HKUST Theoretical Computer Science Center Research Report HKUST-TCSC-98-09

Quadtree Decomposition, Steiner Triangulation,
and Ray shooting*

Siu-Wing Cheng Kam-Hing Lee

Department of Computer Science, HKUST, Clear Water Bay, Hong Kong.

Abstract. We present a new quadtree-based decomposition of a poly-
gon possibly with holes. For a polygon of n vertices, a truncated decom-
position can be computed in O(nlogn) time which yields a Steiner tri-
angulation of the interior of the polygon that has O(nlog n) size and ap-
proximates the minimum weight Steiner triangulation (MWST') to within
a constant factor. An approximate MWST is good for ray shooting in
the average case as defined by Aronov and Fortune. The untruncated
decomposition also yields an approximate MWST. Moreover, we show
that this triangulation supports query-sensitive ray shooting as defined
by Mitchell, Mount, and Suri. Hence, there exists a Steiner triangulation
that is simultaneously good for ray shooting in the query-sensitive sense
and in the average case.

1 Introduction

Triangulation is a popular research topic because many problems call for a de-
composition of a scene into simple elements that facilitate processing. In the
plane, the focus has been on optimizing or approximating some measure. Steiner
points are allowed and the triangulation obtained must respect the given line
segments (i.e., a given line segment must be equal to the union of some edges in
the triangulation). One natural measure is the total length of edges in the trian-
gulation. This is called the weight of the triangulation. No algorithm is known
that computes the minimum weight Steiner triangulation (MWST for short) of
a point set or a polygon. Eppstein [5] presented an O(n logn)-time algorithm to
approximate the MWST of a point set to within a constant factor. A variant of
the method also works for a convex polygon. One question raised in [5] is how
to compute an approximate MWST for a general polygon.

The MWST problem, which has been of theoretical interest so far, is recently
related to the ray shooting problem by Aronov and Fortune [1]. The ray shooting
problem is to report the first obstacle hit by a query ray. In this paper, we assume
that the scene is a polygon possibly with holes. Query light source will fall into
this polygon, and the boundary of the polygon acts as obstacles. The usual scene
of a collection of simple polygons can be modeled by enclosing them in a square
and treating the given polygons as holes.

A simple approach for the ray shooting problem is to decompose the polygon
into a planar subdivision so that each face is of constant complexity and has

* Research supported in part by RGC CERG HKUST 650/95E.

at most a constant number of adjacent faces. Then the ray shooting query is
answered by walking from face to face until the first obstacle is hit. Aronov and
Fortune [1] showed that a Steiner triangulation of small weight is good for ray
shooting in the average case. The average is taken over all random choices of
light source on polygon boundary and over all random choices of ray direction.
In 2D, the average number of triangulation edges visited is equal to the weight
of Steiner triangulation divided by the boundary length of the polygon. Aronov
and Fortune also claimed a polynomial-time algorithm for approximating the
MWSTs of a set of line segments enclosed within their convex hull in 2D.

Mitchell, Mount, and Suri [7] proposed a notion of C-complezity for measuring
the complexities of the scene and a ray shooting query. In the plane, a C-ball
is a connected component of the intersection the scene with a disk. The center
and radius of the C-ball are taken to be the center and radius of the defining
disk. Given a C-ball B, if we expand its defining disk by a factor of 1 4 ¢, then
there is one connected component in this expanded disk that contains B. We
denote this component by (1 4+ ¢)B. A C-ball is simple if it does not intersect
more than two edges. A C-ball B is e-strongly simple if both B and (1 + ¢)B
are simple. For a fixed €, the C-complexity of a polygon is the minimum number
of e-strongly simple C-balls that cover the interior of the polygon. Mitchell et al
presented an algorithm to decompose the polygon interior into convex cells so
that given a query ray, the number of cells visited is proportional to the number
of e-strongly simple C-balls that cover the ray up to the first intersection. This
is called query-sensitive ray shooting in [7].

