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09 Quadtree Decomposition, Steiner Triangulation,and Ray shooting?Siu-Wing Cheng Kam-Hing LeeDepartment of Computer Science, HKUST, Clear Water Bay, Hong Kong.Abstract. We present a new quadtree-based decomposition of a poly-gon possibly with holes. For a polygon of n vertices, a truncated decom-position can be computed in O(n log n) time which yields a Steiner tri-angulation of the interior of the polygon that has O(n log n) size and ap-proximates the minimum weight Steiner triangulation (MWST) to withina constant factor. An approximate MWST is good for ray shooting inthe average case as de�ned by Aronov and Fortune. The untruncateddecomposition also yields an approximate MWST. Moreover, we showthat this triangulation supports query-sensitive ray shooting as de�nedby Mitchell, Mount, and Suri. Hence, there exists a Steiner triangulationthat is simultaneously good for ray shooting in the query-sensitive senseand in the average case.1 IntroductionTriangulation is a popular research topic because many problems call for a de-composition of a scene into simple elements that facilitate processing. In theplane, the focus has been on optimizing or approximating some measure. Steinerpoints are allowed and the triangulation obtained must respect the given linesegments (i.e., a given line segment must be equal to the union of some edges inthe triangulation). One natural measure is the total length of edges in the trian-gulation. This is called the weight of the triangulation. No algorithm is knownthat computes the minimum weight Steiner triangulation (MWST for short) ofa point set or a polygon. Eppstein [5] presented an O(n logn)-time algorithm toapproximate the MWST of a point set to within a constant factor. A variant ofthe method also works for a convex polygon. One question raised in [5] is howto compute an approximate MWST for a general polygon.The MWST problem, which has been of theoretical interest so far, is recentlyrelated to the ray shooting problem by Aronov and Fortune [1]. The ray shootingproblem is to report the �rst obstacle hit by a query ray. In this paper, we assumethat the scene is a polygon possibly with holes. Query light source will fall intothis polygon, and the boundary of the polygon acts as obstacles. The usual sceneof a collection of simple polygons can be modeled by enclosing them in a squareand treating the given polygons as holes.A simple approach for the ray shooting problem is to decompose the polygoninto a planar subdivision so that each face is of constant complexity and has? Research supported in part by RGC CERG HKUST 650/95E.



at most a constant number of adjacent faces. Then the ray shooting query isanswered by walking from face to face until the �rst obstacle is hit. Aronov andFortune [1] showed that a Steiner triangulation of small weight is good for rayshooting in the average case. The average is taken over all random choices oflight source on polygon boundary and over all random choices of ray direction.In 2D, the average number of triangulation edges visited is equal to the weightof Steiner triangulation divided by the boundary length of the polygon. Aronovand Fortune also claimed a polynomial-time algorithm for approximating theMWSTs of a set of line segments enclosed within their convex hull in 2D.Mitchell, Mount, and Suri [7] proposed a notion ofC-complexity for measuringthe complexities of the scene and a ray shooting query. In the plane, a C-ballis a connected component of the intersection the scene with a disk. The centerand radius of the C-ball are taken to be the center and radius of the de�ningdisk. Given a C-ball B, if we expand its de�ning disk by a factor of 1 + �, thenthere is one connected component in this expanded disk that contains B. Wedenote this component by (1 + �)B. A C-ball is simple if it does not intersectmore than two edges. A C-ball B is �-strongly simple if both B and (1 + �)Bare simple. For a �xed �, the C-complexity of a polygon is the minimumnumberof �-strongly simple C-balls that cover the interior of the polygon. Mitchell et alpresented an algorithm to decompose the polygon interior into convex cells sothat given a query ray, the number of cells visited is proportional to the numberof �-strongly simple C-balls that cover the ray up to the �rst intersection. Thisis called query-sensitive ray shooting in [7].The main contribution of our paper is a new quadtree-based decompositionof a polygon possibly with holes which is inspired by the quadtree decompo-sition developed for multiple-tool milling [2]. We prove that triangulating thedecomposition yields an approximate MWST of the polygon. For a polygon ofn vertices, a truncated decomposition has O(n logn) size and can be computedin O(n logn) time. Triangulating the truncated decomposition also produces anapproximate MWST of size O(n logn). The boundary length of the polygon isincluded in the weight of the triangulation. No result is known that excludes theboundary length. Our result is di�erent from that in [1] since they require a con-vex outer boundary and they compatibly triangulate the holes too. In general,compatible triangulation of the holes produces more triangles (possibly 
(logn)more, see Section 5).1 We also show that the triangulation of the untruncateddecomposition supports query-sensitive ray shooting. Since this triangulationalso approximates the MWST, this demonstrates the existence of a Steiner tri-angulation that is simultaneously good for ray shooting in the query-sensitivesense and in the average case.The rest of the paper is organized as follows. Section 2 provides the basic def-initions. Section 3 describes our quadtree-based decomposition. In Section 4, wediscuss how to use the decomposition to obtain approximate MWSTs. Section 5discusses the application in ray shooting.1 In other words, we assume that the exterior of the polygon is inaccessible by light.This is not assumed in [1] as each line segment is treated as an individual obstacle.



