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In the last few years, it has been recognized that the
large deformation capacity of elastomeric materials
that are sensitive to electric fields can be harnessed
for use in transducer devices such as actuators
and sensors. This has led to the reassessment of
the mathematical theory that is needed for the
description of the electromechanical (in particular,
electroelastic) interactions for purposes of material
characterization and prediction. After a review of
the key experiments concerned with determining the
nature of the electromechanical interactions and a
discussion of the range of applications to devices, we
provide a short account of the history of developments
in the nonlinear theory. This is followed by a
succinct modern treatment of electroelastic theory,
including the governing equations and constitutive
laws needed for both material characterization and the
analysis of general electroelastic coupling problems.
For illustration, the theory is then applied to two
simple representative boundary-value problems that
are relevant to the geometries of activation devices;
in particular, (a) a rectangular plate and (b) a
circular cylindrical tube, in each case with compliant
electrodes on the major surfaces and a potential
difference between them. In (a), an electric field is
generated normal to the major surfaces and in (b), a
radial electric field is present. This is followed by a
short section in which other problems addressed on
the basis of the general theory are described briefly.

1. Introduction
In 1880, Röntgen reported the effect of electric forces on
the behaviour of dielectric solids and fluids following
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his presentation of experimental results at the Versammlung Deutscher Naturforscher und Ärzte
in 1879 under the title ‘Über die elektrische Ausdehnung’, which can be translated as ‘On the
electric stretching’. In particular, he described an experimental set-up in which a thin rubber sheet
having an initial length of 1 m, width of 16 cm and unspecified thickness was stretched to double
its length by holding one end fixed and applying a constant load to the other. Once equilibrium
was established, the sheet was electrically charged, as a result of which the rubber sheet elongated
by several centimetres [1]. This is the first documented experiment in which elongation is induced
by electric forces in a pre-stretched dielectric rubber, but it is only in recent years that it has been
recognized that such nonlinear electromechanical coupling can be used in the development of
transducers such as actuators and sensors and in many other applications of electro-sensitive
polymers.

To fully understand the electromechanical coupling effects and to aid the design of devices, it
is necessary to be able to predict the behaviour of these polymers under different mechanical
and electrical loading conditions. For this purpose, a theory of nonlinear electromechanical
interactions is required. In particular, constitutive laws that describe the material properties based
on experimental data form a key part of this theory, but it must be emphasized that there is at
present a lack of comprehensive datasets for this purpose.

The mathematical theory appropriate for the description of the nonlinear coupling of electric
forces and mechanical deformation was developed more recently than the early work of Röntgen
and began with the classic paper of Toupin [2]. This combines the theories of continuum
mechanics and electrostatics in order to develop a framework for the analysis of the nonlinear
response of isotropic dielectric materials. Röntgen’s work was not mentioned in Toupin’s paper
although he did refer to the work of Voigt on piezoelectricity (which was summarized in Voigt’s
book [3]).

The present paper provides a review, in §2, of the history of the experiments relating to large
deformation electromechanical effects in polymeric materials and their development for use in
applications, particularly as actuators, their basic theoretical analysis and a short discussion of
instability phenomena. Section 3 follows with a brief description of the various contributions to
the nonlinear theory of electromechanical interactions as a prelude to a full but succinct modern
development of the main aspects of the theory in the subsequent sections. In particular, the
basic equations of static nonlinear continuum mechanics are summarized in §4, the appropriate
specialization of Maxwell’s equations in §5 and the equations that combine the two theories
leading to the general theory of nonlinear electroelastic interactions are provided in §6. This
is followed, in §7, by a discussion of constitutive equations for electroelastic materials and
then their specialization to isotropic electroelasticity, thus providing a framework for material
characterization and the construction of specific constitutive laws. The theory is then applied
to the simple case of pure homogeneous strain with a uniform electric field aligned with one
of the principal directions of strain, followed by an application to a parallel plate actuator with
compliant electrodes coated on the major surfaces of the plate and a potential difference between
the electrodes.

In §8, a general electroelastic boundary-value problem is formulated and then applied to a
representative example involving a non-homogeneous deformation and electric field. Specifically,
the problem involving the extension and inflation of a circular cylindrical tube with compliant
electrodes on its curved inner and outer surfaces is analysed in some detail. This is followed
by a brief summary of other boundary-value problems for electroelastic bodies that have been
examined in the literature. Finally, §9 contains some concluding comments.

2. Material properties, geometrical configurations and instability phenomena
Considerable interest has developed in the last few years in the possibilities for using dielectric
elastomers as electromechanical transducers, as has been summarized in the collection of papers
edited by Carpi et al. [4] and the reviews by O’Halloran et al. [5] and Brochu & Pei [6]. In particular,
O’Halloran et al. [5] summarize the operating principles of dielectric elastomer actuators, but
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with the restriction to uniaxial deformations with linear electric and mechanical properties. They
review representative configurations, discuss existing and potential applications and challenges
that need to be overcome in the use of compliant electrodes, the high electric field requirements
and the selection of optimal elastomeric materials. Brochu & Pei [6] provide a detailed account of
actuator materials and, more specifically, an extensive summary of dielectric material properties,
and conclude with a detailed list of actuator configurations and applications, including sensors
and generators. The attractive Scientific American article by Ashley [7], while focusing on
artificial muscle, highlights the potential for a wide range of possible applications of electroactive
polymers.

A set of guidelines for possible standards for the manufacturing and testing of dielectric
elastomer transducers was published recently [8] with a brief discussion of modelling in which
the mechanical response of the material was taken to be linearly elastic with the Maxwell stress
providing the electrostatic contribution to the response.

The purpose of the present section is to highlight the main important contributions that focus
on the experimental characterization of dielectrics of various geometries that are capable of
achieving large strains on application of an electric field, and on their use as actuators.

(a) Planar geometries
Following Röntgen [1], the next significant work was the short contribution by Stark & Garton [9],
who considered the reduction in thickness of rubber-like sheets under electric fields normal to the
sheets. They reported that as the magnitude of the electric field increased, the thickness reduced
continuously until either a stable configuration was reached, at a reduced thickness, or until no
stable thickness existed and a breakdown in electrical strength occurred.

On a similar theme, Blok & LeGrand [10] noted that the major surfaces of a dielectric film,
when subjected to a uniform electric field in the direction normal to the top and bottom surfaces,
become effectively charged and attract one another with an electrostatic stress, which they refer
to as a ‘pressure’ p, given by

p = 1
2
εrε0

(
V
t

)2
= 1

2
εE2, (2.1)

where t is the deformed thickness of the dielectric, V is the potential difference between
the surfaces (the electrodes), ε0 is the vacuum permittivity, εr is the relative permittivity of
the dielectric (in this case a constant independent of the deformation), ε = εrε0 is the actual
permittivity of the material, and the electric field between the surfaces, denoted by E, is given
by E = −V/t. They found that as the magnitude of the electric field approached a critical value,
the film became susceptible to non-uniform thinning. They interpreted this as being caused by
microscopic imperfections in the material that experience higher than average fields, resulting
in confined indentations so that the intensity of the electric field ceases to be uniform, increases
locally, and induces electromechanical instability and inhomogeneous deformations.

Equation (2.1) was used by Ma & Reneker [11] to determine the attractive electrostatic force
between two electrodes attached to the top and bottom surfaces of a circular dielectric elastomer
sample. Measurements were obtained on five different rubber compounds and, assuming linearly
elastic behaviour, they reported a linear relation between strain and the square of the electric field.

Pelrine et al. [12] described the effect of a potential difference applied between flexible
electrodes that sandwich an elastomeric polymer film as compressing the film by the resulting
electrostatic pressure and, because of incompressibility, stretching in the lateral directions.
Assuming elastic behaviour, they balanced the change in electrostatic energy with the mechanical
work (a dielectric elastomer actuator converts electrical energy to mechanical energy) to derive
the electrostatic stress (the effective Maxwell stress) as

p = εrε0

(
V
t

)2
= εE2, (2.2)

 on September 3, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


4

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170311

...................................................

which is double that given in (2.1). Equation (2.2), not (2.1), is the correct expression and is a
particular example arising from the general theory discussed in §7d.

On the basis of the linear theory of elasticity, Pelrine et al. [12] used expression (2.2) to
approximate the strain of thin dielectric films in the thickness direction. Measurements of the in-
plane deformation, combined with the incompressibility condition, were also used to determine
the strain in the thickness direction and, on use of (2.2), to determine the electrostatic stress in
various polymer dielectrics.

Pelrine et al. [13] characterized the behaviour of three types of polymeric elastomer films. In
particular, they used a set-up in which compliant electrodes were coated on the top and bottom
surfaces of radially pre-strained circular films over a relatively small centrally located circular
area, followed by application of a potential difference between the electrode surfaces. Importantly,
it was shown that the applied pre-strain amplifies the magnitude of the actuation strain due to
the potential difference. An acrylic elastomer known as VHB 4910 from 3M was identified as a
dielectric capable of particularly large actuation strains and high electromechanical pressure and
pre-strains. In [14], the actuation performances of a large number of dielectric elastomers were
determined using the same biaxial experimental set-up as in Pelrine et al. [13] and compared
with other electric actuation technologies. The magnitude of the actuation strains reported has
increased steadily, as exemplified in [15].

Similar experiments were conducted by Wissler & Mazza [16,17] using the polymer VHB
4910. They adopted a number of different nonlinear isotropic hyperelastic material models to
describe the mechanical effects and used the stress given by (2.2) to provide the electromechanical
coupling. They then compared the predictions of the models with the experimental results and
obtained good agreement while noting that the selection of the material model had a strong
influence on the predictions. Clearly, equation (2.2) shows that the electrostatic stress increases
as the film thickness decreases. If the corresponding increase in material stiffness does not
compensate for the increase in the electrostatic stress then an electromechanical instability can
occur in the form of further decrease in the film thickness or electrical breakdown, as noted in [16]
and earlier in [9,10,13]. These effects are strongly dependent on the amount of pre-strain.

Wissler & Mazza [18,19] obtained further experimental data for VHB 4910 with the same set-up
for different pre-strains and actuation potentials with particular reference to equation (2.2), and
also considered the time-dependent response of the materials. The final section in [19] shows that
the relative dielectric permittivity εr of VHB 4910 is not a constant but depends on the pre-strain.