The main contribution of our paper is a new quadtree-based decomposition
of a polygon possibly with holes which is inspired by the quadtree decompo-
sition developed for multiple-tool milling [2]. We prove that triangulating the
decomposition yields an approximate MWST of the polygon. For a polygon of
n vertices, a truncated decomposition has O(nlogn) size and can be computed
in O(nlogn) time. Triangulating the truncated decomposition also produces an
approximate MWST of size O(nlogn). The boundary length of the polygon is
included in the weight of the triangulation. No result is known that excludes the
boundary length. Our result is different from that in [1] since they require a con-
vex outer boundary and they compatibly triangulate the holes too. In general,
compatible triangulation of the holes produces more triangles (possibly £2(logn)
more, see Section 5).! We also show that the triangulation of the untruncated
decomposition supports query-sensitive ray shooting. Since this triangulation
also approximates the MWST, this demonstrates the existence of a Steiner tri-
angulation that is simultaneously good for ray shooting in the query-sensitive
sense and in the average case.

The rest of the paper is organized as follows. Section 2 provides the basic def-
initions. Section 3 describes our quadtree-based decomposition. In Section 4, we
discuss how to use the decomposition to obtain approximate MWSTs. Section b
discusses the application in ray shooting.

! In other words, we assume that the exterior of the polygon is inaccessible by light.
This is not assumed in [1] as each line segment is treated as an individual obstacle.

2 Preliminaries

Let P denote a polygon possibly with holes. Our quadtree-based decomposition
can accommodate degenerate holes. However, if a Steiner triangulation is to be
obtained, then we allow a hole degenerate to a single point but not line segments.

A quadtree 1s a ternary tree representing a hierarchical decomposition of the
plane, originally proposed for representing point sets. Each node of the quadtree
corresponds to a square region, called a boz. The root usually corresponds to
the smallest enclosing square of the given set of objects. In our case, 1t is the
smallest enclosing square of P. A node of the quadtree acquires four children
when 1ts associated box is split into its four quadrants. Given a box b, we denote
its width by size(b) and its parent by p(b).

In the quadtree, boxes of the same size are of the same height and they form
a regular grid partitioning the entire plane. A neighbor of a box b is a box of the
same size that touches b. An orthogonal neighbor of a box b is a box of the same
size that shares a side with b.

For any box b and a constant ¢, we denote by ¢ - b a square with the same
center as b and side length ¢ - size(b). Given any square S (not necessarily a
box in a quadtree), we call a connected component of P NS a subpolygon of S.
We define the size of a subpolygon « of a box b to be size(b) and denote it by
size(a).

3 Quadtree-based decomposition

For each subpolygon « of b, define zone(«) to be the subpolygon of 36 that con-
tains . The decomposition takes a parameter § > 0 which is fixed beforehand.
A subpolygon « of b is crowded if size(a) > § and zone(«) contains more than
one polygon vertex. If « is uncrowded and the subpolygon of p(b) containing o
is crowded, then « is a cell in the final decomposition. We say the the cell a is
created at box b and we call b the home boz of «.

A box b is crowded if one of its subpolygons is crowded. A crowded box is split
into its four quadrants, thus generating four children in the quadtree. Only the
crowded subpolygons of b will be split together with 4. The components obtained
will be distributed into the four children of 6. Although a cell created at b will not
be split further, new vertices may be inserted into its boundary when adjacent
crowded subpolygons are split. When no box in the tree 1s to be split further,
the collection of cells created form a planar subdivision of the interior of P. We
denote this by D. Figure 1 illustrates one step of this hierarchical decomposition.

If we set the parameter § to be sufficiently small (e.g. less than the smallest
Euclidean distance between two polygon vertices), then each cell has at most one
polygon vertex. In this case, we call D untruncated. Otherwise, D is truncated.
In D, a cell is normal if its size is larger than J§, otherwise it is small. Normal
cells have constant complexity and small cells have the same size. There are two
kinds of edges bounding a cell. Those that lie on some polygon edges are called
solid edges and the others are called non-solid edges.

6/

Fig. 1. The shaded regions belong to holes. The subpolygon wzyz is not crowded and
so it becomes a cell. The subpolygon abcde is crowded as its zone a’b’c’cd’e’ contains
two polygon vertices. So abcede is split further when splitting the box. Note that wzryz
is not split.