2 PreliminariesLet P denote a polygon possibly with holes. Our quadtree-based decompositioncan accommodate degenerate holes. However, if a Steiner triangulation is to beobtained, then we allow a hole degenerate to a single point but not line segments.A quadtree is a ternary tree representing a hierarchical decomposition of theplane, originally proposed for representing point sets. Each node of the quadtreecorresponds to a square region, called a box. The root usually corresponds tothe smallest enclosing square of the given set of objects. In our case, it is thesmallest enclosing square of P . A node of the quadtree acquires four childrenwhen its associated box is split into its four quadrants. Given a box b, we denoteits width by size(b) and its parent by p(b).In the quadtree, boxes of the same size are of the same height and they forma regular grid partitioning the entire plane. A neighbor of a box b is a box of thesame size that touches b. An orthogonal neighbor of a box b is a box of the samesize that shares a side with b.For any box b and a constant c, we denote by c � b a square with the samecenter as b and side length c � size(b). Given any square S (not necessarily abox in a quadtree), we call a connected component of P \ S a subpolygon of S.We de�ne the size of a subpolygon � of a box b to be size(b) and denote it bysize(�).3 Quadtree-based decompositionFor each subpolygon � of b, de�ne zone(�) to be the subpolygon of 3b that con-tains �. The decomposition takes a parameter � > 0 which is �xed beforehand.A subpolygon � of b is crowded if size(�) > � and zone(�) contains more thanone polygon vertex. If � is uncrowded and the subpolygon of p(b) containing �is crowded, then � is a cell in the �nal decomposition. We say the the cell � iscreated at box b and we call b the home box of �.A box b is crowded if one of its subpolygons is crowded. A crowded box is splitinto its four quadrants, thus generating four children in the quadtree. Only thecrowded subpolygons of b will be split together with b. The components obtainedwill be distributed into the four children of b. Although a cell created at b will notbe split further, new vertices may be inserted into its boundary when adjacentcrowded subpolygons are split. When no box in the tree is to be split further,the collection of cells created form a planar subdivision of the interior of P . Wedenote this by D. Figure 1 illustrates one step of this hierarchical decomposition.If we set the parameter � to be su�ciently small (e.g. less than the smallestEuclidean distance between two polygon vertices), then each cell has at most onepolygon vertex. In this case, we call D untruncated. Otherwise, D is truncated.In D, a cell is normal if its size is larger than �, otherwise it is small. Normalcells have constant complexity and small cells have the same size. There are twokinds of edges bounding a cell. Those that lie on some polygon edges are calledsolid edges and the others are called non-solid edges.