Kofod et al. [20] performed experiments on pre-strained rectangular films of the acrylic
polymer VHB 4910 to validate the expression for the electrostatic stress (2.2), which they derived
from the components of the Maxwell stress tensor. In particular, they applied different amounts
of pre-strain to investigate the onset of mechanical instability and electric breakdown. Consistent
with the results in Pelrine et al. [13], they showed that the electrical breakdown strength, actuation
strain and efficiency increase with increasing pre-strain normal to the thickness direction. They
also found that the relative dielectric permittivity εr decreased with the increase in pre-strain and
considered that the differences between the theoretical predictions of (2.2) and their experimental
data could, in part, arise because εr was assumed to be independent of strain in (2.2). The
mechanical properties of VHB 4910 were used by Kofod [21] to assess the electromechanical
coupling as a function of pre-strain in the pure shear deformation of a cuboid subject to different
boundary conditions in the direction transverse to the pure shear and thickness directions.

Experimental results for VHB 4910 were also reported by Díaz-Calleja et al. [22], and they
adopted an isotropic hyperelastic model for the mechanical response of the material, which they
fitted successfully to the data. They also examined wrinkling instability, both theoretically and
experimentally.

Plante & Dubowsky [23] focused on the characterization of failure modes of dielectric
elastomer film actuators and, in particular, how they are influenced by pre-strain and the strain
rate, each of dielectric breakdown, pull-in instability and material instability being dominant
under different loading conditions. They considered both circular and diamond-shaped actuator
geometries, the properties and performance of which were further assessed in [24,25].
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The three types of failure considered, expressed in simple form, are

— pull-in failure: this occurs after the film thickness falls below a critical value, leading to
an unstable configuration with the film assuming a complex wrinkling pattern, which is
followed by either material or dielectric strength failure;

— dielectric failure: this happens when the electric field in the material exceeds a critical
value (the dielectric strength), and electrical discharge occurs between the electrodes. The
dielectric strength may be defined as the maximum electric field that the material can
support without failure of its insulating capacity; and

— material failure: this occurs when the stress in the material exceeds a critical value (the
material strength). The material strength is the capacity of the material to support stress
without failure.

Failure mechanisms also formed a key consideration in [26], which was concerned with the
theoretical analysis of the extent to which dielectric elastomers can be used to generate electrical
energy from mechanical deformation. Theoretical analysis of electromechanical instability has
been considered by many authors, exemplified in [27–42]. Based on the theory of small
deformations superimposed on large deformations for a general electroelastic material following
the development of Dorfmann & Ogden [43], an analysis of the stability of an electroelastic
plate was performed by the same authors in [44]. They noted, in particular, that the restricted
Hessian criterion for the onset of instability adopted in several previous papers was neither able
to capture the full range of instability modes, nor to account for the plate (or film) thickness or for
inhomogeneous instabilities, and they found that their predictions of instability were often quite
different from those obtained with the Hessian approach.

As mentioned earlier, in [19], it was found that the relative dielectric permittivity εr of
VHB 4910 is strain dependent. The effect of a deformation-dependent permittivity on material
response has been discussed in [42,45,46], and its influence on stability has been examined
in [30,42–44,47,48], and on small amplitude electroelastic wave propagation in [49].

Puglisi & Zurlo [50] evaluated the effect of thickness imperfections and curvature on
electromechanical instabilities, while Zurlo [51] proposed a simple constitutive dependence on
the second gradient of the deformation for the analysis of non-homogeneous deformations in
order to estimate the onset of pull-in instability in electroelastic films and found that the resulting
non-local effects can significantly decrease the instability threshold.

Full discussion and analysis of instability and failure phenomena is not attempted in the
present article, however, because a much more extensive review would be needed than the space
limitations allow. Indeed, a detailed analysis and separate review of such phenomena is highly
desirable.

(b) Cylindrical geometries
Thus far, cylindrical geometries have been considered less frequently than planar geometries, the
first example being that of Carpi & De Rossi [52], who tested a cylindrical tube actuator of silicone
dielectric elastomer with flexible electrodes applied to the inner and outer curved surfaces.
For modelling the response, they adopted the electrostatic pressure given by the formula (2.2)
combined with linear elasticity, and to simplify the modelling further, the electrostatic pressure
was assumed constant during activation. With limited pre-strain and activation strain a good
comparison was obtained between the theoretical predictions and experimental results. In [53], a
cylindrical tube actuator with helical compliant electrodes was presented for which the activation
generates axial contraction and radial expansion. In [54], Arora et al. also use silicone for very
small diameter cylindrical tubes in order to evaluate the axial and radial actuation strains as
functions of uniaxial and uniform pre-strains.

A mathematical model based on hyperelasticity was developed in [55,56] for the finite
deformation analysis of thin-walled cylindrical dielectric elastomer sensors and actuators,
again using the Maxwell stress for the electromechanical pressure. The cylindrical tubes were
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fibre-reinforced, with the fibres symmetrically and helically arranged. The dynamic response of
tubes without fibre reinforcement was examined in [57]. In each of these papers, the experiments
were conducted with tubes made from silicone and polyacrylate VBH 4905, and a good correlation
was obtained between the theoretical predictions and experimental results.

For thick-walled cylinders of neo-Hookean elastic material with different wall thicknesses, Zhu
et al. [58] analysed their activation after axial stretching without internal pressure and assessed the
conditions leading to loss of electromechanical stability. In the absence of extension, an analysis of
bifurcation instability for a tube under inflating pressure and a radial electric field was provided
by Díaz-Calleja et al. [59] for two electroelastic material models.

A recent paper [60] provides a theoretical analysis of the bifurcation and post-bifurcation
bulging of a cylindrical dielectric elastomer membrane tube under finite deformation and
electromechanical loading based on a simple electroelastic constitutive law. The predictions of
the theory gave good agreement with experiments they performed on tubes subject to internal
pressure, axial load and potential difference.

(c) Other geometries
Many other geometrical arrangements have been considered for the design of dielectric elastomer
actuators, the specification and performance of some of which have been reviewed in [61]. Here,
we mention just a small selection of subsequent works involving different geometries. In adopting
silicone elastomers as materials for actuators, the effects of pre-strain, hardener concentration and
dielectric filler were investigated by Zhang et al. [62] for both planar and spring-roll actuators,
while a variable geometry hexagonal frame design for pre-straining dielectric actuators with
several degrees of freedom was used by Wingert et al. [63]. Kofod et al. [64] investigated the
formation of complex out-of-plane electroelastic structures for use as claws in robotic gripping
technology.

An analytical approach was developed by Moscardo et al. [65] for optimizing the design
parameters of dielectric elastomer actuators so as to avoid the failure modes noted earlier
and to maximize the range of actuation, and for illustration they considered the homogeneous
deformation of a spring-roll actuator. The problem of programming the design of actuator
geometries for different functions involving inhomogeneous deformations, including gripper
actions, was also investigated by Zhao & Suo [66]. Inhomogeneous out-of-plane deformations
of dielectric elastomer actuators were examined by He et al. [67], with particular reference to the
avoidance of potential failure modes.

Some recent attention has been focused on layered beam-like actuators. For example,
Wissman et al. [68], by minimizing the energy comprising the sum of hyperelastic and electrical
contributions, predicted the principal curvatures of the beam as functions of the applied potential
difference and obtained good agreement with their experimental measurements performed on a
GaIn–PDMS composite. Balakrisnan et al. [69] analysed the bending of multilayered dielectric
elastomer actuators, but their analysis was limited in several respects—in particular, it was
restricted to plane strain and did not include material nonlinearity or electromechanical coupling.

Spherical elastomer balloons have been considered because of their ability in the absence of
an electric field to ‘snap through’ to form balloons with increased radius. When coated with
electrodes on their inner and outer surfaces, application of an electric field between the electrodes
can be used to trigger this instability phenomenon, with the critical pressure at which snap-
through occurs reducing as the field strength increases, as the analysis in [70] has demonstrated.
The stability of a thick-walled ideal dielectric elastomer spherical shell has been analysed in [71],
while the dynamic response of a radially pre-stressed spherical shell was analysed by Yong
et al. [72], who considered the stability of oscillations of the shell for a constant or periodic
potential difference.

An analysis of the radial response of a thick-walled spherical shell with compliant electrodes
on its surfaces was provided in [73] within the framework of the general theory of nonlinear
electroelasticity with examples illustrated for three forms of electroelastic energy function.
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Experiments relating to snap-through were conducted by Keplinger et al. [15] and Li
et al. [74], who observed that for inflated membrane balloons instabilities can be generated,
where the balloon expands suddenly and either reaches a stable configuration or causes electrical
breakdown due to the increase in the electric field between the electrodes on its surfaces. The
experimental results were compared favourably with their theoretical predictions using the elastic
Gent model [75]. Recent results for initially flat inflated membranes [76] have shown that rather
complex geometrical bifurcation patterns can arise.

Membrane theory was also used by Xie et al. [77] to investigate how, under electrical actuation,
bifurcation of a spherical balloon can lead to pear-shaped configurations for material models with
either a deformation-dependent or deformation-independent permittivity.

An extensive list of references on large deformations and instabilities of soft dielectrics from
both experimental and theoretical perspectives was provided by Zhao & Wang [78], who also
discussed creasing, cratering and cavitation instabilities.

(d) Viscoelasticity
Much of the theoretical research on dielectric elastomers is based on elasticity, and while it is our
intention to focus on the elastic behaviour of dielectric materials in this paper, it is well known
that their behaviour can be significantly viscoelastic and dissipative. We, therefore, mention
briefly that this has led to the development of electro-viscoelastic models of different degrees
of complexity with a variety of applications, as discussed variously in [79–91].

Detailed experiments aimed at characterizing the electro-viscoelastic properties of VHB 4910
under application of purely mechanical and electromechanically coupled loadings have been
carried out in [92]. The data show that the electric loading has a profound effect on the time-
dependent behaviour of this electroactive polymer. This is a valuable contribution because it is
very important to have comprehensive data on the properties of these materials to inform the
modelling process. This is one of the few papers that provides such information and highlights
the need for more data for various materials that are used for dielectric elastomer transducers.
Most of the materials used in actuators are silicone and acrylics and the comparative performance
of a particular silicone and acrylic has been evaluated by Michel et al. [93].

There is a clear need for more detailed characterization of the properties of dielectric
polymers, and elastomers in particular. The appropriate basis for this characterization is a sound
underpinning constitutive theory within the framework of continuum electromechanics which
can be used in the processes of prediction and design. Such a framework is described in the
following sections after a brief historical discussion of the main contributions to the continuum
theory of electromechanical interactions in §3.

