2 2
K5 6 3lin1slp 1 2 1 0 1 2 2
K6 6 1,0,-1 6 2 3 4 0 6 6
K7 7 cyc 1 0 1 0 1 0 1 1
K8 7 cyc 2 1 0 2 1 0 2 2
K9 7 cyc 1 2 3 0 1 2 3 3

K10 7 3lin1slp 2 4 1 3 0 2 4 4
K11 8 cyc 1 2 0 1 2 0 1 2 2
K12 8 3lin1slp 2 4 6 3 0 2 4 6 6
K13 8 1,0,-1 3 1 4 2 0 3 1 4 4
K14 8 1,0,-1 8 2 3 4 5 6 0 8 8
K15 9 cyc 1 0 1 0 1 0 1 0 1 1
K16 9 cyc 3 2 1 0 3 2 1 0 3 3
K17 9 cyc 1 2 3 4 0 1 2 3 4 4
K18 9 cyc 4 3 2 6 0 4 3 2 6 6
K19 9 3lin1slp 1 2 3 1 2 0 1 2 3 3
K20 9 mod1slp 3 6 2 5 1 4 0 3 6 6
K21 9 mod1slp 6 12 4 3 9 8 0 6 12 12
K22 9 1,0,-1 9 2 3 4 5 6 7 0 9 9
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Table B.5. Knapsack covering facets
∑n−1
i=1 σixi ≥ σn

Id # n Class Tilt From σ1 σ2 σ3 σ4 σ5 σ6 σ7 σn
V1 3 allG 1 1 2
V2 3 allG 1 2 3
V3 4 allG 1 1 1 2
V4 4 allG 1 2 3 4
V5 5 allG 1 1 1 1 2
V6 5 allG K3 1 1 2 2 3
V7 5 allG K4 1 2 2 3 4
V8 5 allG 1 2 3 4 5
V9 6 allG 1 1 1 1 1 2
V10 6 allG K5 1 2 2 2 3 4
V11 6 allG 1 2 3 4 5 6
V12 6 allGhalf K6 2 2 3 4 4 6
V13 7 allG 1 1 1 1 1 1 2
V14 7 allG K8 1 1 1 2 2 2 3
V15 7 allG K7 1 1 2 2 3 3 4
V16 7 allG 1 2 2 2 2 3 4
V17 7 allG K10 1 2 2 3 3 4 5
V18 7 allG K9 1 2 3 3 4 5 6
V19 7 allG 1 2 3 4 5 6 7
V20 8 allG 1 1 1 1 1 1 1 2
V21 8 allG K13 1 1 2 2 2 3 3 4
V22 8 allG 1 2 2 2 2 2 3 4
V23 8 allG K11 1 2 2 3 4 4 5 6
V24 8 allG K12 1 2 3 3 3 4 5 6
V25 8 allGhalf 2 2 2 3 4 4 4 6
V26 8 allG 1 2 3 4 5 6 7 8
V27 8 tilt K14 2 2 3 4 5 6 6 8

References
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