a ce xyzwa0 b0d0c0e0 bdFig. 1. The shaded regions belong to holes. The subpolygon wxyz is not crowded andso it becomes a cell. The subpolygon abcde is crowded as its zone a0b0c0cd0e0 containstwo polygon vertices. So abcde is split further when splitting the box. Note that wxyzis not split.Our hierarchical decomposition proceeds in one pass in a top-down fashion.There are two key steps, namely crowdiness testing and subpolygon splitting.To facilitate the subsequent splitting of subpolygons, we compute a noncrossingspanning tree of the holes and the outer boundary of P . This is done as follows.First, we convert P to a monotone subdivision by adding diagonals in O(n logn)time [8]. Then we invoke a linear time graph search of the subdivision to identifya spanning tree of the holes and the outer boundary of P . Splitting along thespanning tree edges yields a degenerate simple polygon P � of size O(n). P � willbe useful later.We split all crowded subpolygons of boxes of the same size before continuingto the next level. Inductively, a list of subpolygons of a box b will be inheritedfrom the splitting of crowded subpolygons of p(b). Take a subpolygon � in thelist. If � contains more than one polygon vertex, then � is crowded. Supposenot. Then we collect subpolygons that touch �. There are two kinds. The �rstkind has size larger than size(�). These are normal cells of constant complexity.There are at most three such cells touching �, and it can be checked in constanttime whether they contribute more than one polygon vertex in zone(�). Thesecond kind are subpolygons of neighbors of b that touch �. These subpolygonsare subsets of zone(�). For each such subpolygon, its number of polygon verticescan be precomputed. So it takes constant time to check each such subpolygon.Moreover, since � is assumed to contain at most one polygon vertex (� is alreadycrowded otherwise), there are at most nine subpolygons of neighbors of b thattouch �. In all, testing crowdiness of � takes constant time. If � is uncrowded,then it is a cell and we remove it from the list. Otherwise, � will be split.Splitting � is equivalent to clipping � within each of the four quadrants ofb. We discuss how to do this for one quadrant. If � is a simple polygon, thenthis can be done in linear time using Jordan sorting [6]. However, � may containholes and in this case, P � comes to our rescue. We keep an unnested versionfor � de�ned as follows. The spanning tree edges in P � separate � into severalcomponents. Take any two such components that are separated by a spanningtree edge that cuts completely across b. Remove this separating tree edge andmerge the two components into one. Continue until there is no such adjacentpair of components. (See Figure 2.) The resulting set of simple polygons is the



unnested version of � and we denote it by ��. Note that � and �� covers thesame region in the plane.Fig. 2. In the left �gure, the shaded regions are holes in the polygon. The dashedsquare is a box which has only one subpolygon �. After adding the spanning tree edgesin P �, we obtain the middle �gure. � is separated into three components and two areseparated by a spanning tree edge that cuts completely across the box. In the right�gure, after merging, we obtain two simple polygons which form ��.We clip each simple polygon in �� instead of �. This can be done usingJordan sorting [6]. Let m be the size of �. The total complexity of �� is O(m)as any spanning tree edge bounding �� is incident to a vertex of �. This impliesthat the clipping takes O(m) time. What remains is how to pierce together thecomponents resulting from clipping �� to produce the desired subpolygons andtheir unnested versions. As before, we repeatedly merge any two components thatare separated by a spanning tree edge that cuts completely across the quadrant.This takes time linear in the number of such spanning tree edges which is O(m)as they all bound ��. Let X be the set of simple polygons produced. Identifyall the maximal connected subsets of polygons in X in linear time. The union ofeach maximal connected subset is a subpolygon of the quadrant whose unnestedversion is the maximal connected subset. In all, clipping � can be done in lineartime.D satis�es a structural property: no cell can be bounded by a collinear chainof three non-solid edges. This implies that every normal cell and every smallcell containing at most one polygon vertex is adjacent to a constant number ofother cells. This is similar in spirit to the \balance" or \smoothness" propertiesof other quadtree decompositions studied [3,5, 7].Lemma 1. No cell can be bounded by a collinear chain of three non-solid edges.Proof: Assume to the contrary there is a collinear chain s of three non-solidedges bounding a cell 