3. Continuum theories of nonlinear electromechanics
The modern development of the nonlinear theory of continuum electromechanics began with
the seminal work of Toupin [2] in 1956 on the elasticity of dielectric materials. In the static
context, with a stored energy depending on the deformation and the polarization per unit
mass as independent variables, he used the principle of virtual work to derive constitutive
laws for the electric field and a non-symmetric measure of stress together with the field
equations in the material and the surrounding space, and associated boundary and continuity
conditions. Particular attention was accorded to the constitutive equations for homogeneous
isotropic dielectric materials expressed in terms of invariants, and the theory was illustrated by
application to two simple boundary-value problems. The equations governing the dynamics of
elastic dielectrics were derived in a subsequent paper by Toupin [94] in 1963 and then applied, in
particular, to the study of linearized incremental deformations and weak electromagnetic fields
superimposed on a finitely deformed configuration in a strong electromagnetic field.

Also in 1963, Eringen [95], in a paper that closely followed the theoretical development
in [2], formulated the equations governing elastic dielectrics, the main difference being that he
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used the polarization per unit reference volume as his independent field variable instead of the
polarization per unit mass. For the particular case of an isotropic dielectric, he applied his theory
to the problem of extension of an incompressible thick-walled circular cylindrical tube subjected
to a radial electric field.

Tiersten is also considered to be one of the founders of continuum electrodynamics, and
he made fundamental contributions to the modelling of nonlinearly electroelastic materials,
including thermal effects [96], and simplified the formulation of Toupin [2] and Eringen [95]. In
particular, he used the theory of quasi-electrostatics to examine electroelastic wave propagation,
a theory that was also used by Baumhauer & Tiersten [97] to derive the nonlinear equations and
boundary conditions for small fields superimposed on a large static biasing field. Tiersten made
significant contributions to the theory of piezoelectricity and its applications, and highlighted
in [98,99] the differences between the linear piezoelectric equations and the linear electroelastic
equations for small fields superposed on a biasing field.

Lax & Nelson [100] developed a theory of nonlinear electrodynamics for anisotropic dielectrics,
with particular reference to acoustic wave interactions. In [101], they introduced Lagrangian
versions of the electromagnetic fields and the associated forms of Maxwell’s equations and
boundary conditions. These were used by Nelson [102] in deriving the field equations,
constitutive equations and corresponding boundary conditions of nonlinear electroacoustics
in dielectrics, without restriction to the quasi-electrostatic approximation. The theory was
then specialized by considering second-order approximations in the elastic strain and electric
field variables and finally to the quasi-electrostatic approximation. More details of Nelson’s
contributions can be found in his monograph [103].

McMeeking & Landis [104] derived the governing equations for quasi-electrostatics in Eulerian
form based on a principle of virtual work somewhat simpler than that of Toupin [2] and
Eringen [95], and also adopted a free energy function dependent on the deformation gradient
and the polarization. By use of the second law of thermodynamics for non-dissipative materials,
they obtained the associated constitutive equations for the electric field and the (symmetric)
total Cauchy stress. They applied the theory to the analysis of the response of an electroelastic
plate with flexible electrodes on its major faces, based on a specialization of the constitutive law
consisting of a purely elastic term supplemented by a term quadratic in the polarization. The
principle of virtual work was also used by McMeeking et al. [105] to expand the formulation
in [104] to dissipative materials.

A novel Lagrangian formulation was provided by Dorfmann & Ogden [106] based on the
notion of a total energy function, leading to relatively simple and compact forms of the governing
equations of equilibrium and constitutive equations in terms of the total Cauchy stress and its
Lagrangian counterpart, the total nominal stress, thus facilitating the formulation and solution
of a number of boundary-value problems. This is the formulation that will be adopted in the
subsequent sections of this paper. A particular case of the theory in [106] was developed later
from a different starting point by Suo et al. [107].

Vertechy et al. [108] presented a thermodynamically consistent nonlinear thermo-electro-
mechanical model for analysing isotropic thermoelastic dielectrics. They obtained invariant-based
constitutive equations for the polarization vector, the total Cauchy stress tensor and the heat flux
vector as functions of the deformation gradient, the Eulerian form of the electric field and the
temperature. A particular form of their constitutive equations was used to illustrate the efficacy
of the model when compared with experimental data on membranes of natural rubber infused
with electro-sensitive particles. They also discussed the similarities with and differences from
the theories developed by Toupin [2], Hutter et al. [109], Pao [110], Eringen & Maugin [111],
Dorfmann & Ogden [106], McMeeking & Landis [104] and McMeeking et al. [105], inter
alia. A thermodynamically consistent coupled theory of nonlinear electro-thermo-viscoelasticity
including hysteresis, ageing and damage effects was formulated by Chen [112], and more recently
Mehnert et al. [113] have developed a general thermodynamically consistent time-independent
constitutive framework for thermal and electromechanical interactions, and the theory was
applied to the extension and inflation of a circular cylindrical tube to illustrate the coupling effects.
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A quite different approach to the modelling of dielectric elastomers was presented by
Skatulla et al. [114], who introduced the electromechanical coupling by means of a multiplicative
decomposition of the deformation gradient into two parts, the first related to the elastic behaviour
of the material, and the second to the deformation induced by the electric field. Standard
free energy functions were then adapted for the formulation of constitutive equations based
on a free energy function depending on the deformation gradient and the Lagrangian electric
field. The free energy function was specialized into the sum of a purely mechanical part and a
coupled electromechanical term quadratic in the electric field. This was used within a variational
formulation to illustrate numerically the solution of a number of representative problems.

Bustamante & Rajagopal [115] extended the novel implicit theory of elasticity of
Rajagopal [116] to an implicit theory of electroelasticity with the constitutive equations involving
the total Cauchy stress tensor, the left Cauchy–Green deformation tensor, and the electric
displacement and electric field vectors. In general, this theory is somewhat unwieldy because,
even for isotropic materials, it involves a total of 21 invariants. To reduce the number of material
functions, the theory was restricted to the case of linearized strains, and then used to exhibit
strain-limiting material behaviour and polarization saturation. Several boundary-value problems
were solved assuming a homogeneous distribution of the total stress and the electric field in [117],
while numerical solutions were given for the case of a non-homogeneous distribution of stresses.

A general incremental theory for small deformations and electric fields superposed on a
finite deformation and electric field was developed by Dorfmann & Ogden [43] based on the
theory in [106] and extended to allow for incremental motions within the quasi-electrostatic
approximation by Dorfmann & Ogden [49].

Finally, in this section, we mention that different aspects of the theories discussed earlier and
their applications are discussed in the texts by Landau & Lifshitz [118], which was restricted to
the linearly elastic context, Nelson [103], Maugin [119], Eringen & Maugin [111], Hutter et al. [109]
and Dorfmann & Ogden [120].

4. The equations of nonlinear elastic equilibrium
We begin by defining the kinematic quantities that are required for describing the geometry
of large deformations of general solid continua. Consider a material body in a stress-free
undeformed configuration, which is referred to as the reference configuration and here denoted
by Br. Its boundary is denoted by ∂Br. Material points are labelled by their position vectors X
in Br ∪ ∂Br. In this paper, we consider only time-independent deformations and describe the
deformation from Br to the deformed configuration, denoted by B, with the vector mapping function
χ , so that x = χ(X) is the deformed position vector of the material point X. The boundary of B is
denoted by ∂B.

In the neighbourhood of a point X the deformation is described in terms of the deformation
gradient tensor, the gradient of x = χ(X) with respect to X, denoted by F and given by

F = Grad x = Grad χ(X), (4.1)

Grad being the gradient operator with respect to X, which should be distinguished from grad,
the usual gradient with respect to x, which is used later. The standard notation J = det F with the
convention that J > 0 is adopted here.

Two important symmetric tensors are formed from F, namely the left and right Cauchy–Green
deformation tensors, denoted by B and C, respectively, and defined by

B = FFT and C = FTF, (4.2)

where superscript T signifies the transpose of a second-order tensor.
Let n denote the unit outward normal vector on the surface ∂B and t the force per unit area

of ∂B. Then, Cauchy’s theorem allows us to write t = σn, where σ is a second-order tensor
independent of n known as the Cauchy stress tensor. In the absence of couple stresses σ is
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symmetric, but without modification this is no longer the case when forces generated by an
electric field are accounted for, as will be discussed in §6.

Let ρ denote the mass density of the material in B and f the (mechanical) body force acting on
B per unit mass. Then, for mechanical equilibrium σ satisfies the equation

div σ + ρf = 0, (4.3)

where div is the divergence operator with respect to x. An important alternative measure of stress
is the nominal stress tensor, denoted by S and given in terms of the Cauchy stress by

S = JF−1σ. (4.4)

This connection arises from the formula for the traction t per unit area of ∂B via

t da = σn da = JσF−TN dA = STN dA, (4.5)

which makes use of Nanson’s formula

n da = JF−TN dA (4.6)

relating an area element dA on ∂Br to an area element da on ∂B under the deformation, where N
is the unit outward normal on ∂Br.

In terms of S, the equilibrium equation (4.3) can be written as

Div S + ρrf = 0, (4.7)

where Div is the divergence operator with respect to X and ρr is the mass per unit volume in Br,
and we note the connection ρr = Jρ.

For an elastic material for which there is a strain-energy function, denoted by W(F) and defined
per unit volume, the nominal stress is given simply by

S = ∂W
∂F

(4.8)

and from (4.4), the corresponding formula for the Cauchy stress is

σ = J−1F
∂W
∂F

. (4.9)

We emphasize that, at this point, we are considering a purely elastic material with no
electromechanical coupling. The latter will be introduced in §6. The formulae (4.8) and (4.9)
apply when there is no internal constraint on the material, i.e. no constraint on F. However,
many materials, such as rubber-like materials and electroactive elastomers, that are capable of
large elastic deformations can be regarded as incompressible, in which case the constraint of
incompressibility is adopted. This takes the form

J = det F ≡ 1. (4.10)

This means, in particular, that not all the components of F are independent, and (4.8) requires
modification by the introduction of a Lagrange multiplier to accommodate the constraint (4.10).
The resulting modifications of (4.8) and (4.9) are

S = ∂W
∂F

− pF−1 and σ = F
∂W
∂F

− pI, (4.11)

where p is the required Lagrange multiplier and I is the identity tensor.
One fundamental condition that the strain-energy function W and its various generalizations

considered later have to satisfy is the principle of objectivity, or just objectivity for brevity. This
requires that W be invariant with respect to rotations superimposed on the deformation, a
condition that C satisfies automatically. Thus, for objectivity to be satisfied, W must depend on
F through C. This is always assumed to be the case in the remainder of this paper, even though
the argument of the energy function is often written as F. For more detailed background on solid
continuum mechanics, see [121,122].
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5. Maxwell’s equations for electrostatics

(a) Eulerian forms
We consider purely electrostatic fields in this section, and as a prerequisite for the nonlinear theory
of electroelasticity, we summarize the appropriate specializations of Maxwell’s equations, first
in Eulerian form, i.e. in the configuration B. Let E and D denote the electric field and electric
displacement vectors, respectively. These fields are in general functions of x. In a polarized
material medium, there is an additional vector, denoted by P and called the polarization density
(per unit volume in B). It is defined by

P = D − ε0E, (5.1)

where, as indicated following equation (2.1), ε0 is the vacuum permittivity (or electric permittivity
of free space). In polarizable materials, there are thus two independent vector fields and one when
the electric properties of the material are specified by a constitutive equation, which expresses
one of the three vectors in terms of another (and also, in general, the deformation). In vacuum or
non-polarizable material this reduces to

D = ε0E, (5.2)

in which case there is only one independent vector and (5.2) can be regarded as a special form of
constitutive equation. Some specializations of the constitutive equations will be considered in §§7
and 8.