Our hierarchical decomposition proceeds in one pass in a top-down fashion.
There are two key steps, namely crowdiness testing and subpolygon splitting.
To facilitate the subsequent splitting of subpolygons, we compute a noncrossing
spanning tree of the holes and the outer boundary of P. This is done as follows.
First, we convert P to a monotone subdivision by adding diagonals in O(n logn)
time [8]. Then we invoke a linear time graph search of the subdivision to identify
a spanning tree of the holes and the outer boundary of P. Splitting along the
spanning tree edges yields a degenerate simple polygon P* of size O(n). P* will
be useful later.

We split all crowded subpolygons of boxes of the same size before continuing
to the next level. Inductively, a list of subpolygons of a box b will be inherited
from the splitting of crowded subpolygons of p(b). Take a subpolygon « in the
list. If & contains more than one polygon vertex, then « is crowded. Suppose
not. Then we collect subpolygons that touch «. There are two kinds. The first
kind has size larger than size(«). These are normal cells of constant complexity.
There are at most three such cells touching «, and it can be checked in constant
time whether they contribute more than one polygon vertex in zone(a). The
second kind are subpolygons of neighbors of b that touch «. These subpolygons
are subsets of zone(«). For each such subpolygon, its number of polygon vertices
can be precomputed. So it takes constant time to check each such subpolygon.
Moreover, since « is assumed to contain at most one polygon vertex (« is already
crowded otherwise), there are at most nine subpolygons of neighbors of b that
touch «. In all, testing crowdiness of « takes constant time. If o 18 uncrowded,
then it is a cell and we remove it from the list. Otherwise, o will be split.

Splitting « is equivalent to clipping « within each of the four quadrants of
b. We discuss how to do this for one quadrant. If « is a simple polygon, then
this can be done in linear time using Jordan sorting [6]. However, & may contain
holes and in this case, P* comes to our rescue. We keep an unnested version
for o defined as follows. The spanning tree edges in P* separate « into several
components. Take any two such components that are separated by a spanning
tree edge that cuts completely across b. Remove this separating tree edge and
merge the two components into one. Continue until there is no such adjacent
pair of components. (See Figure 2.) The resulting set of simple polygons is the

unnested version of a and we denote 1t by a*. Note that o and a* covers the
same region in the plane.

Fig.2. In the left figure, the shaded regions are holes in the polygon. The dashed
square 1s a box which has only one subpolygon «. After adding the spanning tree edges
in P*, we obtain the middle figure. « is separated into three components and two are
separated by a spanning tree edge that cuts completely across the box. In the right
figure, after merging, we obtain two simple polygons which form o”*.

We clip each simple polygon in o* instead of a. This can be done using
Jordan sorting [6]. Let m be the size of a. The total complexity of o™ is O(m)
as any spanning tree edge bounding a* is incident to a vertex of a. This implies
that the clipping takes O(m) time. What remains is how to pierce together the
components resulting from clipping a* to produce the desired subpolygons and
their unnested versions. As before, we repeatedly merge any two components that
are separated by a spanning tree edge that cuts completely across the quadrant.
This takes time linear in the number of such spanning tree edges which is O(m)
as they all bound «*. Let X be the set of simple polygons produced. Identify
all the maximal connected subsets of polygons in X in linear time. The union of
each maximal connected subset is a subpolygon of the quadrant whose unnested
version is the maximal connected subset. In all, clipping « can be done in linear
time.

D satisfies a structural property: no cell can be bounded by a collinear chain
of three non-solid edges. This implies that every normal cell and every small
cell containing at most one polygon vertex is adjacent to a constant number of
other cells. This is similar in spirit to the “balance” or “smoothness” properties
of other quadtree decompositions studied [3,5,7].

Lemma 1. No cell can be bounded by a collinear chain of three non-solid edges.

Proof: Assume to the contrary there is a collinear chain s of three non-solid
edges bounding a cell 5. Let b; be the home box of 4. Since s contains quadtree
vertices, b; does not have the smallest size in the hierarchy and so + is a normal
cell. Let b5 be the orthogonal neighbor of b; that shares s. There must be some
proper descendant b3 of by such that b3 puts a corner vertex on s, and a proper
descendant of b3 puts another corner vertex v on s. Let a be the subpolygon of
bs that contains the point v on its boundary. Since a was split, zone(«) contains
more than one polygon vertex. Since « is adjacent to v and zone(«) C 3bs C 3by,

we conclude that zone(y) also contains more than one polygon vertex, contra-

diction.