. Let b1 be the home box of 
. Since s contains quadtreevertices, b1 does not have the smallest size in the hierarchy and so 
 is a normalcell. Let b2 be the orthogonal neighbor of b1 that shares s. There must be someproper descendant b3 of b2 such that b3 puts a corner vertex on s, and a properdescendant of b3 puts another corner vertex v on s. Let � be the subpolygon ofb3 that contains the point v on its boundary. Since � was split, zone(�) containsmore than one polygon vertex. Since � is adjacent to 
 and zone(�) � 3b3 � 3b1,



we conclude that zone(
) also contains more than one polygon vertex, contra-diction.4 Analysis4.1 Total length of the decompositionWe conceptually re�ne D to another decompositionD� to ease the analysis. Thisis done by relaxing the de�nition of crowdiness. A subpolygon � is crowded ifsize(�) > �� and zone(�) contains at least one polygon vertex (instead of morethan one), where �� is a constant chosen to be less than � and close to zero. Atthe end, we also call a cell 
 of D� normal if size(
) > �� and small otherwise.Since D� is a re�nement of D, its total length is larger and so it su�ces to boundthe total length of D�. The advantage of D� is that any cell that has a polygonvertex must be small.2 We �rst state a technical lemma. Its proof is omittedhere.Lemma 2. Let 
1 be a normal non-square cell of D�. Suppose that each solidedge of 
1 has length less than size(
1)=4. Then 
1 is adjacent to a cell 
2 ofD� of perimeter �(size(
1)) and the total length of solid edges bounding 
2 is atleast size(
1)=4.We can now bound the total length of D� and hence the total length of D.Our proof follows the approach in [5].Lemma 3. For a polygon P of n vertices, the total length of D� and hence D isbounded by O(w(MWT )), where w(MWT ) is the weight of the minimum weighttriangulation of P .Proof: Let MWT denote the minimum weight triangulation of P . Recall thatno Steiner point is allowed in MWT. Small cells have negligible perimeter as ��is close to zero. So we focus on normal cells.Let 
 be a normal square cell. Let � be the triangle in MWT that coversthe center of 
. If � has a vertex u inside 11
, then we charge the perimeterof 
 proportionally to the two edges of � incident to u. Since the vertices of �are outside 
, at least one edge of � has length size(
). Thus, the total lengthof the two edges incident to u is large enough to absorb the charge. Supposethat � does not have a vertex inside 11
. Let � be the subpolygon of p(
) thatcontains 
. Since � was split, zone(�) contains a polygon vertex which impliesthat zone(�) has a polygon vertex v that can see the center, c, of 
. The linesegment cv stabs a sequence of triangles in MWT. We visit this sequence in orderstarting from �. Eventually, we must reach a triangle �0 with a vertex inside11
 as cv has length less than 5:25size(
). Let xy be the edge of �0 throughwhich we step into �0. So x and y are outside 11
. Since x and y are at distance2 The disadvantage is that the excessive splitting makes the size of D� not boundedby the C-complexity of P .



at least 5:5size(
) from c, xy has length at least p5:52 � 5:252size(
) > size(
).Thus, we can charge the perimeter of 
 proportionally to the two edges of �0incident to the vertex opposite to xy.In the above charging scheme, if an edge e of MWT acquires a chargeO(length of e) from a square cell 
, then 
 lies inside a box of width 12size(
)centered at an endpoint of e. At one level of the quadtree, there are at most2 � 122 = 288 square cells that satisfy this requirement. Since box size halvesfrom level to level, the accumulated charge at e telescopes to O(length of e).This shows that the sum of perimeter of normal square cells is O(w(MWT )).Consider a non-square cell 
1. If the solid edges bounding 
1 have a to-tal length at least size(
1)=4, then we charge the perimeter of 
1, which isO(size(
1)), to these solid edges proportionally. When this is not the case, weapply Lemma 2 and charge the perimeter of 