The vector fields E and D satisfy two fundamental differential equations, namely

curl E = 0 and div D = ρf, (5.3)

where ρf is the density of free charges (per unit volume in B) and the operation of curl is with
respect to x. In vacuum ρf = 0, and in dielectric materials, on which we shall focus in this paper,
this is also the case.

Consider a (stationary) surface S, which may either be within B or form (part of) the boundary
∂B and let the unit vector n denote a normal to S (the outward unit normal in the case of ∂B).
The two sides of S are distinguished as side + and side − with the vector n pointing from side
− to side +. The field vectors on the two sides of S are identified by subscripts + and −. Then, a
discontinuity (or ‘jump’) in a vector on S is the difference between its values on side + and side
−, evaluated on S. Thus, E, for example, has the discontinuity E+ − E−, which is denoted by [[E]],
and similarly for other quantities. The discontinuity conditions associated with equations (5.3)
are given by the standard formulae

n × [[E]] = 0 and n · [[D]] = σf, (5.4)

where σf is the free surface charge density per unit area on the surface S.
Excellent sources of reference for the theory of electrostatics and more generally

electromagnetic theory are the classical texts of Jackson [123], Becker & Sauter [124] and
Stratton [125].

(b) Lagrangian forms
The vector fields E and D (and P) may be referred to as Eulerian fields because they are defined in
B. For the development of the theory governing the interaction of mechanical and electric effects
it will be convenient to make use of the Lagrangian counterparts of E and D, which we denote by
EL and DL, where the label L signifies ‘Lagrangian’. Given that the configuration B is obtained
by deformation from Br with deformation gradient F, these are the pull-back versions of E and D
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from B to Br defined by

EL = FTE and DL = JF−1D, (5.5)

for a derivation of which see [106] or [120]. We shall also make use of the density ρF of free charges
per unit volume in Br, which is defined by ρF = Jρf.

In terms of the Lagrangian fields, the Eulerian equations in (5.3) can be transformed into their
Lagrangian counterparts

Curl EL = 0 and Div DL = ρF, (5.6)

which are equivalent to (5.3) provided that the deformation is sufficiently regular.
The jump conditions associated with these equations are analogous to their Eulerian

counterparts (5.4), and, on use of elementary vector identities, can be written as

N × [[EL]] = 0 and N · [[DL]] = σF, (5.7)

where σF = σf da/dA is the surface charge density per unit area of the surface Sr, which is the
pre-image of S, and N is the unit normal vector on Sr corresponding to n on S, with n and N
related by Nanson’s formula (4.6).

We may also define a Lagrangian version PL of P as PL = JF−1P by the same transformation as
for DL, and hence for later reference, from (5.1),

PL = DL − ε0JC−1EL. (5.8)

By virtue of the deformation x = χ (X), we may regard the Lagrangian fields as functions of X
in Br.

6. The equations of electroelasticity
In this section, we focus on electrostatics and the interaction between electric fields and
nonlinear elastic deformations in order, first, to generalize the equilibrium equation (4.3) so as to
accommodate the electromechanical coupling with appropriate boundary conditions and, second,
to prepare for the discussion of constitutive equations in §7.

(a) Equilibrium equations
To generalize the equilibrium equation (4.3), we must first of all include body forces associated
with the electric field. The electric field also contributes to the Cauchy stress σ, the definition
of which depends on the particular form of the electric body force adopted, as highlighted
in [126,127].

From classical electrostatics, the force acting on charge e in an electric field E is eE and the
force acting on a dipole of strength p located at a point in an electric field E is (p · grad)E. The
generalizations of these forces at a point x in a polarized continuum B are ρfE and (P · grad)E,
respectively, per unit volume in B. By incorporating these into (4.3), we obtain the equilibrium
equation for an electroelastic material in the form

div σ + ρf + fe = 0 in B, (6.1)

where σ is a form of the Cauchy stress tensor, different from that in the purely elastic case,
dependent on the electric field and not in general symmetric, while fe is the electric body force
defined by

fe = ρfE + (P · grad)E, (6.2)

f again being the mechanical body force per unit mass.
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In fact, on use of (5.3), it can be seen that fe can be expressed as the divergence of a second-order
tensor, specifically

fe = div τm, (6.3)

where τm is a form of electrostatic Maxwell stress given by

τm = D ⊗ E − 1
2 ε0(E · E)I (6.4)

and I is again the identity tensor. We emphasize that, in the literature, there are different
definitions of the Maxwell stress within a polarizable body; this is just one of them, and we refer
the readers to [126,127] for further discussion.

The equilibrium equation (6.1) may now be written in the form

div τ + ρf = 0 in B, (6.5)

where we have introduced the total Cauchy stress tensor τ defined by

τ = σ + τm, (6.6)

which incorporates the electric body force. Whereas neither σ nor τm is in general symmetric,
τ has the advantage that it is symmetric. This symmetry comes from the balance of angular
moments in the absence of intrinsic couples.

Expressed in the form (6.5), the equilibrium equation has the same structure as for a purely
mechanical theory and, as will be shown in §7, τ can be expressed in terms of an energy function
in a way that is exactly analogous to that used for pure elasticity. This has considerable advantages
when it comes to formulating and solving particular boundary-value problems because it avoids
the need for defining a Maxwell stress within a polarizable material. In a non-polarizable material
or in free space, this is not an issue since the Maxwell stress is uniquely defined in such cases, and
we provide its definition in the following subsection.

Analogously to the connection (4.4) between the nominal stress and Cauchy stress in pure
elasticity theory, it is natural to define a total nominal stress tensor with the same connection in the
present setting. This is denoted by T and is given by

T = JF−1τ. (6.7)

Similarly to equation (4.7), the equation of equilibrium (6.5) translates into the equivalent form

Div T + ρrf = 0 in Br. (6.8)

(b) Exterior fields
To distinguish the fields E and D within a polarizable material from those in the exterior (non-
polarizable) region, we use the notations E� and D� for the latter, with the simple connection D� =
ε0E� holding. The (symmetric) Maxwell stress, denoted by τ�

m, in the exterior region is defined
unambiguously by

τ�
m = ε0E� ⊗ E� − 1

2 ε0(E� · E�)I, (6.9)

the superscript � being used for all quantities in the exterior region.
The fields E� and D� must satisfy the equations in (5.3) appropriately specialized, i.e.

curl E� = 0 and div D� = 0 (6.10)

with D� = ε0E�, from which it follows that div τ�
m = 0.

(c) Boundary conditions
In terms of Eulerian fields, the jump conditions across a discontinuity surface are given by (5.4).
For a polarizable body B and its exterior, these jump conditions form boundary conditions, which

 on September 3, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


14

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170311

...................................................

we write here as

n × (E� − E) = 0 and n · (D� − D) = σf, (6.11)

evaluated on the boundary ∂B. The corresponding Lagrangian forms of the boundary conditions
are, from (5.7),

N × (FTE� − EL) = 0 and N · (JF−1D� − DL) = σF, (6.12)

evaluated on ∂Br. Note that the deformation has not been defined in the exterior region and the
deformation gradient terms in (6.12) come from the transformation of the unit normal according
to Nanson’s formula (4.6).

By integrating (6.5) over B and applying the divergence theorem, we see that τn is the traction
per unit area of the boundary ∂B formed from the value of τ on the inside of ∂B, and this must
match the exterior traction that combines the applied mechanical and electrical loads. Let ta be the
applied mechanical traction. We denote the electrical traction by t�m. This is due to the Maxwell
stress τ�

m, and is given by t�m = τ�
mn, so that the total traction on ∂B is ta + t�m. Hence, where ta is

prescribed, the traction boundary condition is

τn = ta + t�m on ∂B. (6.13)

The traction boundary condition may also be written in Lagrangian form, as follows. With N
denoting the unit outward normal to ∂Br, and with dA the associated area element, Nanson’s
formula (4.6) enables (6.13) to be transformed into

TTN = tA + t�M on ∂Br, (6.14)

where tA and t�M are defined via tA dA = ta da and t�M dA = t�m da.
We have now introduced the required stress tensors for electroelastic deformation that will

be used subsequently. The next step, in the following section, is to relate the stresses to the
deformation and field variables through constitutive equations that define the material properties.
For this purpose, we regard the electric field E and electric displacement D vectors as basic field
variables because they satisfy the field equations (5.3), with the polarization P given by (5.1).

Thus, for a polarizable material there are three vector fields to consider. To characterize the
properties of a polarizable material and to distinguish between different materials, a framework
for the development of constitutive equations is required, and this may be based on either one
of the three variables as the independent electric variable, expressed as a function of one of the
others together with (5.1). Two main options for such a framework are considered in §7 based on
the Lagrangian fields EL and DL rather than E and D themselves.

Before proceeding, we note that the simplest example of a constitutive equation for a
polarizable material is that of a linear isotropic material with constant permittivity ε. This has the
form

D = εE, (6.15)

with ε = εrε0 and εr the relative dielectric permittivity, as used in (2.1). It follows that the polarization
is a linear function of the electric displacement and equation (5.1) is replaced by

P = εr − 1
εr

D, (6.16)

so that the vector field P is parallel to the electric displacement D. In vacuo or in non-polarizable
material εr = 1, while in polarizable materials εr > 1. Note that εr − 1 is referred to as the
susceptibility, which is often denoted by χe.

7. Electroelastic constitutive equations
The stress tensor σ in (6.1) has been identified in [127] as the same as the stress tensor used in
Toupin [2], albeit in different notation. Toupin obtains this, and the electric field E, from an energy
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function Σ(F, π), defined per unit mass, in the form

σ = ρF
∂Σ

∂F
and E = ∂Σ

∂π
, (7.1)

where π = P/ρ is the polarization per unit mass. Note that E is denoted by EM in [2], which is the
sum of the Maxwell self field and the external field.