4 Analysis

4.1 Total length of the decomposition

We conceptually refine D to another decomposition D* to ease the analysis. This
is done by relaxing the definition of crowdiness. A subpolygon « is crowded if
size(er) > 0* and zone(«) contains at least one polygon vertex (instead of more
than one), where §* is a constant chosen to be less than ¢ and close to zero. At
the end, we also call a cell 4 of D* normal if size(y) > ¢* and small otherwise.
Since D* is a refinement of D, its total length is larger and so it suffices to bound
the total length of D*. The advantage of D* is that any cell that has a polygon
vertex must be small.? We first state a technical lemma. Its proof is omitted
here.

Lemma 2. Let v; be a normal non-square cell of D*. Suppose that each solid
edge of y1 has length less than size(y1)/4. Then vy is adjacent to a cell 3 of
D* of perimeter O(size(y1)) and the total length of solid edges bounding 7, is at
least size(vy1)/4.

We can now bound the total length of D* and hence the total length of D.
Our proof follows the approach in [5].

Lemma 3. For a polygon P of n vertices, the total length of D* and hence D 1s
bounded by O(w(MWT)), where w(MWT) is the weight of the minimum weight
triangulation of P.

Proof: Let MWT denote the minimum weight triangulation of P. Recall that
no Steiner point is allowed in MW'T. Small cells have negligible perimeter as ¢*
is close to zero. So we focus on normal cells.

Let v be a normal square cell. Let A be the triangle in MW'T that covers
the center of 4. If A has a vertex u inside 117, then we charge the perimeter
of v proportionally to the two edges of A incident to u. Since the vertices of A
are outside v, at least one edge of A has length size(y). Thus, the total length
of the two edges incident to u is large enough to absorb the charge. Suppose
that A does not have a vertex inside 117. Let o be the subpolygon of p(y) that
contains +. Since « was split, zone(«) contains a polygon vertex which implies
that zone(a) has a polygon vertex v that can see the center, ¢, of 4. The line
segment cv stabs a sequence of triangles in MW'T. We visit this sequence in order
starting from A. Eventually, we must reach a triangle A’ with a vertex inside
11% as cv has length less than 5.25size(y). Let zy be the edge of A’ through
which we step into A’. So z and y are outside 11+. Since x and y are at distance

2 The disadvantage is that the excessive splitting makes the size of D* not bounded
by the C-complexity of P.

at least 5.5size(7y) from ¢, xy has length at least v/5.5% — 5.25%size(y) > size(y).
Thus, we can charge the perimeter of v proportionally to the two edges of A’
incident to the vertex opposite to xy.

In the above charging scheme, if an edge e of MWT acquires a charge
O(length of e) from a square cell 4, then ~ lies inside a box of width 12size()
centered at an endpoint of e. At one level of the quadtree, there are at most
2 x 122 = 288 square cells that satisfy this requirement. Since box size halves
from level to level, the accumulated charge at e telescopes to O(length of €).
This shows that the sum of perimeter of normal square cells is O(w(MWT)).

Consider a non-square cell v;. If the solid edges bounding +; have a to-
tal length at least size(y1)/4, then we charge the perimeter of 7, which is
O(size(y1)), to these solid edges proportionally. When this is not the case, we
apply Lemma 2 and charge the perimeter of +; to the perimeter of an adjacent
cell.

In all, the total length of D* is asymptotically bounded by the sum of
w(MWT) and the boundary length of P. Since w(MWT) includes the boundary
length of P, the result follows.

4.2 Approximate MWST

To obtain an approximate MWST| we triangulate the cells in D. By Lemma 1,
triangulating a cell with at most one polygon vertex adds only a constant number
of diagonals. Thus, the total length will be increased by only a constant factor.
Triangulating a cell with m > 1 polygon vertices may add O(m) diagonals. How-
ever, each such diagonal has length at most d. Summing over all cells with more
than one polygon vertex, the additional length is O(dn). Hence, triangulating D
increases the weight by an additive term O(dn).

There 1s a subtle problem when holes are allowed to degenerate to line seg-
ments. When this happens, the triangles on opposite sides of a line segment may
not be compatible with each other. Thus, when generating Steiner triangula-
tion, we can only accommodate holes that are either simple polygons or isolated
points.