1 to the perimeter of an adjacentcell.In all, the total length of D� is asymptotically bounded by the sum ofw(MWT ) and the boundary length of P . Since w(MWT ) includes the boundarylength of P , the result follows.4.2 Approximate MWSTTo obtain an approximate MWST, we triangulate the cells in D. By Lemma 1,triangulating a cell with at most one polygon vertex adds only a constant numberof diagonals. Thus, the total length will be increased by only a constant factor.Triangulating a cell with m > 1 polygon vertices may add O(m) diagonals. How-ever, each such diagonal has length at most �. Summing over all cells with morethan one polygon vertex, the additional length is O(�n). Hence, triangulating Dincreases the weight by an additive term O(�n).There is a subtle problem when holes are allowed to degenerate to line seg-ments. When this happens, the triangles on opposite sides of a line segment maynot be compatible with each other. Thus, when generating Steiner triangula-tion, we can only accommodate holes that are either simple polygons or isolatedpoints.Under this assumption, we can now follow the approach in [5] to show thatthe triangulation of the D approximates the MWST when � is su�ciently small(e.g. D is untruncated).Theorem 1. Given a polygon P of n vertices, the weight of the triangulationof D is bounded by O(w(T ) + �n), where w(T ) is the weight of any Steinertriangulation T of P .Proof: We introduce the Steiner points of T as degenerate holes. T can thenbe viewed as the MWT of the new polygon. If we apply our decomposition al-gorithm on the new polygon, we will obtain a re�nement of D that has a largertotal length than D. Lemma 3 shows the total length of the re�ned decomposi-tion is bounded by O(w(T )). So the triangulation of D has weight O(w(T )+ �n)



as discussed before.If we set � = R=n, where R is the width of the smallest enclosing square ofP , then the triangulation of D still approximates the MWST as w(T ) � R forany Steiner triangulation T . The advantage of this setting of � is that D can becomputed e�ciently as proved below.Theorem 2. Given a polygon of n vertices, a Steiner triangulation of O(n logn)size can be computed in O(n logn) time which approximates the MWST to withina constant factor.Proof: We set � = R=n. Then the quadtree clearly has O(logn) levels. Sincethe work done per level of the quadtree is bounded by the complexity of cellscreated and crowded subpolygons at that level, we bound this quantity below.Consider one level of the quadtree. Let b be a box at this level. Let � be a crowdedsubpolygon of b or a cell created at b. Our approach is to charge non-polygonvertices of � to some nearby polygon vertices.Case 1: � contains some polygon vertex. Then we charge its non-polygonvertices to its polygon vertices. Each polygon vertex is charged at most tentimes this way.Case 2: � is a cell without any polygon vertex and � is bordered by a polygonedge h with an endpoint w in 3p(b). Then we charge the vertices of � (at most8) to w. Observe that � is within a distance of 6size(b) from w. Since h bordersno more than 122 = 144 such cells within a distance of 6size(b) from w, w ischarged at most 144� 8 = 1152 times this way.Case 3: � is a cell without any polygon vertex and the endpoints of eachpolygon edge bordering � are outside 3p(b). Let �0 be the subpolygon of p(b)that contains �. Since �0 was split, zone(�0) contains a polygon vertex. Thus,zone(�0) has some polygon vertex v that can see �. We charge the vertices of �to v. We can similarly argue as in case 2 that v is charged at most 144�8 = 1152times this way.Combining cases 1, 2 and 3, we conclude that the complexity of cells createdand crowded subpolygons is O(n) at each level of the quadtree. Hence, the re-sults follow.5 Ray shooting5.1 Average caseWe brie
y explain the average-case model given in [1] and point out why it isbetter to triangulate the interior of P alone when the exterior of polygon isinaccessible to light. Recall that the average is taken over all random choices oflight source on the boundary of P and over all random choices of ray direction.We �rst relax to talk about any planar subdivision S (not necessarily atriangulation) of the interior of P . We look at the line stabbing query : given aquery line `, report the boundary edges of P intersected by `. For line `, let