It is convenient in the present context to define the energy per unit reference volume and, as
in [120], to use the polarization in the form ρrπ = JP, which we denote by Pr (the polarization per
unit reference volume). We write the energy, per unit reference volume, as U(F, Pr) = ρrΣ(F, π),
and the formulae in (7.1) can be recast as

σ = J−1F
∂U
∂F

, E = ∂U
∂Pr

. (7.2)

Here, it is the polarization that is used as the independent electric variable. Equally, this can
be replaced by the electric field E or the electric displacement D, leading to variants of the
constitutive laws, details of which can be found in [127]. However, it turns out that it is
particularly convenient for several purposes to make use of the Lagrangian forms of the field
variables defined in §5b in the construction of constitutive equations and the formulation of
boundary-value problems, and we now focus on this approach.

(a) Lagrangian field-based energy functions
Our aim now is to obtain a compact formula for the total Cauchy stress τ analogous to the formula
(4.9) for σ in pure elasticity. Two such formulae were derived in [106] and involved the use of
the Lagrangian fields and a sequence of changes of independent variable. By combining these
changes into a single step, we consider first a formulation which replaces U(F, Pr) by a function
Ω of F and EL, defined per unit reference volume. This is given by

Ω(F, EL) = U(F, Pr) − (F−TEL) · Pr − 1
2 ε0JEL · (C−1EL), (7.3)

which may be referred to as a total energy function. This leads to the equations

T = ∂Ω

∂F
and DL = − ∂Ω

∂EL
, (7.4)

the detailed derivations of which can be found in [106,120]. The Eulerian counterparts, based on
the use of Ω(F, EL), are

τ = J−1F
∂Ω

∂F
and D = −J−1F

∂Ω

∂EL
. (7.5)

An alternative to EL as the independent electric variable is DL with the definition of an energy
function Ω∗(F, DL) (per unit reference volume) via

Ω∗(F, DL) = U(F, Pr) + 1
2 ε−1

0 J−1DL · (CDL) − ε−1
0 J−1(FDL) · Pr + 1

2 ε−1
0 J−1Pr · Pr (7.6)

or more simply by means of the Legendre transform

Ω∗(F, DL) = Ω(F, EL) + DL · EL (7.7)

in the electric variables. This leads to formulae analogous to those in (7.4) and (7.5), specifically

T = ∂Ω∗

∂F
, EL = ∂Ω∗

∂DL
(7.8)

and

τ = J−1F
∂Ω∗

∂F
, E = F−T ∂Ω∗

∂DL
. (7.9)

The variables (T, −DL) and (F, EL) are ‘work conjugate’ with respect to Ω , while (T, EL) and
(F, DL) are work conjugate with respect to Ω∗.
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In passing, it should be mentioned that it is not possible to construct an energy function
depending on just F and PL, the latter given by (5.8), for which a pair of equally compact formulae
can be obtained, and, for this reason, we do not adopt PL as an independent variable.

Following the pattern of (4.11) for a purely elastic material, the appropriate modifications for
incompressible materials of the expressions for T and τ given by (7.4)1 and (7.5)1 are

T = ∂Ω

∂F
− pF−1 and τ = F

∂Ω

∂F
− pI, (7.10)

respectively, with p a Lagrange multiplier as in (4.11). The expressions for DL and D in (7.4)2 and
(7.5)2 are unchanged except that J = 1.

For Ω∗ the equations in (7.10) are replaced by

T = ∂Ω∗

∂F
− p∗F−1 and τ = F

∂Ω∗

∂F
− p∗I, (7.11)

where p∗ is also a Lagrange multiplier, in general, not the same as p. The formulae for EL and E in
(7.8)2 and (7.9)2 are unchanged except that again J = 1.

(b) Isotropic electroelasticity
Let us first of all consider the energy function Ω , which, by objectivity, is a function of the right
Cauchy–Green deformation tensor C and EL. If the underlying material in the absence of an
electric field is isotropic, then the effect of an electric field is similar from the mechanical point
of view to a preferred direction in a transversely isotropic elastic material, although EL is not in
general a unit vector (for details of the transversely isotropic theory for purely elastic materials,
see [128]). Similarly to the case of a transversely isotropic elastic material, an electroelastic material
is said to be isotropic if Ω is an isotropic function of the two tensors C and EL ⊗ EL. For an isotropic
electroelastic material, Ω depends on six independent invariants of C and EL ⊗ EL, typically
denoted by I1, I2, I3, I4, I5, I6 and defined here, respectively, by

I1 = tr C, I2 = 1
2 [(tr C)2 − tr(C2)], I3 = det C = J2 (7.12)

and

I4 = EL · EL, I5 = (CEL) · EL, I6 = (C2EL) · EL. (7.13)

Thus, Ω = Ω(I1, I2, I3, I4, I5, I6) and for an unconstrained material the total nominal and Cauchy
stresses can be expressed as

T =
6∑

i=1,i�=4

Ωi
∂Ii

∂F
and τ = J−1F

6∑
i=1,i�=4

Ωi
∂Ii

∂F
, (7.14)

where Ωi = ∂Ω/∂Ii, i = 1, 2, . . . , 6. We now give an explicit expression for the total Cauchy stress,
which requires the derivatives of the invariants (7.12) and (7.13) with respect to F in the form

F
∂I1

∂F
= 2B, F

∂I2

∂F
= 2I1B − 2B2, F

∂I3

∂F
= 2I3I, (7.15)

and

F
∂I5

∂F
= 2BE ⊗ BE, F

∂I6

∂F
= 2(BE ⊗ B2E + B2E ⊗ BE), (7.16)

where we recall that B = FFT is the left Cauchy–Green deformation tensor. Hence (noting that
∂I4/∂F vanishes),

τ = 2J−1[Ω1B + Ω2(I1B − B2) + I3Ω3I + Ω5BE ⊗ BE + Ω6(BE ⊗ B2E + B2E ⊗ BE)]. (7.17)

For an incompressible material (with I3 = 1) this changes to

τ = 2Ω1B + 2Ω2(I1B − B2) − pI + 2Ω5BE ⊗ BE + 2Ω6(BE ⊗ B2E + B2E ⊗ BE). (7.18)
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For the electric displacement we have, similarly, as I1, I2, I3 are independent of EL,

DL = −
6∑

i=4

Ωi
∂Ii

∂EL
, D = −J−1F

6∑
i=4

Ωi
∂Ii

∂EL
, (7.19)

with

F
∂I4

∂EL
= 2BE, F

∂I5

∂EL
= 2B2E, F

∂I6

∂EL
= 2B3E. (7.20)

Hence,

D = −2J−1(Ω4BE + Ω5B2E + Ω6B3E) (7.21)

and we note that the Cayley–Hamilton theorem B3 − I1B2 + I2B − I3I = O can be used to replace
B3 if required. Equation (7.21) holds for an incompressible material with J = 1.

When Ω∗(F, DL) is adopted as the energy function, then, for an isotropic material, Ω∗ again
depends on the invariants I1, I2, I3, but the invariants I4, I5, I6 are replaced by invariants that
depend on DL. These are denoted by K4, K5, K6 and defined by

K4 = DL · DL, K5 = DL · (CDL) and K6 = DL · (C2DL). (7.22)

Then, for an unconstrained and incompressible material, respectively, τ is given by

τ = 2J−1[Ω∗
1 B + 2Ω∗

2 (I1B − B2) + I3Ω
∗
3 I + Ω∗

5 D ⊗ D + 2Ω∗
6 (D ⊗ BD + BD ⊗ D) (7.23)

and

τ = 2Ω∗
1 B + 2Ω∗

2 (I1B − B2) − p∗I + 2Ω∗
5 D ⊗ D + 2Ω∗

6 (D ⊗ BD + BD ⊗ D), (7.24)

where Ω∗
i is defined as ∂Ω∗/∂Ii, for i = 1, 2, 3 and as ∂Ω∗/∂Ki, for i = 4, 5, 6. In each case, the

formula for the electric field is

E = 2(Ω∗
4 B−1D + Ω∗

5 D + Ω∗
6 BD). (7.25)

(c) The case of homogeneous biaxial deformation
As a first example, we consider the pure homogeneous strain of an incompressible material
defined in Cartesian components by

x1 = λ1X1, x2 = λ2X2 and x3 = λ3X3, (7.26)

where λ1, λ2, λ3 denote the principal stretches satisfying the incompressibility condition

λ1λ2λ3 = 1. (7.27)

We also assume that the electric field is aligned with the x3 direction with Eulerian component
E3 denoted by E and D3 denoted by D, and corresponding Lagrangian components EL3 and DL3
denoted by EL and DL, respectively.

We work in terms of the energy function Ω(I1, I2, I4, I5, I6) with the isotropic dependence
expressed in terms of the stretches. From (7.18) and (7.21), we then obtain the only non-zero
components of τ as

τ11 = λ1
∂Ω

∂λ1
− p, τ22 = λ2

∂Ω

∂λ2
− p, (7.28)

τ33 = λ3
∂Ω

∂λ3
− p + 2Ω5λ

2
3E2

L + 4Ω6λ
4
3E2

L (7.29)

and D has just a single component

D = DLλ3 = −2(Ω4 + Ω5λ
2
3 + Ω6λ

4
3)λ3EL, (7.30)

with EL = λ3E.
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In terms of two independent stretches, say λ1 and λ2, the invariants I1, I2, I4, I5 and I6 are
written

I1 = λ2
1 + λ2

2 + λ−2
1 λ−2

2 , I2 = λ−2
1 + λ−2

2 + λ2
1λ

2
2 (7.31)

and
I4 = E2

L, I5 = λ−2
1 λ−2

2 I4, I6 = λ−4
1 λ−4

2 I4. (7.32)

By the incompressibility condition, it follows that Ω depends on just three independent variables,
namely λ1, λ2 and I4, and we introduce the notation Ω̃ = Ω̃(λ1, λ2, I4) to represent this. Then, by
forming the stress differences from (7.28) and (7.29), we obtain the compact formulae

τ11 − τ33 = λ1
∂Ω̃

∂λ1
and τ22 − τ33 = λ2

∂Ω̃

∂λ2
, (7.33)

while, from (7.30),

D = −2
∂Ω̃

∂I4
λ−1

1 λ−1
2 EL = −2

∂Ω̃

∂I4
λ−2

1 λ−2
2 E. (7.34)

A particular special class of models within this framework has the form

Ω̃ = ω̃(λ1, λ2) − 1
2 ελ2

1λ
2
2I4, (7.35)

where ε is a constant and we note that λ2
1λ

2
2I4 = E2, and ω̃(λ1, λ2) is any (incompressible) isotropic

strain-energy function arising in pure elasticity theory. Then, (7.34) simplifies to D = εE, with ε

having the interpretation as the permittivity of the material. Also, the formulae in (7.33) become

τ11 − τ33 = λ1
∂ω̃

∂λ1
− εE2 and τ22 − τ33 = λ2

∂ω̃

∂λ2
− εE2. (7.36)

The counterpart of (7.35) for the energy function Ω∗, with variables λ1, λ2 and K4 is denoted
Ω̃∗(λ1, λ2, K4) and obtained by specializing (7.7) as

Ω̃∗ = ω̃∗(λ1, λ2) + 1
2ε

λ−2
1 λ−2

2 K4, (7.37)

where ω̃∗(λ1, λ2) = ω̃(λ1, λ2) and λ−2
1 λ−2

2 K4 = D2. This yields again the expressions for the stress
differences given in (7.36).

(d) Application: a parallel plate actuator
We now apply the earlier equations to the deformation of a rectangular plate with reference
geometry defined by

− L1 ≤ X1 ≤ L1 and − L2 ≤ X2 ≤ L2, 0 ≤ X3 ≤ H, (7.38)

where L1, L2, H are constants, the thickness H being small compared with the lateral dimensions
so that electric end effects are negligible, as is usually assumed in the literature for thin films.