Under this assumption, we can now follow the approach in [5] to show that
the triangulation of the D approximates the MWST when 4 is sufficiently small
(e.g. D is untruncated).

Theorem 1. Given a polygon P of n vertices, the weight of the triangulation
of D is bounded by O(w(T) 4 dn), where w(T) is the weight of any Steiner
triangulation T of P.

Proof: We introduce the Steiner points of T as degenerate holes. T' can then
be viewed as the MW of the new polygon. If we apply our decomposition al-
gorithm on the new polygon, we will obtain a refinement of D that has a larger
total length than DP. Lemma 3 shows the total length of the refined decomposi-
tion is bounded by O(w(T')). So the triangulation of D has weight O(w(T)+d0n)

as discussed before.

If we set § = R/n, where R is the width of the smallest enclosing square of
P, then the triangulation of D still approximates the MWST as w(7T) > R for
any Steiner triangulation 7". The advantage of this setting of J is that D can be
computed efficiently as proved below.

Theorem 2. Given a polygon of n vertices, a Steiner triangulation of O(nlogn)
size can be computed in O(nlogn) time which approzimates the MWST to within
a constant factor.

Proof: We set § = R/n. Then the quadtree clearly has O(logn) levels. Since
the work done per level of the quadtree is bounded by the complexity of cells
created and crowded subpolygons at that level, we bound this quantity below.
Consider one level of the quadtree. Let b be a box at this level. Let « be a crowded
subpolygon of b or a cell created at b. Our approach is to charge non-polygon
vertices of o to some nearby polygon vertices.

Case 1: a contains some polygon vertex. Then we charge its non-polygon
vertices to its polygon vertices. Each polygon vertex is charged at most ten
times this way.

Case 2: ais a cell without any polygon vertex and « 1s bordered by a polygon
edge h with an endpoint w in 3p(b). Then we charge the vertices of « (at most
8) to w. Observe that « is within a distance of 6size(b) from w. Since h borders
no more than 122 = 144 such cells within a distance of 6size(b) from w, w is
charged at most 144 x 8 = 1152 times this way.

Case 3: «a is a cell without any polygon vertex and the endpoints of each
polygon edge bordering « are outside 3p(b). Let o’ be the subpolygon of p(b)
that contains «. Since o was split, zone(a') contains a polygon vertex. Thus,
zone(a') has some polygon vertex v that can see a. We charge the vertices of o
to v. We can similarly argue as in case 2 that v is charged at most 144 x 8 = 1152
times this way.

Combining cases 1, 2 and 3, we conclude that the complexity of cells created
and crowded subpolygons is O(n) at each level of the quadtree. Hence, the re-
sults follow.

5 Ray shooting

5.1 Average case

We briefly explain the average-case model given in [1] and point out why it is
better to triangulate the interior of P alone when the exterior of polygon is
inaccessible to light. Recall that the average is taken over all random choices of
light source on the boundary of P and over all random choices of ray direction.

We first relax to talk about any planar subdivision S (not necessarily a
triangulation) of the interior of P. We look at the line stabbing query: given a
query line £, report the boundary edges of P intersected by f¢. For line /£ let

o(£) and t(£) be the number of boundary edges of P and edges of S intersected
by ¢ respectively. Let u be the standard measure on lines invariant under rigid
motions. Let L(U) be the set of lines that intersect a set of line segments U.
Then for a query line, the average number of subdivision edges intersected per
boundary edge intersected is given by [¢(£)du/ [o(¢)du. Denote this ratio by
I'(S). One can interpret the ratio as: if one starts from a boundary edge, then
one expects to encounter an average of I'(S) subdivision edges before exiting
the interior of P. This is exactly the average-case ray shooting complexity.

Standard result in integral geometry states that for any line segment e,
p#(L(e)) is two times the length of e. Therefore, I'(S) can be rewritten as the
ratio of the total length of & to the perimeter of P. Hence, it is desirable to
obtain a planar subdivision § with minimum total length. For ray shooting pur-
poses, one must be able to determine what is the next face to visit efficiently.
Therefore, it 1s often required that each face in & has at most a constant number
of adjacent faces. A Steiner triangulation of P is a natural choice.