o(`) and t(`) be the number of boundary edges of P and edges of S intersectedby ` respectively. Let � be the standard measure on lines invariant under rigidmotions. Let L(U ) be the set of lines that intersect a set of line segments U .Then for a query line, the average number of subdivision edges intersected perboundary edge intersected is given by R t(`)d�= R o(`)d�. Denote this ratio by� (S). One can interpret the ratio as: if one starts from a boundary edge, thenone expects to encounter an average of � (S) subdivision edges before exitingthe interior of P . This is exactly the average-case ray shooting complexity.Standard result in integral geometry states that for any line segment e,�(L(e)) is two times the length of e. Therefore, � (S) can be rewritten as theratio of the total length of S to the perimeter of P . Hence, it is desirable toobtain a planar subdivision S with minimum total length. For ray shooting pur-poses, one must be able to determine what is the next face to visit e�ciently.Therefore, it is often required that each face in S has at most a constant numberof adjacent faces. A Steiner triangulation of P is a natural choice.How does our triangulation compare with the triangulation in [1]? The �rststep in [1] is to compute a quadtree decomposition of the vertices of P . Then thisdecomposition will basically be triangulated to produce a Steiner triangulation.Figure 3 shows that the quadtree decomposition of the vertices may alreadyhave total length 
(logn) away from some Steiner triangulation of P . Thus, itis advantageous to triangulate the interior of P alone.Fig. 3. In the left �gure, the dense row of vertices on the hole forces the quadtreedecomposition to add horizontal line segments across the polygon as many as 
(log n)times. Thus, the width of the polygon will be added 
(log n) times. In contrast, asshown in the right �gure, one can triangulate the polygon interior so that the width ofthe polygon is also added a constant number of times.5.2 Query-sensitive ray shootingGiven a query ray r, a planar subdivision and an accompanying data structureis described in [7] that answers ray shooting in O(logn + cscc(r)) time, wherecscc(r) is the minimum number of �-strongly simple C-balls that cover r upto the �rst intersection. The space required is O(n). In the following, we showthat the Steiner triangulation resulting from the untruncated D also supportsquery-sensitive ray shooting.



Lemma 4. Let B be an �-strongly simple C-ball of radius s. If B intersects acell in the untruncated D of size s0, then s0 � �s=4p2.Proof: Let 
 be any cell intersected by B in the untruncated D. Assume thatto the contrary that size(
) < �s=4p2. Let � be the subpolygon of the parent ofthe home box of 
 that contains 
. Since size(�) < �s=2p2 and � intersects B,zone(�) lies completely within (1+ �)B. Since (1+ �)B is a simple ball, zone(�)contains at most one polygon vertex. Thus, � would not be crowded, contradic-tion.Lemma 4 implies that the untruncated D, and hence its triangulation, hasO(cscc(P )) size. Similarly, for any ray r, the number of triangles traversed by rup to the �rst intersection is O(cscc(r)). One can locate the cell containing thelight source in O(log cscc(P )) time using point location.Theorem 3. Given a polygon of n vertices, there is an approximate MWST ofO(cscc(P )) size such that given a query ray r, the ray shooting query can beanswered using the approximate MWST in O(log cscc(P ) + cscc(r)) time.As argued in [4, 7], cscc(P ) is expected to be small in practice (e.g. O(n))and so the query time in Theorem 3 may often be good enough. When cscc(P )is actually large, we can alternatively locate the light source by descending thequadtree. This gives a running time of O(log(R=r) logn), where R is the widthof the minimum enclosing square of P , and r is the size of the largest �-stronglyC-simple ball containing the light source. When the local geometry around thelight source is very simple, one expects O(log(R=r)) to be small.References1. B. Aronov and S. Fortune, Average-case ray shooting and minimum weight trian-gulation, in Proc. 13th ACM Symposium on Computational Geometry, 204{211,1997.2. S. Arya, S.W. Cheng, and D.M. Mount, Approximation algorithms for multiple-tool milling, Proc. 14th ACM Symposium on Computational Geometry 1998, 297{306.3. M. Bern, D. Eppstein, and J. Gilbert, Provably good mesh generation, Journal ofComputer and System Sciences, 48 (1994) 384{409.4. M. de Berg, M. Katz, A.F. van der Stappen, J. Vleugels, Realistic input models forgeometric algorithms, in Proc. 13th ACM Symposium on Computational Geometry,294{303, 1997.5. D. Eppstein, Approximating the minimum weight Steiner triangulation, Discrete& Computational Geometry, 11 (1994) 163{191.6. K.Y. Fung, T.M. Nicholl, R.E. Tarjan, and C.J. Van Wyk, Simpli�ed linear-timeJordan sorting and polygon clipping. Information Processing Letters, 35 (1990)85{92.7. J.S.B. Mitchell, D.M. Mount, and S. Suri, Query-sensitive ray shooting, Interna-tional Journal of Computational Geometry & Applications, 7 (1997) 317{347.8. F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction,Springer-Verlag, New York, 1985.