The deformed plate has uniform thickness h = λ3H and is defined by

− l1 ≤ x1 ≤ l1 and − l2 ≤ x2 ≤ l2, 0 ≤ x3 ≤ h, (7.39)

where l1 = λ1L1, l2 = λ2L2.
Flexible electrodes coated on the surfaces X3 = 0, H deform into the surfaces x3 = 0, h and

a uniform electric field E normal to the faces is generated by a potential difference, say V,
between the electrodes so that V = Eh = Eλ3H. This is accompanied by free surface charges on
the electrodes with densities ±σf per unit deformed area (the positive sign applies to x3 = 0). By
Gauss’s theorem, there is no electric field outside the plate and hence, by the boundary condition
(6.11)2, D = σf

We now specialize to equibiaxial deformation with the notation λ1 = λ2 = λ, so that λ3 = λ−2.
A reduced form of energy function, defined by ω(λ, I4) = Ω̃(λ, λ, I4), that depends only on λ and
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I4 = E2
L is then introduced. The two components τ11 and τ22 of the total stress tensor are then each

denoted by τ, where

τ − τ33 = 1
2
λ

∂ω

∂λ
, (7.40)

while D is given by

D = −2λ−4 ∂ω

∂I4
E. (7.41)

If there are no lateral tractions applied, then τ = 0, and if no traction is applied on the faces, then
τ33 = 0 also so that ∂ω/∂λ = 0, which condition provides a balance between the internal electric
stress and mechanical stress in the x3 direction.

For definiteness we now consider ω to be based on (7.35) with ω̃(λ, λ) corresponding to a neo-
Hookean contribution, such that

ω(λ, I4) = 1
2 μ(2λ2 + λ−4 − 3) − 1

2 ελ4I4, (7.42)

where μ > 0 is the constant shear modulus of the neo-Hookean material in the reference
configuration and ε is the constant permittivity of the material, with the linear relation D = εE,
which follows from (7.41).

Then, (7.40) gives

τ − τ33 = μ(λ2 − λ−4) − εE2. (7.43)

For τ = 0, this can be written as

τ33 = εE2 − μ(λ2 − λ−4) = εE2 + μ(λ2
3 − λ−1

3 ), (7.44)

with the right-hand side consisting of the effective Maxwell stress εE2 > 0, as in (2.2), and the
mechanical stress μ(λ2

3 − λ−1
3 ), which must be negative when τ33 = 0 for internal stress balance.

This, of course, requires λ > 1 and λ3 < 1, so the plate thins as a result of the applied potential
difference.

If we denote by A and a the reference and deformed areas of the plate, then by
incompressibility ah = AH and hence a = λ2A. Let Q be the total charge on an electrode. Then,
Q = aσf = Aλ2D, and with E = V/h = λ2V/H we obtain

Q = ελ4 A
H

V. (7.45)

The stress balance τ33 = 0 is then expressed in terms of the potential difference or charge as

μ(λ−2 − λ−8) = ε
V2

H2 and μ(λ6 − 1) = Q2

εA2 . (7.46)

An interesting feature of these equations is that the potential has a maximum with respect to
λ where λ3 = 2, but the corresponding electric field increases monotonically with λ. This type
of behaviour and its connection with material instability and electrical breakdown has been
discussed in detail in [129], to which we refer for further references.

The neo-Hookean model can be replaced by any appropriate strain-energy function for an
elastomeric material. However, for simplicity we retain the neo-Hookean model but consider
a slightly more general version of the electric contribution to ω, by replacing ελ4 in (7.42) by
αλ4 + β, where α and β are positive constants (with α = ε when β = 0). Then, we obtain D = ε(λ)E,
where ε(λ) = α + βλ−4 is a deformation-dependent permittivity, while the expressions in (7.46)
are replaced by

μ(λ−2 − λ−8) = α
V2

H2 and μ(λ6 − 1) = α
Q2

A2ε(λ)2 . (7.47)

Note that the above form of ε(λ) is consistent with the experimentally observed reduction in the
permittivity of the material with increasing stretch [19].
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8. Formulation of boundary-value problems
In the above example, we have considered a very simple boundary-value problem in which
the deformation is homogeneous and the electric field uniform. For a general boundary-value
problem, the deformation will be inhomogeneous and the electric field non-uniform, and we now
state the equations and boundary conditions for the general case before their application to a
specific problem in the following section. In particular, we consider only the situation in which
there is no volumetric charge distribution, as is appropriate for a dielectric material.

When the constitutive law is expressed in terms of Ω(F, EL), as in the above example, the
total nominal stress tensor is given by (7.4)1 and the associated equilibrium equation is (6.8),
while DL is given by (7.4)2 and satisfies Div DL = 0. These equations are associated with the
boundary conditions (6.12) and (6.14). Moreover, EL satisfies (5.6), and hence is expressible in
the form EL = −Grad Φ, where Φ is a scalar function of X. This Lagrangian formulation is for an
unconstrained material and requires the solution of the equations for the deformation χ(X) and
Φ(X). The formulation for an incompressible material follows the same pattern, with appropriate
adjustments to accommodate the incompressibility constraint (4.10) and specialization to isotropy.

Alternatively, with the constitutive law expressed in terms of Ω∗(F, DL), the total nominal
stress tensor is given by (7.8)1 and again has to satisfy the equilibrium equation (6.8), while EL
is given by (7.8)2 and has to satisfy (5.6). The independent electric variable in this case, namely
DL, has to satisfy Div DL = 0, which, if required, allows DL to be expressed in terms of a vector
potential, but this is not pursued here.

(a) Illustrative example: extension and inflation of a tube
We now analyse a prototype example involving a non-homogeneous deformation and non-
uniform electric field, namely that of the problem of extension and inflation of a circular
cylindrical tube of incompressible isotropic electroelastic material, with the material properties
based on the formulation using the energy function Ω∗(F, DL) with DL as the independent electric
variable. The mechanical loads on the tube consist of an internal pressure and an axial load,
while a potential difference is applied between flexible electrodes coated on its inner and outer
cylindrical surfaces which generate a radial electric field. The analysis in this section follows
closely that in [130].

(i) The deformation

Prior to deformation the geometry of the tube is described in its reference configuration in terms
of cylindrical polar coordinates R, Θ , Z by 0 < A ≤ R ≤ B, 0 ≤ Θ ≤ 2π , 0 ≤ Z ≤ L, A and B being
the internal and external radii, respectively, and L the length of the tube. The tube is deformed
radially and axially in such a way that the circular symmetry is maintained and the geometry is
described in terms of cylindrical polar coordinates r, θ , z by a ≤ r ≤ b, 0 ≤ θ ≤ 2π , 0 ≤ z ≤ l, where a,
b and l are, respectively, the internal and external radii and the length of the tube in the deformed
configuration.

Because of incompressibility, the deformation is described by the equations

r2 = a2 + λ−1
z (R2 − A2), θ = Θ , z = λzZ, (8.1)

where λz is the axial stretch, which is a constant (i.e. independent of the radius R). It is convenient
to write the first of the above equations as r = f (R), so that

b = f (B) =
√

a2 + λ−1
z (B2 − A2). (8.2)

The associated deformation gradient F is diagonal with respect to the cylindrical polar axes,
with diagonal components λr, λθ , λz, which are the principal stretches of the deformation, with the
azimuthal stretch given by λθ = r/R and henceforth denoted by λ. Then, by the incompressibility
condition (7.27), the radial stretch λr is given by λr = λ−1λ−1

z , and we consider λ and λz to be the
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independent stretches. The invariants I1 and I2 are then expressed in terms of λ and λz as

I1 = λ−2λ−2
z + λ2 + λ2

z and I2 = λ2λ2
z + λ−2 + λ−2

z . (8.3)

(ii) The electric field

A radial electric field is generated within the material of the tube by means of a potential
difference applied between the electrodes on R = A and R = B, and this produces equal and
opposite charges on the two electrodes. Gauss’s theorem ensures that there is no radial field
outside the tube. This assumes that end effects are negligible, which is a reasonable assumption
normally adopted for a tube whose length is significantly larger than its thickness. Thus, the
electric field has only a radial component Er, which is independent of θ and z. The corresponding
electric displacement component Dr = Dr(r) is a function of r only. The equation curl E = 0 is then
satisfied identically and div D = 0 reduces to d(rDr)/dr = 0, so that rDr(r) is a constant, equal to
its value on either boundary, i.e.

rDr(r) = aDr(a) = bDr(b). (8.4)

Let Q and −Q be the total charges on r = a and r = b, respectively. The charges per unit area of the
surfaces are then Q/(2πal) and −Q/(2πbl), and hence, on specialization of the boundary condition
(6.11)2, equation (8.4) yields

rDr(r) = Q
2π l

. (8.5)

Let DL denote the corresponding (radial) component of DL, which, on specialization of (5.5)2,
is given in terms of Dr by DL = λ−1

r Dr = λλzDr = Q/(2πLR). Then, the invariants K4, K5 and K6
defined in (7.22) reduce to

K4 = D2
L, K5 = λ−2λ−2

z K4 and K6 = λ−4λ−4
z K4. (8.6)

The radial component Er of the electric field E is obtained by specializing the constitutive relation
(7.25) as

Er = 2(Ω∗
4 λ2λ2

z + Ω∗
5 + Ω∗

6 λ−2λ−2
z )Dr. (8.7)

The associated Lagrangian component, denoted by EL, is obtained by specializing (5.5)1 as EL =
λrEr = λ−1λ−1

z Er.