How does our triangulation compare with the triangulation in [1]7 The first
step in [1] is to compute a quadtree decomposition of the vertices of P. Then this
decomposition will basically be triangulated to produce a Steiner triangulation.
Figure 3 shows that the quadtree decomposition of the vertices may already
have total length £2(logn) away from some Steiner triangulation of P. Thus, it
is advantageous to triangulate the interior of P alone.

V,T,J‘,,‘,,
| | |
k,+,,‘,,‘,,

Fig.3. In the left figure, the dense row of vertices on the hole forces the quadtree
decomposition to add horizontal line segments across the polygon as many as 2(logn)
times. Thus, the width of the polygon will be added £2(logn) times. In contrast, as
shown in the right figure, one can triangulate the polygon interior so that the width of
the polygon is also added a constant number of times.

5.2 Query-sensitive ray shooting

Given a query ray r, a planar subdivision and an accompanying data structure
is described in [7] that answers ray shooting in O(logn + esce(r)) time, where
esce(r) is the minimum number of e-strongly simple C-balls that cover r up
to the first intersection. The space required is O(n). In the following, we show
that the Steiner triangulation resulting from the untruncated D also supports
query-sensitive ray shooting.

Lemma 4. Let B be an e-strongly simple C-ball of radius s. If B wntersects a
cell in the untruncated D of size s', then s' > es/4v/2.

Proof: Let v be any cell intersected by B in the untruncated D. Assume that
to the contrary that size(y) < es/4v/2. Let a be the subpolygon of the parent of
the home box of v that contains 5. Since size(a) < €s/2v/2 and « intersects B,
zone(a) lies completely within (1 4 ¢)B. Since (14 ¢€)B is a simple ball, zone(a)
contains at most one polygon vertex. Thus, o would not be crowded, contradic-

tion.

Lemma 4 implies that the untruncated D, and hence its triangulation, has
O(csce(P)) size. Similarly, for any ray r, the number of triangles traversed by r
up to the first intersection is O(csce(r)). One can locate the cell containing the
light source in O(log esce(P)) time using point location.

Theorem 3. Gien a polygon of n vertices, there is an approzimate MWST of
O(csce(P)) size such that given a query ray r, the ray shooting query can be
answered using the approzimate MWST in O(log esce(P) 4 csce(r)) time.

As argued in [4,7], cscc(P) is expected to be small in practice (e.g. O(n))
and so the query time in Theorem 3 may often be good enough. When c¢sce(P)
is actually large, we can alternatively locate the light source by descending the
quadtree. This gives a running time of O(log(R/r)logn), where R is the width
of the minimum enclosing square of P, and r is the size of the largest e-strongly
C-simple ball containing the light source. When the local geometry around the
light source is very simple, one expects O(log(R/r)) to be small.

References

1. B. Aronov and S. Fortune, Average-case ray shooting and minimum weight trian-
gulation, in Proc. 13th ACM Symposium on Computational Geometry, 204-211,
1997.

2. S. Arya, S.W. Cheng, and D.M. Mount, Approximation algorithms for multiple-
tool milling, Proc. 14th ACM Symposium on Computational Geometry 1998, 297—
306.

3. M. Bern, D. Eppstein, and J. Gilbert, Provably good mesh generation, Journal of
Computer and System Sciences, 48 (1994) 384-409.

4. M. de Berg, M. Katz, A.F. van der Stappen, J. Vleugels, Realistic input models for
geometric algorithms, in Proc. 13th ACM Symposium on Computational Geometry,
294-303, 1997.

5. D. Eppstein, Approximating the minimum weight Steiner triangulation, Discrete
& Computational Geometry, 11 (1994) 163-191.

6. K.Y. Fung, T.M. Nicholl, R.E. Tarjan, and C.J. Van Wyk, Simplified linear-time
Jordan sorting and polygon clipping. Information Processing Letters, 35 (1990)
85-92.

7. J.S.B. Mitchell, D.M. Mount, and S. Suri, Query-sensitive ray shooting, Interna-
tional Journal of Computational Geometry & Applications, 7 (1997) 317-347.

8. F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction,
Springer-Verlag, New York, 1985.