(iii) Stress components and equilibrium

For the considered deformation and electric field, the total Cauchy stress tensor has no shear
components with respect to the cylindrical polar coordinates r, θ , z, and its normal components
are obtained by specializing (7.24) as

τrr = 2Ω∗
1 λ−2λ−2

z + 2Ω∗
2 (λ−2

z + λ−2) − p∗ + 2Ω∗
5 D2

r + 4Ω∗
6 λ−2λ−2

z D2
r , (8.8)

τθθ = 2Ω∗
1 λ2 + 2Ω∗

2 [λ−2
z + λ2

zλ
2] − p∗ (8.9)

and τzz = 2Ω∗
1 λ2

z + 2Ω∗
2 [λ−2 + λ2λ2

z] − p∗. (8.10)

The invariants in equations (8.3) and (8.6) depend on the two independent stretches λ and λz

together with K4, and it is therefore advantageous to define a reduced energy function, denoted
by Ω̃∗ and defined by

Ω̃∗(λ, λz, K4) = Ω∗(I1, I2, K4, K5, K6), (8.11)

where I1, I2, K5, K6 on the right-hand side are given by (8.3) and (8.6).
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Elimination of the Lagrange multiplier p∗ from equations (8.8)–(8.10) then yields the formulae

τθθ − τrr = λ
∂Ω̃∗

∂λ
and τzz − τrr = λz

∂Ω̃∗

∂λz
(8.12)

for the stress differences, while equation (8.7) simplifies to

Er = 2λ2λ2
z
∂Ω̃∗

∂K4
Dr. (8.13)

Henceforth, it will be convenient to use the shorthand notations

Ω̃∗
λ = ∂Ω̃∗

∂λ
, Ω̃∗

λz
= ∂Ω̃∗

∂λz
and Ω̃∗

4 = ∂Ω̃∗

∂K4
. (8.14)

There is no electric field, and hence no Maxwell stress, outside the tube, so that the boundary
condition (6.13) has only a mechanical contribution, which is taken to consist of an applied
pressure P on the inner surface r = a and no traction on r = b, so that

τrr = −P on r = a and τrr = 0 on r = b. (8.15)

We also assume that there is no mechanical body force so that, in view of the radial symmetry, the
equilibrium equation (6.5) has just a radial component, which, on use of (8.12)1, we write as

r
dτrr

dr
= τθθ − τrr = λΩ̃∗

λ. (8.16)

On application of the boundary conditions (8.15), integration of the latter equation leads to an
expression for the pressure P, namely

P =
∫ b

a
λΩ̃∗

λ

dr
r

. (8.17)

As Ω̃∗ depends on λ, λz and K4 = D2
L with DL = Q/(2πLR), λ = r/R = f (R)/R, and b = f (B) depends

on a via (8.2), equation (8.17) is an expression for the pressure P in terms of the inner radius a and
the charge Q for any given initial geometry A, B, L and axial stretch λz.

An axial load is required on the ends of the tube in order to maintain the deformation. The
tube is assumed to have closed ends, so that there is a contribution to the total axial load from
the pressure P. When this contribution is subtracted, the result is the so-called reduced axial load,
which we denote by F. By a standard procedure, this can be shown to have the form

F = π

∫ b

a
(2λzΩ̃

∗
λz

− λΩ̃∗
λ)r dr. (8.18)

Like P, this depends on a and the charge Q for any given initial geometry and axial stretch.

(iv) Application to a class of material models

In order to set the stage for more detailed illustrations, we consider the class of energy functions
introduced in (7.37), but with λ1 and λ2 replaced by λ and λz, respectively. Thus,

Ω̃∗(λ, λz, K4) = ω̃∗(λ, λz) + 1
2 ε−1λ−2λ−2

z K4 (8.19)

and we recall that ω̃∗(λ, λz) is a purely (isotropic) elastic contribution to the total energy which
will be specialized later.
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In the expressions for P and F in (8.17) and (8.18) the terms

λΩ̃∗
λ = λω̃∗

λ − ε−1λ−2λ−2
z K4 and λzΩ̃

∗
λz

= λzω̃
∗
λz

− ε−1λ−2λ−2
z K4 (8.20)

are required. In each case, the term in K4 can be integrated explicitly, and, on introduction of the
notations

η = B
A

, q =
(

Q
2πAL

)2
, (8.21)

the formulae for P and F become, respectively,

P =
∫ b

a
λω̃∗

λ

dr
r

− q(η2 − 1)

2εη2λ3
zλ

2
aλ

2
b

(8.22)

and

F = π

∫ b

a
(2λzω̃

∗
λz

− λω̃∗
λ)r dr − πqA2

ελ2
z

log
(

ηλb

λa

)
, (8.23)

where the notations

λa = a
A

and λb = b
B

(8.24)

have been introduced. Equations (8.22) and (8.23) are equivalent to equations (45) and (46)
in [130].

Instead of being expressed in terms of the charge via Q, P and F can equally be written in
terms of the potential difference between the electrodes. Let V denote the electrostatic potential
function, so that E = −grad V, which has only the radial component Er with V = V(r). Thus, from
(8.13), we obtain

dV
dr

= −2λ2λ2
zΩ̃

∗
4Dr. (8.25)

With the help of equation (8.5), this may be integrated to obtain the potential difference

V(b) − V(a) = − Q
π l

λ2
z

∫ b

a
λ2Ω̃∗

4
dr
r

. (8.26)

In respect of (8.19) this yields the explicit formula

V(b) − V(a) = − Q
2π lε

log
(

ηλb

λa

)
. (8.27)

The mean value of the electric field through the undeformed thickness is denoted by E0 and
given by

E0 = V(b) − V(a)
B − A

(8.28)

and is related to the charge by

εE2
0 = q[log(ηλb/λa)]2

ελ2
z(η − 1)2

. (8.29)

This connection enables (8.22) and (8.23) to be recast in terms of the potential difference as

P =
∫ b

a
ω̃∗

λ

dr
r

− εE2
0(η2 − 1)(η − 1)2

2λzλ
2
aλ

2
bη

2[log(ηλb/λa)]2
(8.30)

and

F = π

∫ b

a
(2λzω̃

∗
λz

− λω̃∗
λ)r d − πA2 εE2

0(η − 1)2

log(ηλb/λa)
. (8.31)

Note that λa and λb are not independent but are connected by (λ2
bλz − 1)η2 = λ2

aλz − 1, which
follows from (8.2) on use of (8.24).
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Figure 1. Plots of the dimensionless pressure P∗ againstλa based on equations (8.22) and (8.30) for the Gentmodel (8.32)with
G = 97.2, η = 1.1 and λz = 1.2: (a) for q∗ = 0, 1, 5, 10, 20; (b) for e∗ = 0, 0.2, 0.35, 0.5, 0.65. In each case, the uppermost
curve corresponds to the purely elastic case and the value of P∗ decreases as the magnitude of the field measure, q∗ or e∗,
increases.

(v) Numerical results

For numerical illustration of the preceding formulae, we now choose a particular form of ω̃∗(λ, λz),
namely that based on the model of Gent [75], for which

ω̃∗(λ, λz) = −μG
2

log

[
1 − (λ2 + λ2

z + λ−2λ−2
z − 3)

G

]
, (8.32)

where G is a positive dimensionless material constant and μ (also positive) is the shear modulus
of the material in the undeformed configuration. It follows that

λω̃∗
λ = μG(λ2 − λ−2λ−2

z )

G + 3 − (λ2 + λ2
z + λ−2λ−2

z )
and λzω̃

∗
λz

= μG(λ2
z − λ−2λ−2

z )

G + 3 − (λ2 + λ2
z + λ−2λ−2

z )
, (8.33)

expressions required in the formulae for P and F in §8a(iv).
It is convenient to present the results in non-dimensional form, and for this purpose we adopt

non-dimensional versions of P, F, q and E2
0 defined by

P∗ = P
μ

, F∗ = F
(πμA2)

, q∗ = q
(με)

and e∗ = εE2
0

μ
. (8.34)

For definiteness, calculations were performed using Mathematica [131] based on the
representative value λz = 1.2 of the axial stretch, the geometrical ratio η = 1.1 corresponding to
a relatively thin-walled tube, and with G set to the value 97.2, which was obtained by Gent in
modelling the elastic response of vulcanized rubber. The dependence of P∗ on λa is based on
equations (8.22) and (8.30) and of F∗ on λa on equations (8.23) and (8.31).

In figure 1a, P∗ is plotted against λa for five selected values of q∗ and in figure 1b for five values
of e∗.

For each value of q∗ and e∗, the pressure is clearly a monotonic increasing function of λa.
Because of the limiting chain characteristic of the Gent model, λa approaches a limiting value (not
shown in the figure) with P∗ → ∞. The uppermost curve in each case corresponds to the absence
of an electric field, while application of an electric field without pressure induces an increase in the
tube radius and then the pressure needed to achieve a given radius is lower than in the absence
of an electric field.

Figure 2 is the counterpart of figure 1 for the reduced axial load, with F∗ plotted against λa

for the same values of the parameters. First, with λz set at 1.2, an electric field is applied which
causes an increase in λa at zero pressure, which is then taken as the starting point for application
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Figure 2. Plots of dimensionless reduced axial load F∗ against λa based on equations (8.23) and (8.31) for the Gent model
(8.32) with G = 97.2, η = 1.1 and λz = 1.2: (a) for q∗ = 0, 1, 5, 10, 20; (b) for e∗ = 0, 0.2, 0.35, 0.5, 0.65. In each case, the
uppermost curve corresponds to the purely elastic case and the value of F∗ decreases as themagnitude of the fieldmeasure, q∗

or e∗, increases.

of the pressure, which is different for each electric field, as measured by q∗ in figure 2a and e∗ in
figure 2b, the same values of which are used as in figure 1.

As in figure 1, the uppermost curve corresponds to the purely elastic case. On application of an
electric field, the value of F∗ associated with a given value of λa as the pressure increases reduces
as the magnitude of q∗ or e∗ increases. It decreases monotonically as λa increases, and its sign
changes from positive to negative as λa increases for small electric fields, so initially the pressure
and/or electric field tends to decrease the tube length (so a positive F∗ is required to maintain
the length), but thereafter tends to increase it. For larger electric fields the latter is the case, and a
compressive axial load is required to prevent extension.

It is worth noting, by reference to figures 1 and 2, that, for both P∗ and F∗, the influence of
the electric field for fixed charge (through q∗) declines as λa increases, whereas for fixed potential
(through e∗) the electric field has a significant effect.

It was shown in [130] that the results for both thinner- and thicker-walled tubes are
qualitatively very similar to those shown in figures 1 and 2 in respect of the Gent model, the
main difference being in the magnitudes of P∗ and F∗. This also applies to the neo-Hookean and
Ogden models that were also considered in [130] although the P∗ versus λa behaviour exhibits
some differences, as is well known for the purely elastic response. We refer the readers to [130]
for further details.

Because the results are qualitatively very similar for different tube thicknesses, including very
thin tubes, it is advantageous to adopt the thin-walled approximation for P∗ and F∗ because this
allows explicit formulae to be obtained that do not involve integrals and without specializing the
energy function further, thus providing more insight. This approximation is now considered.

(vi) The thin-walled tube approximation and activation

As a measure of the wall thickness for a thin-walled tube, it is appropriate to introduce the
small parameter δ defined by δ = (B − A)/A. It follows that A/R = 1 + O(δ) and, from (8.2), the
expansion b = (1 + δλ−1

z λ−2
a )a is obtained correct to the first order in δ, while, on use of (8.1)1,

λ = λa[1 + O(δ)]. From (8.6)1 and definition (8.21)2 of q, it follows that K4 = qA2/R2, and hence, by
also approximating (8.29), we obtain

K4 = q[1 + O(δ)], εE2
0 = q

ελ4
zλ

4
[1 + O(δ)], (8.35)

the subscript a now being dropped from λa.
Then, to the first order in δ, the formulae for P and F from (8.17) and (8.18) yield

P = δλ−1
z λ−1Ω̃∗

λ(λ, λz, q) and F = δπA2[2Ω̃∗
λz

(λ, λz, q) − λλ−1
z Ω̃∗

λ(λ, λz, q)]. (8.36)
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These formulae do not involve specializing Ω̃∗, but when specialized in respect of (8.19) in
dimensionless form, they become

P∗ = λ−1λ−1
z ω̄∗

λ(λ, λz) − λ−4λ−3
z q∗, F∗ = 2ω̄∗

λz
(λ, λz) − λλ−1

z ω̄∗
λ(λ, λz) − λ−2λ−3

z q∗, (8.37)

based on (8.22) and (8.23), and

P∗ = λ−1λ−1
z ω̄∗

λ(λ, λz) − λze∗, F∗ = 2ω̄∗
λz

(λ, λz) − λλ−1
z ω̄∗

λ(λ, λz) − λ2λze∗, (8.38)

based on (8.30) and (8.31), where the following non-dimensionalizations have been adopted

q∗ = q
με

, e∗ = εE2
0

μ
, ω̄∗ = ω̃∗

μ
, P̄∗ = P∗

δ
and F̄∗ = F∗

δ
. (8.39)

These formulae formed the basis for explicit results obtained in [130] for the activation
response in respect of the neo-Hookean model, for which

ω̄∗(λ, λz) = 1
2 (λ2 + λ2

z + λ−2λ−2
z − 3). (8.40)

In particular, for P̄∗ = 0 we then have

λ4λ2
z − 1 = q∗ = λ4λ4

ze∗, F̄∗ = 2(λz − λ2λ−1
z ) (8.41)

and hence
F̄∗ = 2λz − 2λ−2

z (1 − λ2
ze∗)−1/2 or F̄∗ = 2λz − 2λ−2

z (1 + q∗)1/2 (8.42)

in terms of e∗ and q∗, respectively, and we note that λz > λ for F̄∗ > 0.
On the other hand, if F̄∗ = 0, we have

q∗ = λ4λ4
ze∗ = 2λ4

zλ
2 − λ4λ2

z − 1, P̄∗ = 2λ−1
z − 2λzλ

−2 (8.43)

and then, on solution of the quadratic (8.43)1 for λ2, we obtain, analogously,

P̄∗ = 2λ−1
z − 2λ2

z(λ2
ze∗ + 1)

λ3
z +

√
λ6

z − λ2
ze∗ − 1

or P̄∗ = 2λ−1
z − 2λ2

z

λ3
z +

√
λ6

z − 1 − q∗
(8.44)

and we note that λ > λz for P̄∗ > 0.
For P̄∗ = 0 and several fixed positive values of F̄∗ and for F̄∗ = 0 and several fixed positive

values of P̄∗, the interdependence of e∗ or q∗ and λz was illustrated in [130]. In the case P̄∗ = 0, in
terms of different variables similar results were provided in [58] for different values of the initial
axial stretch (equivalently, different values of F∗) but for a thick-walled tube with B/A = 2.

Illustrations of the above formulae for the neo-Hookean model were provided in [130] with
the proviso that the applicability of the neo-Hookean model is limited to moderate strains, and
we refer the reader to the latter paper for further discussion.

(b) Other problems addressed in the literature
The general theory summarized in §6 has been used by a number of investigators to study specific
problems related to the response of dielectric elastomers, and we therefore here briefly review a
representative selection of these.

The homogeneous deformation discussed in §6c,d was examined in [120] for the energy
function Ω∗ instead of Ω . References to the literature concerning the deformation of a thin
rectangular plate induced by an electric field normal to its major faces and associated stability
analysis have been detailed in §2a and are not repeated here. The same problem, without
compliant electrodes and with the Maxwell stress exterior to the plate, has also been examined for
a particular material model on the basis of the implicit theory of Bustamante & Rajagopal [117].

Homogeneous simple shear of a slab for an incompressible material, also with an electric field
normal to the slab, was examined in [106] for a general energy function and the dependence of
the shear stress on the electric field was illustrated for a particular material model. Based on the
same theory, the inhomogeneous shear of a slab was examined by Kumar & Kumar [132]. Using
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the constitutive theory of Rajagopal & Wineman [133], Bortone [134] also studied inhomogeneous
shear in the presence of an electric field.

For a circular cylindrical tube several problems have been examined. First, the radial expansion
and/or axial extension have been analysed by Dorfmann & Ogden [135] with either an axial
or a radial electric field or their combination and with the Maxwell stress exterior to the
tube accounted for, giving expressions for the internal pressure and axial load for a general
incompressible isotropic electroelastic material model. The same theory, for a number of specific
material models, was applied by Díaz et al. [59] in studying the pressure–radius relation for the
purely radial expansion (without axial extension) of an incompressible isotropic tube subjected to
a radial electric field. Bustamante & Rajagopal [117] considered the same problem for a specific
material model within their general implicit theory, and obtained numerical results for the stress
distribution in the tube for given values of the internal radial traction and radial electric field,
also accounting for the Maxwell stresses. For the situation in which the inner and outer circular
boundaries of the tube are coated with compliant electrodes, this problem was treated at length
by Melnikov & Ogden [130] and Zhu et al. [58] and discussed in §8a.

Second, pure axial shear deformation of a thick-walled tube with a radial electric field has
been analysed by Dorfmann & Ogden [106] for an incompressible isotropic electroelastic material,
and, when combined with radial inflation, by Kumar & Kumar [132]. Dorfmann & Ogden [135]
similarly evaluated the influence of a radial electric displacement field on the azimuthal shear
response. The combination of axial and azimuthal shear, namely helical shear, was studied in
Dorfmann & Ogden [120] with both radial and axial electric field components. In each of these
problems, the general results were illustrated for a particular choice of constitutive law.

Inflation of a thick-walled spherical shell with radial electric field and an internal pressure has
been examined in several papers, without compliant electrodes [34,135] with the exterior Maxwell
stress accounted for, and with compliant electrodes on its inner and outer surfaces [71,73]. Rudykh
et al. [70] examined the snap-through instability of a thin-walled spherical balloon.

Recognizing that composites can improve the response characteristics of electroactive
materials, a number of authors have analysed different aspects of the influence of composite
structures. For example, deBotton et al. [136] showed that the response of a laminated composite
actuator can be better than that of its constituents. The instability of multilayered dielectric
composites has been investigated by Bertoldi & Gei [137], Rudykh & deBotton [138] and
Rudykh et al. [139] using the theory of linearized incremental deformations and electric fields
superimposed on a known underlying deformation and electric field formulated by Dorfmann &
Ogden [43]. Spinelli & Lopez-Pamiez [140] have examined the stability of laminated composites
via the macroscopic strong ellipticity condition and the method of homogenization.

Homogenization has been used to determine the effective overall electroelastic properties of
two-phase composites consisting of a periodic array of rigid polarizable ellipsoidal particles in an
elastomer dielectric matrix by Castañeda & Siboni [141,142], while Siboni & Castañeda [143] and
Siboni et al. [144] obtained homogenization estimates for the effective properties of composites
with aligned long rigid dielectric fibres of elliptical cross-section embedded in an elastomer
dielectric matrix, and investigated different stability criteria. As an application, in [143] a thin
dielectric elastomer composite sandwiched between two flexible electrodes was considered, while
in [144] the stability of a dielectric composite subjected to all around dead electromechanical
loading was examined. Lopez-Pamies [145] used homogenization to predict the macroscopic
behaviour of an elastic dielectric two-phase composite under large deformations and electric
fields with various distributions of deformable particles embedded within a matrix.

Several papers dealing with small-amplitude waves and motions superposed on finite
deformations in the presence of an electric field have been investigated by Shmuel &
deBotton [146,147], Shmuel et al. [148], Shmuel [149,150], Su et al. [151] and Wu et al. [152] based
on the general quasi-electrostatic approximation theory in Dorfmann & Ogden [49], wherein the
theory was applied to electroelastic surface waves propagating on a half-space.

Finally, we mention that the solution of non-trivial boundary-value problems for electroelastic
bodies requires the use of computational approaches such as those initiated by Vu et al. [153]
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and Vu & Steinmann [154], in particular finite-element methods based on variational principles.
Extensive discussions of electroelastic variational principles are contained in the papers by
Bustamante et al. [155] and Vogel et al. [156].

9. Concluding remarks
In this paper, we have reviewed some of the history of the development of electroactive materials
capable of large deformations with particular reference to their use as actuators together with
the general theory of electroelastic theory. We then went on to describe a particular theory in
some detail together with representative and illustrative applications. The final subsection above
provides a brief account of some of the many boundary-value problems that have been tackled on
the basis of the theory. We have focused on the macroscopic continuum theory without discussion
of microscopic or multiscale approaches. These are major topics which require more detailed
consideration than the space available here allows. Indeed, a separate review of each of these
topics would be timely and very welcome, and, as mentioned at the end of §2a, this is also the
case for the analysis of instability and failure phenomena.

Finally, it should be mentioned that at present relatively simple material models have
been used to illustrate the behaviour of electroactive polymers for a variety of geometries
and combined mechanical and electrical loading conditions because there are not enough
experimental data available to justify the use of more refined models. In order to inform and
improve the modelling and to provide a basis for more realistic predictions, it is important to
obtain a more detailed characterization of the properties of electroactive polymers for a wide
range of deformations and electric fields.
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